WO2002056011A1 - Fibre d'immobilisation de substances selectivement hybridables, reseau de fibres comprenant un faisceau desdites fibres, procede d'hybridation selective, dispositif associe et base - Google Patents

Fibre d'immobilisation de substances selectivement hybridables, reseau de fibres comprenant un faisceau desdites fibres, procede d'hybridation selective, dispositif associe et base Download PDF

Info

Publication number
WO2002056011A1
WO2002056011A1 PCT/JP2002/000115 JP0200115W WO02056011A1 WO 2002056011 A1 WO2002056011 A1 WO 2002056011A1 JP 0200115 W JP0200115 W JP 0200115W WO 02056011 A1 WO02056011 A1 WO 02056011A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective binding
binding substance
fiber
substance
immobilized
Prior art date
Application number
PCT/JP2002/000115
Other languages
English (en)
French (fr)
Inventor
Saburo Sone
Kunihisa Nagino
Masashi Higasa
Hitoshi Nobumasa
Koji Watanabe
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020037009329A priority Critical patent/KR100848636B1/ko
Priority to US10/466,094 priority patent/US20040096169A1/en
Priority to EP02729544A priority patent/EP1361434A4/en
Priority to CA002450632A priority patent/CA2450632A1/en
Publication of WO2002056011A1 publication Critical patent/WO2002056011A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/00515Essentially linear supports in the shape of strings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/00524Essentially linear supports in the shape of fiber bundles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00664Three-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00673Slice arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00729Peptide nucleic acids [PNA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/0074Biological products
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • Selective binding substance-immobilized fiber, fiber array including bundle of the fiber, selective binding reaction method, apparatus and substrate therefor
  • the present invention provides a fiber in which a substance that selectively binds to a test substance (herein, a “selective binding substance”) is immobilized, a fiber array including a bundle of the fibers, and a selective binding substance.
  • the present invention relates to a method for binding reaction with a corresponding selective binding substance that selectively binds to a device, an apparatus therefor, and a substrate.
  • DNA microarray method DNA chip method
  • DNA chip method a new analysis method or methodology called the DNA microarray method
  • these methods are in principle the same as the conventional methods in that they are nucleic acid detection and quantification methods based on the nucleic acid-nucleic acid hybridization reaction. It can also be applied to the detection and quantification of proteins and sugar chains based on the binding reaction between proteins and sugar chains.
  • These techniques have a major feature in that a large number of DNA fragments, proteins, and sugar chains are aligned and immobilized on a flat substrate piece called a microarray or chip at a high density.
  • microarray method examples include, for example, the expression of genes in A sample labeled with an element or the like is hybridized on a piece of flat substrate, the complementary nucleic acids (DNA or RNA) are bound to each other, and the site is labeled with a fluorescent dye or the like, and then processed with a high-resolution analyzer. And a method of detecting a response such as a current value based on an electrochemical reaction. Thus, the type of gene contained in the sample can be quickly estimated.
  • DNA or RNA complementary nucleic acids
  • a polymer is immobilized on a glass or other substrate.
  • Methods of coating and immobilizing L-lysine, aminosilane, etc. have been developed.
  • Microarrays using proteins and sugar chains have the same problems as microarrays using these nucleic acids.
  • a method using minute beads is known as a method that does not use a flat substrate, but is incomplete in terms of technology for distinguishing various kinds of minute beads on which individual nucleic acids, proteins, sugar chains, etc. are immobilized. It is difficult to produce a compound in which the specified compounds are aligned with good reproducibility based on the specified sequence criteria.
  • nucleic acid solutions used for nucleic acid-nucleic acid hybridization are valuable. Therefore, it is desirable to carry out the hybridization reaction with the amount of nucleic acid as small as possible, and it is conceivable to reduce the nucleic acid concentration of the nucleic acid solution.
  • a sample nucleic acid fixing portion having a conductor layer is provided on the microarray substrate, and a positive potential is applied to the sample nucleic acid fixing portion to generate an electric field.
  • Microarrays using proteins and sugar chains are expected to have the same effects as microarrays using these nucleic acids.
  • the polymer can be immobilized at a predetermined concentration, can be arranged in a measurable form with high density and reproducibility, and can be recognized without depending on the position of each polymer.
  • the establishment of a new systematic methodology applicable to large-scale production is strongly required for polymer analysis, which is expected to increase in the future, and is a problem to be solved by the present invention.
  • the problem to be solved by the present invention is to rely on the positional relationship compared to a method for producing a polymer array by a small amount of spotting or a small amount dispensing on a two-dimensional carrier such as a nylon sheet or a glass substrate.
  • a two-dimensional carrier such as a nylon sheet or a glass substrate.
  • a microarray in which a large number of selective binding substances such as DNA fragments, proteins, and sugar chains are arranged and immobilized at high density on a conventionally used flat substrate piece, or the selective binding substance is The porous hollow fibers fixed inside the porous hollow fibers are bound and fixed, cut in a direction intersecting with the fiber axis of the array to form a thin section, and the selective binding substance is fixed inside the fibers.
  • a hybridization reaction is performed in a microarray having a high-density fiber array, or a microarray in which the selective binding substance is arranged and fixed at a high density on the fiber surface, and the fibers are arranged as a three-dimensional structure. Is dependent on the spontaneous diffusion of the selective binding substance, and the hybridization reaction occurs efficiently using a solution containing a small amount of the selective binding substance. It is difficult to use this effectively, and the efficiency of the hybridization reaction of selectively coupled substances by electric attraction, which was invented to eliminate this inefficiency, is not sufficient. Did not.
  • the present invention is to solve the conventional drawbacks described above and to provide a binding reaction method for performing a selective binding reaction by effectively utilizing a small amount of a selective binding substance, and to provide an apparatus and a substrate therefor. It is an object.
  • the present inventors have conducted intensive studies in order to solve the above-described problems, and as a result, revised the idea of the conventional method in which the selective binding substance alignment process and the immobilization process are performed on the same two-dimensional carrier.
  • Independently performing the polymer immobilization process on a fiber (one fiber) that can be distinguished by a support, magnetism, bar code, color, shape, etc. as a one-dimensional structure As a result, it has been found that it is possible to produce a fiber bundle capable of distinguishing fibers in which individual samples are combined regardless of the position as a three-dimensional structure.
  • a fiber or a fiber array capable of directly detecting a substance that has reacted with the selective binding substance immobilized on the fiber can be produced. This led to the completion of the present invention.
  • the present invention provides a fiber array comprising a fiber to which a selective binding substance is immobilized or a bundle of the fiber.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, during the hybridization reaction, the corresponding selective binding substance was added to the microarray substrate, Alternatively, it has been found that the efficiency of the rehybridization reaction can be increased by moving near the selective binding substance immobilized on the fiber and increasing the probability of collision between the selective binding substance and the corresponding selective binding substance.
  • the present invention has been completed.
  • the present invention provides a method for immobilizing a selective binding substance on a base material, and using a test sample solution containing a corresponding selective binding substance which selectively binds to the selective binding substance to the immobilized selective binding substance.
  • the test sample liquid and / or the corresponding selective binding substance are fixed to the selective binding substance.
  • a binding reaction method between a selective binding substance and a corresponding selective binding substance that is moved relatively to a surface is provided.
  • the present invention provides a method for immobilizing a selective binding substance on a base material, wherein a test sample solution containing a corresponding selective binding substance that selectively binds to the selective binding substance is combined with the immobilized selective binding substance.
  • the present invention provides a selective binding reaction device having a conductive electrode disposed in a direction to be applied and outside of both ends of the selective binding substance-immobilized region, and an AC voltage applying means for applying an AC voltage between the conductive electrodes.
  • the present invention provides a method for immobilizing a selective binding substance on a base material, the method comprising: immobilizing a test sample solution containing a corresponding selective binding substance that selectively binds to the selective binding substance with the immobilized selective binding substance. Contacting the selective binding substance and the corresponding selective binding substance to cause the substrate to react, wherein the selective binding substance on the substrate is immobilized; Provided is a selective binding substance-immobilized base material having conductive electrodes disposed outside both ends of a binding substance-immobilizing region.
  • a fiber having a selective binding substance immobilized thereon and a fiber array having a selective binding substance immobilized thereon are provided.
  • ADVANTAGE OF THE INVENTION while being able to provide the fiber in which the selective binding substance was immobilized efficiently and with good reproducibility, by combining these fibers into a fiber array, the selective binding substance can be arbitrarily dense and dense. An accurately arranged selective binding substance-immobilized fiber array can be efficiently obtained with good reproducibility. Furthermore, by using an optical fiber, it is possible to easily and efficiently detect a sample that is efficiently coupled through the fiber. In addition, by marking each fiber, Individual fibers to which the test substance is bound can be identified regardless of the position in the array.
  • the selective binding reaction method of the present invention improve the efficiency of the selective binding reaction, and can be performed in a short time even when the concentration of the corresponding selective binding substance in the test sample is low.
  • the selective binding reaction step can be completed.
  • FIG. 1 is a schematic sectional view and a plan view of a selective binding reaction device of the present invention
  • FIG. 2 is a principle diagram showing the operation of a selective binding substance in the selective binding reaction method of the present invention
  • FIG. 3 is a schematic cross-sectional view of a conventional hybridization device
  • FIG. 4 is a principle diagram showing the operation of a selective binding substance in a conventional hybridization device
  • FIG. 5 is a schematic diagram of an optical system portion of the measuring device used in Example 5.
  • the term "selective binding substance” means a substance that can selectively or directly bind to a test substance, and as typical examples, nucleic acids, proteins, Sugars and other antigenic compounds can be mentioned.
  • Nucleic acids can be DNA or RNA.
  • a single-stranded nucleic acid having a specific base sequence selectively hybridizes and binds to a single-stranded nucleic acid having a base sequence complementary to the base sequence or a part thereof.
  • “Binding substance”. Examples of the protein include an antibody, an antigen-binding fragment of an antibody such as a Fab fragment and an F (ab ') 2 fragment, and various antigens.
  • Antibodies and antigen-binding fragments thereof selectively bind to the corresponding antigen, and the antigen selectively binds to the corresponding antibody.
  • the saccharide a polysaccharide is preferable, and various antigens can be mentioned. Also, substances having antigenicity other than proteins and saccharides can be immobilized. Particularly preferred "selective binding substances" are nucleic acids, antibodies and antigens.
  • the selective binding substance used in the present invention may be a commercially available substance, or may be a substance obtained from living cells or the like.
  • the “corresponding selective binding substance” is a substance that selectively binds to the above selective binding substance.
  • the selective binding substance is a single-stranded nucleic acid
  • the fibers that can be used for immobilizing the selective binding substance include synthetic fibers, semi-synthetic fibers, regenerated fibers, chemical fibers such as inorganic fibers, natural fibers, and composite fibers thereof.
