WO2001090728A1 - Capteur par resonance plasmonique de surface (spr) et procede de mesure utilisant ce capteur - Google Patents

Capteur par resonance plasmonique de surface (spr) et procede de mesure utilisant ce capteur Download PDF

Info

Publication number
WO2001090728A1
WO2001090728A1 PCT/JP2001/004255 JP0104255W WO0190728A1 WO 2001090728 A1 WO2001090728 A1 WO 2001090728A1 JP 0104255 W JP0104255 W JP 0104255W WO 0190728 A1 WO0190728 A1 WO 0190728A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
probe
differential
spr sensor
metal film
Prior art date
Application number
PCT/JP2001/004255
Other languages
English (en)
French (fr)
Inventor
Isao Karube
Takuo Akimoto
Original Assignee
Katayanagi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayanagi Institute filed Critical Katayanagi Institute
Priority to CA 2407793 priority Critical patent/CA2407793A1/en
Priority to AU2001256790A priority patent/AU2001256790A1/en
Priority to EP01930238A priority patent/EP1306662A4/en
Publication of WO2001090728A1 publication Critical patent/WO2001090728A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to an SPR sensor using surface plasmon resonance (SPR), and more particularly, to a differential SPR sensor.
  • SPR surface plasmon resonance
  • the SPR sensor according to the present invention is preferably embodied as a probe-type biosensor. Background art
  • the SPR sensor generally has a structure shown in FIG.
  • the surface plasmon (Surfac eP1asmon: Sp) is determined by the permittivity of the metal and the sample.
  • the SP wave number vector can be excited by inputting light, and a general SPR sensor excites SP by inputting light from the prism side in the figure.
  • a resonance wavelength Since the resonance wavelength coincides with the SP wave number vector described above, the dielectric constant of the sample can be determined from the resonance wavelength.
  • an antibody is immobilized on a metal film to cause an antigen-antibody reaction on the metal film. Estimating the degree of the antigen-antibody reaction by estimating the change in the dielectric constant on the metal film at this time is a method when the SPR sensor is used as a pyrosensor.
  • the SPR sensor is widely used as a device for detecting protein interaction, and is attracting attention.
  • SPR sensors Samples cannot be measured in situ due to their large size and flow injection format. From this, the so-called probe-type SPR sensor is considered to be an effective method as a sensor capable of measuring a sample at insi 1; u.
  • differential SPR sensor The essence of a differential SPR sensor is the antigen-antibody reaction by creating a surface on which the antibody is immobilized on the same metal film and a surface on which the antibody is not immobilized, and comparing the resonance wavelengths obtained on both surfaces. Is to estimate. However, it is difficult to independently observe the phenomena occurring on these surfaces even if the surface on which the antibody is immobilized and the surface on which the antibody is not immobilized are formed on the same metal film. This is because, for example, the change in the dielectric constant obtained by the antigen-antibody reaction is very small, that is, the change in the resonance wavelength is so small that it is difficult to determine the resonance wavelength on each surface independently. is there.
  • the present invention has been made in order to solve the above-mentioned problem, and it is an object of the present invention to provide a differential SPR sensor which can determine a resonance wavelength independently and does not need to determine a baseline. Disclosure of the invention
  • the technical means adopted by the present invention is a differential SPR sensor in which a surface on which a substance to be measured is immobilized and a surface on which the substance to be measured are not formed are formed on a metal film, wherein the metal film has a different film thickness.
  • a plurality of dielectric films are formed, and the surface of one dielectric film is used as a reference surface, and the surface of another dielectric film is used as an operating surface to immobilize the substance to be measured. Is what you do.
  • This differential type SPR sensor can be applied not only to a probe type SPR sensor but also to a so-called flow injection type SPR sensor, but is advantageously used particularly in a probe type SPR sensor for the following reasons.
  • Differential SPR sensors have the following advantages: (1) no need to determine a baseline; (2) reduction in measurement accuracy due to non-specific adsorption; and (3) reduction in measurement accuracy due to temperature changes. Have.
  • advantages (1) and (3) can be realized by a method other than the differential method. (2) can be achieved by adding a chemical that suppresses non-specific binding to the sample, and (3) by controlling the temperature.
