WO2003026931A1 - Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug - Google Patents

Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug Download PDF

Info

Publication number
WO2003026931A1
WO2003026931A1 PCT/DE2002/002629 DE0202629W WO03026931A1 WO 2003026931 A1 WO2003026931 A1 WO 2003026931A1 DE 0202629 W DE0202629 W DE 0202629W WO 03026931 A1 WO03026931 A1 WO 03026931A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
impact
determined
crash
speed
Prior art date
Application number
PCT/DE2002/002629
Other languages
English (en)
French (fr)
Inventor
Sybille Eisele
Michael Roelleke
Marc Theisen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02754381A priority Critical patent/EP1423301B1/de
Priority to DE50208802T priority patent/DE50208802D1/de
Publication of WO2003026931A1 publication Critical patent/WO2003026931A1/de
Priority to US11/042,448 priority patent/US7191045B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters

Definitions

  • the invention is based on a method for determining a triggering time for restraint devices in a vehicle according to the type of the independent patent claim.
  • Speed reduction in at least one time window, the impact time and the impact speed, the triggering time can be determined more precisely. Crashes against a rigid barrier in particular can thus be distinguished well from other crash types, and the differences between the crash types can thus be better emphasized with these combinations of features.
  • a second time window is determined after a first time window, and in each of the two time windows the slope of the speed reduction and the position of the time window are determined in order to determine a crash type in connection with the impact speed and the impact time, which then leads to the determination of the tripping time. This enables a more precise determination of the tripping time overall.
  • the impact time and the impact speed are determined by means of a pre-crash sensor system, for example radar sensors, video sensors and / or ultrasound sensors, all of which can be installed at different locations in a vehicle for all-round visibility.
  • a pre-crash sensor system for example radar sensors, video sensors and / or ultrasound sensors, all of which can be installed at different locations in a vehicle for all-round visibility.
  • a minimum time is specified for the time window in order not to react to faults. If this minimum time is not reached, the time window is assumed to be non-existent.
  • the threshold value achieved for the speed reduction after the detection of the crash type is assumed to be a continuous threshold value function. This has the advantage that such a continuous threshold value function can compensate for a fluctuation in the determination of the tripping time. This leads to a more precise determination of the tripping time.
  • the Signal property does not directly include any imprecision of the point of impact in the calculation of the triggering time.
  • FIG. 1 shows a block diagram of a device according to the invention
  • FIG. 2 shows a flow diagram of the method according to the invention.
  • pre-crash sensors will also be used for impact detection in a motor vehicle, which will provide the information of the impact speed and the time of impact before the start of a crash.
  • a system is thus used which uses the signals of an impact sensor as well as those of a pre-crash sensor.
  • a crash severity depends on the crash constellation, i.e. a frontal impact, a side impact, or an impact that takes place at a certain angle, on the property of the obstacle, this includes the stiffness, the mass, the shape and size, and the Impact speed of the motor vehicle.
  • a crash type is a combination of the crash constellation, i.e. what type of crash is, and the properties of the obstacle or barrier. According to the invention, the crash type is to be identified via speed-dependent features. The optimal tripping time can then be determined. The deployment time is the point in time when the restraint devices, i.e. airbag or belt tensioner, are deployed. Therefore, these features must be detected before or at the latest with the trigger decision.
  • a continuous threshold value function for speed reduction is used to calculate the triggering time, so that a fluctuation in the calculation of the triggering time can be compensated for.
  • only one signal property and not any inaccuracy of the point of impact is included in the determination of the triggering time.
  • An impact for example a front impact, takes place in several phases.
  • a first barrier is deformed, with a strong, negative gradient of the speed reduction occurring.
  • a second negative gradient occurs, the time interval between the two gradients depending on the impact speed.
  • a strong reduction in speed correlates with a breaking behavior in the corresponding vehicle structures.
  • the first gradient represents a fracture behavior in the area of the bumper
  • the second gradient represents a fracture behavior in the structures behind the bumper, for example in a crash box.
  • a crash box is a structure, a type of buffer or predetermined breaking point behind the bumper, in crashes with a low impact speed (up to approx. 15 km / h), provided that the vehicle is only hit on the bumper, ensures that only the bumper and the crash box need to be replaced when the vehicle is repaired. There is hardly any speed reduction between the two gradients. In some cases, after the first fracture behavior in the interior, that is the area in which the acceleration sensor is located, accelerations can again occur. The course of the
  • a method is now implemented which detects the two time windows of the gradients and their slopes.
  • the signal curve of the speed reduction between two successive samples is assumed to be linear.
  • the slopes of the straight line sections between successive samples are continuously compared with the previous ones. As soon as the current gradient deviates less than an applicable parameter from the previous gradient and the detected gradient is more negative than an applicable threshold, the start of a time window is recognized. If this condition no longer applies, the end of the time window is recognized.
  • a recognized time window must also have a minimum length, which can also be specified, otherwise it is not recognized as such.
  • a straight line passes through the start and end points of a recognized time window and its slope determined.
  • the parameters for comparing the slopes of the straight line sections can be used independently of one another for the two time windows.
  • the method according to the invention recognizes the beginning or the end of a time window with a delay of one sample value.
  • the crash tests of the crash type under consideration - frontally against a rigid barrier - are divided into two groups: the first group comprises crashes of this type with a low to medium impact speed, while the second group includes crashes with a high impact speed exhibit.