  • Typical examples of synthetic fibers include various polyamide-based fibers such as nylon 6, nylon 66, and aromatic polyamide, and various polyester-based fibers such as polyethylene terephthalate, polybutylene perphthalate, polylactic acid, and polyglycolic acid.
  • Acrylic fibers such as polyacrylonitrile, polyolefin fibers such as polyethylene and polypropylene, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, polyurethane fibers Fibers, phenol fibers, fluorine fibers made of polyvinylidene fluoride / polytetrafluoroethylene, etc., and various fibers of polyalkylene parahydroxy benzoate.
  • Fibers other than those for clothing for example, optical fibers mainly composed of a transparent amorphous polymer such as polymethyl methacrylate or polystyrene can also be used.
  • a plastic optical fiber whose core is made of a material such as polymethyl methacrylate, polystyrene, or polycarbonate, and whose cladding is made of a material having a lower refractive index is preferable. It may be a so-called core-sheath type optical fiber or a refractive index distribution type optical fiber.
  • the plastic optical fiber may be coated.
  • the coating material is not particularly limited, but thermoplastic resins such as polyethylene, PVC, urethane, and fluororesin, or various rubber tubes are used.
  • the semi-synthetic fibers include various cellulose-based fiber derived from diacetate, triacetate, chitin, chitosan, and the like, and various protein-based fibers called promix.
  • Typical examples of the regenerated fiber include various cellulosic regenerated fibers (rayon, cuvula, polynosic, etc.) obtained by a viscose method, a copper-ammonia method, or an organic solvent method.
  • Typical examples of the inorganic fibers include glass fibers, carbon fibers, and metal fibers such as Au, Ag, Cu, and AI.
  • an optical fiber made of light-transmitting glass is suitable.
  • the plastic optical fiber a so-called core-sheath type optical fiber or a gradient index type optical fiber may be used.
  • the glass optical fiber may be coated. Further, a composite optical fiber of glass and plastic may be used.
  • natural fibers include vegetable fibers such as cotton, flax, ramie, jute, animal fibers such as wool and silk, and mineral fibers such as asbestos.
  • the form of the fiber used in the present invention is not particularly limited.
  • the filament may be a monofilament or a multifilament.
  • spun yarn obtained by spinning short fibers may be used. When multifilament or spun yarn fibers are used, voids between single fibers can be used for fixing the selective binding substance.
  • the fiber used in the present invention may be used as it is in an untreated state, or may be a fiber into which a reactive functional group is introduced, if necessary. Fibers that have been subjected to radiation treatment may be used. When a selective binding substance is immobilized on these fibers, various chemical or physical interactions between the fiber and the selective binding substance, i.e., the functional groups of the fiber and the selective binding property It can be achieved by a known method utilizing a chemical or physical interaction with a substance.
  • the immobilization position may be the entire fiber, but it is desirable to be in the end region of the fiber in order to reduce the amount of the sample.
  • the end region may be the end surface of the fiber and the side surface near or at the end surface of the fiber.
  • the supports may be independent of each other or individually bonded.
  • fibers having a different shape can be used. It is also possible to color the fibers and distinguish the fibers from different samples according to the wavelength of the color.
  • a method of detecting light emitted to the outside of the fiber, or passing light into the fiber and guiding the light passing through the fiber to a photodetector may be used to distinguish the light.
  • the distinction may be made by using a fiber recorded with a special character symbol. For example, a bar code or the like may be recorded on the fiber or in the fiber, and the fiber may be read to distinguish the different fibers of the sample.
  • Metals, carbon, conductive polymers such as conductive polymers and magnetic materials are contained in fibers, and the surface of fibers is coated with metal and other materials by means of sputtering, vapor deposition, plating, CVD, etc. It can also be made conductive.
  • the material contained in the second to fourth periods of Groups 3A to 5B of the periodic table, or a mixture thereof, may be coated on the surface of the fiber using the above-described means. In this way, fibers of different samples may be distinguished electrically or magnetically.
  • the fibers used in the present invention are preferably thin.
  • the thickness of one fiber is preferably 1 mm or less.
  • a commercially available fishing line has a thickness of 50 to 900 m.
  • monofilaments of 1 dtex about 8 m in diameter in the case of polyethylene terephthalate
  • finer fibers ultrafine fibers
  • the filament is preferably 3 to 1,000 um.
  • a plastic optical fiber, a glass optical fiber, and a glass / resin composite optical fiber of about 50 to 500 ⁇ m are desirable.
  • a so-called image conduit in which a very thin optical fiber of 2 to 50 m is bundled can also be preferably used. It is possible to measure by fixing another selective binding substance to each of the image conduits and collecting the image conduits. Further, when detecting the coupling state by light, the use of this image conduit allows the converged light to be efficiently transmitted to the sample without diverging within the optical fiber.
  • the number of optical fibers included in the image conduit is preferably 20,000 to 50,000. If the number is more than 5,000,000, the outer diameter of the image conduit becomes too large, which may cause difficulty in handling.
  • the test object described in detail later By using a label that emits light or generates a dye, such as a fluorescent label, as a label attached to the substance, the binding of the test substance passes through the optical fiber and exits to the other end. In this case, it is preferable to be able to detect which fiber is shining, which is advantageous for automation of the apparatus.
  • the binding of the test substance can be measured as an electrical signal at the other end of the fiber. This is preferable because it can be detected, and is advantageous for automation of equipment.
  • the bonding can be promoted by means for applying an electric field or current.
  • the fibers on which the nucleic acids are immobilized are substantially used as anodes.
  • the arrangement of the cathode is not particularly limited, as long as it does not directly contact the fiber.
  • the type of electric field to be applied is particularly preferably direct current, but may be alternating current under the condition that the fiber substantially becomes an anode. That is, even when an AC electric field is applied, the time for applying the positive voltage and the negative voltage of the fiber is set to be longer for the positive voltage, or the absolute values of the AC positive and negative voltages are higher for the positive voltage. It is sufficient if the fibers are made to be large or a combination of these makes the fiber substantially an anode.
  • the magnitude of the applied voltage is not particularly limited, but is preferably in the range of 0.1 V to 500 V. If the applied voltage is smaller than 0.1 V, the effect of applying the voltage may not be sufficiently obtained. If the applied voltage is larger than 500 V, handling may be difficult.
  • the present invention provides a method for immobilizing a selective binding substance on a base material, the method comprising: Contacting the selective binding substance with the corresponding selective binding substance in the step of causing a binding reaction between the sample liquid and the corresponding selective binding substance.
  • Another object of the present invention is to provide a binding reaction method between a selective binding substance and a corresponding selective binding substance, which is moved relatively to a substance.
  • the term “relatively move” means that when the surface on which the selective binding substance is fixed is viewed from the side, the corresponding selective binding substance moves relative to the fixing surface.
  • a method of moving the corresponding selective binding substance near the selective binding substance fixed on a microarray substrate, a fiber, or the like to increase the probability of collision between the selective binding substance and the corresponding selective binding substance is to form an electric field.
  • a method of imparting a function such as a magnetic fluid to the sample liquid, and shaking the sample liquid by physical force from the outside, or a method of shaking the base material on which the selective binding substance is immobilized For example, a method of moving the object may be considered.
  • the electric field application method which has the simplest structure and has the effect of increasing the collision probability, and especially the AC electric field application method, are preferable.
  • nucleic acids are negatively charged in aqueous solution.
  • macromolecules such as proteins and polysaccharides are often charged in aqueous solutions. Therefore, by applying an electric field to the reaction solution, the corresponding selective binding substance can be moved. In particular, by applying an AC electric field, it becomes possible to reciprocate the corresponding selective binding substance, and it is possible to efficiently increase the probability of collision with the selective binding substance.
  • the present invention provides a method comprising: immobilizing a selective binding substance on a substrate; and a test comprising a corresponding selective binding substance that selectively binds to the selective binding substance.
  • a method of performing a binding reaction between a selective binding substance and a corresponding selective binding substance while applying an AC voltage between conductive electrodes disposed outside the both ends of the selective binding substance immobilizing region Is provided.
  • the vertical axis of the surface on which the selective binding substance is immobilized is, for example, as shown in FIG. Is the axis indicated by the alternate long and short dash line A, which means the direction perpendicular to the surface on which the selective binding substance is immobilized.
  • the direction intersecting the vertical axis is, for example, the direction intersecting the vertical axis when the surface on which the selective binding substance is immobilized is viewed from the side, such as the direction indicated by left and right arrows in FIG. It is.
  • the “direction intersecting with the vertical axis” is preferably a direction orthogonal to the vertical axis as shown in FIG.
  • the angle between the line connecting the opposing electrodes at the shortest distance and the direction perpendicular to the vertical axis is preferably 45 degrees or less, more preferably 30 degrees or less.
  • the magnitude of the applied voltage is not particularly limited.If it is too small, the effect of applying the electric field is small, while if it is too large, the selective binding substance and / or the corresponding selective binding substance may be damaged. Therefore, about 5 V to about 5 V per cm of the conductive electrode is preferable, and about 1 OV to about 25 V is particularly preferable.
  • the frequency of the alternating current is not particularly limited, but is preferably about 1 Hz to 100 Hz, particularly preferably about 5 Hz to 20 Hz.
  • the selective binding substance immobilization site for example, one microplate plate
  • the presence of a substance sequence region is preferable because a plurality of types of measurements can be performed simultaneously in parallel. It is preferable that the conductive electrode is disposed outside both ends of the selective binding substance array region.
  • the binding reaction method according to the electric field application method of the present invention includes: a base on which the base material is placed; and a direction intersecting a vertical axis of a surface on which the selective binding substance is immobilized, and the selective yarn;
  • a selective binding reaction device having a conductive electrode disposed outside the both ends of the immobilization region and an AC voltage applying means for applying an AC voltage between the conductive electrodes, or a selective binding substance on a substrate is fixed. It can be carried out using a selective binding substance-immobilizing base material having a selective binding substance-immobilizing site to be formed and conductive electrodes disposed outside both ends of the selective binding substance-immobilizing region.
  • the selective binding substance is fixed to the “selective binding substance fixing site”, but this fixation can be performed by the end user before use.
  • a substrate manufacturer may manufacture and sell products in which a selective binding substance for a specific test is immobilized in advance.
  • the material that can be used for the conductive electrode includes metals such as platinum, gold, silver, chromium, titanium, nigel, aluminum, copper, and palladium.
  • metals such as platinum, gold, silver, chromium, titanium, nigel, aluminum, copper, and palladium.
  • a simple substance, an oxide, a nitride of these metals, or an alloy thereof, carbon or a carbon compound, a conductive polymer, or the like may be used, and it is sufficient that at least one selected from these is included.
  • the properties of simple metals or oxides, nitrides, or alloys of these metals are as follows: by applying an AC voltage between the conductive electrodes disposed using these materials, Since a current flows between the conductive electrodes via the test sample solution containing, it is preferable that the material react with the test sample solution and hardly elute metal ions into the test sample solution.