  • the above solution cannot be adopted because the aim is to complete the measurement by immersing the sensor in a sample (for example, the sea or tissue in the body).
  • the differential method is a useful means for the user.
  • (1) in the case of the flow injection type, in many cases, experiments can be carried out in a laboratory in sufficient time in general, and the flow path can be easily changed, so that the differential type is used. This method does not have a great advantage.
  • the differential type is particularly useful for a prop type that requires simple and quick measurement.
  • a configuration in which a dielectric layer is formed on a metal film is also particularly useful for a probe type.
  • a differential method can be realized by forming the surface on which the antibody is immobilized and the surface on which the antibody is not immobilized on the same metal film at a certain distance. be able to.
  • a dielectric layer is not always necessary, and different thicknesses of dielectric layer may be used. In such a case, the above-mentioned operation of “keeping a certain distance” can be omitted.
  • the probe type even if the surface on which the antibody is immobilized and the surface on which the antibody is not immobilized are prepared by the operation of "a certain distance", they cannot be observed independently. No. Therefore, in the probe type, it is an essential component to provide dielectrics having different film thicknesses.
  • the probe-type SPR sensor has a light source, a sensor probe, and a photodetector, the probe has a metal film having a sensor surface, and a reflection surface, and the base end side of the probe is
  • the light source is optically connected to the proximal end side of the probe
  • the photodetector is connected to the probe through the metal film and the reflective surface. It is configured to receive light emitted from the base end side.
  • the probe-type sensor itself is publicly known, and for example, a configuration of a conventional probe-type sensor as shown in FIGS. 7 and 8 can be adopted in the present invention.
  • the sensor surface and the reflection surface are formed as inclined surfaces that extend in an inclined manner with respect to the length direction of the probe, and are configured so as to meet at right angles to each other.
  • the angle of incidence of light on one surface of the sensor is preferably between 60 and 80 degrees.
  • the measuring method adopted by the present invention is a differential SPR sensor in which a surface on which a substance to be measured is immobilized and a surface on which the substance to be measured are not formed are formed on a metal film.
  • An antibody that specifically reacts with the antigen is immobilized on the sensor surface.
  • the cells are filled with a buffer containing an antigen for a certain period of time to cause an antigen-antibody reaction.
  • the reaction After the reaction, wash the sensor surface with a buffer solution that does not contain an antigen, and measure the resonance angle after the reaction. Then, the difference between the resonance angles before and after the antigen-antibody reaction is determined, and the difference is converted into the antigen concentration.
  • the antibody concentration is calculated by measuring and comparing the buffer solution containing the antigen on the working surface and the reference surface.
  • the SPR sensor according to the present invention is preferably used for detecting an antigen-antibody reaction.
  • the SPR sensor according to the present invention is not limited to the measurement of an antigen-antibody reaction. It can be widely applied, and can be used for, for example, hybridization of nucleic acids or nucleic acid analogs, interaction between nucleic acids and proteins, binding between receptors and ligands, interaction between sugar chains, and the like.
  • the substance to be measured immobilized on the sensor surface substances other than the antibody are also immobilized according to the substance to be measured.
  • the film forming means is not limited to this, and other known thin film forming means may be appropriately used.
  • the dielectric layer is an HMDS film in the embodiment, but another dielectric layer may be used.
  • the operating surface and the reference surface are formed by forming two dielectric films having different thicknesses. For example, three dielectric films having different thicknesses are provided. It is also possible to immobilize different antibodies on each other and measure two substances at the same time using the other as a reference surface.
  • FIG. 1 (a) is the principle diagram of the SPR sensor
  • (b) is the observed signal
  • Fig. 2 (a) is the principle diagram of the differential SPR sensor
  • (b) is the signal observed by the differential SPR sensor
  • Fig. 3 is the front view of the probe type SPR sensor.
  • FIG. 4 is an enlarged view of a sensor probe showing a sensor surface
  • FIG. 5 is a schematic view of a fixed portion of a probe type SPR sensor
  • FIG. 6 is a side view and an end view.
  • Fig. 7 is a schematic diagram of a known probe-type SPR sensor (Jorgensonet. A 1.191)
  • Fig. 8 is a known probe-type SPR sensor.
