WO2003022743A1 - Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare - Google Patents

Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare Download PDF

Info

Publication number
WO2003022743A1
WO2003022743A1 PCT/FR2002/003074 FR0203074W WO03022743A1 WO 2003022743 A1 WO2003022743 A1 WO 2003022743A1 FR 0203074 W FR0203074 W FR 0203074W WO 03022743 A1 WO03022743 A1 WO 03022743A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
rare earth
vanadate
particles
complexing agent
Prior art date
Application number
PCT/FR2002/003074
Other languages
English (en)
Inventor
Jean-Yves Chane-Ching
Thierry Le Mercier
Original Assignee
Rhodia Electronics And Catalysis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Electronics And Catalysis filed Critical Rhodia Electronics And Catalysis
Priority to US10/489,283 priority Critical patent/US20050008877A1/en
Priority to EP02777416A priority patent/EP1427673B1/fr
Priority to JP2003526826A priority patent/JP4017597B2/ja
Priority to KR1020047003685A priority patent/KR100561571B1/ko
Priority to DE60222279T priority patent/DE60222279T2/de
Publication of WO2003022743A1 publication Critical patent/WO2003022743A1/fr
Priority to US11/803,063 priority patent/US7674834B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7708Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a colloidal dispersion of particles of a vanadate or a phospho-vanadate of at least one rare earth.
  • phosphors in the form of particles as individualized as possible and of very fine size.
  • Colloidal soils or dispersions can constitute an interesting access route to such a type of product.
  • the object of the present invention is to provide a soil which can be used in particular in the fields of luminescence and electronics and from which it is possible to obtain fine and well-disaggregated products.
  • the dispersion is a colloidal dispersion of particles of a vanadate of at least one rare earth and it is characterized in that the particles have an average size of at most 6nm and in that it comprises either a complexing agent having a pK (cologarithm of the dissociation constant of the complex formed by the complexing agent and said rare earth) greater than 2.5; or an anion of a monovalent acid, soluble in water and having a pKa of between 2.5 and 5.
  • pK colongarithm of the dissociation constant of the complex formed by the complexing agent and said rare earth
  • the dispersion is a dispersion of particles of a phospho-vanadate from at least one rare earth, characterized in that it comprises either a complexing agent having a pK (cologarithm of the dissociation constant of the complex formed by the complexing agent and said rare earth) greater than 2.5; or an anion of a monovalent acid, soluble in water and having a pKa of between 2.5 and 5.
  • the invention also relates to a process for preparing the dispersions described above which is characterized in that it comprises the following steps:
  • the pH of the medium thus obtained is adjusted after addition of the vanadate ions and, optionally, phosphates to a value of at least 9; - we heat.
  • the particles of the dispersion of the invention may have, depending on the variants, a size of the order of a few nanometers and generally a homogeneous and well individualized morphology which makes the dispersion particularly useful for applications using phosphors.
  • rare earth is understood for the whole of the description the elements of the group constituted by yttrium and the elements of the periodic classification with atomic number included inclusively between 57 and 71.
  • the invention applies to dispersions or soils of particles of a vanadate or a phospho-vanadate of one or more rare earths.
  • particles based essentially on vanadates of formula LnV0 or phospho-vanadates of formula Ln (V0) x (P0 4 ) y with x + y 1, Ln denoting one or more rare earths.
  • colloidal dispersion or sol of a vanadate or of a phospho-vanadate of rare earth designates any system consisting of fine solid particles of colloidal dimensions generally based on a vanadate or of a phospho-vanadate of rare earth in the sense given above, which can be hydrated, and suspended in an aqueous liquid phase. These particles may also contain a certain amount of the complexing agent or the anion of the abovementioned monovalent acid.
  • the rare earth can also, optionally, contain residual amounts of bound or adsorbed ions which can come from the rare earth salts used in the preparation of the dispersion such as for example nitrates anions, acetates, chlorides, citrates, ammoniums or sodium ions or vanadate or phosphate anions (HP0 2 " , P0 3" , P3O10 5 " ).
  • the rare earth may be either completely in the form of colloids, or simultaneously under the form of ions, complexed ions and colloids, preferably at least 80% of the rare earth is in colloidal form.
  • the aqueous liquid phase can also comprise the complexing agent or the monovalent acid or the anion of this acid, the aforementioned anions of the rare earth salts and the vanadate or phospho-vanadate ions in various forms.
  • complexing means in the present description a compound or a molecule which can establish a covalent or iono-covalent bond with the rare earth cation.
  • the complexing agents which are suitable in the context of the present invention are complexing agents with a high dissociation constant of complexes Ks, the complex considered here being the complex formed by the complexing agent and the rare earth cation. As an example for the balance given below:
  • PK is the cologarithm of Ks. The more stable the complex (Ln, l), the higher the value of pK.
  • the complexing agents which are suitable in the context of the present invention are those having a pK greater than 2.5, preferably at least 3.
  • the complexing agent can in particular be chosen from acid-alcohols or polyacid-alcohols or their salts.
  • acid-alcohols or polyacid-alcohols or their salts.
  • an alcoholic acid mention may be made of glycolic acid or lactic acid.
  • polyacid alcohol there may be mentioned malic acid and citric acid.
  • the complexing agent can also be chosen from aliphatic amino acids, preferably aliphatic amino polyacids, or their salts.
  • aliphatic amino acids preferably aliphatic amino polyacids, or their salts.
  • ethylene-diamino-tetracetic acid or nitrilo-tri-acetic acid or the sodium salt of glutamic acid N, N diacetic of formula (NaC00 ⁇ ) CH2CH2 can be given.
  • - CH (COO " Na) N (CH2COO " Na) 2 As other suitable complexing agents, polyacrylic acids and their salts such as sodium polyacrylate, and more particularly those whose molecular weight by weight is between 2000 and 5000, can be used.
  • the complexing agent can be either in acid form or in ionized form.
  • one or more complexing agents may be present in the same dispersion.
  • the dispersion can also comprise the anion of a monovalent acid, soluble in water and having a pKa of between 2.5 and 5.
  • the pKa is the cologarithm of the acid constant Ka of l 'acid concerned.
  • This acid can in particular be formic acid, propionic acid or monochloroacetic acid. It may especially be acetic acid.
  • several anions of monovalent acids may be present in the same dispersion.
  • the complexing agent and the abovementioned anion may be present as a mixture in the dispersion.
  • the level of complexing agent and / or anion of monovalent acid expressed in number of moles of complexing agent or anion of monovalent acid relative to the number of rare earth atoms, can vary. It can be in particular between 0.01 and 0.25, more particularly between 0.05 and 0.21. This rate is determined by chemical determination of the carbon and the rare earth of the colloids recovered after ultracentrifugation at 50,000 rpm for 6 hours. Such a rate applies to the sum of complexing agents or anions if several complexing agents or anions are present in the dispersion.
  • the VO-i / Ln or (V0 4 + P0 4 ) / Ln molar ratio can also vary and it can for example be between 0.7 and 1, 2 and more particularly between 0.8 and
  • the molar ratio P ⁇ 4 / (V0 + P0 4 ) is also variable and it can be for example between 0 and 0.85 and more particularly between 0.6 and 0.8. These two ratios are determined by chemical determination of the chemical species concerned on the colloids recovered after ultracentrifugation at
  • the dispersions according to the first variant of the invention are of the nanometric type. By this is meant dispersions whose colloids are of an average size of at most 6 nm and more particularly of at most
  • the colloidal particles can in particular have an average size of between approximately 3 nm and approximately 5 nm.
  • the colloids can be of any size. According to a particular embodiment, however, their average size is at most 20 nm, more particularly at most 10 nm. More particularly in the context of this second variant, the colloids can also have the average size of those of the first variant and therefore the values given above.
  • the colloids of the vanadate dispersions of the invention are little or not agglomerated.
  • Analysis by transmission cryo-microscopy on frozen samples shows a low colloid agglomeration rate, for example less than 40%, more particularly less than 10% or even less than 5% in number, that is to say that out of all the objects or particles that are observed, at least 60%, more particularly at least 90% and even more particularly at least 95% consist of a single crystallite.
  • a low colloid agglomeration rate for example less than 40%, more particularly less than 10% or even less than 5% in number, that is to say that out of all the objects or particles that are observed, at least 60%, more particularly at least 90% and even more particularly at least 95% consist of a single crystallite.