  • the time between the start of the crash and the trigger decision is quite short.
  • the end of the first time window is used to calculate the triggering time.
  • the two gradients are detected before the required triggering time.
  • the correct triggering time can be inferred, for example, by accessing the table - the table shows the triggering times dependent on the impact speed. With this behavior, inaccurate information regarding the time of the impact can be difficult, since the accuracy of the time of impact is directly transferred to the accuracy of the triggering time.
  • a continuous threshold function for the achieved speed reduction used. If the two time windows were recognized and the crash type was identified by evaluating the position of the windows and the gradients of the two gradients, the course of the speed reduction is observed until it exceeds the continuous threshold function. This point in time indicates the tripping time.
  • FIG. 1 shows the device according to the invention as a block diagram.
  • Precrash sensors 1 for example radar sensors and / or ultrasound sensors, are connected to an evaluation unit 2 for determining the impact speed and the impact time.
  • the evaluation unit 2 is therefore a processor.
  • the pre-crash sensors 1 are radar sensors here, however, video sensors or ultrasonic sensors can also be used additionally or alternatively.
  • the evaluation unit 2 is then connected to a further evaluation unit 3, specifically to its first data input, which is used for crash type identification within predetermined speed bands and for trigger calculation.
  • the evaluation unit 3, which is also designed as a processor additionally uses data from an impact sensor 4, which is connected to a second data input of the evaluation unit 3.
  • the impact sensor 4 is an acceleration sensor with additional electronics, which is used for signal processing.
  • only one acceleration sensor 4 is specified here, but more acceleration sensors can be connected, in particular also outsourced sensors, which are therefore present on the cooler as upfront sensors, or as side impact sensors on the side or on Seat crossmember.
  • acceleration sensors are also arranged in a central control unit, for example on the vehicle tunnel.
  • pressure and / or structure-borne noise and / or temperature sensors can also be used.
  • the evaluation units 2 and 3 can be combined to form a processor.
  • the evaluation unit 3 then calculates the tripping time from this data using the method according to the invention and transmits this to a control unit 5 for the actuator system.
  • the control part 5 here is an ignition circuit control, which controls an actuator 6, which then triggers the restraining means 7 at the triggering time.
  • FIG. 2 now shows the method according to the invention as a flow diagram.
  • the acceleration signal is generated by means of the impact sensor 4.
  • corresponding accelerations occur, for which the impact sensor 4 must be designed.
  • the speed reduction and the gradient in the course of the speed reduction are determined in the event of a crash.
  • the speed reduction is derived from the acceleration signal. This is done by performing an integration for the acceleration signal.
  • the slope in the course of the speed reduction is derived from the speed reduction. This is done by performing a linear interpolation between samples of the speed reduction. Alternatively it is here it is possible that other interpolations, i.e. non-linear ones, are also carried out.
  • method step 10 it is then checked whether the determined slope is more negative than a predetermined threshold for the slope.
  • the first time window is only started if this is the case.
  • the time period for which the currently determined gradient falls below the predetermined threshold for the gradient in the course of the speed reduction is also determined. If this condition no longer applies, a jump is made to method step 11 by checking whether the determined time period for the time window has exceeded a predetermined minimum time. If, however, it was recognized in method step 10 that the gradient is not more negative than the predefined threshold, then the process jumps back to method step 9 and the gradient is further determined in the course of the speed reduction.
  • method step 11 If it has now been determined in method step 11 that the time period determined in method step 10 has not reached the minimum time, the method jumps back to method step 9. However, if this minimum time has been exceeded, then the first time window receives the time period determined in method step 10, and it is checked in method step 12 whether the
  • a crash type is identified by the evaluation unit 3 by the slope in the first time window and the position of the first time window in the corresponding one Speed band is determined. If it is a hard crash, i.e. a crash against a rigid barrier, the end of the first time window is therefore recognized as the triggering time.
  • the restraining means 7 are then triggered via the control part 5 and the actuator 6. If the crash is a soft one, the method jumps to step 14.
  • method step 12 determines whether the impact speed is above this threshold. If it was recognized in method step 12 that the impact speed is not above this threshold, then the gradient in the course of the speed reduction is determined again in method step 14, in order to check in method step 15 whether the gradient fell below a predetermined threshold for a second time window by the slope. If this is not the case, then the slope in the course of the speed reduction is determined in method step 14. In method step 15, the time period for which the aforementioned condition applies is also determined. In method step 16, it is checked whether the determined time period has exceeded the minimum time.
  • the gradient continues to be determined in the course of the speed reduction. If the determined time period has exceeded the minimum time, the second time window receives this time period, and in method step 17, a crash type identification is carried out by the evaluation unit 3. This is carried out via the position of the two time windows, the first and the second, with a plausibility check being carried out with the slope in the time windows for the corresponding speed band.
  • a crash type identification is carried out by the evaluation unit 3. This is carried out via the position of the two time windows, the first and the second, with a plausibility check being carried out with the slope in the time windows for the corresponding speed band.
  • the course of the speed reduction is then considered further until a predetermined threshold value function for the speed reduction is exceeded. Then the triggering time is recognized and the restraining means 7 are triggered.
  • the threshold value function is selected depending on the identified crash type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