  • Typical examples of the carbon compound include graphite, fullerene, and the like.
  • Representative examples of the conductive polymer include polyacetylene, polypyrrole, polythiophene, polyaniline, and the like. These conductive polymers are mixed with the above-described metals, carbon compounds, and the like, and a composite conductive plastic having improved conductive characteristics is provided. Are also mentioned.
  • the conductive electrode is desirably formed in advance on a selective binding substance-immobilized base material for the reason described below, but the conductive electrode is provided on the binding reaction device side, and the selective binding substance is prepared in the binding reaction preparation stage.
  • the form in which the conductive electrode is mounted on the immobilization base material may be used.
  • a mask having an opening in the shape of a conductive electrode is placed on the base material, and the conductive electrode is formed by sputtering or vapor deposition.
  • a conductive electrode can be formed by forming a thick film conductive electrode by using a plating method, or by bonding a metal foil or a thin metal plate to a base material with an adhesive.
  • a mask having an opening in the shape of a conductive electrode is provided over a substrate, and the electrode can be formed by a sputtering method.
  • a conductive polymer use a printing method such as silk screen printing. Then, a paste-like conductive polymer is applied, and the base is cured using a photo-curing method using ultraviolet light, whereby a conductive electrode can be formed.
  • the conductive electrode is provided on the selective coupling reaction device side
  • a thin plate made of the metal material, the carbon compound, and the conductive polymer is provided on the base of the selective coupling reaction device, After placing the selective-binding-substance-immobilized substrate in a base shape, the electrode plate is mounted on the selective-binding-substance-immobilized substrate, thereby forming a conductive electrode.
  • FIG. 1 (a) shows a side view of one embodiment of the selective binding reaction device of the present invention
  • FIG. 1 (b) shows a plan view thereof.
  • the present invention is not limited to this example.
  • a selective binding substance array substrate 1, conductive electrodes 2, 3, a cover plate 5, and an AC voltage applying means 6 are provided.
  • the selective binding substance 10 is immobilized on the selective binding substance fixing site 4 provided on the selective binding substance array substrate 1 and the selective binding substance 10 is arranged in an array.
  • the material arrangement region 8 is formed.
  • Conductive electrodes 2 and 3 are disposed on both sides of the selective binding substance array region 8 on the selective binding substance arrangement substrate 1 placed on the base 9, and are disposed on the conductive electrodes 2 and 3.
  • the cover plate 5 is erected on the A test sample solution 7 containing the corresponding selective binding substance 11 is filled in a space sandwiched between the selective binding substance array substrate 1 and the cover plate 5 via the conductive electrodes 2 and 3.
  • the form in which the selective binding substance 10 is arranged in the selective binding substance array region 8 is preferably arranged on lattice points on a two-dimensional plane, but at a position shifted from a lattice point on a two-dimensional plane, a straight line.
  • the three-dimensional arrangement form may be adopted by providing the shape or the position of the selective binding substance fixing portion 4 with a step in a direction perpendicular to the surface of the selective binding substance arrangement base material 1.
  • the test sample solution 7 After the test sample solution 7 is filled, a voltage is applied between the conductive electrodes 2 and 3 using the AC voltage applying means 6. As a result, an electric field is generated between the conductive electrodes 2 and 3, and the corresponding selective binding substance 11 spontaneously diffused into the test sample solution 7 has a negative charge, and thus is generated between the conductive electrodes 2 and 3.
  • the movement is repeated in a direction crossing the selective binding substance array region 8 according to the direction of the applied electric field.
  • the conductive electrode 2 has a positive potential and the conductive electrode
  • the corresponding selective binding substance 11 is attracted to the conductive electrode 2, and when the conductive electrode 2 has a negative potential and the conductive electrode 3 has a positive potential, the corresponding selective binding substance 11 has a conductive property.
  • the selective binding substance 10 immobilized on the selective binding substance immobilization site 4 and the corresponding selection substance are selected. Hybridization occurs when the binding substances 11 are in contact and have mutually complementary sequences.
  • the distance between the conductive electrodes is set at 5 V to 50 V, which is equivalent to 1 cm between the conductive electrodes. In order to obtain a stable hybridization result, the distance between the conductive electrodes is set to 1 cm. More preferably, it is 10 to 25 V per unit.
  • the selective binding substance 10 and the corresponding selective binding substance 11 always move relatively during the binding reaction.
  • the efficiency of the binding reaction increases due to repeated collisions and collisions.
  • the site for immobilizing the selective binding substance a position on a plane provided on the substrate or a partial area on the substrate, a concave portion or a convex portion provided on the substrate is usually used.
  • a rod-shaped resin, glass, metal, fiber, or the like may be fitted into a hole penetrating the base material 1, and the tip of the resin, glass, metal, or fiber may be used as a site for fixing a selective binding substance.
  • advantages such as detection at the other end of the fiber can be obtained as described above. It is preferred.
  • the conductive electrodes 2 and 3 In order to reduce the amount of the precious sample solution 7, it is desirable to make the conductive electrodes 2 and 3 as thin as possible. More preferably, the conductive electrodes 2 and 3 have a thickness of 5 ⁇ m to 200 ⁇ m. In order to form an electrode that is very thin and has a small thickness unevenness, the conductive electrode It is desirable to be formed on the selective binding substance array substrate in advance, but it has conductive electrodes on the binding reaction device side, and attaches conductive electrodes on the selective binding substance array substrate 1 in the binding reaction preparation stage It may be in the form of doing.
  • the selective binding substance 10 is immobilized on the selective binding substance fixing site 15 provided on the selective binding substance array base material 12.
  • a support material 13 is provided on the selective binding substance array substrate 1 2 outside the region where the selective binding substance 10 is arranged, and a cover plate 14 is provided on the support material 13. You.
  • the space between the selective binding substance array base material 12 and the cover plate 14 via the support material 13 is filled with the test sample solution “! 8” containing the corresponding selective binding substance 11.
  • a negative potential is applied to the electrode 16 and a positive potential is applied to the selective binding substance fixing portion 15 having a conductive layer using the voltage applying means 17.
  • the corresponding selective binding substance 11 is selected by an electric force.
  • the selective binding substance 10 that is possessed is also adsorbed on the surface of the selective binding substance fixing portion 15 and the relative binding between the selective binding substance 10 and the corresponding selective binding substance 11 Since the movement is reduced, the dynamic contact probability between the selective binding substance 10 and the corresponding selective binding substance 11 is lower than in the present invention.
  • DNA or RNA used as a selective binding substance or a corresponding selective binding substance may be prepared from living cells or chemically synthesized.
  • Preparation of DNA or RNA from living cells can be performed by a known method.
  • DNA extraction can be performed by the method of Blin et al. (B linetal., Nucleic Acids Res. 3: 2303 (1976)).
  • the extraction of RNA can be performed by the method of FaVaIoro et al. (Favaloroeta, Methods Enzymol. 65: 718 (1980)).
  • nucleic acid to be immobilized examples include a linear or circular plasmid DNA or chromosomal DNA, a DNA fragment obtained by cleaving them with a restriction enzyme or chemically, a DNA synthesized in a test tube by an enzyme or the like, or A chemically synthesized oligonucleotide or the like can also be used.
  • one type of selective binding substance is immobilized on one fiber or individual selective binding substance immobilization site.
  • multiple types of genes having mutations can be immobilized in the same immobilization site area.
  • a plurality of types of selective binding substances can be immobilized on one fiber or one immobilization site.
  • the selective binding substances immobilized on the plurality of fibers or the plurality of selective binding substance fixing sites may be different types of selective binding substances or the same selective binding substance.
  • one type of selective binding substance is immobilized on some of the fibers or the selective binding substance fixing sites among the plurality of fibers or the plurality of selective binding substance fixing sites.
  • Another type of selective binding substance can be immobilized on the fiber or the site for immobilizing the selective binding substance.
  • the type and order of the selective binding substances are not limited by the positions of the fibers in the fiber array. It is also effective to immobilize the same selective binding substance on a plurality of fibers or sites for immobilizing the selective binding substance to increase the measurement sensitivity.
  • Fixation of the selective binding substance on the support fiber or on the site for fixing the selective binding substance can be performed by a known method.
  • the selective binding substance and the fiber or the selective After acting on the selective binding substance immobilizing site, it can be immobilized by baking or ultraviolet irradiation.
  • DNA is fixed to one fiber of polymethyl methacrylate optical fiber or a polymethyl methacrylate base material by this method.
  • the fiber When a selective binding substance modified with an amino group is immobilized on a fiber, the fiber is crosslinked with a cross-linking agent such as glutaraldehyde or 1-ethyl-13- (3-dimethylaminopropyl) carbodiimide (EDG). And a functional group of
  • a cross-linking agent such as glutaraldehyde or 1-ethyl-13- (3-dimethylaminopropyl) carbodiimide (EDG).
  • EDG 1-ethyl-13- (3-dimethylaminopropyl) carbodiimide
  • a functional group of The temperature at which the sample containing the selective binding substance is allowed to act on the fibers is preferably 5 ° C to 95 ° C, more preferably 15 ° C to 65 ° C. Processing time is usually 5 minutes to 24 hours, preferably 1 hour or more.
  • the selective binding substance may be directly immobilized on the fiber or the site for fixing the selective binding substance, or a derivative obtained by chemically modifying the selective binding substance, or may be modified as necessary.
  • the nucleic acid may be immobilized.
  • Known chemical modifications of nucleic acids include amination, biotinylation, digoxigenation, and the like [Current Protocols In Molecular Biology, Ed .; Frederick M. Ausubel et a (1990), Mon. Protocol for Topping Experiment CO DIG Hybridization (Shujunsha)]
  • these modification methods can be adopted.
  • the introduction of an amino group into a nucleic acid will be described.
  • the bonding position between the aliphatic hydrocarbon chain having an amino group and the single-stranded nucleic acid is not particularly limited. Not only at the 5 'end or 3' end of the nucleic acid but also in the nucleic acid chain (for example, phosphoric diester (A binding site or a base site).
  • This single-stranded nucleic acid derivative can be prepared according to the method described in Japanese Patent Publication No. 3-74239, US Pat. No. 4,667,025, US Pat. No. 4,789,737 and the like.
  • a commercially available reagent for introducing an amino group for example, Aminolink II (trade name); PE Biosystems Japan, Amino Modifiers (trade name); Clontech], or DN It can be prepared according to a well-known method of introducing an aliphatic hydrocarbon chain having an amino group into the 5'-terminal phosphoric acid of A (Nucleic Acids Res., 11 (18), 6513- (1983)).
  • the selective binding substance-immobilized fiber or the selective binding substance-immobilized substrate obtained by the above-described method can be appropriately treated.
  • the fixed selective binding substance can be modified.
  • a selective binding substance obtained from a biological material such as a cell or a bacterial cell is used, unnecessary cell components may be removed.
  • the treated fiber or the base material on which the selective binding substance is immobilized can be used as a material for detecting the selective binding substance. Note that these processes may be performed separately or simultaneously. In addition, it may be appropriately performed before the sample containing the selective binding substance is fixed on the fiber or the substrate on which the selective binding substance is immobilized.
  • the fiber of the present invention on which the selective binding substance is immobilized or the selective binding substance-immobilized base material of the present invention on which the selective binding substance is immobilized is a test substance using the immobilized selective binding substance as a probe. By interacting with, a specific test substance in the sample can be detected.