  • What has just been described for the vanadate dispersions also applies here for the phosphovanadate dispersions whose average particle size is at most 6 nm.
  • the colloidal particles are isotropic or substantially isotropic with regard to their morphology. Their shape is indeed close to that of a sphere (totally isotropic morphology) as opposed to particles of acicular or platelet shape.
  • the rare earth may be any, as defined above. However, the rare earth may more particularly be lanthanum, cerium, praseodymium, gadolinium, europium or yttrium.
  • the invention applies particularly well to cases of dispersions of two rare earths, at least one of which is europium, in particular in an atomic ratio Eu / Ln which can vary between 0.01 / 0.99 and 0.20 / 0 , 80, more particularly between 0.02 / 0.98 and 0.15 / 0.85, Ln denoting the rare earth other than europium.
  • This second rare earth can be in particular yttrium or lanthanum.
  • concentrations of the dispersions of the invention are generally at least 15 g / l, in particular at least 20 g / l and more particularly at least
  • concentrations expressed as equivalent concentrations of rare earth vanadate or phosphovanadate The concentration is determined after drying and calcination in air of a given volume of dispersion.
  • the method of the invention comprises a first step in which one starts from a colloidal dispersion of at least one rare earth compound comprising at least one complexing agent or an anion of the abovementioned monovalent acid.
  • This colloidal dispersion consists of fine solid particles of colloidal dimensions generally based on oxide and / or hydrated oxide (hydroxide) of the rare earth suspended in an aqueous liquid phase, these particles possibly furthermore containing residual amounts of bound or adsorbed ions such as, for example, nitrates, acetates, citrates, ammoniums or complexing agent in ionized form or the anion of monovalent acid.
  • the rare earth may be either completely in the form of colloids, or simultaneously in the form of ions, of complexed ions and in the form of colloids.
  • This starting colloidal dispersion may have been obtained by any known means.
  • the process of the invention can also start from a dispersion of starting complexes which is based on a rare earth compound, a complexing agent or an anion of the above-mentioned monovalent acid and which additionally contains OH ions " .
  • such a dispersion can be prepared in particular by forming an aqueous mixture comprising at least one rare earth salt and either aforementioned complexing agent or a monovalent acid, soluble in water and having a pKa of between 2.5 and 5 , or a mixture of the complexing agent and the monovalent acid; and adding a base to the mixture formed.
  • the rare earth salts can be salts of inorganic or organic acids, for example of the sulfate, nitrate, chloride or acetate type. Note that nitrate and acetate are particularly suitable.
  • cerium salts it is possible to use more particularly cerium III acetate, cerium III chloride or cerium III nitrate as well as mixtures of these salts such as mixed acetate / chloride.
  • Such a preparation can be made by following the method described in WO 00138225 but without implementing the heating step.
  • the level of complexing agent or monovalent acid anion in the starting dispersion expressed in number of moles of complexing agent or anion of monovalent acid relative to the number of rare earth atoms can be in particular between 0, 3 and 1, 8, more particularly between 0.5 and 1, 5.
  • the pH of the starting dispersion is adjusted to a value of at least 7, more particularly between 7 and 9.5.
  • This pH adjustment is made by adding a base.
  • the amount of base to obtain this pH is generally chosen so that the molar ratio Ri: OH / Ln is between 3.0 and 4.5, more particularly between 3.0 and 4.2, Ln denoting one or more earths rare.
  • products of the hydroxide type can be used in particular. Mention may be made of alkali or alkaline-earth hydroxides and ammonia. It is also possible to use secondary, tertiary or quaternary amines. However, amines and ammonia may be preferred insofar as they reduce the risks of pollution by alkaline or alkaline-earth cations.
  • the amount of base added to the aqueous mixture must be such that the aforementioned pH condition is checked.
  • the starting colloidal dispersion is brought into contact with vanadate ions and with phosphate ions in the case of the preparation of a dispersion of a phospho-vanadate.
  • the vanadate ions are provided by solid compounds or solutions, for example in the form of ammonium monovanadate (NH4VO3) or sodium vanadate (Na3V0 4 ), which are added to the starting dispersion.
  • the phosphate ions can be provided by ammonium (NH 4 ) 2 HP0 4 , NH 4 H 2 P0 4 or sodium phosphates.
  • the addition is usually carried out with stirring at room temperature.
  • the vanadate / Ln or (vanadate + phosphate) / Ln molar ratio may vary. It is generally between 0.7 and 1.2, more particularly between 0.8 and 1.1.
  • the pH of the medium thus obtained is then adjusted to a value of at least 9, in particular between 9 and 12.5.
  • a base of the same type as that described above is used.
  • the amount of base is generally chosen so that the ratio R 2 : OH / Ln is between 1, 2 and 5.0, Ln denoting one or more rare earths.
  • the pH can be more particularly between 9 and 11.
  • the pH can be more particularly between 10.5 and 12.5.
  • the next step in the process consists in heating the mixture obtained at the end of the previous step.
  • the heating temperature is preferably at least 60 ° C and more particularly at least 80 ° C and it can go up to the critical temperature of the reaction medium. For example, it can be between 80 ° C and 140 ° C.
  • This heating or heat treatment can be carried out, depending on the temperature conditions adopted, either under normal atmospheric pressure, or under pressure such as for example the saturated vapor pressure corresponding to the temperature of the heat treatment.
  • the operation is then carried out by introducing the aqueous mixture into a closed enclosure (reactor more commonly closed called autoclave), the necessary pressure resulting then only from the heating of the reaction medium (autogenous pressure).
  • autoclave a closed enclosure
  • the pressure in the closed reactor varies between a value greater than 1 Bar (10 ⁇ Pa) and 165 Bar (165. 10 5 Pa), preferably between 1 Bar (5. 10 5 Pa) and 20 Bar (100. 10 ⁇ Pa).
  • the heating can be carried out either under an atmosphere of air, or under an atmosphere of inert gas, preferably nitrogen in this case.
  • a colloidal dispersion according to the invention is then obtained directly, at the end of the heating step.
  • One of these treatments consists in coating the particles of the dispersion with silica. This can be done by adding sodium silicate to the dispersion and then lowering the pH.
  • This sodium silicate may have an Rm (Si ⁇ 2 / Na 2 0) of between 0.8 and 3.7.
  • the final pH is for example between 8.5 and 10.5.
  • the Si / Ln molar ratio is generally at most 10%.
  • the dispersions of the invention can be used in many applications. We can cite catalysis in particular.
  • these dispersions are particularly suitable for use in the preparation of phosphor compounds or in the manufacture of luminescent devices, of the screen type with field effect or plasma systems or with mercury vapor for example.
  • the implementation of the phosphors in the manufacture of these devices is done according to well known techniques for example by screen printing, electrophoresis or sedimentation.
  • the dispersions of the invention can also be used to be deposited, with other phosphors if necessary, in the form of transparent films on a glass or quartz substrate, equipped with transparent electrodes. This deposition can be carried out in particular by soaking or spraying, optionally followed by calcination. Under appropriate excitation, these films thus obtained can emit colored light in the visible.
  • the invention covers the device comprising such a substrate on which is disposed a transparent film obtained by depositing a dispersion according to the invention.
  • This example relates to the preparation of a colloidal dispersion of yttrium vanadate and europium.
  • the pH is adjusted to 10 by adding 36 ml of 6M NaOH solution.
  • the dispersion is stirred for 10 min.
  • the dispersion obtained is transferred to closed autoclaves
  • the products are washed on ultrafiltration cells equipped with 3KD membranes as follows:
  • the dispersion is then concentrated by ultrafiltration to a final volume of 25 cm 3 .
  • CryoMET Dubochet technique
  • This example relates to the preparation of a colloidal dispersion of a yttrium and europium phosphovanadate.
  • the phosphovanadate solution is then at a P / V ratio of 75/25 in moles.
  • the phosphovandate solution thus prepared is added to the previous dispersion of yttrium-europium.
  • the molar ratio (P + V) / (Y + Eu) is then equal to 0.8.
  • the pH is 9.1.
  • the dispersion obtained is transferred to closed autoclaves (Parr Bombs).
  • the autoclaves are transferred to an oven previously brought to temperature at 95 ° C.
  • the hydrothermal treatment lasts 16 hours. At the end of this hydrothermal treatment and after cooling, a colloidal dispersion is collected.
  • the products are washed on ultrafiltration cells equipped with 3KD membranes as follows:
  • the dispersion is then concentrated by ultrafiltration to a final volume of 25 cm 3 .
  • Characterization by CryoMET (Dubochet technique) highlights nanoparticles with a size of approximately 3 nm well individualized.