  • FIG. 9 is a schematic diagram of (Chai 11 et. A 1 997), and FIG. 9 is a diagram showing the relationship between the reflected light intensity and wavelength obtained by the differential probe type SPR sensor.
  • FIG. 0 is a diagram showing the results obtained on the operation surface and the reference surface
  • FIG. 11 is a diagram showing the results obtained on the differential type.
  • FIG. 12 is a diagram showing a calibration curve with respect to the BSA antibody concentration obtained when the differential method and the general method are used.
  • the differential type SPR sensor will be described with reference to FIG.
  • the schematic diagram in Fig. 2 (a) shows that a dielectric layer of different thickness is formed on the same metal film to form a step-shaped sensor surface, and the antibody is immobilized on one of the surfaces. I have.
  • the signals obtained in this case are two resonance wavelengths from the thick side of the dielectric layer and the thin side of the dielectric layer, respectively, as shown in Fig. 2 (b). In other words, by obtaining the resonance wavelength depending on the thickness of the dielectric layer on each surface, it is possible to clearly observe the change in each resonance wavelength.
  • FIG. 3 shows a basic configuration of the sensor probe according to the present invention, and is not particularly limited to a differential type.
  • the sensor probe has a long body, and a metal film with a sensor surface and a reflecting mirror (reflecting surface) are formed on the tip side (lower side in the figure).
  • the end side (upper side in the figure) It constitutes a light input / output end.
  • the sensor surface and the reflection surface are formed as inclined surfaces extending in an inclined manner with respect to the length direction of the probe, and are configured to meet at right angles to each other. In the case of the sensor probe, a parallel ray is incident from above in the figure.
  • One surface of the sensor extends obliquely at an angle of 68 degrees with respect to a surface perpendicular to the optical path, and light incident from the upper end surface is designed to enter the sensor surface at an incident angle of 68 degrees Have been.
  • the reflection surface extends at an angle of 22 degrees with respect to a plane perpendicular to the optical path.
  • the light reflected from the sensor surface is designed to be reflected by the reflection surface and to exit to the upper end surface.
  • an optical path that first reflects on the reflecting surface and then impinges on the sensor surface at an incident angle of 68 degrees is also conceivable, but the SPR signal obtained in each optical path is the same.
  • the incident angle of light on the sensor surface is not limited to 68 degrees, and it is possible to suitably select an incident angle preferably between 60 degrees and 80 degrees.
  • the sensor surface of the sensor probe was fabricated by sputtering 52 nm of gold and 2 nm of chromium.
  • the reflecting surface was fabricated by sputtering about 100 nm of chromium.
  • the sensor probe uses BK7 glass.
  • the sensor probe has a diameter of 3 mni and a length of 15 mni. 7 and 8 show known probe-type SPR sensors, and the differential system according to the present invention can be applied to these known probe-type SPR sensors.
  • FIG 4 shows an enlarged view of the sensor probe of the differential SPR sensor.
  • Dielectric layers with different thicknesses are formed on the left and right sides of one surface of the sensor to form a differential sensor probe.
  • a differential SPR sensor is constructed by forming a plasma polymerized film of different thickness on a metal film.
  • the dielectric layer was prepared by plasma-polymerizing H examethyldisi 1 oxane (HMD S).
  • HMD S plasma polymerized film is firmly formed on the metal film and is hydrophobic, preventing nonspecific protein adsorption. I can.
  • the thicknesses of the plasma polymerized films were set to lnm and 34 nm, respectively, as required to sufficiently separate the resonance wavelengths.
  • monomer gas was added.
  • HMDS Hexamethy1dxisne1
  • the polymerization time is 5 seconds for the reference surface and 150 seconds for the operation surface
  • the oscillation output is 1 in each case.
  • a surface on which the dielectric layer is thin and BSA is not fixed is referred to as a reference surface, and a surface on which the dielectric layer is thick and BSA is fixed is referred to as an operating surface.
  • BSA may be fixed to the thinner dielectric layer to provide an operating surface.
  • the serum probe is immersed in a mixture of phosphate buffered saline and 10 g / l serum albumin for about 8 hours to transfer the serum serum albumin to the sensor probe. Immobilized.