Es wird ein Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug vorgeschlagen, indem durch die Bildung von zwei Zeitfenstern für den Geschwindigkeitsabbau bei einem Crash die Steigung des Geschwindigkeitsabbaus in den jeweiligen Zeitfenstern und die Lage der Zeitfenster bestimmt wird, um daraus in Verbindung mit einem Aufprallzeitpunkt und der Aufprallgeschwindigkeit, die mittels einer Precrash-Sensorik ermittelt werden, eine genaue Bestimmung der Auslösezeit zu erreichen.

Description

Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug nach der Gattung des unabhängigen Patentanspruchs .
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug mit den Merkmalen des unabhängigen Patentanspruchs hat folgende Vorteile: Durch die Berücksichtigung des
Geschwindigkeitsabbaus in wenigstens einem Zeitfenster, der Aufprallzeit und der Aufprallgeschwindigkeit ist die Auslösezeit genauer bestimmbar. Damit können insbesondere Crashs gegen eine starre Barriere gut von anderen Crashtypen unterschieden und somit bei diesen Merkmalskombinationen die Unterschiede zwischen den Crashtypen besser herausgestellt werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruchs angegebenen Verfahrens zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug möglich.
Besonders vorteilhaft ist, dass nach einem ersten Zeitfenster ein zweites Zeitfenster bestimmt wird, und jeweils in den beiden Zeitfenstern die Steigung des Geschwindigkeitsabbaus und die Lage der Zeitfenster bestimmt wird, um damit in Verbindung mit der Aufprallgeschwindigkeit und der Aufprallzeit einen Crashtyp zu ermitteln, der dann zur Bestimmung der Auslösezeit führt. Damit wird insgesamt eine genauere Bestimmung der Auslösezeit möglich.
Darüber hinaus ist es von Vorteil, dass die Aufprallzeit und die Aufprallgeschwindigkeit mittels einer Precrash-Sensorik bestimmt werden, beispielsweise Radarsensoren, Videosensoren und/oder Ultraschallsensoren, die alle zur Rundumsicht in einem Fahrzeug an verschiedenen Stellen verbaut werden könne .
Weiterhin ist es von Vorteil, dass für die Zeitfenster jeweils eine Minimalzeit vorgegeben wird, um nicht auf Störungen zu reagieren. Wird diese Minimalzeit nicht erreicht, wird das Zeitfenster als nicht existent angenommen.
Weiterhin ist es von Vorteil, dass der erreichte Schwellwert für den Geschwindigkeitsabbau nach der Detektion des Crashtyps als eine kontinuierliche Schwellwertfunktion angenommen wird. Dies hat den Vorteil, dass mit einer solchen kontinuierlichen Schwellwertfunktion eine Schwankung bei der Bestimmung der Auslösezeit ausgeglichen werden kann. Das führt also zu einer genaueren Bestimmung der Auslösezeit. Darüber hinaus geht bei der Nutzung der Signaleigenschaft eine eventuelle Ungenauigkeit des Aufprallzeitpunktes nicht direkt in die Berechnung der Auslösezeit ein.
Schließlich ist es auch von Vorteil, dass für einen Crashtyp für eine bestimmte Aufprallgeschwindigkeit mittels einer Tabelle eine entsprechende Auslösezeit bestimmt wird. Dies beschleunigt das erfindungsgemäße Verfahren.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Blockschaltbild einer erfindungsgemäßen Vorrichtung und Figur 2 ein Flussdiagramm des erfindungsgemäßen Verfahrens.
Beschreibung
Zukünftig sollen zur Aufprallerkennung in einem Kraf fahrzeug zusätzlich zu reinen Aufprallsensoren wie Beschleunigungssensoren auch Precrash-Sensoren eingesetzt werden, die die Informationen Aufprallgeschwindigkeit und Aufprallzeitpunkt vor Beginn eines Crashs zur Verfügung stellen. Somit wird ein System benutzt, welches die Signale eines Aufprallsensors als auch die eines Precrash-Sensors verwendet .