  • the two types of test samples can be labeled as shown below (to distinguish them) and the differences can be compared.
  • a known means capable of specifically recognizing the binding can be used.
  • a label such as a fluorescent substance, a luminescent substance, or a radioisotope is bound to a corresponding selective binding substance in a sample, and after the selective binding reaction and washing, the label can be detected.
  • various conventionally known means can be used.
  • a fluorescent substance or a luminescent substance as the label. Fluorescent substances and luminescent substances used for immunoassays and measurement of nucleic acid hybridization are well known in the art, and various kinds of fluorescent substances and luminescent substances are commercially available. Can be used.
  • the corresponding selective binding substance is selected. Reacting a labeled free measurement substance that binds selectively, and after washing, measuring the label of the measurement substance bound to the fiber via the corresponding selective binding substance and the selective binding substance. It is also possible.
  • selectivity When a nucleic acid having a specific base sequence is immobilized on a fiber as a substance, and the corresponding selective binding substance is a nucleic acid containing a region complementary to the nucleic acid, the above-mentioned selection in the nucleic acid that is the corresponding selective binding substance A nucleic acid complementary to a region other than the region complementary to the binding substance can be labeled and used as a measurement substance.
  • an antigen is immobilized on a fiber as a selective binding substance
  • the corresponding selective binding substance is an antibody that reacts with the antigen through an antigen-antibody reaction
  • a labeled second antibody that reacts with the antibody through an antigen-antibody reaction is measured. It can be used as a substance for use.
  • it is preferable to immobilize the selective binding substance on one end region of the fiber use a fluorescent substance or a luminescent substance for labeling, and measure the reaction result from the other end side.
  • the fiber or the site for fixing a selective binding substance has electrical conductivity
  • the sample and the sample immobilized on the electrode fiber are allowed to react under a material that promotes or suppresses the reaction between the sample and the sample, and all or a part of this material is combined with the sample and the sample. It is possible to detect the presence or absence of the binding between the sample and the sample and the degree of the binding by measuring the value of the current that flows through the electrode after the reaction, i.e., the fiber or the site for selectively binding the substance that has been reacted. .
  • test substance to be used in the measurement method using the fiber or the fiber array of the present invention or the measurement method using the selective binding substance-immobilized base material applied to the binding reaction device of the present invention is measured.
  • nucleic acid to be used include, but are not limited to, genes for pathogenic bacteria and viruses, genes causing genetic diseases and parts thereof, various biological components having antigenicity, antibodies to pathogenic bacteria and viruses, and the like. Not something.
  • Samples containing these test substances include body fluids such as blood, serum, plasma, urine, stool, cerebrospinal fluid, saliva, various tissue fluids, various foods and drinks, and dilutions thereof. It is not limited to these.
  • the nucleic acid used as the test substance may be a nucleic acid extracted from blood or cells by a conventional method, or may be a nucleic acid amplified by a nucleic acid amplification method such as PCR using the nucleic acid as a type III. Good. In the latter case, the measurement sensitivity can be greatly improved.
  • a nucleic acid amplification product is used as the test substance, amplification should be performed in the presence of a nucleoside triphosphate labeled with a fluorescent substance or the like. Thus, the amplified nucleic acid can be labeled.
  • test substance antigen or antibody When the test substance is an antigen or an antibody, the test substance antigen or antibody may be directly labeled by an ordinary method, or the test substance antigen or antibody may be bound to the selective binding substance. After that, the fiber or the selective binding substance-immobilized site on which the selective binding substance is immobilized is washed, and the antigen or antibody is reacted with a labeled antibody or antigen that reacts with the antigen, and the fiber or the selective binding substance is immobilized. The label bound to the site can also be measured.
  • the step of allowing the test substance to interact with the immobilized substance can be performed in exactly the same manner as before.
  • the reaction temperature and time are appropriately selected depending on the chain length of the nucleic acid to be hybridized, the type of antigen and / or antibody involved in the immune reaction, and the like.
  • the reaction temperature is usually 50 ° C to 7 ° C.
  • the temperature is usually from room temperature to about 40 ° C for about 1 minute to several hours at about 0 ° C.
  • a test substance such as a nucleic acid, an antibody, or an antigen that selectively binds to the immobilized selective binding substance can be measured. That is, when a nucleic acid is immobilized as a selective binding substance, a nucleic acid having a sequence complementary to a sequence complementary to the nucleic acid or a part thereof can be measured. When an antibody or antigen is immobilized as a selective binding substance, an antigen or antibody immunoreacting with the antibody or antigen can be measured.
  • the “measurement” referred to in the present specification includes both detection and quantification.
  • the expression of genes, proteins, and sugar chains in various organisms can be efficiently, rapidly, and simply examined.
  • the fiber or selective binding substance of the present invention After labeling nucleic acids extracted from normal human liver and liver infected with hepatitis virus, the fiber or selective binding substance of the present invention. Hybridization is performed on each of the substance fixing sites. By comparing the extent of binding of the normal liver nucleic acid and the hepatitis liver nucleic acid to the sequence, changes in gene expression in the hepatitis liver can be examined.
  • the labeled normal brain extract protein and Alzheimer's brain extract protein are bound to a fiber array to which various monoclonal antibodies as proteins are bound, and the bound proteins are compared with the normal to obtain protein in the Alzheimer's brain.
  • Abnormal occurrence You can find out the reality.
  • nucleic acid can be immobilized and hybridized reliably on the fiber or glass substrate used in the present example.
  • no cross-reaction was performed on biological samples, and it was thermally stable and hybridized.
  • An experiment was performed using digoki sigenin, which is not decomposed by the heat applied during chilling, as a label.
  • a polymethylmethacrylate optical fiber 250 m in diameter, 1 O Om m in length
  • a nucleic acid solution of actin gene (Takara Shuzo Co., Ltd.) (the nucleic acid concentration is 10 g / m I)
  • ultraviolet treatment using a UV crosslinker manufactured by Stratagene
  • An oligonucleotide complementary to a part of the used nucleic acid sequence was synthesized and labeled with digoxigenin (DIG: Digo xigenin, Roche's Diagnostics Co., Ltd.).
  • nucleic acid solution of actin gene (Takara Shuzo Co., Ltd.) (the nucleic acid concentration of 10 ⁇ g, m I) was placed on an amino-introduced slide glass substrate such that the size of each immobilized site was about 200 ⁇ m in diameter. After drying in the air, ultraviolet treatment (using a UV crosslinker manufactured by Stratagene) was performed to obtain a substrate on which nucleic acids were immobilized. Oligonucleotides complementary to a part of the used nucleic acid sequence were synthesized and labeled with digoxigenin (DIG: Digoxigenin, Roche Diagnostics Co., Ltd.).
  • DIG Digoxigenin, Roche Diagnostics Co., Ltd.
  • the prepared nucleic acid-immobilized fiber was put into a hybridization bag, and hybridization was performed by a standard method (performed according to Roche's Diagnostics Co., Ltd., product manual).
  • the prepared nucleic acid-immobilized base material is placed on the base of a hybridization device, and hybridization is performed by a standard method (performed according to Roche's Diagnostics Co., Ltd., product manual). Was.
  • the nucleic acid-immobilized fiber and the nucleic acid-immobilized substrate were washed, and an anti-DIG enzyme-labeled antibody solution was added to carry out an antigen-antibody reaction. After the reaction, the nucleic acid-immobilized fiber and the nucleic acid-immobilized substrate were washed to remove unbound antibody. A DIG detection reagent was added and equilibrated. When the water was removed and the optical signal was detected, a signal was detected according to the immobilization of the nucleic acid.
  • the hybridization method of the present invention can be reliably used as a hybridization device without any structural or functional problems by a conventional method in which no AC electric field is applied.
  • An optical fiber made of glass (manufactured by Hoyashot Co., Ltd.) with a diameter of 20 rn was cut with a special cutter made of glass optical fiber, and both end surfaces were mirrored.
  • the processed optical fiber and slide glass (76 mm ⁇ 26 mm ⁇ lm) (manufactured by Matsunami Glass Industry Co., Ltd.) were cleaned with a mixed solution of pure water, ethanol, and NaOH, and then washed with pure water. Further, the cleaned surface was immersed in a mixed solution of pure water and poly-lysine (composition: 10% poly-L-lysine) to introduce amino groups on the surface of the slide glass.
  • nucleic acid solutions Two types of nucleic acid solutions (Takara Shuzo Co., Ltd. rA Control Temp late & Primer Set—AJ; Product No. TX 803 (approximately lOOOO bp ⁇ DN ⁇ fragment), and Takara Shuzo Co., Ltd. ⁇ Huma n T FR (1 kb) T
  • Each nucleic acid was amplified by PCR based on emp Iate & Primer Set J; product number TX806 (about 100 bp human transferrin receptor DNA fragment)). Primers used in the PCR method were supplied with each product. This was purified to obtain a purified nucleic acid solution.
  • the two types of purified nucleic acid solutions were spotted on the surface of the slide glass where the amino groups were introduced, dried in air, and then subjected to UV cross-linking (120 mJ) to fix the two types of nucleic acids at the nucleic acid fixing sites.
  • a nucleic acid-immobilized substrate was obtained.
  • boric acid, pure water, NaOH for pH adjustment, succinic anhydride, and 1-methyl-1-pyrrolidone are mixed to block extra amino groups on the slide glass surface that have not reacted with nucleic acids.
  • Nucleic acid was added to the solution (3 g of succinic anhydride dissolved in 187 ml of 1-methyl-2-pyrrolidone and added to a solution of 17 ml of 1 MNa-borate (pH 8.0) immediately before use). The fixed surface was dipped and shaken. Then, it was washed.
  • RNA solution ( ⁇ poIyA + RNA—A, manufactured by Takara Shuzo Co., Ltd .; product number TX802) was prepared. It has a base sequence complementary to one of the above nucleic acids ( ⁇ 803).
  • the reverse transcriptase "Superscript llj (GIB COBR L; product number 18806-071), 2.5 mM d ATP, 2.5 md CTP, 2.5 mM d GTP, 1. Mix with OmM d TTP, Cy 5-d UTP (Amersham Pharmacia; product number PA 55022), incubate at 42 ° C for 1 hour, reverse transcribe, and incorporate the Cy 5 dye in cDNA solution. I got
  • RNA solution (“Huma n TFR RNA (1 kb) J; product number TX805) manufactured by Takara Shuzo Co., Ltd. is prepared, and Cy 5—d UTP is converted to Cy 3—d UTP (Amersham 'Pharmacia. Reverse transcription was performed under the same conditions as above, except that the product was changed to product number PA53022) to obtain a cDNA solution in which the Cy3 dye was incorporated. (TX 806).
  • the two optical fibers with one type of nucleic acid immobilized on the end surface and the cDNA solution (solution for hybridization) into which the above-mentioned dye is incorporated are put into a plastic bag, and the hybridization solution is added. Sealed to prevent evaporation. This was left at 65 ° C for 16 hours. In addition, the optical fiber was removed from the plastic bag and washed.
  • fluorescence detection from Cy5 using an optical fiber was performed as follows.
  • a laser (wavelength: 635 nm) was used as the excitation light for the fluorescence.
  • This converged beam was applied to the end face of the optical fiber where the DNA solution was immersed, and the light coming out from the other end face was condensed by a condensing lens.
  • a dichroic mirror (manufactured by Omega Optical; product number XF2035) was arranged at an angle of 45 degrees with respect to the optical axis, and unnecessary excitation light was removed.
  • a band-pass filter (manufactured by Omega Optical; product number XF3076) was placed to remove extra excitation light.
  • a photomultimeter (manufactured by Hamamatsu Photonics; product number H5784_02) was placed, and fluorescence from the Cy5 dye was observed.
  • the optical system was set as follows. First, a laser (wavelength 635 nm) was used as the excitation light for fluorescence. First, a bandpass filter (manufactured by Omega Optical; product number X1069) was arranged perpendicular to the optical axis to remove unnecessary light other than the excitation light. A dichroic mirror (Omega Optical; product number XF2035) was placed at a 45-degree angle to the optical axis of the laser beam, and the collected beam was immersed in a DNA solution. Irradiation was performed on the slide glass surface.
  • a laser wavelength 635 nm
  • a bandpass filter manufactured by Omega Optical; product number X1069