  • adhesive tape was applied to the reference surface of the sensor probe to prevent BSA from being fixed to the reference surface.
  • FIG. 5 shows that a sensor probe is inserted into the cylindrical fixing member from the right side, and the optical fiber is inserted into the fixing member from the left side.
  • the diameter of the core of the optical fiber is 200 m, and the numerical aperture is 0.39.
  • a plano-convex lens was used in order to convert the light from the optical fiber into a parallel light beam.
  • the diameter of the plano-convex lens used is 4 mm and the focal length is 4 mm.
  • this lens is It also serves to convert the reflected light into a convergent light or a convergent light having a focal point at one end of the optical fiber.
  • the overall configuration of the probe-type SRP sensor will be described with reference to FIG.
  • the light from a 50W halogen lamp (light source) is converted into parallel rays using a lens and a mirror.
  • the parallel rays are guided to the optical fiber through a lens through a beam splitter.
  • a sensor and a fixing member for the sensor probe are connected to the end face of the optical fiber in the figure.
  • the reflected light from the sensor probe is guided to the spectroscope through a beam splitter and an optical fiber.
  • the light from the spectrometer is detected by CCD, and the resonance wavelength is read by the computer.
  • Figure 9 shows the relationship between the reflected light intensity and the wavelength obtained with the differential SPR sensor probe. From the figure, two resonance wavelengths can be confirmed. These respectively show the resonance wavelength on the surface where the plasma-polymerized film is thick and BSA is immobilized, and the resonance wavelength on the surface where the plasma-polymerized film is thin and BSA is not immobilized.
  • the surface on which the plasma-polymerized film is thick and BSA is fixed is referred to as an operation surface
  • the surface on which the plasma-polymerized film is thin and BSA is not fixed is referred to as a reference surface.
  • Fig. 10 shows an example of the result of measuring the antigen-antibody reaction with a differential SPR sensor.
  • the results obtained on the operation side and the results obtained on the reference side are shown together.
  • the buffer containing no antibody is measured for 10 minutes in the area (a)
  • the buffer containing the antibody is measured for 20 minutes in the area (b).
  • a buffer solution containing no antibody is measured for 10 minutes. From FIG. 10, it can be seen that in the results obtained in the operation aspect, an increase in the resonance wavelength due to the antigen-antibody reaction is observed in the region (b).
  • the region (b) on the reference plane only a change that depends only on the dielectric constant change of the entire sample can be confirmed.
  • FIG. 11 shows the time change of the signal obtained on the reference plane minus the resonance wavelength obtained on the operation plane in FIG. Also in FIG. 11, an increase in the resonance wavelength in the region (b) can be confirmed, similarly to the result obtained from the operation surface in FIG. In this case, the amount of antibody binding is considered to be characterized by the change in the resonance wavelength at the start time of the region (b) and the resonance wavelength at the end time of the region (b).
  • the measurements shown in regions (a) and (c) are unnecessary.
  • FIG. 12 shows a calibration curve for antibody concentration obtained by a general method and a calibration curve when a differential equation is used. From the results in FIG. 12, it can be determined that there is no significant difference in the method for calculating the antibody concentration based on both methods. From the above considerations, when a differential probe-type SPR sensor is used, measurement that requires only a measurement sample is possible. In addition, when various substances are present in the measurement sample, it can be expected that those substances will nonspecifically bind to the metal film and lower the measurement accuracy. However, in the case of the differential probe type SPR sensor, the value obtained by subtracting the signal on the reference surface from the signal on the operating surface is regarded as an effective value, and it is considered that the resonance wavelength change is offset by the non-specific coupling. Can be Industrial applicability
  • the SPR sensor according to the present invention can be used for measuring a specific protein or chemical substance existing in a living body or an environment.
  • a sample can be measured by insitu.