Abstract

L'invention concerne une dispersion colloïdale de particules d'un vanadate ou d'un phospho-vanadate d'au moins une terre rare qui est caractérisée en ce qu'elle comprend soit un complexant présentant un pK (cologarithme de la constante de dissociation du complexe formé par le complexant et ladite terre rare) supérieur à 2,5, soit un anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5. Dans le cas de la dispersion d'un vanadate, les particules présentent une taille moyenne d'au plus 6 nm. La dispersion de l'invention est obtenue par un procédé dans lequel on met en contact une dispersion colloïdale ou une dispersion de complexes de départ comprenant au moins un composé de terre rare et au moins un complexant ou un anion de l'acide monovalent précité et dont le pH a été ajusté à une valeur d'au moins 7, avec des ions vanadates et, le cas échéant, avec des ions phosphates; puis on ajuste le pH du milieu ainsi obtenu à une valeur d'au moins 9 et on chauffe.

Description

DISPERSION COLLOÏDALE DE PARTICULES D'UN VANADATE OU D'UN PHOSPHO-VANADATE D'UNE TERRE RARE
La présente invention concerne une dispersion colloïdale de particules d'un vanadate ou d'un phospho-vanadate d'au moins une terre rare.
Les domaines de la luminescence et de l'électronique connaissent actuellement des développements importants. On peut citer comme exemple de ces développements, la mise au point des systèmes à plasma (écrans et lampes) pour les nouvelles techniques de visualisation et d'éclairage. Ces nouvelles applications nécessitent des matériaux luminophores présentant des propriétés de plus en plus améliorées. Ainsi, outre leur propriété de luminescence, on demande à ces matériaux des caractéristiques spécifiques de morphologie ou de granulométrie afin de faciliter notamment leur mise en œuvre dans les applications recherchées.
Plus précisément, il est demandé d'avoir des luminophores se présentant sous la forme de particules le plus possible individualisées et de taille très fine. Les sols ou dispersions colloïdales peuvent constituer une voie d'accès intéressante à un tel type de produits.
La présente invention a pour objet de fournir un sol utilisable notamment dans les domaines de la luminescence et de l'électronique et à partir duquel on peut obtenir des produits fins et bien désagglomérés.
Dans ce but, et selon une première variante de l'invention, la dispersion est une dispersion colloïdale de particules d'un vanadate d'au moins une terre rare et elle est caractérisée en ce que les particules présentent une taille moyenne d'au plus 6nm et en ce qu'elle comprend soit un complexant présentant un pK (cologarithme de la constante de dissociation du complexe formé par le complexant et ladite terre rare) supérieur à 2,5; soit un anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5.
Selon une seconde variante de l'invention, la dispersion est une dispersion de particules d'un phospho-vanadate d'au moins une terre rare caractérisée en ce qu'elle comprend soit un complexant présentant un pK (cologarithme de la constante de dissociation du complexe formé par le complexant et ladite terre rare) supérieur à 2,5; soit un anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5. L'invention concerne aussi un procédé de préparation des dispersions décrites ci-dessus qui est caractérisé en ce qu'il comprend les étapes suivantes :
- on met en contact avec des ions vanadates et, en outre le cas échéant, avec des ions phosphates soit une dispersion colloïdale de départ d'au moins un composé de terre rare comprenant au moins un complexant ou un anion de l'acide monovalent précité et dont le pH a été ajusté à une valeur d'au moins 7, soit une dispersion de complexes de départ qui est à base d'un composé de terre rare, d'un complexant ou d'un anion de l'acide monovalent précité et qui contient en outre des ions OH" et dont le pH a été ajusté à une valeur d'au moins 7;
- on ajuste le pH du milieu ainsi obtenu après addition des ions vanadates et, éventuellement, phosphates à une valeur d'au moins 9; - on chauffe.
Les particules de la dispersion de l'invention peuvent présenter, selon les variantes, une taille de l'ordre de quelques nanometres et généralement une morphologie homogène et bien individualisée ce qui rend la dispersion particulièrement utile pour des applications mettant en oeuvre des luminophores.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Par terre rare on entend pour l'ensemble de la description les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
Pour l'ensemble de la description et sauf indication contraire, les bornes des différentes fourchettes ou gammes de valeurs qui sont données sont incluses dans ces fourchettes ou ces gammes. L'invention s'applique à des dispersions ou des sols de particules d'un vanadate ou d'un phospho-vanadate d'une ou plusieurs terres rares. On entend ici des particules à base essentiellement de vanadates de formule LnV0 ou de phospho-vanadates de formule Ln(V0 )x(P04)y avec x+y=1 , Ln désignant une ou plusieurs terres rares. Par ailleurs, pour la suite de la description, l'expression dispersion colloïdale ou sol d'un vanadate ou d'un phospho-vanadate de terre rare désigne tout système constitué de fines particules solides de dimensions colloïdales à base généralement d'un vanadate ou d'un phospho-vanadate de terre rare au sens donné ci-dessus, qui peuvent être hydratées, et en suspension dans une phase liquide aqueuse. Ces particules peuvent en outre contenir une certaine quantité du complexant ou de Fanion de l'acide monovalent précités. Elles peuvent aussi, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés qui peuvent provenir des sels de terre rare utilisés dans la préparation de la dispersion tels que par exemple des anions nitrates, acétates, chlorures, citrates, ammoniums ou des ions sodium ou encore des anions vanadates ou phosphates (HP0 2", P0 3", P3O105"...). On notera que dans de telles dispersions, la terre rare peut se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions, d'ions complexés et de colloïdes. De préférence, au moins 80% de la terre rare se trouve sous forme colloïdale.
La phase liquide aqueuse peut comprendre aussi le complexant ou l'acide monovalent ou Fanion de cet acide, les anions précités des sels de terre rare et des ions vanadates ou phospho-vanadates sous diverses formes.
Le terme complexant désigne dans la présente description un composé ou une molécule pouvant établir une liaison covalente ou iono-covalente avec le cation terre rare. Les complexants qui conviennent dans le cadre de la présente invention sont des complexants à constante de dissociation de complexes Ks élevées, le complexe considéré ici étant le complexe formé par le complexant et le cation terre rare. A titre d'exemple pour l'équilibre donné ci- dessous :