  • a dichroic mirror (Omega Optical; product number XF2035) was placed at a 45-degree angle to the optical axis of the laser beam, and the collected beam was immersed in a DNA solution. Irradiation was performed on the slide glass surface.
  • the fluorescence returned from the end surface immersed in the DNA solution is collected on the end surface side on which the excitation light is irradiated, and passed through the dichroic mirror (manufactured by Omega Optical; product number XF2035) described above. , Excessive excitation light was further cut through a band pass filter (Omega Optical; product number XF30F6).
  • both the optical fiber and the nucleic acid-immobilized base material should have a dichroic mirror, a filter and a pass filter for Cy3 (each manufactured by Omega Optical; product number XF1074 % XF). 2017, XF 3083), except that the irradiation laser wavelength was 532 nm.
  • Example 2 The same measurement as in Example 2 was performed, except that the optical fiber of Example 2 was bundled, the excitation light beam was scanned, and the fluorescence from each optical fiber was detected. As a result, a result similar to that of Example 2 was obtained.
  • Example 2 The same measurement as in Example 2 was performed except that the end face of the optical fiber to be irradiated with the excitation light laser was not immersed in the DNA solution. That is, the second embodiment is the same as the second embodiment except that the direction of the optical fiber when detecting the fluorescence is reversed. As a result, a result similar to that of Example 2 was obtained.
  • the treatment of the optical fiber and the nucleic acid was performed in the same manner as in Example 2.
  • the optical system was configured as follows (see Fig. 5). First, laser 26 (wavelength 635 nm) was used as excitation light for fluorescence. First, a bandpass filter 19 (manufactured by Omega Optical; product number X1069) was arranged perpendicular to the optical axis to remove unnecessary light other than the excitation light. In addition, Laser Bee 2f
  • a dichroic mirror 20 (manufactured by OMEGA Saito Optical; product number XF2035) is placed at an angle of 45 degrees to the optical axis of the system, and this condensed beam is opposite to the end face immersed in the DNA solution. Was irradiated on one end face of the optical fiber. Further, the fluorescent light returned from the end surface immersed in the DNA solution is collected on the end surface side on which the excitation light is irradiated, and the dichroic mirror 20 (Omega Optical; product number XF2035) described above is collected. Then, the extra excitation light was cut through a band pass filter 21 (Omega Optical; product number XF 3076).
  • reference numeral 22 denotes a condenser lens
  • 23 denotes an optical fiber
  • 24 denotes a sample (DNA)
  • 25 denotes a photomultiplier.
  • the fluorescence from C y 3 is converted to a dichroic mirror and a band pass filter for C y 3 (manufactured by Omega Optical; product numbers XF1074, XF207, XF3083). Detection was performed in the same manner as above, except that the wavelength was 532 nm.
  • the optical fiber is an image conduit (manufactured by Edmund 'Obtics' Japan; product number C J53843) in which many thin optical fibers are bundled.
  • This image conduit is a bundle of 301 quartz optical fibers with a thickness of 25 m.
  • the treatment of the optical fiber and the nucleic acid was performed in the same manner as in Example 5.
  • the detection optical system was the same as in the fifth embodiment.
  • the optical fiber prepared by immersion in the nucleic acid solution of TX803 only the fluorescence of Cy5 was observed and the fluorescence of Cy3 was not detected.
  • C Assuming that the intensity of the fluorescence from y5 and Cy3 is 1, in the experiment of this example, the intensity of the fluorescence was 3, and the SZN was higher. The reason for this is thought to be that the use of an image conduit does not allow the converged light to diverge inside the optical fiber, and allows the pump light to be efficiently sent to the sample.
  • a Pt film was coated on the glass optical fiber (manufactured by Hoyashot) having a diameter of 200 ⁇ m used in Example 1 by sputtering to obtain a conductive optical fiber. Furthermore, the glass optical fiber was cut with a special cutter, and both end faces were mirror-finished. Furthermore, the end face was immersed in a mixed solution of pure water and poly-L-lysine (composition: 10% poly-L-lysine) to introduce amino groups on one end face of the optical fiber.
  • a cDNA solution (a solution for hybridization) containing Cy5 and Cy3 dyes were introduced into a microtube (1). 5ml).
  • a hole was made in the lid of the microtube, an optical fiber was passed therethrough, and the end face of the optical fiber to which the DNA was fixed was immersed in the hybridization solution in the microtube.
  • the lid of the microtube was sealed with a paper bond and sealed to prevent the solution from evaporating.
  • the hybridization solution was 50 I.
  • the composition of the solution was prepared by dissolving DNA labeled with a phosphor in pure water. This was left at 65 ° C for 10 minutes.
  • a copper foil was attached to the bottom of the microtube, and a voltage of 100 V was applied using the optical fiber as an anode and the copper foil at the bottom of the microtube as a cathode. Further, the optical fiber was taken out of the microtube and washed.
  • the light was measured in the same manner as in Example 2, only the fluorescence of Cy5 was observed and the fluorescence of Cy3 was not detected from the optical fiber prepared by immersing it in the nucleic acid solution of TX803. won. From the optical fiber made by immersing it in the nucleic acid solution of TX806, fluorescence of only Cy3 was observed, and fluorescence from Cy5 was not detected.
  • the fluorescence intensity at this time was the same as in Example 2.
  • the conditions of the optical fiber were the same as in Example 2 (that is, no voltage was applied), and the hybridization time was set to 10 minutes. 1 Z3. Thus, it has been found that if the optical fiber is made conductive and an electric field is applied, a hybridization time of only 10 minutes is sufficient.
  • the two openings are placed so that the 1 Omm sides of the 1 Omm x 5 mm openings face in parallel with a spacing of 1 Omm.
  • the placed stainless steel mask was mounted close to the slide glass, and gold electrodes corresponding to the shape of the opening of the mask were provided on the slide glass by a sputtering method.
  • Nucleic acid solution 2 types (Takara Shuzo Co., Ltd. "AC on trol T emp late & P ri me r S et- AJ; Product No. T ⁇ 803 (about l ⁇ DN ⁇ fragment of OOO bp), and, Takara Shuzo Co., Ltd. Based on “Huma n TFR (1 kb) Temp Iate & Primer Set”; product number TX806 (approximately 100 bp human transferrin receptor DNA fragment)) The acid was amplified by PCR. Primers used in the PCR method were supplied with each product. This was purified to obtain a purified nucleic acid solution.
  • nucleic acid-immobilized base material having two types of nucleic acids immobilized on the nucleic acid immobilization site was obtained.
  • boric acid, pure water, NaOH for pH adjustment, succinic anhydride, and 1-methyl-2-pyrrolidone were used to block extra amino groups on the surface of the glass slide that had not reacted with nucleic acid.
  • RNA solution (( ⁇ po I y A + RNA-A, manufactured by Takara Shuzo Co., Ltd .; product number TX802) was prepared, and the same procedure as in the RNRN treatment of Example 2 was carried out to incorporate the Cy5 dye c. A DNA solution and a hybridization solution were obtained.
  • a nucleic acid-immobilized substrate having two types of nucleic acids immobilized on the surface is fixed on the base of the hybridization device, and gold electrodes arranged on both sides of the nucleic acid immobilization site and AC voltage application of the hybridization device are applied. Connected means. 2 ⁇ I of the hybridization solution was dropped onto the site where the two types of nucleic acids were immobilized, and cover plates were installed on the conductive electrodes on both sides of the site where the nucleic acid was immobilized, and sealed so that the hybridization solution did not evaporate. did. Further applying a 1 0 V, 1 Omicron Eta AC voltage ⁇ between the conductive electrode, after standing for 10 minutes on the condition of 6 5 ° C, remove cover one plates, conductive electrodes, and washed.
  • the optical system was the same as the optical system of Example 2, and the fluorescence from Cy5 and Cy3 was detected.
  • the fluorescence intensity obtained from the nucleic acid-immobilized substrate to which the AC voltage was applied at this time was compared to the case where the DC voltage was applied compared to the conventional method in which no AC voltage was applied and the hybridization was performed for a long time.
  • the same effect can be obtained at a low voltage.
  • a slide glass (76 ⁇ 26 mm ⁇ 1 mm) (Matsunami Glass Industries, Ltd.) was purified with a mixed solution of pure water, ethanol and NaOH, and then washed with pure water. Further, the cleaned surface was immersed in a mixed solution of pure water and poly-L-lysine (composition: 10% poly-lysine) to introduce amino groups on the surface of the slide glass. And immobilized RNA. Next, the following experiment was performed to confirm the effect of applying an AC voltage using the nucleic acid-immobilized substrate.
  • a nucleic acid-immobilized substrate having two types of nucleic acids fixed on its surface is fixed on a base of a hybridization device, and conductive electrodes connected to AC voltage applying means of the hybridization device are provided on both sides of the nucleic acid-fixed region. It was arranged.
  • a gold thin plate having a thickness of 0.15 mm was used as the conductive electrode.
  • the spacing between the conductive electrodes was 1 cm.
  • 20 ⁇ I of the hybridization solution is dropped on the site where the two types of nucleic acids are immobilized, and a cover plate is placed on the conductive electrodes on both sides of the nucleic acid immobilization site, and the hybridization solution does not evaporate. Sealed. Further, an AC voltage of 10 V and 10 Hz was applied between the conductive electrodes, and allowed to stand at 65 ° C. for 10 minutes. Then, the cover plate and the conductive electrodes were removed and washed.
  • Example 8 the fluorescence from Gy5 and Gy3 was detected, and the nucleic acid solution of TX803 was scanned. From the potted nucleic acid immobilization site, only Cy5 fluorescence was observed, and Gy3 fluorescence was not detected. From the nucleic acid fixing site where the nucleic acid solution of TX806 was spotted, fluorescence of only Gy3 was observed, and no fluorescence from Gy5 was detected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明細書
選択結合性物質固定化繊維および該繊維の束を含む繊維配列体並びに選択的結合 反応方法、 そのための装置及び基材
技術分野
本発明は、 被検物質と選択的に結合する物質 (本明細書において 「選択結合性 物質」 ) を固定化した繊維および該繊維の束を含む繊維配列体、 並びに選択結合 性物質と、 これに選択的に結合する対応選択結合性物質との結合反応方法、 その ための装置及び基材に関する。
背景技術
各種生物の遺伝情報解析の研究が始められており、 ヒ卜遺伝子をはじめとして、 多数の遺伝子とその塩基配列、 また遺伝子配列にコードされる蛋白質およびこれ ら蛋白質から二次的に作られる糖鎖に関する情報が急速に明らかにされつつある。 配列の明らかにされた遺伝子、 蛋白質、 糖鎖などの高分子体の機能については、 各種の方法で調べることができる。 主なものとしては、 核酸についてはノーザン ハイブリダィゼーシヨン、 あるいはサザンハイブリダィゼ一シヨンのような、 各 種の核酸 Z核酸間の相補性を利用して各種遺伝子とその生体機能発現との関係を 調べることができる。 蛋白質については、 ウェスタンハイブリダィゼーシヨンに 代表されるような、 蛋白質 蛋白質間の反応を利用し蛋白質の機能および発現に ついて調べることができる。
近年、 多数の遺伝子発現を一度に解析する手法として D N Aマイクロアレイ法 ( D N Aチップ法) と呼ばれる新しい分析法、 ないし方法論が開発され、 注目を 集めている。 これらの方法は、 いずれも核酸 核酸間ハイブリダィゼーシヨン反 応に基づく核酸検出■定量法である点で原理的には従来の方法と同じであり、 蛋 白質 蛋白質間あるいは糖鎖ノ糖鎖間や糖鎖 蛋白質間の結合反応に基づく蛋白 質や糖鎖検出 '定量にも応用が可能ではある。 これらの技術は、 マイクロアレイ 又はチップと呼ばれる平面基板片上に、 多数の D N A断片や蛋白質、 糖鎖が高密 度に整列固定化されたものが用いられている点に大きな特徴がある。 マイクロア レイ法の具体的使用法としては、 例えば、 研究対象細胞の発現遺伝子等を蛍光色 素等で標識したサンプルを平面基板片上でハイブリダィゼ一シヨンさせ、 互いに 相補的な核酸 (D N AぁるぃはR N A ) 同士を結合させ、 その箇所を蛍光色素等 でラベル後、 高解像度解析装置で高速に読みとる方法や、 電気化学反応にもとづ く電流値等の応答を検出する方法が挙げられる。 こうして、 サンプル中に含まれ る遺伝子の種類を迅速に推定できる。
核酸を基板上に固定化するための技術としては、 上記ノーザン法同様、 ナイ口 ンシート等の上に高密度に固定化する方法の他、 更に密度を高めるため、 ガラス 等の基板の上にポリー L一リジン、 アミノシラン等をコーティングして固定化す る方法などが開発されている。
しかし、 ガラス等の固体表面を化学的又は物理的に修飾した基板上に核酸をス ポッティング固定化する方法は、 スポット密度及びスポット当たり固定できる核 酸量が少量であり、 再現が困難である点が指摘されている。 さらに、 高価な製造 装置と多段の製造プロセスにより、 チップ当たりの大きなコストダウンが困難と される。 また、 核酸の区別をそのスポットされた基板上の位置に頼らざるを得な いという、 基板上での配置および区別の点で簡便さに欠ける点がある。
蛋白質や糖鎖を用いたマイクロアレイについても、 これら核酸を用いたマイク ロアレイ同様の問題点がある。
平面基板を用いない方法として微小なビーズを利用する方法が知られているが、 個々の核酸あるいは、 蛋白質、 糖鎖などを固定化した多種の微小ビーズを区別す る技術の点で、 不完全であり、 指定の化合物を指定の配列基準で再現性よく整列 させたものを作製することは困難である。
一方、 核酸を中空繊維の中に固定化する試みもなされている (欧州公開特許 1 1 6 2 2 6 2 ) 。 この技術では一本の中空繊維の中にある種の核酸を固定させる ことにより、 1核酸 1繊維と対応関係を作ることによリ個々の核酸の区別を行つ ている。 しかし、 該技術も最終的には中空繊維を束ね、 その位置関係で個々の核 酸を認識している点で、 基板上に核酸をスポッ卜する技術の問題点を克服できて いない。
また、 核酸 核酸間ハイプリダイゼーションに使用される核酸溶液は貴重であ るため、 できるだけ核酸の量を少なくしてハイブリダィゼーシヨン反応を行わせ ることが望ましく、 その為に核酸溶液の核酸濃度を低くする事が考えられるが、 低濃度の核酸溶液とのハイブリダィゼーシヨンにおいても効率を良くする為の方 法として、 前記マイクロアレイの基板上に導電体層を有する標本核酸固定部位を 配設し、 該標本核酸固定部位にプラス電位を印加して電場をつくリ、 前記核酸溶 液中の検体核酸を前記標本核酸固定部位近傍に引き寄せ、 標本核酸固定部位近傍 の核酸濃度を局所的に高め、 ハイブリダィゼーシヨン効率を上げる試みもなされ ている (特開平 8—1 5 4 6 5 6号公報) 。
蛋白質や糖鎖を用いたマイクロアレイについても、 これら核酸を用いたマイク ロアレイ同様の効果が期待される。
しかしながら、 この公知の方法による測定感度の向上や、 ハイブリダィゼーシ ョン時間の短縮効果は満足できるものではなく、 より効果的なハイプリダイゼー シヨン方法が求められている。
発明の開示
このような状況下、 高分子体を所定の濃度に固定化でき、 測定可能な形に高密 度に再現よく配列化可能で、 更に、 個々の高分子体を位置配列に頼らず認識でき る安価な大量製造に適応しうる新たな体系的方法論の確立は、 今後重要性を増す と考えられる高分子体解析に強く求められるものであり、 本発明が解決しようと する課題である。
具体的には、 本発明が解決しょうとする課題は、 ナイロンシートやガラス基板 のような二次元担体上への微量スポッティングや微量分注による高分子体配列体 製造法に比べ、 位置関係に頼らず個々の試料が区別認識可能であり、 任意の配列 体を組め、 また使用方法に応じて密度を自由に変更、 かつ簡便に結合した試料と 他の試料との反応が簡便に検出できる手段を提供することである。
さらに、 貴重な核酸、 蛋白、 糖鎖、 抗体、 抗原などの高分子体試料を少量でか つ有効に利用できる選択結合反応の方法を確立することは、 今後重要性を増すと 考えられる高分子体解析に強く求められるものであり、 これも本発明が解決しよ うとする課題である。 具体的には、 従来用いられている平面基板片上に、 多数の D N A断片や蛋白質、 糖鎖などの選択結合性物質が高密度に整列固定化されたマイクロアレイ、 あるい は前記選択結合性物質が多孔質中空繊維内部に固定化された該多孔質中空繊維を 結束固定し、 配列体の繊維軸と交差する方向に切断して薄片とし、 前記選択結合 性物質体を繊維内部に固定した二次元高密度繊維配列体としたマイクロアレイ、 あるいは繊維表面に前記選択結合性物質が高密度に整列固定化され、 該繊維を三 次元構造体として配列したマイクロアレイなどにおいては、 ハイブリダィゼーシ ョン反応を選択結合性物質の自然拡散に依存しており、 少量の選択結合性物質を 含む溶液を用いて効率よくハイブリダイゼーション反応を起こさせ、 貴重な選択 結合性物質を有効に利用することが困難であり、 この非効率性を解消すベく発明 された電気的吸引による択結合性物質のハイブリダィゼーシヨン反応の効率化方 法においても効率化は十分ではなかった。