Description

明 細 書 差動式 S P Rセンサー及ぴ該センサーを用いた測定法 技術分野
本発明は、 表面プラズモン共鳴 (S P R) を利用した S P Rセンサー に係り、 詳しくは差動式 S P Rセンサーに関するものである。 本発明に 係る S P Rセンサーは好適にはプローブ型バイオセンサーとして具現化 される。 背景技術
S P Rセンサーは一般に図 1 ( a ) に示す構造を有する。 表面プラズ モン ( S u r f a c e P 1 a s m o n : S P ) は金属と試料の誘電率 によって決定される。 この S Pの波数べク トルは光を入射することで励 起することができ、 一般的な S P Rセンサーでは、 図中のプリズム側か ら光を入射することで S Pの励起を行う。
図 1 ( a ) の配置を用い、 また光源と して白色光線を用いた場合に得 られる結果は図 1 ( b ) に示す通りであり、 ある波長におい 極/」、俥を 得ることができる。 本明細書ではこれを共鳴波長と呼ぶ。 この共鳴波長 が前述の S Pの波数べク トルと一致するので、 共鳴波長から試料の誘電 率を決定することができる。 タンパク質の相互作用を検出する実験では 、 例えば、 金属膜上に抗体を固定化し金属膜上の抗原抗体反応を起こさ せる。 この時の金属膜上の誘電率変化を見積もることで、 抗原抗体反応 の程度を見積もることが、 S P Rセンサ一をパイォセンサーとして利用 する場合の方法である。
S P Rセンサーは、 タンパク質の相互作用を検出する装置として広く 使用され、 注目を集めている。 しかし、 現在使用されている S P Rセン サ一は大型であり、 また、 フローインジェクショ ン形式を採用すること から、 試料を i n s i t uで測定することができない。 このことから 、 いわゆるプロープ型 S P Rセンサ—は試料を i n s i 1; uで測定す ることができるセンサ一として有効な方法と考えられる。
しかし、 S P Rセンサーを用いてタンパク質相互作用を検出する場合 、 毎回の測定においてベースラインを決定し、 その値からの変化量と し てタンパク質相互作用を見積もる必要がある。 すなわち目的とするタン パク質相互作用を検出するためには、 測定試料の他に、 ベースラインを 決定するための試料が必要となる。 したがって従来の測定方法に従うな らば、 プロープ型 S P Rセンサーを用いて i n s i t uの測定を行う 場合においても、 他の試料を用いてベースラインを決定する必要がある 。 これでは、 プロープ型 S P Rセンサーの特徴である i n s i t u測 定の有利性が減殺されてしまう。
そこで、 差動式 S P Rセンサーを用いることが検討される。 差動式 S P Rセンサーの本質はく 同一の金属膜上に抗体を固定した面と、 抗体を 固定化しない面を作成し、 それら両方の面で得られる共鳴波長を比較す ることで抗原抗体反応を見積もることである。 しかし、 同一の金属膜上 に抗体を固定化した面と固定化しない面を作成しても、 それらの面で起 きる現象を独立に観測することは困難である。 なぜなら、 例えば抗原抗 体反応によつて得られる誘電率の変化は微小なため、 すなわち共鳴波長 の変化は微小なため、 それぞれの面での共鳴波長を独立に決定すること が困難であるからである。
本発明は、 前記不具合を解決するべく創案されたものであって、 共鳴 波長を独立に決定することができ、 ベースライ ンの決定を必要と しない 差動式 S P Rセンサーを提供することにある。 発明の開示 本発明が採用した技術手段は、 金属膜上に被測定物質を固定化した面 と固定化していない面とを形成してなる差動式 S P Rセンサーであって 、 該金属膜に膜厚の異なる誘電体膜を複数形成し、 一つの誘電体膜の表 面を参照面と し、 他の誘電体膜の表面を動作面と して被測定物質を固定 化するように構成したことを特徴とするものである。 この差動式 S P R センサーは、 プロープ型 S P Rセンサーのみならず、 いわゆるフローイ ンジェクショ ン型 S P Rセンサーにも適用することができるが、 以下の 理由から、 特にプローブ型 S P Rセンサーにおいて有利に採用される。 差動式 S P Rセンサーは、 ①ベースライ ンの決定を必要と しない、 ② 非特異的吸着による測定精度の低下を抑えることができる、 ③温度変化 による測定精度の低下を抑えることができる、 という利点を有する。 