Eine Crashschwere hängt von der Crashkonstellation, also einem frontalen Aufprall, einem Seitenaufprall, oder einem Aufprall der in einem gewissen Winkel stattfindet, von der Eigenschaft des Hindernisses, hierzu gehören die Steifigkeit, die Masse, die Form und Größe, und von der Aufprallgeschwindigkeit des Kraftfahrzeuges ab. Als Crashtyp bezeichnet man eine Kombination aus der Crashkonstellation, also welcher Art der Crash ist, und den Eigenschaften des Hindernisses bzw. der Barriere. Über geschwindigkeitsabhängige Merkmale soll erfindungsgemäß der Crashtyp identifiziert werden. Damit kann dann die optimale Auslösezeit bestimmt werden. Die Auslösezeit ist der Zeitpunkt, wenn die Rückhaltemittel, also Airbag oder Gurtstraffer, ausgelöst werden. Daher müssen diese Merkmale zeitlich vor oder spätestens mit der Auslöseentscheidung detektiert werden. Erfindungsgemäß wird eine kontinuierliche Schwellenwertfunktion für den Geschwindigkeitsabbau zur Berechnung der Auslösezeit verwendet, so dass eine Schwankung bei der Berechnung der Auslösezeit ausgeglichen werden kann. Dabei geht dann nur eine Signaleigenschaft und nicht eine eventuelle Ungenauigkeit des Aufprallzeitpunkts in die Bestimmung der Auslösezeit ein.
Ein Aufprall, beispielsweise ein Frontaufprall, verläuft in mehreren Phasen. Zunächst wird eine erste Barriere deformiert, wobei ein starker, negativer Gradient des Geschwindigkeitsabbaus auftritt. Im weiteren Verlauf tritt ein zweiter negativer Gradient ein, wobei der zeitliche Abstand der beiden Gradienten von der Aufprallgeschwindigkeit abhängt.
Ein starker Geschwindigkeitsabbau korreliert mit einem Bruchverhalten in den entsprechenden Fahrzeugstrukturen. Der erste Gradient stellt ein Bruchverhalten im Bereich der Stoßstange, der zweite Gradient ein Bruchverhalten in den Strukturen hinter der Stoßstange, beispielsweise in einer Crashbox dar. Unter Crashbox versteht man eine Struktur, eine Art Puffer bzw. Sollbruchstelle hinter der Stoßstange, die bei Crashs mit niedriger Aufprallgeschwindigkeit (bis ca. 15km/h) unter der Voraussetzung, dass das Fahrzeug nur an der Stoßstange getroffen wird, dafür sorgt, dass bei der Reparatur des Fahrzeugs nur die Stoßstange und die Crashbox getauscht werden müssen. Zwischen den beiden Gradienten wird kaum Geschwindigkeit abgebaut. Teilweise kann es nach dem ersten Bruchverhalten in dem Innenraum, das ist der Bereich, in dem sich der Beschleunigungssensor befindet, sogar wieder zu Beschleunigungen kommen. Der Verlauf des
Geschwindigkeitsabbaus zwischen den beiden Gradienten zeigt ein elastisches Verhalten. Tendenziell steigt der Betrag der negativen Steigung im ersten Gradienten mit der Auf rallgeschwindigkeit .
Erfindungsgemäß wird nun ein Verfahren realisiert, das die beiden Zeitfenster der Gradienten und deren Steigungen detektier . Dazu wird der Signalverlauf des Geschwindigkeitsabbaus zwischen zwei aufeinanderfolgenden Abtastwerten als linear angenommen. Es werden laufend die Steigungen der Geradenabschnitte zwischen aufeinanderfolgenden Abtastwerten mit den jeweils vorhergehenden verglichen. Sobald die aktuelle Steigung weniger als ein applizierbarer Parameter von der vorgehenden Steigung abweicht und die detektierte Steigung negativer als eine applizierbare Schwelle ist, wird der Beginn eines Zeitfensters erkannt. Trifft diese Bedingung nicht mehr zu, dann wird das Ende des Zeitfensters erkannt.
Ein erkanntes Zeitfenster muss darüber hinaus eine Mindestlänge, die ebenfalls vorgebbar ist, aufweisen, ansonsten wird es als solches nicht erkannt. Bei der Berechnung der Steigung eines Gradienten in einem Zeitfenster wird eine Gerade durch den Anfangs- und Endpunkt eines erkannten Zeitfensters gelegt und deren Steigung ermittelt. Es ist jedoch möglich auch andere Verfahren mit mehr Abtastpunkten zur Bestimmung der Steigung einzusetzen.
Die Parameter zum Vergleich der Steigungen der Geradenabschnitte sind für die beiden Zeitfenster unabhängig voneinander anwendbar. Das erfindungsgemäße Verfahren erkennt den Beginn bzw. das Ende eines Zeitfensters jeweils mit einer Verzögerung von einem Abtastwert.