そこで、 本発明は以上説明したような従来の欠点を解消し、 少量の選択結合性 物質を有効に利用して選択結合反応を行わせる結合反応方法並びにそのための装 置及び基材を提供することを目的としている。
本発明者等は、 上述の如き課題を解決すべく、 鋭意検討を重ねた結果、 選択結 合性物質整列化プロセスと固定化プロセスとを同一の二次元担体上で行う従来法 の発想を改め、 高分子体の固定化プロセスを一次元構造体としての、 支持体、 磁 気、 バーコード、 色、 形などにより区別する事ができる繊維上 (1本の繊維上) に独立して行うことにより三次元構造体としての位置によらず個々の試料を結合 させた繊維を区別することができる繊維束を作製し得ることを見いだした。
更に、 該繊維に光透過性基材ゃ電気伝導性基材を用いることにより、 直接該繊 維の固定化した選択結合性物質に反応した物質を検出できる繊維あるいは該繊維 配列体を作製しうることを見いだし、 本発明を完成するに至った。
すなわち、 本発明は、 選択結合性物質を固定化した繊維又は該繊維の束を含む 繊維配列体を提供する。
さらに本発明者等は、 上述の如き課題を解決すべく、 鋭意検討を重ねた結果、 ハイブリダィゼーシヨン反応期間中、 対応選択結合性物質をマイクロアレイ基板、 あるいは繊維上に固定した前記選択結合性物質近傍で移動させ、 前記選択結合性 物質と前記対応選択結合性物質の衝突確率を高めることによリハイブリダイゼー シヨン反応の効率を高め得ることを見いだし、 本発明を完成するに至った。
すなわち、 本発明は、 基材上に選択結合性物質を固定化し、 前記選択結合性物 質と選択的に結合する対応選択結合性物質を含む被検試料液を前記固定化選択翁 合性物質と接角虫させ、 前記選択結合性物質と前記対応選択結合性物質を結合反応 させる工程において、 前記被検試料液及ぴ 又は前記対応選択結合性物質を、 前 記選択結合性物質を固定した面に対して相対的に移動させる、 選択結合性物質と 対応選択結合性物質との結合反応方法を提供する。 また、 本発明は、 基材上に選 択結合性物質を固定化し、 前記選択結合性物質と選択的に結合する対応選択結合 性物質を含む被検試料液を前記固定化選択結合性物質と接触させ、 前記選択結合 性物質と前記対応選択結合性物質を結合反応させる装置であって、 前記基材を設 置する基台と、 前記選択結合性物質を固定化した面の垂直軸に交差する方向で、 且つ前記選択結合性物質固定化領域の両端より外側に配置される導電電極と、 該 導電電極間に交流電圧を印加する交流電圧印加手段を有する選択結合反応装置を 提供する。 さらに、 本発明は、 基材上に選択結合性物質を固定化し、 前記選択結 合性物質と選択的に結合する対応選択結合性物質を含む被検試料液を前記固定化 選択結合性物質と接触させ、 前記選択結合性物質と前記対応選択結合性物質を 合反応させる前記基材であって、 基材上の選択結合性物質を固定化する、 選択翁 合性物質固定用部位と、 選択結合性物質固定用領域の両端より外側に配置された 導電電極を有する選択結合性物質固定化基材を提供する。
本発明によリ、 選択結合性物質が固定化された繊維並びに選択結合性物質が固 定化された繊維配列体が提供される。 本発明によれば、 効率且つ再現性良く選択 結合性物質が固定化された繊維を提供できるとともに、 これらの繊維を組み合わ せ繊維配列体にすることにより、 選択結合性物質が任意に高密度且つ正確に配列 された選択結合性物質固定化繊維配列体を再現性よく効率的に得ることができる。 さらに、 光ファイバ一を用いることにより簡便にファイバ一を通じて効率良く結 合した試料を検出することができる。 また、 個々の繊維に標識を付す事により、 配列体中の位置によらず被検物質が結合した繊維個々を同定できる。
また、 本発明の選択結合反応方法、 そのための装置及び基材により、 選択結合 反応の効率が向上し、 被検試料中の対応選択結合性物質の濃度が低い場合であつ ても、 短時間で選択結合反応工程を完了することができる。
図面の簡単な説明
図 1は、 本発明の選択結合反応装置の模式断面図および平面図、
図 2は、 本発明の選択結合反応方法における選択結合性物質の動作を示す原理 図、
図 3は、 従来のハイブリダイゼーション装置の模式断面図、
図 4は、 従来のハイブリダイゼーション装置における選択結合性物質の動作を 示す原理図、
図 5は、 実施例 5で用いた測定装置の光学系部分の模式図である。
発明を実施するための最良の形態
本明細書及び請求の範囲において、 「選択結合性物質」 とは、 被検物質と直接 的又は間接的に、 選択的に結合し得る物質を意味し、 代表的な例として、 核酸、 タンパク質、 糖類及び他の抗原性化合物を挙げることができる。 核酸は、 D N A でも R N Aでもよい。 特定の塩基配列を有する一本鎖核酸は、 該塩基配列又はそ の一部と相補的な塩基配列を有する一本鎖核酸と選択的にハイブリダィズして結 合するので、 本発明でいう 「選択結合性物質」 に該当する。 また、 タンパク質と しては、 抗体及び Fabフラグメントや F (ab' ) 2フラグメントのような、 抗体の抗 原結合性断片、 並びに種々の抗原を挙げることができる。 抗体やその抗原結合性 断片は、 対応する抗原と選択的に結合し、 抗原は対応する抗体と選択的に結合す るので、 「選択結合性物質」 に該当する。 糖類としては、 多糖類が好ましく、 種 々の抗原を挙げることができる。 また、 タンパク質や糖類以外の抗原性を有する 物質を固定化することもできる。 「選択結合性物質」 として、 特に好ましいもの は、 核酸、 抗体及び抗原である。 本発明に用いる選択結合性物質は、 市販のもの でもよく、 また、 生細胞などから得られたものでもよい。 また、 「対応選択結合 性物質」 とは、 上記選択結合性物質と選択的に結合する物質であり、 例えば、 選 択結合性物質が一本鎖核酸の場合には、 該一本鎖核酸と相補的な塩基配列を有す る一本鎖核酸、 選択結合性物質が抗体又はその抗原結合性断片の場合には、 これ と抗原抗体反応する抗原ゃハプテンである。
本発明において、 選択結合性物質の固定化に用いることができる繊維としては、 合成繊維、 半合成繊維、 再生繊維、 無機繊維のごとき化学繊維、 天然繊維、 およ びこれらの複合繊維等が挙げられる。
合成繊維の代表例としては、 ナイロン 6、 ナイロン 6 6、 芳香族ポリアミド等 のポリアミ ド系の各種繊維、 ポリエチレンテレフタレート、 ポリブチレン亍レフ タレ一卜、 ポリ乳酸、 ポリグリコール酸等のポリエステル系の各種繊維、 ポリア クリロニトリル等のアクリル系の各種繊維、 ポリエチレンやポリプロピレン等の ポリオレフイン系の各種繊維、 ポリビニルアルコール系の各種繊維、 ポリ塩化ビ 二リデン系の各種繊維、 ポリ塩化ビニル系繊維、 ポリウレタン系の各種繊維、 フ エノ一ル系繊維、 ポリフッ化ビニリデンゃポリテトラフルォロエチレン等からな るフッ素系繊維、 ポリアルキレンパラォキシベンゾエート系の各種繊維などが挙 げられる。 また、 衣料用以外の繊維、 例えば、 ポリメチルメタクリレートやポリ スチレンなどの透明非晶質高分子を主材料とした光学繊維なども用いることがで きる。 特に、 コアがポリメチルメタクリレー卜、 ポリスチレン、 ポリカーボネー トなどの材質からなり、 クラッドがそれより低い屈折率の材質からなるプラスチ ック光ファイバ一が好適である。 いわゆる芯鞘型光ファイバ一であっても屈折率 分布型光ファイバ一であっても構わない。 さらに、 プラスチック光ファイバ一に は被覆が施されていても構わない。 被覆材としては特に限定はないが、 ポリェチ レン、 P V C、 ウレタン、 フッ素樹脂などの熱可塑性樹脂あるいは各種ゴムチュ ーブなどが用いられる。
半合成繊維の代表例としては、 ジアセテート、 トリアセテート、 キチン、 キト サン等を原料としたセルロース系誘導体系各種繊維、 プロミックスと呼称される 蛋白質系の各種繊維などが挙げられる。 再生繊維の代表例としては、 ビスコース 法や銅一アンモニア法、 あるいは有機溶剤法により得られるセルロース系の各種 再生繊維 (レーヨン、 キュブラ、 ポリノジック等) などが挙げられる。 無機繊維の代表例としては、 ガラス繊維、 炭素繊維、 A u、 A g、 C u、 A I などの金属繊維などが挙げられる。 特に、 光透過性のガラス製光ファイバ一が好 適である。 プラスチック製光ファイバ一の場合同様、 いわゆる芯鞘型光ファイバ 一であっても屈折率分布型光ファイバ一であっても構わない。 また、 ガラス製光 ファイバーには被覆が施されていても構わない。 さらに、 ガラスとプラスチック の複合系光ファイバ一であっても構わない。
天然繊維の代表例としては、 綿、 亜麻、 苧麻、 黄麻などの植物繊維、 羊毛、 絹 などの動物繊維、 石綿などの鉱物繊維などが挙げられる。 本発明に用いる繊維は、 特にその形態が規定されるものではない。 また、 モノフィラメントであってもよ く、 マルチフィラメントであってもよい。 さらに、 短繊維を紡績した紡績糸でも よい。 尚、 マルチフィラメントや紡績糸の繊維を用いる場合には、 選択結合性物 質の固定に、 単繊維間の空隙等を利用することも可能である。
本発明に用いる繊維は、 無処理の状態でそのまま用いてもよいが、 必要に応じ て、 反応性官能基を導入した繊維であってもよく、 また、 プラズマ処理や r線、 電子線などの放射線処理を施した繊維であってもよい。 これら繊維に選択結合性 物質を固定化する場合には、 繊維と選択結合性物質との間における各種化学的又 は物理的な相互作用、 すなわち繊維が有している官能基と、 選択結合性物質との 間の化学的又は物理的な相互作用を利用し公知の方法によって達成しうる。
. 同一の選択結合性物質を固定化する場合には、 一度に何本物かの繊維をまとめ て処理できる。 固定化位置は繊維全体でも構わないが、 検体試料の量を少なくす るためには、 繊維の端部領域であることが望ましい。 端部領域は、 繊維の端面及 び Z又は端面近傍の側面であってよい。 異なる選択結合性物質を固定化した繊維 どうしを区別するために、 支持体に繊維を固定化する事によって異なる試料を固 定化した繊維どうしを区別する事ができる。 この支持体は個々に独立であっても 個々に結合していても良い。 あるいは、 形状を変えた繊維を用いることもできる。 繊維に色を付け、 その色の波長により異なった試料どうしの繊維を区別するこ ともできる。 繊維外に放出される光を検知したり、 あるいは繊維中に光を通し繊 維を通った光を光検出器に導くことにより区別する方法を用いても良い。 特殊な文字記号を記録させた繊維を用いて区別しても良い。 例えば、 バーコ一 ドなどを繊維上、 あるいは繊維中に記録させ、 これを読み込むことで試料の異な つた繊維を区別しても良い。
金属や炭素、 導電性ポリマーなどの導電性材料や磁性材料を繊維に含有させた リ、 繊維の表面に金属などの材料をスパッタ、 蒸着法、 メツキ、 CVDなどの手 段を用いコートして、 導電性を持たせることもできる。 周期律表の 3 A族から 5 B族の第 2周期から第 4周期に含まれる材料、 若しくはこれらの混合物を繊維の 表面に前述の手段を用いてコートすればよい。 このようにして、 電気的あるいは 磁気的に試料の異なる繊維を区別しても良い。
本発明に用いる繊維は細いものが好ましい。 本発明の好ましい実施態様におい ては、 繊維 1本の太さは 1 mm以下であるほうが良い。 モノフィラメントでは、 例えば、 市販の釣糸の場合 50— 900 mの太さの糸である。 さらに、 最近の 紡糸技術によれば 1 d t e x (ポリエチレンテレフタレートの場合、 直径約 8 mとなる) のモノフィラメントも製造可能であり、 更に細い繊維 (極細繊維又は 超極細繊維) の製造も可能である (直径 1〜1 O jum) 。 光ファイバ一を用いる 場合も、 フィラメントでは 3〜1 000 umが好ましい。 50〜1 000 um程 度がより望ましく、 特に取り扱い性等の点から、 50〜500;u m程度のプラス チック製光ファイバ一、 ガラス製光ファイバ一、 ガラスと樹脂の複合光ファイバ —が望ましい。 また、 2~50 mのごく細い光ファイバ一を束にした、 いわゆ る、 イメージコンジットも好ましく用いることができる。 この、 イメージコンジ ッ卜一つ一つに別の選択結合性物質を固定し、 さらに、 イメージコンジットを集 めることにより、 測定することが可能である。 さらに光で結合状態を検出する場 合、 このイメージコンジットを用いることにより、 収束した光が、 光ファイバ一 の内部で発散せず、 効率よく検出光をサンプルに送ることができる。 イメージコ ンジッ卜に含まれる光ファイバ一の数は、 2〜50000本が好ましい。 500 00本より多くなると、 イメージコンジッ卜の外径が太くなりすぎハンドリング に難点が生じる場合がある。
上記繊維のうち、 光ファイバ一を用いる場合には、 後で詳しく説明する被検物 質に付加される標識として、 蛍光標識のような光を発する又は色素を生成する標 識を用いることにより、 被検物質の結合を、 光ファイバ一の中を通過して他端側 に出てきた光によって測定することができ、 この場合には、 どの繊維が光ってい るのかも検知することができるので好ましく、 装置の自動化にとっても有利であ る。 また、 導電性繊維を用いた場合には、 被検物質の結合を電気的な信号として 繊維の他端側で測定することができ、 この場合にもどの繊維に被検物質が結合し たかを検知することができるので好ましく、 装置の自動化にとっても有利である。 さらには、 導電性繊維を用いると、 電界、 電流を印加する手段などで結合を促進 することも可能である。 特に、 核酸のハイブリダィゼーシヨンを促進する場合に は、 核酸の固定された繊維を実質的に陽極にすることが好ましい。 また、 陰極の 配置については、 繊維と直接触れないようにしておけばよく、 特に制限は無い。 印加する電界の種類は直流が特に好ましいが、 実質的に繊維が陽極になるような 条件として交流にしても良い。 すなわち、 交流電界を印加する場合でも繊維の正 電圧と負電圧を印加する時間が、 正電圧の方が大きくなるようにしたり、 交流の 正電圧と負電圧の絶対値が、 正電圧の方が大きくなるようにしたり、 これらの組 み合わせで繊維が実質的に陽極となればよい。 印加する電圧の大きさは特に制限 はないが、 0 . 1 V以上 5 0 0 0 V以下が好ましい。 印加する電圧が 0 . 1 Vよ リ小さいと電圧を印加する効果が十分に得られない場合があり、 5 0 0 0 Vより 大きいと、 取り扱いが困難になることがある。 電圧を印加した際、 電流が流れる かどうかについては、 特に制限はない。 陰極を反応溶液に触れないように配置す れば、 電流は流れないが、 陰極が反応溶液に触れるように配置すると溶液を通じ て電流が流れる。 電流が流れる場合その大きさは、 1 〜 2 0 0 0 m Aが好ましい。 一方、 上記の通り、 本発明は、 基材上に選択結合性物質を固定化し、 前記選択 結合性物質と選択的に結合する対応選択結合性物質を含む被検試料液を前記固定 化選択結合性物質と接触させ、 前記選択結合性物質と前記対応選択結合性物質を 結合反応させる工程において、 前記被検試料液及び 又は前記対応選択結合性物 質を、 前記選択結合性物質を固定した面に対して相対的に移動させる、 選択結合 性物質と対応選択結合性物質との結合反応方法をも提供するものである。 ここで、 「相対的に移動させる」 とは、 前記選択結合性物質を固定した面を横から見た場 合に、 対応選択結合性物質が該固定面に対して相対的に移動することを意味する。 なお、 この結合反応方法においても、 上記した選択結合性物質固定化繊維又は 繊維配列体を用いることが好ましいが、 必須的ではなく、 従来のマイクロアレイ やマイクロプレート等を用いる方法にも適用できる。
対応選択性結合物質を、 マイクロアレイ基板や繊維等の上に固定された選択翁 合性物質近傍で移動させ、 選択結合性物質と対応選択結合物質の衝突確率を高め る方法としては、 電界を形成して電荷を帯びた選択結合性物質を移動させる方法、 選択結合性物質固定化基材上に被検試料液を流動させるための流路を形成し、 マ イク口ポンプを用いて被検試料液を移動させる方法や、 被検試料液に磁性流体の 如き機能を持たせ、 外部からの物理力により被検試料液を揺動させる方法、 ある いは選択結合性物質固定化基材を揺動させる等の方法が考えられる。
これらのうち、 最も簡単な構造で衝突確率を高める効果がある電界印加法、 と リわけ交流電界印加法が好ましい。 一般に、 核酸は水溶液中では負に帯電してい る。 また、 タンパク質や多糖類のような高分子も水溶液中で帯電している場合が 多い。 従って、 反応液に電界を印加させることにより、 対応選択結合性物質を移 動させることが可能になる。 とりわけ、 交流電界を印加することにより、 対応選 択結合性物質を往復運動させることが可能になり、 選択結合性物質との衝突確率 を効率的に高めることが可能になる。
従って、 上記本発明の結合反応方法の好ましい態様として、 本発明は、 基材上 に選択結合性物質を固定化し、 前記選択結合性物質と選択的に結合する対応選択 結合性物質を含む被検試料液を前記固定化選択結合性物質と接触させ、 前記選択 結合性物質と前記対応選択結合性物質を結合反応させる工程において、 選択結合 性物質を固定化した面の垂直軸に交差する方向で、 且つ前記選択結合性物質固定 化領域の両端よリ外側に配置した導電電極間に交流電圧を印加しながら前記結合 反応を行わせる、 選択結合性物質と対応選択結合性物質との結合反応方法を提供 するものである。
ここで、 選択結合性物質を固定化した面の垂直軸は、 例えば後述する図 1 (a) に一点鎖線 Aで示す軸であり、 選択結合性物質を固定化した面に対して垂直な方 向を意味する。 また、 この垂直軸と交差する方向は、 例えば後述する図 2の左右 の矢印で示す方向のように、 選択結合性物質を固定化した面を側面から見た場合 に上記垂直軸と交差する方向である。 なお、 この 「垂直軸と交差する方向」 は、 図 2に示されるように垂直軸と直交する方向が好ましいが、 必ずしも直交する必 要はなく、 選択結合性物質固定化面を側面から見た場合に、 対向する電極間を最 短距離で結ぶ線と、 垂直軸と直交する方向とのなす角度が好ましくは 4 5度以下、 さらに好ましくは 3 0度以下の場合も優れた効果が得られる。
印加する電圧の大きさは、 特に限定されないが、 小さすぎると電界を印加する ことによる効果が小さくなリ、 一方、 大きすぎると選択結合性物質及び 又は対 応選択結合性物質を損傷する恐れがあるので、 導電電極間隔 1 c m当たり約 5 V から 5 O V程度が好ましく、 特に約 1 O Vから 2 5 V程度が好ましい。 また、 交 流の周波数は、 特に限定されないが、 約 1 Hzから 100Hz程度が好ましく、 特に約 5Hzから 20Hz程度が好ましい。
前記選択結合性物質固定化部位は、 1つだけでもよいが (例えばマイクロプレ 一卜の 1つのゥヱル等) 、 選択結合性物質固定化部位が複数存在し、 それらが配 列された選択結合性物質配列領域 (例えば後述する図 1 (a)中に参照番号 8で示 される領域) が存在する場合には、 複数種類の測定を同時並行して行うことがで きるので好ましく、 この場合には、 前記導電電極は、 該選択結合性物質配列領域 の両端よリ外側に配置されることが好ましい。
上記本発明の電界印加法による結合反応方法は、 前記基材を設置する基台と、 前記選択結合性物質を固定化した面の垂直軸に交差する方向で、 且つ前記選択糸; 合性物質固定化領域の両端よリ外側に配置される導電電極と、 該導電電極間に交 流電圧を印加する交流電圧印加手段を有する選択結合反応装置、 又は基材上の選 択結合性物質を固定化する、 選択結合性物質固定用部位と、 選択結合性物質固定 用領域の両端よリ外側に配置された導電電極を有する選択結合性物質固定化基材 を用いて行うことができる。 なお、 「選択結合性物質固定用部位」 には、 選択結 合性物質が固定されるが、 この固定は、 使用前にエンドユーザーが行うこともで きるし、 基材の製造者が予め特定の試験のための選択結合性物質を固定したもの を製造して販売することもできる。
また、 本発明の選択結合反応方法および選択結合反応装置において、 前記導電 電極に用いることができる材質としては、 白金、 金、 銀、 クロム、 チタン、 ニッ ゲル、 アルミニウム、 銅、 パラジウム、 等の金属単体、 またはこれらの金属の酸 化物、 窒化物あるいはそれらの合金、 炭素あるいは炭素化合物、 または導電性ポ リマー等が挙げられ、 これらの中から選ばれる少なくとも 1種が含まれていれば よい。
金属単体またはこれらの金属の酸化物、 窒化物あるいはそれらの合金の特性と しては、 これらの材質を用いて配設した導電電極間に交流電圧を印加することに より前記対応選択結合性物質を含む被検試料液を介して前記導電電極間に電流が 流れる為、 被検試料液と反応し、 被検試料液中に金属イオンが溶出し難い材質が 望ましい。
炭素化合物の代表例としては、 グラフアイ ト、 フラーレン、 等が挙げられる。 導電性ポリマーの代表例としては、 ポリアセチレン、 ポリピロール、 ポリチォ フィン、 ポリア二リン等が挙げられ、 これらの導電性ポリマーと前記金属、 炭素 化合物などを混ぜ合わせ、 導電特性を改良した複合導電性プラスチック等も挙げ られる。
導電電極は後述する理由によリ、 予め選択結合性物質固定化基材上に形成され ることが望ましいが、 結合反応装置側に導電電極を有し、 結合反応準備段階で選 択結合性物質固定化基材上に導電電極を装着する形態でも構わない。
これらの材料を用いて基材上に電極を設置する手段として、 電極材料に金属を 用いる場合は基材上に導電電極の形状の開口を有するマスクを配置し、 スパッタ 法、 蒸着法により導電電極を形成する、 あるいはメツキ法を用いて厚膜の導電電 極を形成する、 さらには金属箔または金属薄板を接着剤で基材に接着する事によ リ導電電極を形成事が出来る。 炭素化合物を用いる場合は、 基材上に導電電極の 形状の開口を有するマスクを配置し、 スパッタ法を用いて電極を形成することが できる。 導電性ポリマーを用いる場合は、 シルクスクリーン印刷等の印刷法を用 いてペース卜状の導電性ポリマーを塗布し、 紫外線による光硬化法を用いてベー ストを硬化させ、 導電電極を形成する事ができる。
また、 導電電極を選択結合反応装置側に有する場合は、 前記金属材料、 炭素化 合物、 導電性ポリマーを用いて作製した薄板状の電極板を選択結合反応装置の基 台上部に有し、 基台状に選択結合性物質固定化基材を裁置した後、 該電極板を選 択結合性物質固定化基材上に装着することにより、 導電電極を形成することが出 来る。
次に本発明の一形態について図面を用いて説明する。 本発明の選択結合反応装 置の一態様の側面図を図 1 ( a ) に、 平面図を図 1 ( b ) に示す。 なお本発明は この例に限定されるものではない。 図 1、 図 2において選択結合性物質配列基材 1 と、 導電電極 2、 3と、 カバ一プレート 5と、 交流電圧印加手段 6とを備える。 選択結合性物質配列基材 1上に設けられた選択結合性物質固定用部位 4上に選択 結合性物質 1 0が固定され、 選択結合性物質 1 0がアレイ状に配列された選択翁 合性物質配列領域 8を形成する。 基台 9の上に裁置された選択結合性物質配列基 材 1上には選択結合性物質配列領域 8の両側に導電電極 2、 3が配設され、 該導 電電極 2, 3の上にカバ一プレート 5を架設する。 前記導電電極 2、 3を介して 選択結合性物質配列基材 1 とカバープレート 5に挟まれた空間には前記対応選択 結合性物質 1 1 を含む被検試料溶液 7が満たされる。
前記選択結合性物質配列領域 8に選択結合性物質 1 0が配列される形態は 2次 元平面の格子点上に配列されることが望ましいが、 2次元平面の格子点からずれ た位置、 直線状、 あるいは選択結合性物質固定用部位 4の位置が選択結合性物質 配列基材 1の表面に垂直な方向にそれぞれ段差を持つことにより、 3次元的な配 列形態であっても構わない。
被検試料溶液 7を満たした後、 交流電圧印加手段 6を用いて導電電極 2、 3の 間に電圧を印加する。 これにより、 導電電極 2、 3間に電界が発生し、 被検試料 溶液 7中に自然拡散している対応選択結合性物質 1 1は負電荷を有するため、 導 電電極 2、 3間に発生した電界の方向に応じて前記選択結合性物質配列領域 8を 横切る方向に移動を繰り返す。 具体的には、 導電電極 2がプラス電位、 導電電極 3がマイナス電位の場合、 前記対応選択結合性物質 1 1は導電電極 2に引き寄せ られ、 導電電極 2がマイナス電位、 導電電極 3がプラス電位の場合、 前記対応選 択結合性物質 1 1は導電電極 3に引き寄せられる。 このように対応選択結合性物 質 1 1が前記選択結合性物質配列領域 8を横切って移動する過程で選択結合性物 質固定用部位 4上に固定された選択結合性物質 1 0と対応選択結合性物質 1 1が 接触し、 互いに相補的な配列を有している場合にハイブリダィゼーシヨンが起こ る。
尚、 導電電極に印加する電圧は高いほど負電荷を有する選択結合性物質 7、 及 び対応選択結合性物質 1 1が導電電極から受ける電気的吸引力あるいは電気的斥 力は強くなリ、 対応選択結合性物質 1 1の移動による選択結合性物質 7との接触 の効果が高まることは言うまでもないが、 高電圧を長時間印加させると、 選択結 合性物質 7及び対応選択結合性物質 1 1が損傷を受けることがある為、 本実施の 形態では導電電極間隔 1 c m当たリ 5 Vから 5 0 Vの間に設定し、 安定なハイブ リダィゼーシヨン結果を得る為には、 導電電極間隔 1 c m当たり 1 0 から2 5 Vであればさらに好ましい。
以上説明したように、 本発明の交流電界によって選択結合反応の効率化を図る 方法では、 選択結合性物質 1 0と対応選択結合性物質 1 1が結合反応の期間中、 常時相対的に移動し、 衝突、 接触を繰り返す為、 結合反応の効率が高まる。
ここで、 選択結合性物質固定用部位としては、 通常、 基板上に設けた平面上の 位置又は基板上の一部領域、 基板上に設けた凹部又は凸部を用いるが、 選択結合 性物質配列基材 1を貫通する孔に棒状の樹脂、 ガラス、 金属、 繊維等を揷嵌し、 該樹脂、 ガラス、 金属、 繊維の先端を選択結合性物質固定用部位として用いてよ し、。 特に、 上記した本発明の繊維又は繊維束の端面を選択結合性物質固定用部位 として用いると、 上記したように、 繊維の他端部側での検出が可能になる等の利 点が得られるので好ましい。
また、 貴重な被検試料溶液 7の量を少なくする為には前記導電電極 2、 3はで きるだけ薄くする事が望ましく、 5 u mから 2 0 0 u mであればさらに望ましし、。 このように非常に薄く厚みムラの少ない電極を形成するために、 前記導電電極は 予め選択結合性物質配列基材上に形成されていることが望ましいが、 結合反応装 置側に導電電極を有し、 結合反応準備段階で選択結合性物質配列基材 1上に導電 電極を装着する形態でも構わない。
なお、 従来の方法においては、 ハイブリダィゼーシヨン反応は選択結合性物質 の自然拡散に依存しているため、 前記選択結合性物質 1 0と対応選択結合性物質 1 1の接触確率は低く、 従ってハイブリダィゼーシヨン反応の効率は低かった。 さらに、 この非効率性を解消すべく図 3、 図 4に示すように電気的吸引による選 択結合性物質のハイブリダィゼーシヨン反応の効率化を狙った方法においても効 率化は十分ではなかった。
従来の電気吸引によるハイブリダィゼーシヨン効率化の方法について図 3、 図 4を用いて説明する。 選択結合性物質配列基材 1 2上に設けられた選択結合性物 質固定用部位 1 5上に選択結合性物質 1 0が固定される。 選択結合性物質配列基 材 1 2上には選択結合性物質 1 0が配列された領域の外側に支持材 1 3が配設さ れ、 支持材 1 3の上にカバープレート 1 4が架設される。 前記支持材 1 3を介し て選択結合性物質配列基材 1 2とカバープレート 1 4に挟まれた空間には対応選 択結合性物質 1 1を含む被検試料溶液"! 8が満たされる。 被検試料溶液 1 8を満 たした後、 電圧印加手段 1 7を用いて、 電極 1 6に負電位を、 導電性を持つ層を 有する選択結合性物質固定部位 1 5に正電位を印加することにより、 電極 1 6と 選択結合性物質固定部位 1 5との間に電界が発生し、 被検試料溶液 1 8中に自然 拡散している対応選択結合性物質 1 1は負電荷を有するため、 前記選択結合性物 質固定部位 1 5に吸引される。 これにより選択結合性物質固定部位 1 5周辺の対 応選択結合性物質 1 1の濃度が高くなリ、 あるいは選択結合性物質固定部位 1 5 に対応選択結合性物質 1 1が吸着する過程で選択結合性物質 1 0と対応選択結合 性物質 1 1が接触し、 ハイブリダィゼーシヨンが起こる。
しかし、 図 3に示す方法では、 対応選択結合性物質 1 1は電気力により選択? i 合性物質固定部位 1 5に吸着されてしまい、 さらには対応選択結合性物質 1 1 と 同じ負電荷を持つ選択結合性物質 1 0も選択結合性物質固定部位 1 5の表面に吸 着されてしまい、 選択結合性物質 1 0と対応選択結合性物質 1 1の間で相対的な 動きが少なくなる為、 本発明と比べて選択結合性物質 1 0と対応選択結合性物質 1 1の動的な接触確率が低い。
本発明において、 選択結合性物質又は対応選択結合性物質として用いられる D NA又は RNAとしては、 生細胞から調製されたものでも、 化学合成したもので もよい。 生細胞からの D N A又は RN Aの調製は、 公知の方法、 例えば DNAの 抽出については、 Bl inらの方法 ( B l i n e t a l . , N u c l e i c Ac i d s Re s. 3 : 2303 (1 976) ) 等によリ、 また、 RN A の抽出については、 F a V a I o r oらの方法 ( Favaloro etaに, Methods En zymol.65: 718 (1980)) 等により行うことができる。 固定化する核酸としては、 更に、 鎖状若しくは環状のプラスミド DN Aや染色体 DNA、 これらを制限酵素 により若しくは化学的に切断した D N A断片、 試験管内で酵素等によリ合成され た DN A、 又は化学合成したオリゴヌクレオチド等を用いることもできる。
1本の繊維あるいは個々の選択結合性物質固定用部位には、 通常、 1種類の選 択結合性物質が固定化されるが、 例えば、 変異を有する複数種類の遺伝子を同一 の固定用部位域に結合させたい場合等には、 1本の繊維又は 1個の固定用部位に 複数種類の選択結合性物質を固定化することも可能である。
また、 複数の繊維あるいは複数の選択結合性物質固定用部位に固定される選択 結合性物質は、 それぞれ異なる種類の選択結合性物質としても、 同一の選択結合 性物質としても構わない。 また、 複数の繊維あるいは複数の選択結合性物質固定 用部位のうち、 一部の繊維あるいは選択結合性物質固定用部位に 1種類の選択翁 合性物質を固定化し、 他の一部の複数の繊維あるいは選択結合性物質固定用部位 に他の 1種類の選択結合性物質を固定化することができる。 選択結合性物質の種 類、 順序は繊維配列体中の繊維の位置によって限定されるものでない。 同一の選 択結合性物質を複数の繊維あるいは選択結合性物質固定用部位に固定化しておき、 測定感度をより高くすることも有効である。
選択結合性物質の支持体繊維上あるいは選択結合性物質固定用部位への固定は、 公知の方法により行うことができる。 無修飾の選択結合性物質を繊維あるいは選 択結合性物質固定用部位に固定する場合には、 選択結合性物質と繊維あるいは選 択結合性物質固定用部位とを作用させた後、 ベーキングや紫外線照射により固定 できる。 後述の実施例では、 この方法により DN Aをポリメチルメタクリレート 光ファイバ一繊維あるいはポリメチルメタクリレート基材に固定している。 また、 ァミノ基で修飾された選択結合性物質を繊維に固定する場合には、 グルタルアル デヒドや 1一ェチル一3— (3—ジメチルァミノプロピル) カルポジイミド(EDG )等の架橋剤を用いて繊維の官能基と結合させることができる。 選択結合性物質 を含む試料を繊維に作用させる際の温度は、 5°C~95°Cが好ましく、 1 5°C〜 65°Cが更に好ましい。 処理時間は通常 5分〜 24時間であり、 1時間以上が好 ましい。