(3-x)+
(Ln,l) ≈ Ln 3+ x- dans lequel Ln désigne la terre rare, I le complexant et I" l'anion complexant, x étant égal à 1 , 2 ou 3 en fonction de l'état d'ionisation du complexe; la constante de dissociation de complexes Ks est donnée par la formule :
0 , (3-x)+
Ks = [Ln3+ ] x [F] / [(Ln,l) ] _^
Le pK est le cologarithme de Ks. Plus le complexe (Ln,l) est stable, plus la valeur de pK est élevée.
Les complexants qui conviennent dans le cadre de la présente invention sont ceux présentant un pK supérieur à 2,5, de préférence d'au moins 3.
Le complexant peut être notamment choisi parmi les acides-alcools ou les polyacides-alcools ou leurs sels. Comme exemple d'acide-alcooi, on peut citer l'acide glycolique ou l'acide lactique. Comme polyacide-alcool, on peut mentionner l'acide malique et l'acide citrique.
Le complexant peut aussi être choisi parmi les acides aliphatiques aminés, de préférence les polyacides aliphatiques aminés, ou leurs sels. Comme exemple d'un tel complexant, on peut donner l'acide éthylène- diamino-tétracétique ou l'acide nitrilo-tri-acétique ou encore le sel de sodium de l'acide glutamique N, N diacétique de formule (NaC00~)CH2CH2- CH(COO"Na)N(CH2COO"Na)2. Comme autres complexants convenables, on peut utiliser les acides polyacryliques et leurs sels comme le polyacrylate de sodium, et plus particulièrement ceux dont la masse moléculaire en poids est comprise entre 2000 et 5000.
Le complexant peut se trouver soit sous forme acide soit sous forme ionisé.
On notera enfin qu'un ou plusieurs complexants peuvent être présents dans la même dispersion.
Selon l'invention, la dispersion peut aussi comprendre l'anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5. Le pKa est le cologarithme de la constante d'acide Ka de l'acide concerné. Cet acide peut être notamment l'acide formique, l'acide propionique ou l'acide monochloracétique. Ce peut être tout particulièrement l'acide acétique. Là encore, plusieurs anions d'acides monovalents peuvent être présents dans la même dispersion. Comme indiqué plus haut, le complexant et l'anion précité peuvent être présents en mélange dans la dispersion.
Le taux de complexant et/ou d'anion de l'acide monovalent, exprimé en nombre de moles de complexant ou d'anion d'acide monovalent par rapport au nombre d'atomes de terre rare, peut varier. Il peut être compris notamment entre 0,01 et 0,25, plus particulièrement entre 0,05 et 0,21. Ce taux est déterminé par dosage chimique du carbone et de la terre rare des colloïdes récupérés après ultracentrifugation à 50.000t/mn pendant 6 heures. Un tel taux s'applique à la somme des complexants ou des anions si plusieurs complexants ou anions sont présents dans la dispersion. Le rapport molaire VO-i/Ln ou (V04+P04)/Ln peut aussi varier et il peut être compris par exemple entre 0,7 et 1 ,2 et plus particulièrement entre 0,8 et
1 ,1.
Le rapport molaire Pθ4/(V0 +P04) est variable aussi et il peut être compris par exemple entre 0 et 0,85 et plus particulièrement entre 0,6 et 0,8. Ces deux rapports sont déterminés par dosage chimique des espèces chimiques concernées sur les colloïdes récupérés après ultracentrifugation à
50.000t/mn pendant 6 heures. Les dispersions selon la première variante de l'invention (vanadate) sont du type nanométrique. On entend par là des dispersions dont les colloïdes sont d'une taille moyenne d'au plus 6nm et plus particulièrement d'au plus
5nm. Les particules colloïdales peuvent notamment présenter une taille moyenne comprise entre environ 3nm et environ 5nm.
Pour la seconde variante de l'invention, les colloïdes peuvent être de taille quelconque. Selon un mode de réalisation particulier toutefois, leur taille moyenne est d'au plus 20nm, plus particulièrement d'au plus 10nm. Plus particulièrement dans le cadre de cette seconde variante, les colloïdes peuvent aussi présenter la taille moyenne de ceux de la première variante et donc les valeurs données plus haut.
Les tailles précitées sont déterminées par analyse par METHR ( icroscopie Electronique par Transmission à Haute Résolution), complétée si nécessaire par cryo-microscopie. Outre leur faible taille, les colloïdes des dispersions de vanadates de l'invention sont peu ou pas agglomérés. Les analyses par cryo-microscopie électronique à transmission sur échantillons congelés (technique Dubochet) montrent un taux d'agglomération de colloïdes faible, par exemple inférieur à 40%, plus particulièrement inférieur à 10% voire inférieur à 5% en nombre, c'est à dire que sur l'ensemble des objets ou particules que l'on observe, au moins 60%, plus particulièrement au moins 90% et encore plus particulièrement au moins 95% sont constitués d'un seul cristallite. Ce qui vient d'être décrit pour les dispersions de vanadates s'applique aussi ici pour les dispersions de phosphovanadates dont la taille moyenne de particules est d'au plus 6nm.
En outre, les particules colloïdales sont isotropes ou substantiellement isotropes en ce qui concerne leur morphologie. Leur forme se rapproche en effet de celle d'une sphère (morphologie totalement isotrope) par opposition aux particules de forme aciculaire ou plaquettaire. Dans les dispersions de l'invention la terre rare peut être quelconque, comme défini plus haut. Toutefois, la terre rare peut être plus particulièrement le lanthane, le cérium, le praséodyme, le gadolinium, l'europium ou l'yttrium. L'invention s'applique particulièrement bien aux cas de dispersions de deux terres rares dont au moins une est l'europium, notamment dans un rapport atomique Eu/Ln qui peut varier entre 0,01/0,99 et 0,20/0,80, plus particulièrement entre 0,02/0,98 et 0,15/0,85, Ln désignant la terre rare autre que l'europium. Cette seconde terre rare peut être en particulier l'yttrium ou le lanthane. Les concentrations des dispersions de l'invention sont généralement d'au moins 15g/l, notamment d'au moins 20g/l et plus particulièrement d'au moins
50g/l, concentrations exprimées en concentrations équivalentes en vanadate ou phosphovanadate de terre rare. La concentration est déterminée après séchage et calcination sous air d'un volume donné de dispersion.
Le procédé de préparation des dispersions de l'invention va maintenant être décrit.
Comme indiqué plus haut, le procédé de l'invention comporte une première étape dans laquelle on part d'une dispersion colloïdale d'au moins un composé de terre rare comprenant au moins un complexant ou un anion de l'acide monovalent précité.