Unter Berücksichtigung der geforderten Auslösezeit teilen sich die Crashtests des betrachteten Crashtyps - frontal gegen eine starre Barriere - in zwei Gruppen auf: Die erste Gruppe umfaßt die Crashs dieses Typs mit einer niedrigen bis mittleren Aufprallgeschwindigkeit, während die zweite Gruppe Crashes umfaßt, die eine hohe Aufprallgeschwindigkeit aufweisen. Bei den Crashs der zweiten Gruppe ist die Zeit zwischen Crashbeginn und Auslöserentscheidung recht kurz . Bei diesen Crashs wird zur Berechnung der Auslösezeit das Ende des ersten Zeitfensters verwendet. Bei der ersten Gruppe werden die beiden Gradienten vor der erforderlichen Auslösezeit detektiert. Mit der zusätzlichen Information der Aufprallgeschwindigkeit kann zum Beispiel mittels eines Tabellenzugriffs - in der Tabelle sind die von der Aufprallgeschwindigkeit abhängigen Auslösezeiten angelegt - auf die richtige Auslösezeit geschlossen werden. Bei diesem Verhalten kann eine ungenaue Information bezüglich des Aufprallzeitpunktes Schwierigkeiten bereiten, da die Genauigkeit des Aufprallzeitpunkts sich direkt auf die Genauigkeit der Auslösezeit überträgt.
Für die Berechnung der Auslösezeiten wird bei der ersten Gruppe eine kontinuierliche Schwellenfunktion für den erreichten Geschwindigkeitsabbau verwendet. Wurden die beiden Zeitfenster erkannt und durch Auswertung der Lage der Fenster und der Steigungen der beiden Gradienten der Crashtyp identifiziert, wird der Verlauf des Geschwindigkeitsabbaus solange weiter beobachtet, bis dieser die kontinuierliche Schwellenfunktion überschreitet. Dieser Zeitpunkt gibt die Auslösezeit an.
Figur 1 zeigt als Blockschaltbild die erfindungsgemäße Vorrichtung. Precrash-Sensoren 1, beispielsweise Radarsensoren und/ oder Ultraschallsensoren, sind an einer Auswerteeinheit 2 zur Ermittlung der Aufprallgeschwindigkeit und der Aufprallzeit angeschlossen. Die Auswerteeinheit 2 ist daher ein Prozessor.
Die Precrash-Sensoren 1 sind hier Radarsensoren, es können jedoch auch zusätzlich oder alternativ Videosensoren bzw. Ultraschallsensoren verwendet werden. Die Auswerteeinheit 2 ist dann an eine weitere Auswerteeinheit 3 angeschlossen und zwar an deren ersten Dateneingang, die zur Crashtypidentifikation innerhalb vorgegebener Geschwindigkeitsbänder und zur Auslöseberechnung dient. Dazu verwendet die Auswerteeinheit 3, die auch als Prozessor ausgebildet ist, zusätzlich Daten von einem Aufprallsensor 4, der an einen zweiten Dateneingang der Auswerteeinheit 3 angeschlossen ist. Der Aufprallsensor 4 ist hier ein Beschleunigungssensor mit zusätzlicher Elektronik, die zur Signalaufbereitung dient. Der Einfachheit halber ist hier nur ein Beschleunigungssensor 4 angegeben, es können jedoch mehr Beschleunigungssensoren angeschlossen sein, insbesondere auch ausgelagerte Sensoren, die also beispielsweise am Kühler als Upfrontsensoren vorhanden sind, oder als Seitenaufprallsensoren in der Seite oder am Sitzquerträger. Zusätzlich ist es möglich, dass auch Beschleunigungssensoren in einem zentralen Steuergerät beispielsweise auch am Fahrzeugtunnel angeordnet sind. Anstatt von Beschleunigungssensoren können auch Druck- und/oder Körperschall- und/oder Temperatursensoren eingesetzt werden. Die Auswerteeinheiten 2 und 3 können zu einem Prozessor zusammengefaßt sein.
Die Auswerteeinheit 3 berechnet dann aus diesen Daten mit dem erfindungsgemäßen Verfahren die Auslösezeit und übermittelt diese an ein Ansteuerungs eil 5 für die Aktuatorik. Das Ansteuerungsteil 5 ist hier eine Zündkreisansteuerung, die einen Aktuator 6 ansteuert, der dann die Rückhaltemittel 7 zur Auslösezeit auslöst.
Figur 2 zeigt nun als ein Flussdiagramm das erfindungsgemäße Verfahren. Im Verfahrensschritt 8 erfolgt die Erzeugung des Beschleunigungssignals mittels des Aufprallsensors 4. Bei einem Aufprall auf das Kraftfahrzeug kommt es zu entsprechenden Beschleunigungen, für die der Aufprallsensor 4 ausgelegt sein muß.