本発明では、 選択結合性物質をそのまま繊維あるいは選択結合性物質固定用部 位に固定化してもよく、 また、 選択結合性物質に化学的修飾を施した誘導体や、 必要に応じて変性させた核酸を固定化してもよい。 核酸の化学的修飾には、 アミ ノ化、 ビォチン化、 ディゴキシゲニン化等が知られており [Current Protocols In Molecular Biology, Ed.; Frederick M. Ausubel et aに (1990)、 月; ϊ尸づ ソ トープ実験プロ トコール CO D I Gハイブリダィゼ一シヨン (秀潤社) ]、 本発明 ではこれらの修飾法を採用することができる。 一例として、 核酸へのアミノ基導 入に関して説明する。 アミノ基を有する脂肪族炭化水素鎖と一本鎖核酸との結合 位置は特に限定されるものではなく、 核酸の 5 '末端または 3 '末端のみならず核 酸の鎖中 (例えば、 リン酸ジエステル結合部位または塩基部位) であってもよい。 この一本鎖核酸誘導体は、 特公平 3 - 74239号公報、 米国特許 4, 667, 025号、 米国 特許 4, 789, 737号等に記載の方法にしたがって調製することができる。 この方法 以外にも、 例えば、 市販のアミノ基導入用試薬 [例えば、 ァミノリンク II (商 標名) ; PEバイオシステムズジャパン社、 Amino Modifiers (商標名) ; クロ ンテック社] などを用いて、 又は DN Aの 5'末端のリン酸にアミノ基を有する 脂肪族炭化水素鎖を導入する周知の方法 (Nucleic Acids Res. , 11 (18) ,6513- (1 983) ) にしたがって調製することができる。
上述の方法により得られた選択結合性物質固定化繊維あるいは選択結合性物質 固定化基材は、 選択結合性物質を固定した後、 適当な処理をすることができる。 例えば、 熱処理、 アルカリ処理、 界面活性剤処理などを行うことにより、 固定さ れた選択結合性物質を変性させることもできる。 あるいは、 細胞、 菌体などの生 体材料から得られた選択結合性物質を使用する場合は、 不要な細胞成分などを除 去してもよい。 そして、 処理後の繊維あるいは選択結合性物質固定化基材を選択 結合性物質の検出材料として用いることができる。 なお、 これらの処理は別々に 実施してもよく、 同時に実施してもよい。 また、 選択結合性物質を含む試料を繊 維あるいは選択結合性物質固定化基材に固定する前に適宜実施してもよい。
選択結合性物質を固定化した本発明の繊維あるいは選択結合性物質を固定化し た本発明の選択結合性物質固定化基材は、 固定化された選択結合性物質をプロ一 ブとして被検物質と相互作用させることにより、 検体中の特定の被検物質を検出 することができる。 2種類の被検試料に対して、 下記に示す標識化 (区別が付く ように) を行い、 その差異を比較することもできる。
選択結合性物質と選択的に結合する、 被検試料中の対応選択結合性物質の検出 には、 結合を特異的に認識することができる公知の手段を用いることができる。 例えば、 検体中の対応選択結合性物質に、 蛍光物質、 発光物質、 ラジオアイソト —プなどの標識体を結合し、 選択結合反応及び洗浄後、 この標識体を検出するこ とができる。 これら標識体の種類や標識体の導入方法に関しては、 何ら制限され ることがなく、 従来公知の各種手段を用いることができる。 特に、 繊維が光透過 性を有し、 繊維端で標識された検体を反応させ、 もう一端で検出器で検出する場 合には標識体に蛍光物質や発光物質を用いることが好ましい。 免疫測定や核酸の ハイプリタイゼーシヨンの測定のために用いられる蛍光物質や発光物質は、 この 分野において周知であり、 種々のものが市販されているので、 これらの市販の蛍 光物質や発光物質を用いることができる。
また、 繊維あるいは選択結合性物質固定用部位に固定化された選択結合性物質 と、 被検試料中の対応選択結合性物質との結合反応後若しくは結合反応と同時に、 対応選択結合性物質と選択的に結合する、 標識化された遊離の測定用物質を反応 させ、 洗浄後、 対応選択結合性物質と選択結合性物質を介して繊維に結合された 該測定用物質の標識を測定することによつても可能である。 例えば、 選択結合性 物質として特定の塩基配列を有する核酸を繊維に固定化し、 対応選択結合性物質 が該核酸と相補的な領域を含む核酸である場合に、 対応選択結合性物質である該 核酸中の、 上記選択結合性物質と相補的な領域以外の領域と相補的な核酸を標識 して測定用物質として用いることができる。 また、 選択結合性物質として抗原を 繊維に固定化し、 対応選択性結合物質が該抗原と抗原抗体反応する抗体である場 合に、 該抗体と抗原抗体反応する第 2抗体を標識したものを測定用物質として用 いることができる。 これらの場合にも、 選択結合性物質を繊維の一端領域に固定 化し、 標識には蛍光物質又は発光物質を用い、 反応の結果を他端側から測定する ことを好ましく行うことができる。
また、 繊維あるいは選択結合性物質固定用部位が電気伝導性を有する場合、 電 気化学反応にもとづく電流値等の応答を検出する方法を用いることが好ましい。 この場合、 電極となる繊維上に固定化した試料と検体を、 試料と検体の反応を促 進、 抑制する材料下で反応させ、 かつ、 この材料の全部または一部が、 結合した 試料と検体の中に含有され、 反応した後の電極、 すなわち繊維あるいは選択結合 性物質固定用部位に流れる電流値を測定することにより、 試料と検体の結合の有 無、 結合の程度を検出できるものである。
本発明の繊維又は繊維配列体を用いた測定方法、 あるいは本発明の結合反応装 置に適用する選択結合性物質固定化基材を用いた測定方法に供せられる被検物質 としては、 測定すべき核酸、 例えば、 病原菌やウィルス等の遺伝子や、 遺伝病の 原因遺伝子等並びにその一部分、 抗原性を有する各種生体成分、 病原菌やウィル ス等に対する抗体等を挙げることができるが、 これらに限定されるものではない。 また、 これらの被検物質を含む検体としては、 血液、 血清、 血漿、 尿、 便、 髄液、 唾液、 各種組織液等の体液や、 各種飲食物並びにそれらの希釈物等を挙げること ができるがこれらに限定されるものではない。 また、 被検物質となる核酸は、 血 液や細胞から常法により抽出した核酸を標識してもよいし、 該核酸を錶型として、 P C R等の核酸増幅法によって増幅したものであってもよい。 後者の場合には、 測定感度を大幅に向上させることが可能である。 核酸増幅産物を被検物質とする 場合には、 蛍光物質等で標識したヌクレオシド三リン酸の存在下で増幅を行うこ とにより、 増幅核酸を標識することが可能である。 また、 被検物質が抗原又は抗 体の場合には、 被検物質である抗原や抗体を常法により直接標識してもよいし、 被検物質である抗原又は抗体を選択結合性物質と結合させた後、 繊維あるいは選 択結合性物質を固定した選択結合性物質固定部位を洗浄し、 該抗原又は抗体と抗 原抗体反応する標識した抗体又は抗原を反応させ、 繊維あるいは選択結合性物質 固定部位に結合した標識を測定することもできる。
固定化物質と被検物質を相互作用させる工程は、 従来と全く同様に行うことが できる。 反応温度及び時間は、 ハイブリダィズさせる核酸の鎖長や、 免疫反応に 関与する抗原及び 又は抗体の種類等に応じて適宜選択されるが、 核酸のハイブ リダィゼーシヨンの場合、 通常、 5 0 °C~ 7 0 °C程度で 1分間〜数時間、 免疫反 応の場合には、 通常、 室温〜 4 0 °C程度で 1分間〜数時間程度である。
上記方法によリ、 固定化された選択結合性物質と選択的に結合する核酸や抗体、 抗原等の被検物質を測定することができる。 すなわち、 選択結合性物質として核 酸を固定化した場合には、 この核酸又はその一部と相補的な配列を相補的な配列 を有する核酸を測定することができる。 また、 選択結合性物質として抗体又は抗 原を固定化した場合には、 この抗体又は抗原と免疫反応する抗原又は抗体を測定 することができる。 なお、 本明細書でいう 「測定」 には検出と定量の両者が包含 される。
本発明を用いることにより、 各種生物における、 遺伝子や蛋白質、 糖鎖の発現 を効率的、 迅速かつ簡便に調べることができる。 例えば、 正常ヒ卜肝臓および肝 炎ウィルス感染肝臓から抽出した核酸を標識後、 発明の繊維あるいは選択結合性 物質固定化基材上に各種既知のヒト遺伝子を固定化した繊維配列体あるいは選択 結合性物質固定部位のおのおのにハイブリダィゼーシヨンを行う。 正常肝臓核酸 と肝炎肝臓核酸の配列体への結合の程度を比較することにより、 肝炎肝臓での遺 伝子発現の変化を調べることができる。
同様に、 蛋白質である各種モノクローナル抗体を結合させた繊維配列体に、 標 識した正常脳抽出蛋白質およびアルツハイマー脳抽出蛋白質を結合させ、 結合し た蛋白質を正常と比較することによりァルツハイマー脳における蛋白質の異常発 現を調べることができる。
実施例
本発明を以下の実施例によって更に詳細に説明する。 もっとも、 本発明は下記 実施例に限定されるものではない。
実施例 1
本実施例で用いる繊維あるいはガラス基材上で核酸の固定およびハイブリダィ ゼーシヨンが確実に行えることを確認する為に、 生物試料に対して交叉反応をせ ず、 熱的にも安定でハイブリダィゼーシヨン時に加える熱で分解しないディゴキ シゲニンを標識体として用いた実験を行った。
ァクチン遺伝子の核酸液 (宝酒造株式会社製) (該核酸濃度 1 0 g/m I ) にポリメチルメタクリレー卜光ファイバ一繊維 (直径 250 m、 長さ 1 O Om m) の一端を浸し、 空気中で乾燥後、 紫外線処理 (ストラタジーン社製 UVクロ スリンカ一を使用) を行い、 核酸が固定化された繊維を得た。 用いた核酸配列の 一部に相補的なオリゴヌクレオチドを合成し、 ディゴキシゲニン(D I G: Digo xigenin, ロシュ 'ダイァグノスティックス株式会社)で標識した。
また、 ァクチン遺伝子の核酸液 (宝酒造株式会社製) (該核酸濃度 1 0 μ g, m I ) をァミノ基導入スライドガラス基材上に個々の固定部位のサイズが直径 2 00 um程度となるようにスポッティングし、 空気中で乾燥後、 紫外線処理 (ス 卜ラタジーン社製 UVクロスリンカ一を使用) を行い、 核酸が固定化された基材 を得た。 用いた核酸配列の一部に相補的なオリゴヌクレオチドを合成し、 ディゴ キシゲニン(D I G: Digoxigenin, ロシュ■ダイァグノスティックス株式会社) で標識した。
末端アミノ化されたオリゴヌクレオチドをそれぞれ 100 mMホウ酸緩衝液(PH8. 5)に終濃度 2 mMになるように溶かした。 等量のジゴキシゲニン- 3-0 -メチルカ ルボニル- α-アミノカプロン酸- N-ヒドロキシ-スクシンイミ ドエステル (26mg/ ml ジメチルホルムアミド溶液)を加え、 室温にてー晚静置した。 グリコーゲン ( ロシュ■ダイァグノスティックス株式会社) をキャリア一としてエタノール沈殿 を行い、 沈殿を風乾後、 100/ molの 10 mM Tris-HCI (pH7.5) , 1 mM EDTAに溶 かした。 こうして得られた D 1 G標識オリゴヌクレオチドを試料核酸のモデルと して用いた。
作製した核酸固定化繊維をハイブリダィゼーシヨン用のバッグに入れ、 定法に より (ロシュ 'ダイァグノスティックス株式会社、 製品マニュアルに準じて実施 ) ハイブリダィゼーシヨンを行った。
また、 作製した核酸固定基材をハイブリダィゼーシヨン装置の基台に裁置し、 定法により (ロシュ 'ダイァグノスティックス株式会社、 製品マニュアルに準じ て実施) ハイブリダィゼーシヨンを行った。
ハイプリダイゼーシヨン終了後、 核酸固定化繊維および核酸固定化基材を洗浄 後、 抗 D I G酵素標識抗体溶液を加え抗原抗体反応を行わせた。 反応後、 核酸固 定化繊維および核酸固定化基材を洗浄し未結合の抗体を除去した。 D I G検出試 薬を添加し、 平衡化した。 水分を切り、 光シグナルの検出を行ったところ核酸の 固定化に応じてシグナルが検出された。
これによリ、 交流電界を印加しない従来方法で本発明のハイプリダイゼーショ ン装置が構造的、 あるいは機能上の問題が無く、 ハイブリダィゼ一シヨン装置と して確実に使用出来ることを確認した。
実施例 2
光ファイバ一および選択結合性物質固定基材の前処理
直径 20 O rnのガラス製光ファイバ一 (ホヤショット (株) 製) をガラス製 光ファイバ一専用カッターで切断し、 両側の端面を鏡面状態にした。
加工した前記光ファイバ一およびスライ ドガラス (76mmX 26mmX l m m) (松浪硝子工業 (株) 製) を純水、 エタノール、 N a OHの混合溶液でクリ 一二ングした後、 純水で洗浄した。 さらに、 クリーニングした面を純水、 ポリ一 し一リシンの混合溶液 (組成: 1 0 % ポリー Lーリシン) に浸し、 スライドガ ラスの表面にアミノ基を導入した。
核酸溶液 2種類 (宝酒造 (株) 製 rA Co n t r o l T emp l a t e & P r i me r S e t— AJ ;製品番号 T X 803 (約 l O OO b pの λ DN Α断片) 、 および、 宝酒造 (株) 製 「H uma n T FR (1 k b) T emp I a t e & P r i me r S e t J ;製品番号 T X 806 (約 1 00 0 b pのヒトトランスフェリンレセプター D N A断片) ) を元に、 それぞれの核 酸を PCR法により増幅した。 PCR法で用いたプライマーは、 それぞれの製品 に同梱されているものを用いた。 これを精製し、 精製した核酸溶液をえた。 スラ ィドガラスのアミノ基を導入した面に精製した 2種類の核酸溶液をスポッティン グし、 空気中で乾燥後、 UVクロスリンク (1 20mJ) を行い、 2種類の核酸 が核酸固定部位に固定された核酸固定基材をえた。 次に、 核酸と反応していない スライドガラス表面の余分なアミノ基をブロックするため、 ホウ酸、 純水、 p H 調整用 N a OH、 無水コハク酸、 1—メチル一2—ピロリ ドンを混合した溶液 ( 無水コハク酸 3 gを 1 87m l 1—メチルー 2—ピロリ ドンに溶解し、 使用 直前に 1 7m l 1 M N a -b o r a t e (p H 8. 0) 溶液を加えたもの) に核酸が固定された面を浸し、 振とうした。 その後、 洗浄した。
RN Aの処理
RN A溶液 (宝酒造 (株) 製 Γλ p o I y A + RNA— A」 ;製品番号 T X 802) を用意した。 これは上記核酸の 1つ (ΤΧ 803) と相補的な塩基配列 を有している。 これを、 逆転写酵素 「S u p e r s c r i p t llj (G I B CO BR L社製;製品番号 1 8064— 07 1 ) 、 2. 5mM d AT P、 2. 5 m d CT P、 2. 5mM d GT P、 1. OmM d T T P、 C y 5 - d U T P (アマシャム■ フアルマシア製;製品番号 PA 55022) と混合し、 4 2 °Cで 1時間インキュベートして逆転写し、 C y 5色素が取り込まれた c DN A 溶液を得た。
同様に RN A溶液 (宝酒造 (株) 製 「 H uma n T F R RN A (1 k b ) J ;製品番号 TX 805) を用意し、 C y 5— d U T Pを C y 3— d U T P ( アマシャム ' フアルマシア製;製品番号 PA 53022) と変えた以外は、 上記 と同じ条件で逆転写し、 C y 3色素が取り込まれた c D N A溶液を得た。 この C y 3色素の取り込まれた c D N Aは上記核酸の 1つ ( T X 806 ) と相補的な塩 基配列を有している。
上記の色素が取り込まれた 2種類の c DN A溶液を混合、 精製し、 さらにバッ ファ一 (3. 4 x SSC、 0. 1 % SDS) に溶解してハイブリタィゼ一ショ ン溶液を得た。
ハイプリタイゼーシヨン
1種類の核酸が端面に固定された 2本の光ファイバ一と上記の色素が取り込ま れた c DNA溶液 (ハイプリタイゼーシヨン用の溶液) をビニール製の袋にいれ、 ハイプリターゼーシヨン溶液が蒸発しないように密閉した。 これを、 65°Cの条 件で 1 6時間放置した。 さらに、 光ファイバ一をビニール製の袋から取り出し、 洗浄した。
蛍光検出
まず、 光ファイバ一を用いて C y 5からの蛍光検出は以下のように行った。 蛍 光の励起光としてはレーザ一 (波長 635 nm) を用いた。 この集光したビーム を光ファイバ一の DN A溶液を浸した端面に照射し、 もう片方の端面からでてく る光を集光レンズで集光した。 この後にダイクロイツクミラー (オメガォプティ カル製;製品番号 X F 2035) を光軸と 45度の角度になるように配置し、 余 計な励起光を取り除いた。 ダイクロイツクミラーの直後にバンドバスフィルター (オメガオプティカル製;製品番号 X F 3076) を配置し、 余計な励起光をさ らに取り除いた。 このバンドパスフィルターの直後にフォトマルチメータ (浜松 ホトニクス製;製品番号 H 5784_02) を配置し、 C y 5色素からの蛍光を 観察した。
次に、 核酸固定化基材を用いて C y 5からの蛍光を測定するために、 光学系を 以下のようにした。 まず、 蛍光の励起光としてはレーザー (波長 635 nm) を 用いた。 まず、 バンドパスフィルター (オメガオプティカル製;製品番号 X 1 0 69) を光軸と垂直に配置し、 励起光以外の余計な光を取り除いた。 さらに、 レ —ザ一ビームの光軸と 45度の角度になるように、 ダイクロイツクミラー (オメ ガオプティカル製;製品番号 X F 2035) を配置し、 この集光したビームを D NA溶液に浸したスライドガラス面に照射した。 さらに、 DNA溶液に浸した端 面から戻ってきた蛍光を、 励起光を照射する側の端面側で集光し、 先に述べた、 ダイクロイツクミラー (オメガオプティカル製;製品番号 X F 2035) を通し、 さらにバンドパスフィルター (オメガオプティカル製;製品番号 X F 30フ 6) を通して、 余分な励起光をカットした。
C y 3からの蛍光は、 光ファイバ一、 核酸固定化基材の両方とも、 ダイクロイ ックミラーとパ、ンドパスフィルターを C y 3用のものにし (それぞれオメガォプ ティカル製;製品番号 X F 1 074% X F 201 7、 X F 3083) 、 照射する レーザーの波長を 532 nmとした以外は上記と同じ方法で検出した。
このような方法で、 上記のハイプリタイゼーション後の 2種類の光ファィバ一 および核酸固定部位からの蛍光を C y 5、 C y 3のそれぞれについて測定した。 TX 803の核酸溶液に浸して作製した光ファイバ一からは、 C y 5の蛍光のみ が観察され、 C y 3の蛍光は検出されなかった。 T X 806の核酸溶液に浸して 作製した光ファイバ一および、 T X 806の核酸溶液をスポッティングした核酸 固定部位からは、 C y 3だけの蛍光が観察され、 C y 5からの蛍光は検出されな かった。
実施例 3
実施例 2の光ファイバ一を束にして、 励起光のビームをスキャンし、 それぞれ の光ファイバ一からの蛍光を検出した以外は、 実施例 2と同様な測定を行った。 その結果、 実施例 2と同様な結果が得られた。
実施例 4
励起光であるレーザーを照射する光ファイバ一の端面を DN A溶液に浸してい ない端面とする以外は、 実施例 2と同様な測定を行った。 すなわち、 蛍光を検出 する際の光ファイバ一の向きを実施例 2と逆にした以外は実施例 2と同じである。 その結果、 実施例 2と同様な結果が得られた。
実施例 5
光ファイバ一、 核酸の処理は実施例 2と同様に行った。
C y 5からの蛍光を測定するために、 光学系を以下のようにした (図 5参照) 。 まず、 蛍光の励起光としてはレーザー 26 (波長 635 nm) を用いた。 まず、 バンドパスフィルター 1 9 (オメガオプティカル製;製品番号 X 1 069) を光 軸と垂直に配置し、 励起光以外の余計な光を取り除いた。 さらに、 レーザービー 2フ
ムの光軸と 45度の角度になるように、 ダイクロイツクミラー 20 (オメガ才プ ティカル製;製品番号 X F 2035) を配置し、 この集光したビームを DN A溶 液に浸した端面と反対の光ファイバ一端面に照射した。 さらに、 DNA溶液に浸 した端面から戻ってきた蛍光を、 励起光を照射する側の端面側で集光し、 先に述 ベた、 ダイクロイツクミラー 20 (オメガオプティカル製;製品番号 X F 203 5) を通し、 さらにバンドパスフィルタ一 2 1 (オメガオプティカル製;製品番 号 X F 3076) を通して、 余分な励起光をカットした。 なお、 図 5中、 22は 集光レンズ、 23は光ファイバ一、 24はサンプル (DN A) 、 25はフォトマ ルチプライヤーを示す。
C y 3からの蛍光は、 ダイクロイツクミラーとバンドパスフィルタ一を C y 3 用のものにし (それぞれオメガオプティカル製;製品番号 X F 1 074、 X F 2 0 1 7、 X F 3083) 、 照射するレーザーの波長を 532 n mとした以外は上 記と同じ方法で検出した。
このような方法で、 上記のハイブリダィゼーシヨン後の 2種類の光ファイバ一 からの蛍光を C y 5、 C y 3のそれぞれについて測定した。 T X 803の核酸溶 液に浸して作製した光ファイバ一からは、 C y 5の蛍光のみが観察され、 C y 3 の蛍光は検出されなかった。 TX 806の核酸溶液に浸して作製した光ファイバ 一からは、 C y 3だけの蛍光が観察され、 C y 5からの蛍光は検出されなかった。 実施例 6
光ファイバ一を細い光ファイバ一が多数束ねられたイメージコンジット (エド モンド 'ォブティックス 'ジャパン製;製品番号 C J 53843) とした。 この イメージコンジットは、 太さ 25 mの石英製光ファイバ一を 301 2本束ねた ものである。
光ファイバ一、 核酸の処理は実施例 5と同様に行った。 また、 検出光学系は実 施例 5と同様にした。 そのところ、 T X 803の核酸溶液に浸して作製した光フ アイバーからは、 C y 5の蛍光のみが観察され、 C y 3の蛍光は検出されなかつ た。 TX 806の核酸溶液に浸して作製した光ファイバ一からは、 C y 3だけの 蛍光が観察され、 C y 5からの蛍光は検出されなかった。 また、 実施例 5での C y 5、 C y 3からの蛍光の強度を 1 とすると、 本実施例の実験では、 蛍光の強度 が 3となり、 より SZNが高くなつた。 この理由は、 イメージコンジットを使用 すると、 収束した光が、 光ファイバ一の内部で発散せず、 効率よく励起光をサン プルに送ることができるためであると考えられる。
実施例 7
光ファイバ一の処理
実施例 1で用いた、 直径 200 ^umのガラス製光ファイバ一 (ホヤショット製 ) に、 スパッタで P t膜をコートし導電性がある光ファイバ一を得た。 さらに、 ガラス製光ファイバ一専用カッターで切断し、 両側の端面を鏡面状態にした。 さ らに、 端面を純水、 ポリ一 L—リシンの混合溶液 (組成: 1 0% ポリ一 L—リ シン) に浸し、 光ファイバ一の片方の端面上にアミノ基を導入した。
その後の、 核酸などの処理は、 実施例 2と同様にし、 それぞれ 1種類の核酸が 端面に固定された 2本の光ファイバ一と、 ハイブリダィゼーシヨン用の溶液を得 た。
ハイブリダィゼーシヨン
1種類の核酸が端面に固定された 2本の光ファイバ一と C y 5、 C y 3色素が 取り込まれた c DN A溶液 (ハイブリダィゼーシヨン用の溶液) をマイクロチュ ーブ (1. 5m l ) に入れた。 さらに、 マイクロチューブのふたに穴をあけそこ に光ファイバ一を通し、 DN Aが固定された光ファイバ一の端面をマイクロチュ ーブ内のハイブリダィゼーシヨン溶液に浸した。 さらに、 マイクロチューブのふ たの穴をペーパーボンドでシーリングし溶液が蒸発しないように密閉した。 この ときのハイブリダィゼーシヨン溶液は 50 I とした。 また、 溶液の組成は、 純 水に蛍光体をラベリングした DN Aを溶かしたものとした。 これを、 65°Cの条 件で 1 0分間放置した。 このとき、 マイクロチューブの底面に銅箔を貼り付け、 光ファイバ一を陽極に、 マイクロチューブ底の銅箔を陰極にし、 1 00 Vの電圧 を印加した。 さらに、 光ファイバ一をマイクロチューブから取り出し、 洗浄した。 光を実施例 2と同様に測定したところ、 T X 803の核酸溶液に浸して作製した 光ファイバ一からは、 C y 5の蛍光のみが観察され、 C y 3の蛍光は検出されな かった。 T X 806の核酸溶液に浸して作製した光ファイバ一からは、 C y 3だ けの蛍光が観察され、 C y 5からの蛍光は検出されなかった。 このときの蛍光の 強度は実施例 2と同じであった。 一方、 光ファイバ一の条件を実施例 2と同様に し (すなわち、 電圧を印加しない状態) 、 ハイブリダィゼーシヨンの時間を 1 0 分にしたところ、 蛍光の強さは、 実施例 2の 1 Z3であった。 このように、 光フ アイバーを導電性とし、 電界を印加すれば、 わずか 1 0分のハイブリダィゼーシ ヨンの時間でも十分であることが分かつた。
実施例 8
選択結合性物質固定基材の前処理
導電電極を選択結合性物質配列基材上に形成するために、 1 Omm X 5 mmの 開口の 1 Ommの辺が 1 Ommの間隔を隔てて平行に対向するように、 2つの開 口部を配置したステンレス製マスクをスライドガラス上に近接させて装着し、 ス パッタ法により前記マスクの開口部形状に相当する金電極をスライドガラス上に 設けた。
このように金電極を配置したスライドガラス (76mmx 26mmx 1 mm)
(松浪硝子工業 (株) 製) を純水、 エタノール、 N a OHの混合溶液でクリ一二 ングした後、 純水で洗浄した。 さらに、 クリーニングした面を純水、 ポリ一 L一 リシンの混合溶液 (組成: 1 0 % ポリー Lーリシン) に浸し、 スライドガラス の表面にァミノ基を導入した。
核酸溶液 2種類 (宝酒造 (株) 製 「A C o n t r o l T emp l a t e & P r i me r S e t— AJ ;製品番号 T Χ 803 (約 l O O O b pの λ DN Α断片) 、 および、 宝酒造 (株) 製 「H uma n T F R (1 k b) T e mp I a t e & P r i me r S e t」 ;製品番号 T X 806 (約 1 00 0 b pのヒ卜トランスフェリンレセプター DNA断片) ) を元に、 それぞれの核 酸を PCR法により増幅した。 PCR法で用いたプライマーは、 それぞれの製品 に同梱されているものを用いた。 これを精製し、 精製した核酸溶液をえた。 スラ ィドガラスの前記金電極の間のアミノ基を導入した面に精製した 2種類の核酸溶 液をスポッティングし、 空気中で乾燥後、 UVクロスリンク (1 20mJ) を行 し、、 2種類の核酸が核酸固定部位に固定された核酸固定化基材をえた。 次に、 核 酸と反応していなぃスラィドガラス表面の余分なァミノ基をブロックするため、 ホウ酸、 純水、 p H調整用 N a OH、 無水コハク酸、 1一メチル—2—ピロリ ド ンを混合した溶液 (無水コハク酸 3 gを 1 87m l 1—メチル一2—ピロリ ドンに溶解し、 使用直前に 1 7m I 1 M N a -b o r a t e (p H 8. 0) 溶液を加えたもの) に核酸が固定された面を浸し、 振とうした。 その後、 洗浄し た。
RN Aの処理
RN A溶液 (宝酒造 (株) 製 Γλ p o I y A + RNA— A」 ;製品番号 TX 802) を用意し、 実施例 2の RN Α処理と同様に行い、 C y 5色素が取り込ま れた c D N A溶液、 およびハイプリタイゼーション溶液を得た。
ハイプリタイゼ一シヨン
2種類の核酸が表面に固定された核酸固定化基材をハイブリダィゼーシヨン装 置の基台上に固定し、 核酸固定部位の両側に配置された金電極とハイブリダィゼ ーシヨン装置の交流電圧印加手段を接続した。 2種類の核酸を固定した部位に 2 μ Iの前記ハイブリダィゼーシヨン溶液を滴下し、 核酸固定部位の両側の導電電 極上にカバープレートを架設し、 ハイブリダィゼ一ション溶液が蒸発しないよう に密閉した。 さらに前記導電電極間に 1 0 V、 1 Ο Η Ζの交流電圧を印加し、 6 5°Cの条件に 1 0分間静置した後、 カバ一プレー ト、 導電電極を取り外し、 洗浄 した。
蛍光検出
C y 5および C y 3からの蛍光を測定するために、 光学系は実施例 2の光学系 と同様にし、 C y 5および C y 3からの蛍光を検出した。
このような方法で、 上記のハイブリダイゼ一ション後の 2種類核酸固定部位か らの蛍光を C y 5、 C y 3のそれぞれについて測定した。 T X 803の核酸溶液 をスポッティングした核酸固定部位からは、 C y 5の蛍光のみが観察され、 C y 3の蛍光は検出されなかった。 TX 806の核酸溶液をスポッティングした核酸 固定部位からは、 C y 3だけの蛍光が観察され、 C y 5からの蛍光は検出されな かった。
また、 このときの交流電圧を印加した核酸固定化基材から得られた蛍光強度は 交流電圧を印加せず、 長時間ハイプリダイゼーションさせた従来の方法に比べて 直流電圧を印加した場合と比較しても低い電圧で同等の効果を得られることが分 かった。
実施例 9
導電電極を選択結合性物質固定化基材上に形成せず、 選択結合反応装置に有す る場合の効果を検証するために、 スライドガラス(76 画 X 26 mm X 1 mm) (松浪 硝子工業 (株) 製) を純水、 エタノール、 N a O Hの混合溶液でクリーニングし た後、 純水で洗浄した。 さらに、 クリーニングした面を純水、 ポリ一 L—リシン の混合溶液 (組成: 1 0 % ポリ一し一リシン) に浸し、 スライ ドガラスの表面 にアミノ基を導入し、 実施例 8と同様に核酸の固定化、 R N Aの処理を行った。 次に、 核酸固定化基材を用いて交流電圧印加の効果を確認するために、 以下の 実験を行った。 2種類の核酸が表面に固定された核酸固定化基材をハイブリダィ ゼーシヨン装置の基台上に固定し、 核酸を固定した領域の両側にハイブリダィゼ ーシヨン装置の交流電圧印加手段に接続された導電電極を配設した。 本実施例で は厚さ 0. 15 mmの金薄板を導電電極として用いた。 導電電極の間隔は 1 cmとし た。 2種類の核酸を固定した部位に 2 0 μ Iの前記ハイブリダィゼーシヨン溶液 を滴下し、 核酸固定部位の両側の導電電極上にカバ一プレートを架設し、 ハイブ リダィゼ一シヨン溶液が蒸発しないように密閉した。 さらに前記導電電極間に 1 0 V、 10 Hzの交流電圧を印加し、 6 5 °Cの条件に 1 0分間静置した後、 カバー プレート、 導電電極を取り外し、 洗浄した。
交流電圧を印加しない従来法と比較する為に、 交流電圧を印加したサンプルと 対応させるサンプルとして、 導電電極間に電圧を印加しない状態で 6 5 °Cの条件 で 1 6時間放置したサンプルを用意した。 6 5 ° (、 1 6時間放置後、 カバ一プレ ート、 導電電極を取り外し、 洗浄した。
蛍光検出
実施例 8と同様に、 Gy5及び Gy3からの蛍光を検出し、 TX803の核酸溶液をス ポッティングした核酸固定部位からは、 Cy5の蛍光のみが観察され、 Gy3の蛍光 は検出されなかった。 TX806の核酸溶液をスポッティングした核酸固定部位から は、 Gy3だけの蛍光が観察され、 Gy5からの蛍光は検出されなかった。
また、 このときの交流電圧を印加した核酸固定化基材から得られた蛍光強度は 導電電極をハイブリダィゼーシヨン装置側に有する場合と同等の結果が得られる ことが分かった。