Cette dispersion colloïdale est constituée de fines particules solides de dimensions colloïdales à base généralement d'oxyde et/ou d'oxyde hydraté (hydroxyde) de la terre rare en suspension dans une phase liquide aqueuse, ces particules pouvant en outre, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des citrates, des ammoniums ou du complexant sous forme ionisée ou l'anion de l'acide monovalent. On notera que dans de telles dispersions, le terre rare peut se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions, d'ions complexés et sous la forme de colloïdes.
Cette dispersion colloïdale de départ pourra avoir été obtenue par tout moyen connu. On pourra se référer notamment à la demande de brevet européen EP 308311 qui concerne des dispersions de terres rares trivalentes, en particulier yttriques. On ajoute aux dispersions telles qu'obtenues selon l'enseignement de cette demande par exemple le complexant et/ou l'anion de l'acide monovalent précité. On peut aussi mentionner comme dispersions de départ possibles celles décrites dans WO 00138225.
Le procédé de l'invention peut aussi partir d'une dispersion de complexes de départ qui est à base d'un composé de terre rare, d'un complexant ou d'un anion de l'acide monovalent précité et qui contient en outre des ions OH".
On notera qu'une telle dispersion peut être préparée notamment en formant un mélange aqueux comprenant au moins un sel de terre rare et soit un complexant précité soit un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5, soit encore un mélange du complexant et de l'acide monovalent; et en ajoutant au mélange formé une base. Les sels de terre rare peuvent être des sels d'acides inorganiques ou organiques, par exemple du type sulfate, nitrate, chlorure ou acétate. On notera que le nitrate et l'acétate conviennent particulièrement bien. Comme sels de cérium, on peut utiliser plus particulièrement l'acétate de cérium III, le chlorure de cérium III ou le nitrate de cérium III ainsi que des mélanges de ces sels comme des mixtes acétate/ chlorure.
Une telle préparation peut être faite en suivant le procédé décrit dans WO 00138225 mais sans mettre en œuvre l'étape de chauffage.
Le taux de complexant ou d'anion d'acide monovalent dans la dispersion de départ, exprimé en nombre de moles de complexant ou d'anion d'acide monovalent par rapport au nombre d'atomes de terre rare peut être compris notamment entre 0,3 et 1 ,8, plus particulièrement entre 0,5 et 1 ,5.
Selon une caractéristique du procédé, le pH de la dispersion de départ est ajusté à une valeur d'au moins 7, plus particulièrement comprise entre 7 et 9,5. Cet ajustement du pH se fait par addition d'une base. La quantité de base pour obtenir ce pH est généralement choisie de manière que le rapport molaire Ri : OH/Ln soit compris entre 3,0 et 4,5, plus particulièrement entre 3,0 et 4,2, Ln désignant une ou plusieurs terres rares.
Comme base, on peut utiliser notamment les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux et l'ammoniaque. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino- terreux. Dans le cas de la préparation d'une dispersion à partir d'un sel de terre rare qui a été décrite plus haut, la quantité de base ajoutée au mélange aqueux doit être telle que l'on vérifie la condition de pH précitée.
Selon le procédé de l'invention, la dispersion colloïdale de départ est mise en contact avec des ions vanadates et avec des ions phosphates dans le cas de la préparation d'une dispersion d'un phospho-vanadate.
Les ions vanadates sont apportés par des composés solides ou des solutions, par exemple sous forme de monovanadate d'ammonium (NH4VO3) ou de vanadate de sodium (Na3V04), qui sont ajoutés à la dispersion de départ. Les ions phosphates peuvent être apportés par les phosphates d'ammonium (NH4)2HP04, NH4H2P04 ou de sodium.
L'addition se fait habituellement sous agitation à température ambiante. Le rapport molaire vanadate/Ln ou (vanadate+phosphate)/Ln peut varier. Il est généralement compris entre 0,7 et 1 ,2, plus particulièrement entre 0,8 et 1 ,1. Selon le procédé de l'invention, le pH du milieu ainsi obtenu est ensuite ajusté à une valeur d'au moins 9, notamment comprise entre 9 et 12,5. Pour ajuster ce pH on utilise une base du même type que celui décrit plus haut. La quantité de base est généralement choisie de manière que le rapport R2 : OH/Ln soit compris entre 1 ,2 et 5,0, Ln désignant une ou plusieurs terres rares. Dans le cas de la préparation des dispersions de vanadates le pH peut être plus particulièrement compris entre 9 et 11. Dans le cas de la préparation des dispersions de phosphovanadates le pH peut être plus particulièrement compris entre 10,5 et 12,5. L'étape suivante du procédé consiste à chauffer le mélange obtenu à l'issue de l'étape précédente. La température de chauffage est de préférence d'au moins 60°C et plus particulièrement d'au moins 80°C et elle peut aller jusqu'à la température critique du milieu reactionnel. A titre d'exemple, elle peut être comprise entre 80°C et 140°C. Ce chauffage ou traitement thermique peut être conduit, selon les conditions de températures retenues, soit sous pression normale atmosphérique, soit sous pression telle que par exemple la pression de vapeur saturante correspondant à la température du traitement thermique. Lorsque la température de traitement est choisie supérieure à la température de reflux du mélange reactionnel (c'est à dire généralement supérieure à 100°C), on conduit alors l'opération en introduisant le mélange aqueux dans une enceinte close (réacteur fermé plus couramment appelé autoclave), la pression nécessaire ne résultant alors que du seul chauffage du milieu reactionnel (pression autogène). Dans les conditions de températures données ci-dessus, et en milieux aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé varie entre une valeur supérieure à 1 Bar (10^Pa) et 165 Bar (165. 105Pa), de préférence entre 1 Bar (5. 105 Pa) et 20 Bar (100. 10^ Pa). Il est bien entendu également possible d'exercer une pression extérieure qui s'ajoute alors à celle consécutive au chauffage. Le chauffage peut être conduit soit sous atmosphère d'air, soit sous atmosphère de gaz inerte, de préférence l'azote dans ce cas.
On obtient alors directement, à l'issue de l'étape de chauffage, une dispersion colloïdale selon l'invention.
Selon une variante du procédé de l'invention, il est possible de laver et/ou de concentrer par ultrafiltration la dispersion obtenue à l'issue de l'étape de chauffage puis de chauffer de nouveau la dispersion lavée, dans les mêmes conditions que celles qui ont été décrites plus haut et à une température qui peut être plus particulièrement comprise entre 100°C et 190°C. Cette variante permet d'obtenir des produits dont le rendement de luminescence est amélioré.