Im Verfahrensschritt 9 wird bei einem Crash der Geschwindigkeitsabbau und die Steigung im Verlauf des Geschwindigkeitsabbaus ermittelt. Der Geschwindigkeitsabbau leitet sich aus dem Beschleunigungssignal ab. Dies wird dadurch durchgeführt, dass für das Beschleunigungssignal eine Integration durchgeführt wird. Die Steigung im Verlauf des Geschwindigkeitsabbaus leitet sich aus dem Geschwindigkeitsabbau ab. Dies wird dadurch durchgeführt, dass zwischen Abtastwerten des Geschwindigkeitsabbaus eine lineare Interpolartion durchgeführt wird. Alternativ ist es hier möglich, dass auch andere Interpolartionen, also nichtlineare, durchgeführt werden.
Im Verfahrensschritt 10 wird dann überprüft, ob die ermittelte Steigung negativer ist, als eine vorgegebene Schwelle für die Steigung. Nur wenn dies der Fall ist, wird das erste Zeitfenster gestartet. Es wird in diesem Verfahrensschritt ferner die Zeitdauer ermittelt, für die die aktuell ermittelte Steigung im Verlauf des Geschwindigkeitsabbaus die vorgegebene Schwelle für die Steigung unterschreitet. Trifft diese Bedingung nicht mehr zu, wird zum Verfahrensschritt 11 gesprungen, indem überprüft wird, ob die ermittelte Zeitdauer für das Zeitfenster eine vorgegebene minimale Zeit überschritten hat. Wurde jedoch im Verfahrensschritt 10 erkannt, dass die Steigung nicht negativer als die vorgegebene Schwelle ist, dann wird zu Verfahrensschritt 9 zurückgesprungen, und es wird weiter die Steigung im Verlauf des Geschwindigkeitsabbaus ermittelt.
Wurde nun im Verfahrenschritt 11 ermittelt, dass die in Verfahrensschritt 10 ermittelte Zeitdauer nicht die Minimalzeit erreicht hat, wird zu Verfahrensschritt 9 zurückgesprungen. Wurde jedoch diese minimale Zeit überschritten, dann erhält das erste Zeitfenster die in Verfahrensschritt 10 ermittelte Zeitdauer, und es wird im Verfahrenschritt 12 überprüft, ob die
Aufprallgeschwindigkeit, die mit den Precrash-Sensoren 1 und der Auswerteeinheit 2 ermittelt wurde, eine vorgegebene Schwelle überschritten hat. Ist das der Fall, dann wird im Verfahrensschritt 13 ein Crashtyp durch die Auswerteeinheit 3 identifiziert, indem die Steigung im ersten Zeitfenster und die Lage des ersten Zeitfensters im entsprechenden Geschwindigkeitsband bestimmt wird. Handelt es sich um einen harten Crash, also einen Crash gegen eine starre Barriere, wird das Ende des ersten Zeitfensters daher als Auslösezeit erkannt. Dann erfolgt über das Ansteuerungsteil 5 und den Aktuator 6 die Auslösung der Rückhaltemittel 7. Handelt es sich um einen weichen Crash, wird zu Verfahrensschritt 14 gesprungen .
Wurde jedoch im Verfahrensschritt 12 erkannt, dass die Aufprallgeschwindigkeit nicht über dieser Schwelle liegt, dann wird im Verfahrensschritt 14 erneut die Steigung im Verlauf des Geschwindigkeitsabbaus ermittelt, um im Verfahrensschritt 15 zu überprüfen, ob eine vorgegebene Schwelle für ein zweites Zeitfenster durch die Steigung unterschritten wurde und zwar durch die Steigung. Ist das nicht der Fall, dann wird weiterhin die Steigung im Verlauf des Geschwindigkeitsabbaus im Verfahrensschritt 14 ermittelt. Im Verfahrensschritt 15 wird ferner die Zeitdauer, für die zuvor genannte Bedingung zutrifft, ermittelt. Im Verfahrensschritt 16 wird überprüft, ob die ermittelte Zeitdauer die Minimalzeit überschritten hat.
Erreicht die ermittelte Zeitdauer die Minimalzeit nicht, wird weiterhin die Steigung im Verlauf des Geschwindigkeitsabbaus ermittelt. Hat die ermittelte Zeitdauer die Minimalzeit überschritten, erhält das zweite Zeitfenster diese Zeitdauer, und es wird im Verfahrensschritt 17 eine Crashtypidentifikation durch die Auswerteeinheit 3 vorgenommen. Dies wird über die Lage der beiden Zeitfenster, des ersten und des zweiten, durchgeführt, wobei eine Plausibilisierung mit der Steigung in den Zeitfenstern für das entsprechende Geschwindigkeitsband durchgeführt wird. Im Verfahrensschritt 18 erfolgt dann eine weitere Betrachtung des Verlaufs des Geschwindigkeitsabbaus bis eine vorgegebene Schwellenwertfunktion für den Geschwindigkeitsabbau überschritten wird. Dann wird die Auslösezeit erkannt, und es erfolgt die Auslösung der Rückhaltemittel 7. Die Schwellenwertfunktion wird je nach identifiziertem Crashtyp ausgewählt.