Claims

ミ 請求の範囲
1 . 選択結合性物質を固定化した繊維又は該繊維の束を含む繊維配列体。
2 . 前記選択結合性物質が、 核酸、 タンパク質、 糖類又は抗原性化合物である 求項 1記載の繊維又は該繊維の束を含む繊維配列体。
3 . 前記選択結合性物質が、 核酸、 抗体又は抗原である請求項 2記載の繊維又 は該繊維の束を含む繊維配列体。
4 . 前記繊維が光透過性を有する請求項 1ないし 3のいずれか 1項に記載の繊 維又は該繊維の束を含む繊維配列体。
5 . 前記繊維が電気伝導性を有する請求項 1ないし 3のいずれか 1項に記載の 繊維および該繊維の束を含む繊維配列体。
6 . 可撓性を有することを特徴とする請求項 1ないし 5のいずれか 1項に記載 の固定化繊維および該繊維の束を含む繊維配列体。
7 . 前記選択結合性物質が繊維端に固定化されていることを特徴とする請求項 1ないし 6記載の繊維および該繊維の束を含む繊維配列体。
8 . 前記選択結合性物質の種類が、 繊維配列体の全部又は一部において異なる ものである請求項 1ないし 7記載の繊維配列体。
9 . 前記選択結合性物質を固定化した各繊維が区別することができるものであ る請求項 8記載の繊維配列体。
1 0 . 固定化された選択結合性物質に反応した物質を直接繊維を通じて検出で きる請求項 1ないし 9のいずれか 1項に記載の繊維配列体。
1 1 . 前記繊維が光ファイバ一であることを特徴とする請求項 1ないし 1 0い ずれか 1項に記載の繊維配列体。
1 2 . 請求項 1ないし 1 1のいずれか 1項に記載の繊維配列体に、 該繊維配列 体の繊維に固定化された前記選択結合性物質と選択的に結合する対応選択結合性 物質を含む被検試料を作用させ、 洗浄後、 該繊維に結合された前記対応選択結合 性物質を測定する、 選択結合反応の結果の測定方法。
1 3 . 前記繊維が光透過性であり、 前記選択結合性物質が繊維の一端部に固定 化されている請求項 1 2記載の方法。
1 4 . 前記対応選択結合性物質が蛍光若しくは発光物質で標識されておリ、 又 は、 蛍光若しくは発光物質で標識された測定用物質と選択的に結合するものであ リ、 反応及び洗浄後、 前記対応選択結合性物質若しくは前記測定用物質の標識の 用いた蛍光若しくは発光物質からの蛍光又は発光を前記繊維の他端側から測定す ることにより反応結果の測定を行う請求項 1 3記載の方法。
1 5 . 請求項 5に記載の繊維配列体に、 電圧、 あるいは電流を印加し、 該繊維 配列体の繊維に固定化された前記選択結合性物質と対応選択結合性物質を含む被 検試料を、 選択的に結合させる方法。
1 6 . 基材上に選択結合性物質を固定化し、 前記選択結合性物質と選択的に結 合する対応選択結合性物質を含む被検試料液を前記固定化選択結合性物質と接触 させ、 前記選択結合性物質と前記対応選択結合性物質を結合反応させる工程にお いて、 前記被検試料液及び 又は前記対応選択結合性物質を、 前記選択結合性物 質を固定した面に対して相対的に移動させる、 選択結合性物質と対応選択結合性 物質との結合反応方法。
1 7 . 基材上に選択結合性物質を固定化し、 前記選択結合性物質と選択的に結 合する対応選択結合性物質を含む被検試料液を前記固定化選択結合性物質と接触 させ、 前記選択結合性物質と前記対応選択結合性物質を結合反応させる工程にお いて、 前記選択結合性物質を固定化した面の垂直軸に交差する方向で、 且つ前記 選択結合性物質固定化領域の両端よリ外側に配置した導電電極間に交流電圧を印 加しながら前記結合反応を行わせる、 請求項 1 6記載の方法。
1 8 . 前記選択結合性物質固定化領域が複数存在し、 それらが配列された選択 結合性物質配列領域が存在し、 前記導電電極は、 該選択結合性物質配列領域の両 端より外側に配置される請求項 1 6又は 1 7記載の方法。
1 9 . 前記選択結合性物質が、 核酸、 タンパク質、 糖類、 抗体又は抗原性化合 物から選ばれる少なくとも 1種である請求項 1 6ないし 1 8のいずれか 1項に記 載の方法。
2 0 . 前記選択結合性物質及び前記対応選択結合性物質が一本鎖核酸であリ、 前記結合反応が核酸間のハイプリダイゼ一ションである請求項 1 9記載の方法。
2 1 . 基材上に選択結合性物質を固定化し、 前記選択結合性物質と選択的に結 合する対応選択結合性物質を含む被検試料液を前記固定化瑪択結合性物質と接触 させ、 前記選択結合性物質と前記対応選択結合性物質を結合反応させる装置であ つて、 前記基材を設置する基台と、 前記選択結合性物質を固定化した面の垂直軸 に交差する方向で、 且つ前記選択結合性物質固定化領域の両端より外側に配置さ れる導電電極と、 該導電電極間に交流電圧を印加する交流電圧印加手段を有する 選択結合反応装置。 。
2 2 . 基材上に選択結合性物質を固定化し、 前記選択結合性物質と選択的に結 合する対応選択結合性物質を含む被検試料液を前記固定化選択結合性物質と接触 させ、 前記選択結合性物質と前記対応選択結合性物質を結合反応させるための前 記基材であって、 基材上の選択結合性物質を固定化する、 選択結合性物質固定用 部位と、 選択結合性物質固定用領域の両端より外側に配置された導電電極を有す る選択結合性物質固定用基材。
2 3 . 前記選択結合性物質固定用部位が複数存在し、 それらが配列された選択 結合性物質配列領域が存在し、 前記導電電極は、 該選択結合性物質配列領域の両 端よリ外側に配置される請求項 2 2記載の基材。
2 4 . 前記選択結合性物質固定用部位が基材上に設けられた凸部又は凹部であ ることを特徴とする請求項 2 2又は 2 3記載の選択結合性物質固定用基材。
2 5 . 前記選択結合性物質固定用部位が、 前記基材に設けた孔に揷入された繊 維又は該繊維の束の端部である請求項 2 4記載の基材。
2 6 . 前記選択結合性物質固定用部位に選択結合性物質が固定されている請求 項 2 2ないし 2 5記載の基材。
2 7 . 前記選択結合性物質が、 核酸、 タンパク質、 糖類、 抗体又は抗原性化合 物から選ばれる少なくとも 1種である請求項 2 2ないし 2 6のいずれか 1項に記 載の基材。
2 8 · 前記選択結合性物質及び前記対応選択結合性物質が一本鎖核酸であり、 前記結合反応が核酸間のハイブリダィゼーシヨンである請求項 2 7記載の基材。 2 9 . 前記導電電極の材質が、 白金、 金、 銀、 アルミニウム、 銅、 パラジウム、 の金属単体あるいはそれらの合金、 炭素あるいは炭素化合物、 または導電性ポリ マーから選ばれる少なくとも 1種であることを特徴とする請求項 2 2ないし 2 8 のいずれか 1項に記載の基材。
PCT/JP2002/000115 2001-01-12 2002-01-11 Fibre d'immobilisation de substances selectivement hybridables, reseau de fibres comprenant un faisceau desdites fibres, procede d'hybridation selective, dispositif associe et base WO2002056011A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037009329A KR100848636B1 (ko) 2001-01-12 2002-01-11 선택결합성 물질 고정화섬유, 그 섬유의 다발을 포함하는섬유배열체, 선택적 결합반응방법, 이를 위한 장치 및 기재
US10/466,094 US20040096169A1 (en) 2001-01-12 2002-01-11 Selectively hybridizable substance immobilization fiber, fiber array comprising bundle of such fibers, selective hybridizing method, device therefor, and base
EP02729544A EP1361434A4 (en) 2001-01-12 2002-01-11 FIBER FOR IMMOBILIZING SELECTIVELY HYBRIDABLE SUBSTANCES, FIBER NETWORK COMPRISING A BEAM OF SUCH FIBERS, SELECTIVE HYBRIDIZATION METHOD, ASSOCIATED DEVICE AND BASE
CA002450632A CA2450632A1 (en) 2001-01-12 2002-01-11 Selectively hybridizable substance immobilization fiber, fiber array compsiring bundle of such fibers, selective hybridizing method, device therefor, and base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-005775 2001-01-12
JP2001005775 2001-01-12

Publications (1)

Publication Number Publication Date
WO2002056011A1 true WO2002056011A1 (fr) 2002-07-18

Family

ID=18873772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000115 WO2002056011A1 (fr) 2001-01-12 2002-01-11 Fibre d'immobilisation de substances selectivement hybridables, reseau de fibres comprenant un faisceau desdites fibres, procede d'hybridation selective, dispositif associe et base

Country Status (6)

Country Link
US (1) US20040096169A1 (ja)
EP (1) EP1361434A4 (ja)
KR (1) KR100848636B1 (ja)
CN (1) CN1302285C (ja)
CA (1) CA2450632A1 (ja)
WO (1) WO2002056011A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260149A1 (de) 2002-12-20 2004-07-01 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Bestimmung des Leitwertes von Wäsche, Wäschetrockner und Verfahren zur Verhinderung von Schichtbildung auf Elektroden
EP1685395A2 (en) * 2003-11-05 2006-08-02 EXACT Sciences Corporation Repetitive reversed-field affinity electrophoresis and uses therefor
US8128871B2 (en) 2005-04-22 2012-03-06 Alverix, Inc. Lateral flow assay systems and methods
US10753931B2 (en) 2005-04-22 2020-08-25 Alverix, Inc. Assay test strips with multiple labels and reading same
JP5629850B2 (ja) * 2010-07-02 2014-11-26 国立大学法人秋田大学 免疫組織染色方法および免疫組織染色装置
US9863875B1 (en) * 2016-10-19 2018-01-09 International Business Machines Corporation In-situ detection of hollow glass fiber formation
CN108102881A (zh) * 2018-02-05 2018-06-01 中国科学院苏州纳米技术与纳米仿生研究所 具有微结构阵列的微流控芯片及核酸固相纯化提取方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508831A (ja) * 1992-04-23 1995-09-28 マサチューセッツ・インスティチュート・オブ・テクノロジー 分子検出の為の光学的および電気的方法ならびに装置
JPH11512605A (ja) * 1995-09-27 1999-11-02 ナノゲン・インコーポレイテッド 能動プログラマブル・マトリックスデバイス用の装置および方法
JP2000505281A (ja) * 1996-01-26 2000-05-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 光ファイバーバイオセンサ用高密度アレイの製造法と読出法
JP2000279177A (ja) * 1999-03-31 2000-10-10 Mitsubishi Rayon Co Ltd 核酸固定化多孔質繊維並びに核酸固定化多孔質繊維配列体及びその薄片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE334392T1 (de) * 1995-05-09 2006-08-15 Beckman Coulter Inc Vorrichtungen und verfahren zur abtrennung zellulärer blutkomponenten von flüssigen blutanteilen
DE19529371C3 (de) * 1995-08-10 2003-05-28 Nmi Univ Tuebingen Mikroelektroden-Anordnung
US6290839B1 (en) * 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes
WO2000053736A1 (en) * 1999-03-05 2000-09-14 Mitsubishi Rayon Co., Ltd. Carriers having biological substance
US6487326B1 (en) * 1999-11-29 2002-11-26 Board Of Regents, The University Of Texas System Thin film fiber optic electrode sensor array and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508831A (ja) * 1992-04-23 1995-09-28 マサチューセッツ・インスティチュート・オブ・テクノロジー 分子検出の為の光学的および電気的方法ならびに装置
JPH11512605A (ja) * 1995-09-27 1999-11-02 ナノゲン・インコーポレイテッド 能動プログラマブル・マトリックスデバイス用の装置および方法
JP2000505281A (ja) * 1996-01-26 2000-05-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 光ファイバーバイオセンサ用高密度アレイの製造法と読出法
JP2000279177A (ja) * 1999-03-31 2000-10-10 Mitsubishi Rayon Co Ltd 核酸固定化多孔質繊維並びに核酸固定化多孔質繊維配列体及びその薄片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1361434A4 *

Also Published As

Publication number Publication date
CN1302285C (zh) 2007-02-28
KR100848636B1 (ko) 2008-07-28
US20040096169A1 (en) 2004-05-20
CN1496480A (zh) 2004-05-12
KR20030070604A (ko) 2003-08-30
EP1361434A4 (en) 2004-03-10
CA2450632A1 (en) 2002-07-18
EP1361434A1 (en) 2003-11-12

Similar Documents

Publication Publication Date Title
US9333478B2 (en) Support carrying an immobilized selective binding substance
JP5816291B2 (ja) 生体分子分析方法及び生体分子分析装置
JP2010536009A (ja) マイクロアレイシステム、およびマイクロアレイの製造方法
WO2010087121A1 (ja) 核酸分析デバイス、及び核酸分析装置
US20020055111A1 (en) Three-dimensional probe carriers
JP4122854B2 (ja) 選択結合性物質のハイブリダイゼーション方法とハイブリダイゼーション装置および選択結合性物質固定用基材
JP2000245460A (ja) 核酸固定化中空繊維並びに核酸固定化中空繊維配列体及びその薄片
JP5822929B2 (ja) 核酸分析装置
KR100848636B1 (ko) 선택결합성 물질 고정화섬유, 그 섬유의 다발을 포함하는섬유배열체, 선택적 결합반응방법, 이를 위한 장치 및 기재
JP4207528B2 (ja) 選択結合性物質の結合方法
JP2001133453A (ja) 生体高分子配列薄片の製造方法
JP2005502366A (ja) 読み取り、検出、定量方法、前記方法で使用するハイブリッドまたは複合体およびそれを使用するバイオチップ
WO2000053739A1 (fr) Fibres contenant des acides nucleiques immobilises, alignement de fibres contenant des acides nucleiques immobilises et coupe transversale de telles fibres
JP2002357605A (ja) 選択結合性物質固定化繊維および該繊維の束を含む繊維配列体
JP2000279177A (ja) 核酸固定化多孔質繊維並びに核酸固定化多孔質繊維配列体及びその薄片
JP2000270879A (ja) 核酸固定化ゲル保持繊維並びに該繊維配列体及びその薄片
JP2000270877A (ja) 核酸固定化ゲル保持多孔質繊維並びに該多孔質繊維配列体及びその薄片
JP5233296B2 (ja) ターゲット評価方法および装置
Sumner et al. Fluorescence Hybridization Assay Based On Chitosan-Linked Softarrays
JPWO2006083040A1 (ja) 核酸マイクロアレイを用いた核酸検出方法
Gillespie et al. FLUORESCENCE HYBRIDIZATION ASSAY BASED ON CHITOSAN-LINKED SOFTARRAYS
JP2004170364A (ja) 生体高分子の同定方法及び装置
JPWO2007135741A1 (ja) 被検体評価装置および被検体評価方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037009329

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002729544

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037009329

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028063392

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002729544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10466094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2450632

Country of ref document: CA