Il est enfin possible de faire subir des traitements ultérieurs à la dispersion de l'invention. Un de ces traitements consiste à enrober les particules de la dispersion par de la silice. On peut procéder en ajoutant du silicate de sodium à la dispersion et en abaissant ensuite le pH. Ce silicate de sodium peut présenter un Rm (Siθ2/Na20) compris entre 0,8 et 3,7. Le pH final est compris par exemple entre 8,5 et 10,5. Le rapport molaire Si/Ln est généralement d'au plus 10%. Les dispersions de l'invention peuvent être utilisées dans de nombreuses applications. On peut citer la catalyse notamment.
Compte tenu de la morphologie et de la finesse des particules colloïdales qui les constituent, ces dispersions sont particulièrement adaptées à une utilisation dans la préparation de composés luminophores ou dans la fabrication de dispositifs luminescents, du type écrans avec effet de champ ou systèmes à plasma ou à vapeur de mercure par exemple. La mise en œuvre des luminophores dans la fabrication de ces dispositifs se fait selon des techniques bien connues par exemple par sérigraphie, électrophorèse ou sédimentation. Les dispersions de l'invention peuvent aussi être utilisées pour être déposées, avec d'autres luminophores éventuellement, sous forme de films transparents sur un substrat en verre ou en quartz, équipé d'électrodes transparentes. Ce dépôt peut être réalisé notamment par trempage ou pulvérisation, suivi éventuellement d'une calcination. Sous excitation appropriée, ces films ainsi obtenus peuvent émettre une lumière colorée dans le visible. L'invention couvre le dispositif comprenant un tel substrat sur lequel est disposé un film transparent obtenu par dépôt d'une dispersion selon l'invention.
Des exemples vont maintenant être donnés.
EXEMPLE 1
Cet exemple concerne la préparation d'une dispersion colloïdale de vanadate d'yttrium et d'europium.
Dans un bêcher, on additionne 98,83g de solution de Y(N03)3 de concentration équivalente en Y203 égal à 21,6% en poids, soit 189 millimoles en Y. On additionne 300g d'eau déminéralisée. Puis on effectue l'addition sous agitation de 6,32g de Eu(N03)3 solide (18,9 millimoles en Eu). Le rapport molaire (Eu/Y) est égal à (1/10). On incorpore au mélange précédent, sous agitation, 36,15g d'acide citrique, qualité Prolabo, Mw= 210,14g ( 172 millimoles d'acide citrique). Le rapport molaire citrique/(Y+Eu) est de 0,83. Le volume total du mélange est de 390ml. On additionne à ce mélange, sous agitation et à température ambiante
253,536 ml de NH4OH 3,28 M en OH" à un débit de 3,5ml/mn. Après addition, on laisse sous agitation 30mn. Le rapport molaire OH/(Y+Eu) est alors égal à 4. Le pH de la dispersion est de 8,5.
Sur une aliquote de 500ml contenant 161 ,5 millimoles de Y+Eu, on additionne 200ml de solution contenant 23,76g d'orthovanadate de sodium (Na3V04, Mw= 183,91g), de qualité AIdrich. Le rapport V/Y+Eu est alors égal à 0,8. Le pH est pH 9,5.
On ajuste à pH 10 par addition de 36ml de solution NaOH 6M. La dispersion est mise sous agitation pendant 10 mn. On transfère la dispersion obtenue dans des autoclaves fermées
(Bombes de Parr). Les autoclaves sont transférées dans une étuve préalablement mise en température à 120°C. Le traitement hydrothermal dure 16 heures.
A l'issue de ce traitement hydrothermal et après refroidissement, on recueille une dispersion colloïdale.
Les produits sont lavés sur des cellules d'ultrafiltration équipées de membranes de 3KD de la manière suivante :
A 100cm3 de dispersion, on additionne 200cm3 d'eau déminéralisée et on ultrafiltre jusqu'à 100cm3. On effectue à nouveau la même opération. La dispersion est ainsi lavée par 4 volumes équivalent d'eau.
La dispersion est alors concentrée par ultrafiltration jusqu'à un volume final de 25cm3.
La caractérisation par CryoMET (technique Dubochet) met en évidence des nanoparticules d'une taille d'environ 3nm bien individualisées.
EXEMPLE 2
Cet exemple concerne la préparation d'une dispersion colloïdale d'un phosphovanadate d'yttrium et d'europium.
Dans un bêcher, on additionne 98,83g de solution de Y(N03)3 de concentration équivalente en Y203 égal à 21 ,6% en poids, soit 189 millimoles en Y. On additionne 300g d'eau déminéralisée. Puis on effectue l'addition sous agitation de 6,32g de Eu(N03)3Sθlide (18,9 millimoles en Eu). Le rapport molaire (Eu/Y) est égal à (1/10). On incorpore au mélange précédent, sous agitation, 36,15g d'acide citrique, qualité Prolabo, Mw= 210,14g (172 millimoles d'acide citrique). Le rapport molaire citrique/(Y+Eu) = 0,83. Le volume total du mélange est de 390ml. On additionne à ce mélange, sous agitation et à température ambiante
261 ,5 ml de NH4OH 3,18M en OH" à un débit de 3,5 ml/mn. Après addition, on laisse sous agitation 30mn. Le rapport molaire OH/Y+Eu est alors égal à 4. Le pH de la dispersion d'yttrium-europium est de 8,4.
Une solution de phosphovanadate de cation alcalin est élaborée de la manière suivante:
- solution A : addition de 16,47g d'hydrogéno-phosphate di-ammonique Prolabo, (NH4)2HP04 Mw= 132,06g, soit 124,7 millimoles en P, dans de l'eau déminéralisée volumée à 100ml total;
- solution B : addition de 7,64g d'orthovanadate de sodium Na3V04 (AIdrich Mw= 183,91g), soit 41,5 millimoles en V dans de l'eau déminéralisée volumée à un volume final de 70 ml;
-addition de la solution A à la solution B.
La solution de phosphovanadate est alors à un rapport P/V de 75/25 en moles On additionne la solution de phosphovandate ainsi préparée à la dispersion précédente d'yttrium-europium. Le rapport molaire (P+V)/(Y+Eu) est alors égal à 0,8. Le pH est de 9,1.
On ajuste à pH 11 ,3 par addition de 170 ml de solution NaOH 6M. La dispersion est mise sous agitation pendant 10mn. La quantité de soude additionnée correspond à un rapport molaire OH/(Y+Eu) = 4,9.
On transfère la dispersion obtenue dans des autoclaves fermées (Bombes de Parr). Les autoclaves sont transférées dans une étuve préalablement mise en température à 95°C. Le traitement hydrothermal dure 16 heures. A l'issue de ce traitement hydrothermal et après refroidissement, on recueille une dispersion colloïdale.
Les produits sont lavés sur des cellules d'ultrafiltration équipées de membranes de 3KD de la manière suivante :
A 100cm3 de dispersion, on additionne 200cm3 d'eau déminéralisée et on ultrafiltre jusqu'à 100cm3. On effectue à nouveau la même opération. La dispersion est ainsi lavée par 4 volumes équivalent d'eau.
La dispersion est alors concentrée par ultrafiltration jusqu'à un volume final de 25cm3. La caractérisation par CryoMET (technique Dubochet) met en évidence des nanoparticules d'une taille d'environ 3nm bien individualisées.