Claims

Patentansprüche
1. Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel (7) in einem Fahrzeug, wobei Beschleunigungssignale von Beschleunigungssensoren (4) erzeugt werden, wobei aus den Beschleunigungssignalen ein Geschwindigkeitsabbau des Fahrzeugs, das auf ein Objekt prallt, bestimmt wird, wobei in Abhängigkeit von wenigstens einem Vergleich des Geschwindigkeitsabbaus mit wenigstens einem ersten Schwellwert wenigstens ein erstes Zeitfenster bestimmt wird, wobei in Abhängigkeit von der Steigung des Geschwindigkeitsabbaus in dem wenigstens einem ersten Zeitfenster, von der Aufprallzeit und von der
Aufprallgeschwindigkeit die Auslösezeit bestimmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Abhängigkeit von der Aufprallgeschwindigkeit, der Lage des ersten Zeitfensters und der Steigung des Geschwindigkeitsabbaus im ersten Zeitfenster ein zweites Zeitfenster bestimmt wird und dass dann ein Crashtyp in Abhängigkeit von den jeweiligen Lagen der beiden Zeitfenstern, von der Aufprallzeit und von der Aufprallgeschwindigkeit bestimmt wird, wobei nach dem Ende des zweiten Zeitfensters der Geschwindigkeitsabbau mit einem zweiten Schwellwert verglichen wird, um in Abhängigkeit von dem Crashtyp die Auslösezeit zu bestimmen.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Aufprallzeit und die Aufprallgeschwindigkeit mittels einer Precrash-Sensorik (1) bestimmt werden.
4. Verfahren nach einem der folgenden Ansprüche, dadurch gekennzeichnet, dass für das wenigstens erste Zeitfenster eine Minimalzeit vorgegeben wird, um Störungen auszufiltern.
5. Verfahren nach einem der folgenden Ansprüche, dadurch gekennzeichnet, dass der zweite Schwellwert als kontinuierliche Schwellwertfunktionen verwendet wird.
6. Verfahren nach einem der Ansprüche 2 , 3 , 4 , oder 5 , dadurch gekennzeichnet, dass bei einem Crashtyp für eine bestimmte Aufprallgeschwindigkeit mittels einer Tabelle eine entsprechende Auslösezeit bestimmt wird.
PCT/DE2002/002629 2001-08-28 2002-07-18 Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug WO2003026931A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02754381A EP1423301B1 (de) 2001-08-28 2002-07-18 Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug
DE50208802T DE50208802D1 (de) 2001-08-28 2002-07-18 Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug
US11/042,448 US7191045B2 (en) 2001-08-28 2005-01-25 Method for determining a trigger time for restraint means in a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10141886A DE10141886A1 (de) 2001-08-28 2001-08-28 Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug
DE10141886.8 2001-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10488376 A-371-Of-International 2002-07-18
US11/042,448 Continuation US7191045B2 (en) 2001-08-28 2005-01-25 Method for determining a trigger time for restraint means in a vehicle

Publications (1)

Publication Number Publication Date
WO2003026931A1 true WO2003026931A1 (de) 2003-04-03

Family

ID=7696722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002629 WO2003026931A1 (de) 2001-08-28 2002-07-18 Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug

Country Status (3)

Country Link
EP (1) EP1423301B1 (de)
DE (2) DE10141886A1 (de)
WO (1) WO2003026931A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106223A1 (de) * 2002-06-18 2003-12-24 Robert Bosch Gmbh Rückhaltesystem
CN100366468C (zh) * 2003-06-12 2008-02-06 罗伯特·博世有限公司 控制防前冲回拉装置的装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323483A1 (de) 2003-05-23 2004-12-30 Robert Bosch Gmbh Vorrichtung zur Bestimmung einer Relativgeschwindigkeit zwischen einem Fahrzeug und einem Aufprallobjekt
DE10331212A1 (de) 2003-07-10 2005-02-03 Robert Bosch Gmbh Sicherheitsvorrichtung mit Aufprallerkennung unter Berücksichtigung von Umwelteinflüssen
DE102004008600B4 (de) * 2004-02-21 2015-07-16 Conti Temic Microelectronic Gmbh Verfahren zum Auslösen eines Insassenschutzsystems und Insassenschutzsystem für ein Fahrzeug
DE102004059908A1 (de) 2004-12-13 2006-06-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung von Rückhaltemittel
DE102008008850A1 (de) 2008-02-13 2009-08-20 Robert Bosch Gmbh Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
DE102008040591B4 (de) 2008-07-22 2018-10-25 Robert Bosch Gmbh Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
DE102011015914A1 (de) * 2011-04-01 2012-10-04 Alekcandr N. Pomendukov Kollisions-Warnsystem des Fahrzeugs
DE102012107184B4 (de) * 2012-08-06 2022-03-03 Continental Automotive Gmbh Verfahren zum Erkennen einer Gefährdungssituation eines Fahrzeugs anhand von zumindest einem Umfeldsensor und zumindest einem Inertialsensor
DE102013211354B4 (de) 2013-06-18 2024-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Kollisionscharakteristik einer Kollision eines Fahrzeugs
DE102018214674A1 (de) 2018-06-29 2020-01-02 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Unfallfrüherkennung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809439A (en) * 1994-07-12 1998-09-15 Autoliv Development Ab Triggering device for a vehicle safety system with an acceleration sensor
DE19740019A1 (de) * 1997-09-11 1999-03-25 Siemens Ag Einrichtung für den Insassenschutz in einem Kraftfahrzeug
DE19840440A1 (de) * 1998-09-04 2000-03-16 Siemens Ag Verfahren und Vorrichtung zum Steuern eines Insassenschutzmittels eines Fahrzeugs
US6047985A (en) * 1997-09-08 2000-04-11 Takata Corporation Occupant protective device
US6181998B1 (en) * 1998-03-19 2001-01-30 Airbag Systems Co., Ltd. Start controlling method for a passenger protection system, start controlling system for a passenger protection system, and recording medium for recording a start controlling program for a passenger protection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809439A (en) * 1994-07-12 1998-09-15 Autoliv Development Ab Triggering device for a vehicle safety system with an acceleration sensor
US6047985A (en) * 1997-09-08 2000-04-11 Takata Corporation Occupant protective device
DE19740019A1 (de) * 1997-09-11 1999-03-25 Siemens Ag Einrichtung für den Insassenschutz in einem Kraftfahrzeug
US6181998B1 (en) * 1998-03-19 2001-01-30 Airbag Systems Co., Ltd. Start controlling method for a passenger protection system, start controlling system for a passenger protection system, and recording medium for recording a start controlling program for a passenger protection system
DE19840440A1 (de) * 1998-09-04 2000-03-16 Siemens Ag Verfahren und Vorrichtung zum Steuern eines Insassenschutzmittels eines Fahrzeugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106223A1 (de) * 2002-06-18 2003-12-24 Robert Bosch Gmbh Rückhaltesystem
CN100366468C (zh) * 2003-06-12 2008-02-06 罗伯特·博世有限公司 控制防前冲回拉装置的装置

Also Published As

Publication number Publication date
EP1423301A1 (de) 2004-06-02
DE10141886A1 (de) 2003-03-20
DE50208802D1 (de) 2007-01-04
EP1423301B1 (de) 2006-11-22

Similar Documents

Publication Publication Date Title
EP1915278B1 (de) Vorrichtung und verfahren zur seitenaufprallerkennung in einem fahrzeug
DE19611973B4 (de) Verfahren und Vorrichtung zum Erfassen eines auf ein Fahrzeug einwirkenden Stoßes
DE10057916C2 (de) Steuergerät für ein Rückhaltesystem in einem Kraftfahrzeug
EP0693401A2 (de) Datenübertragungsverfahren in einem für den Einsatz in Kraftfahrzeugen geeigneten Datenverarbeitungssystem
EP1523688A1 (de) Vorrichtung zur umfeldueberwachung in einem fahrzeug
EP1423301B1 (de) Verfahren zur bestimmung einer auslösezeit für rückhaltemittel in einem fahrzeug
DE102011085843B4 (de) Verfahren und Vorrichtung zur Analyse einer Kollision eines Fahrzeugs
DE10245780B4 (de) Vorrichtung zur Aufprallerkennung mittels Körperschall in einem Fahrzeug
EP1697177A1 (de) Verfahren zur ansteuerung von personenschutzmitteln
DE102008005526B4 (de) Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
EP1444116B1 (de) Verfahren zur aktivierung einer sicherheitseinrichtung
DE10106181C1 (de) Verfahren zur Klassifizierung eines Überrollvorgangs eines Fahrzeugs
DE102005033937B4 (de) Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln
DE102007032742A1 (de) Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
EP1606146B1 (de) Verfahren zur auslösung von rückhaltemitteln
DE60013748T2 (de) Vorrichtung zur Steuerung eines Rückhaltesystems
DE102007047404A1 (de) Verfahren zum Auslösen von einem Rückhaltemittel bei einem Fahrzeugcrash
DE10246800A1 (de) Vorrichtung und Ansteuerung eines Rückhaltesystems
DE102005044768A1 (de) Auslöseverfahren zur Aktivierung von Insassenschutzvorrichtung
DE102006040651A1 (de) Verfahren und Vorrichtung zur Detektion einer Kollision
DE102005019461B4 (de) Auslöseverfahren zur Aktivierung von Insassenschutzmitteln in einem Fahrzeug
DE102004043594B4 (de) Sicherheitssystem für Fahrzeuginsassen und Verfahren für dessen Steuerung
DE102005048547A1 (de) Sensor, Steuergerät zur Ansteuerung von Personenschutzmitteln und Verfahren zur Verarbeitung von aufeinander folgenden Sensorwerten
DE10360769B4 (de) Verfahren und Vorrichtung zum Auslösen mindestens einer Insassenschutzeinrichtung in einem Fahrzeug
DE102004023400A1 (de) Vorrichtung zur Ansteuerung einer zweiten Airbagstufe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002754381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002754381

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2002754381

Country of ref document: EP