Claims

REVENDICATIONS
1- Dispersion colloïdale de particules d'un vanadate d'au moins une terre rare caractérisée en ce que les particules présentent une taille moyenne d'au plus 6nm et en ce qu'elle comprend soit un complexant présentant un pK (cologarithme de la constante de dissociation du complexe formé par le complexant et ladite terre rare) supérieur à 2,5; soit un anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5.
2- Dispersion colloïdale de particules d'un phospho-vanadate d'au moins une terre rare caractérisée en ce qu'elle comprend soit un complexant présentant un pK (cologarithme de la constante de dissociation du complexe formé par le complexant et ladite terre rare) supérieur à 2,5; soit un anion d'un acide monovalent, soluble dans l'eau et présentant un pKa compris entre 2,5 et 5.
3- Dispersion selon la revendication 2, caractérisée en ce que les particules présentent une taille moyenne d'au plus 20nm, plus particulièrement d'au plus 10nm.
4- Dispersion selon la revendication 2, caractérisée en ce que les particules présentent une taille moyenne d'au plus 6nm.
5- Dispersion selon la revendication 1 ou 4, caractérisée en ce que ' les particules présentent un taux d'agglomération inférieur à 40%, plus particulièrement inférieur à 10%.
6- Dispersion selon l'une des revendications précédentes, d'un vanadate ou d'un phospho-vanadate d'une première terre rare qui est l'europium et d'une seconde terre rare qui est l'yttrium ou le lanthane.
7- Dispersion selon l'une des revendications précédentes, caractérisée en ce que le complexant est choisi parmi les acides- ou polyacides-alcools, les acides aliphatiques aminés, les acides polyacryliques ou les sels de ceux-ci.
8- Dispersion selon l'une des revendications 1 à 6, caractérisée en ce que l'acide monovalent précité est l'acide acétique. 9- Procédé de préparation d'une dispersion colloïdale selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
- on met en contact avec des ions vanadates et, en outre le cas échéant, avec des ions phosphates soit une dispersion colloïdale de départ d'au moins un composé de terre rare comprenant au moins un complexant ou un anion de l'acide monovalent précité et dont le pH a été ajusté à une valeur d'au moins 7, soit une dispersion de complexes de départ qui est à base d'un composé de terre rare, d'un complexant ou d'un anion de l'acide monovalent précité et qui contient en outre des ions OH" et dont le pH a été ajusté à une valeur d'au moins 7;
- on ajuste le pH du milieu ainsi obtenu après addition des ions vanadates et phosphates à une valeur d'au moins 9; - on chauffe.
10- Procédé selon la revendication 8, caractérisé en ce que le pH de la dispersion colloïdale de départ ou de la dispersion de complexes de départ a été ajusté à une valeur comprise entre 7 et 9,5.
11- Procédé selon la revendication 9 ou 10, caractérisé en ce qu'on ajuste le pH du milieu après mise en contact avec les ions vanadates et, le cas échéant, avec les ions phosphates, à une valeur comprise entre 9 et 12,5.
12- Procédé selon l'une des revendications 9 à 11 , caractérisé en ce qu'on lave par ultrafiltration la dispersion obtenue à l'issue de l'étape de chauffage et on chauffe de nouveau la dispersion lavée.
13- Procédé selon l'une des revendications 9 à 12, caractérisé en ce qu'on chauffe à une température comprise entre 80°C et 140°C.
14- Utilisation d'une dispersion selon l'une des revendications 1 à 8, dans la préparation de composés luminophores ou dans la fabrication de dispositifs luminescents.
15- Utilisation d'une dispersio i selon l'une des revendications 1 à 8, pour le dépôt d'un film transparent sur un substrat en verre ou en quartz. 16- Dispositif comprenant un substrat en verre ou en quartz, équipé d'électrodes transparentes et sur lequel est disposé un film transparent obtenu par dépôt d'une dispersion selon l'une des revendications 1 à 8
PCT/FR2002/003074 2001-09-12 2002-09-10 Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare WO2003022743A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/489,283 US20050008877A1 (en) 2001-09-12 2002-09-10 Colloidal dispersion of particles of a rare earth vanadate or phosphovanadate
EP02777416A EP1427673B1 (fr) 2001-09-12 2002-09-10 Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare
JP2003526826A JP4017597B2 (ja) 2001-09-12 2002-09-10 希土類元素のバナジウム酸塩又はホスホバナジウム酸塩粒子のコロイド分散体
KR1020047003685A KR100561571B1 (ko) 2001-09-12 2002-09-10 희토류 원소 바나데이트 또는 포스포바나데이트 입자들의콜로이드성 분산액
DE60222279T DE60222279T2 (de) 2001-09-12 2002-09-10 Kolloidale dispersion von partikeln eines seltenerden-vanadats oder -phosphovanadats
US11/803,063 US7674834B2 (en) 2001-09-12 2007-05-11 Colloidal dispersion of particles of a rare-earth vanadate or phosphovanadate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0111792A FR2829481B1 (fr) 2001-09-12 2001-09-12 Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare
FR0111792 2001-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10489283 A-371-Of-International 2002-09-10
US11/803,063 Continuation US7674834B2 (en) 2001-09-12 2007-05-11 Colloidal dispersion of particles of a rare-earth vanadate or phosphovanadate

Publications (1)

Publication Number Publication Date
WO2003022743A1 true WO2003022743A1 (fr) 2003-03-20

Family

ID=8867208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003074 WO2003022743A1 (fr) 2001-09-12 2002-09-10 Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare

Country Status (10)

Country Link
US (2) US20050008877A1 (fr)
EP (1) EP1427673B1 (fr)
JP (1) JP4017597B2 (fr)
KR (1) KR100561571B1 (fr)
CN (1) CN1325382C (fr)
AT (1) ATE372302T1 (fr)
DE (1) DE60222279T2 (fr)
FR (1) FR2829481B1 (fr)
PL (1) PL207270B1 (fr)
WO (1) WO2003022743A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028094A1 (fr) * 2003-09-18 2005-03-31 Rhodia Electronics And Catalysis Dispersion colloïdale d'un phosphate de terre rare, son procede de preparation et materiau transparent luminescent obtenu a partir de cette dispersion
DE10349063A1 (de) * 2003-10-22 2005-05-25 Studiengesellschaft Kohle Mbh Lumineszierende transparente Kompositmaterialien
EP2143776A1 (fr) 2008-06-25 2010-01-13 Commissariat A L'energie Atomique Dispersions de particules d'oxydes de terres rares luminescents, vernis comprenant ces particules, leurs procédés de préparation et procédé de marquage de substrats

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809637B1 (fr) * 2000-06-05 2003-01-24 Rhodia Terres Rares Dispersion colloidale d'un compose de cerium ou d'un compose de cerium et d'au moins un autre element choisi parmi les terres rares et des metaux de transition et comprenant un acide amine
JP4620658B2 (ja) * 2003-04-28 2011-01-26 ツェントラム・フューア・アンゲヴァンテ・ナノテヒノロギー(ツェーアーエン)ゲーエムベーハー 金属(iii)バナデートを含むナノ粒子の合成
CN100347080C (zh) * 2006-04-03 2007-11-07 浙江大学 微波合成稀土化合物纳米棒的方法
EP1923449A1 (fr) * 2006-10-24 2008-05-21 Koninklijke Philips Electronics N.V. Suspensions colloïdales de particules d'échelle nanométrique
JP2008189761A (ja) * 2007-02-02 2008-08-21 Keio Gijuku 微粒蛍光体の製造方法
JP4363467B2 (ja) * 2007-07-05 2009-11-11 ソニー株式会社 蛍光体とこれを用いた蛍光ランプ、並びに、蛍光ランプを用いた表示装置及び照明装置
CN102105543B (zh) * 2008-06-30 2013-10-02 学校法人庆应义塾 油墨组合物
JP5300052B2 (ja) * 2008-10-10 2013-09-25 学校法人慶應義塾 微粒蛍光体の製造方法
KR101202119B1 (ko) 2010-08-19 2012-11-15 단국대학교 산학협력단 바나데이트 계열 나노형광체의 제조 방법, 및 이에 의해 제조된 바나데이트 계열 나노형광체
CN102091754B (zh) * 2010-11-30 2013-01-23 施丽萍 纳米稀土水溶胶的制备方法
JP2013018870A (ja) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd 蛍光体の製造方法
FR3084165B1 (fr) * 2018-07-18 2020-07-10 Ecole Polytechnique Test a diffusion capillaire mettant en œuvre des nanoparticules inorganiques photoluminescentes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441512A (en) * 1966-07-18 1969-04-29 Gen Electric Yttrium vanadate europium phosphor preparation by precipitation using ammonium carbonate
US3647706A (en) * 1968-05-06 1972-03-07 Sylvania Electric Prod Phosphor and method of making
FR2104977A1 (en) * 1970-09-11 1972-04-28 Kras Og Rare earth metal orthovanadate prodn - by reaction between ammonium metavanadate and rare earth metal nitrate solns
WO2000076918A1 (fr) * 1999-06-16 2000-12-21 Rhodia Chimie Sol d'un phosphate de cerium et/ou de lanthane, procede de preparation et utilisation en polissage
WO2001038225A1 (fr) * 1999-11-23 2001-05-31 Rhodia Terres Rares Dispersion colloidale aqueuse a base d'au moins un compose d'un lanthanide et d'un complexant, procede de preparation et utilisation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789014A (en) * 1972-06-14 1974-01-29 Westinghouse Electric Corp Yttrium phosphate vanadate phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441512A (en) * 1966-07-18 1969-04-29 Gen Electric Yttrium vanadate europium phosphor preparation by precipitation using ammonium carbonate
US3647706A (en) * 1968-05-06 1972-03-07 Sylvania Electric Prod Phosphor and method of making
FR2104977A1 (en) * 1970-09-11 1972-04-28 Kras Og Rare earth metal orthovanadate prodn - by reaction between ammonium metavanadate and rare earth metal nitrate solns
WO2000076918A1 (fr) * 1999-06-16 2000-12-21 Rhodia Chimie Sol d'un phosphate de cerium et/ou de lanthane, procede de preparation et utilisation en polissage
WO2001038225A1 (fr) * 1999-11-23 2001-05-31 Rhodia Terres Rares Dispersion colloidale aqueuse a base d'au moins un compose d'un lanthanide et d'un complexant, procede de preparation et utilisation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028094A1 (fr) * 2003-09-18 2005-03-31 Rhodia Electronics And Catalysis Dispersion colloïdale d'un phosphate de terre rare, son procede de preparation et materiau transparent luminescent obtenu a partir de cette dispersion
CN1856353B (zh) * 2003-09-18 2010-05-26 罗狄亚电子与催化公司 稀土磷酸盐胶态分散体,其制备方法和由所述分散体得到的透明发光材料
DE10349063A1 (de) * 2003-10-22 2005-05-25 Studiengesellschaft Kohle Mbh Lumineszierende transparente Kompositmaterialien
EP2143776A1 (fr) 2008-06-25 2010-01-13 Commissariat A L'energie Atomique Dispersions de particules d'oxydes de terres rares luminescents, vernis comprenant ces particules, leurs procédés de préparation et procédé de marquage de substrats
US8076653B2 (en) 2008-06-25 2011-12-13 Commissariat A L'energie Atomique Dispersions of luminescent rare-earth oxide particles, varnish comprising these particles, their methods of preparation and method for marking substrates

Also Published As

Publication number Publication date
ATE372302T1 (de) 2007-09-15
JP2005502573A (ja) 2005-01-27
PL207270B1 (pl) 2010-11-30
PL369094A1 (en) 2005-04-18
CN1325382C (zh) 2007-07-11
US20070213413A1 (en) 2007-09-13
JP4017597B2 (ja) 2007-12-05
FR2829481A1 (fr) 2003-03-14
US7674834B2 (en) 2010-03-09
KR100561571B1 (ko) 2006-03-17
CN1568288A (zh) 2005-01-19
DE60222279D1 (de) 2007-10-18
KR20040045436A (ko) 2004-06-01
EP1427673A1 (fr) 2004-06-16
US20050008877A1 (en) 2005-01-13
FR2829481B1 (fr) 2003-12-19
EP1427673B1 (fr) 2007-09-05
DE60222279T2 (de) 2008-06-12

Similar Documents

Publication Publication Date Title
EP1427673B1 (fr) Dispersion colloidale de particules d'un vanadate ou d'un phospho-vanadate d'une terre rare
EP1246777B1 (fr) Dispersion colloidale aqueuse a base d'au moins un compose d'un lanthanide et d'un complexant, procede de preparation et utilisation
JP5035545B2 (ja) アルカリ性ジルコニアゾルの製造方法
US7569613B2 (en) Aqueous dispersion of a rare earth phosphate, and a process for its preparation
WO2009046392A1 (fr) Synthèse de nanoluminophores à conversion ascendante dopés aux terres rares biofonctionnalisés
EP1874690A1 (fr) Dispersion colloïdale d'un compose de cerium et d'un autre element choisi parmi le zirconium, les terres rares, le titane et l'etain, solide dispersible a base de ce compose et procedes de preparation
EP2303771B1 (fr) Procedes d isolement et de purification de nanoparticules a partir d un milieu complexe
CN114163998B (zh) 用于醇中痕量水快速检测的钙钛矿量子点/二氧化硅复合纳米探针及其应用方法
EP1663470B1 (fr) Dispersion collodale d un phosphate de terre rare et son procede de preparation
CA2431262C (fr) Dispersion colloidale de phosphate de terre rare et procede de preparation
CA2396057C (fr) Dispersion colloidale aqueuse a base d'au moins un compose d'un metal et d'un complexant, procede de preparation et utilisation
CN113874324A (zh) 氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗粒及其用途
Al-Amri et al. Effect of Cadmium Source on the Structure and Optical Properties of CdTe Quantum Dots

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003526826

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047003685

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002777416

Country of ref document: EP

Ref document number: 20028200357

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002777416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10489283

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002777416

Country of ref document: EP