こ こで利点②③については、 差動式以外の方法でも実現することができる 。 ②については測定試料中に非特異的結合を抑制する薬品を加える、 ③ については温度制御をする等で達成できる。 しかしながら、 プロープ型 の場合は、 センサーを試料 (例えば海や体内の組織等) に浸すことで測 定を完了させることが狙いなので、 前記解決方法を採用することはでき ず、 したがって、 プローブ型センサーにとって差動式の方法は有用な手 段となる。 また利点.①については、 フローインジェクション型の場合に は、 一般的に実験室で十分な時間をかけて実験ができる場合が多く、 ま た、 流路の変更も容易であるため、 差動式の方法はさほど大きなメ リ ツ トを有しない。 これに対して、 測定の簡便性、 迅速性が要求されるプロ ープ型において差動式はとりわけ有用である。
金属膜上に誘電体層を形成する構成についても、 特にプローブ型にと つて有用である。 フローインジェクションに差動式を用いる場合には、 抗体を固定化した面と固定化していない面をある程度の距離を離して同 一の金属膜上に形成させれば差動式の方法を実現することができる。 こ の場合、 誘電体層は必ずしも必要ではなく、 異なる厚みの誘電体層を用 いた場合には、 前述の 「ある程度の距離を離して」 という作業を省く こ とができるという効果を有するに留まる。 これに対して、 プローブ型の 場合は、 「ある程度の距離を離して」という作業で抗体を固定化した面と 固定化しない面とを作製しても、 それらを独立に観測することはできな い。 したがって、 プローブ型においては、 膜厚の異なる誘電体を設ける ことが必須の構成要素となる。
プローブ型 S P Rセンサーは、 光源と、 センサープローブと、 光検出 器とを有し、 該プロープは、 センサー面を備えた金属膜と、 反射面とを 有しており、 該プロープの基端側は光の入出端部を構成しており、 該光 源は該プローブの基端側に光学的に連結されており、 該光検出器は該金 属膜及ぴ該反射面を介して該プローブの基端側から出射された光を受光 するように構成されている。 プローブ型センサー自体は公知であり、 例 えば図 7、 図 8に示すような従来のプローブ型センサ一の構成を本発明 に採用することもできる。
しかしながら、 本出願人の研究によると、 該センサー面と該反射面と をプローブの長さ方向に対して傾斜状に延出する傾斜面に形成し、 これ らを互いに直角に会合するように構成することで、 従来のプローブ型セ ンサ一に比べて、 測定感度が良好なプロ一プ型 S P Rセンサ一を提供で きることがわかった。 このようなプロープ型センサーにおいて、 センサ 一面に対する光の入射角は好ましくは 6 0度から 8 0度の間である。 また、 本発明が採用した測定法は、 金属膜上に被測定物質を固定化し た面と固定化していない面とを形成してなる差動式 S P Rセンサーであ つて、 該金属膜に膜厚の異なる誘電体膜を複数形成し、 一つの誘電体膜 の表面を参照面とし、 他の誘電体膜の表面を動作面として被測定物質を 固定化してなる差動式 S P Rセンサーを用いた測定法であって、 該動作 面における測定結果と該参照面における測定結果とを比較することで測 定物質を測定することを特徴とするものである。 従来の測定法を代表的な用途である抗原の測定を例にとると以下の とおりである。 抗原と特異的に反応する抗体がセンサー表面に固定化さ れる。 最初に、 抗原を含まない緩衝液の共振角を測定する。 次に抗原を 含む緩衝液で一定時間満たして抗原抗体反応を生じさせる。 反応後、 抗 原を含まない緩衝液でセンサー表面を洗浄し、 反応後の共振角を測定す る。 そして、 抗原抗体反応の前後での共振角の差を求め、 それを抗原濃 度に換算する。 これに対して、 本発明に係る測定法では、 抗原を含む緩 衝液を動作面および参照面で測定して比較することで、 抗体濃度を算出 するようにしたものである。
本発明に係る S P Rセンサーは好適には抗原抗体反応の検出に用い られるが、 本発明の S P Rセンサーは抗原抗体反応の測定に限定される ものではなく、 相互作用の様子が 「結合」 という場合に広く適用するこ とができ、 例えば、 核酸あるいは核酸アナログのハイプリダイゼーショ ン、 核酸とタンパク質の相互作用、 レセプターと リガンドの結合、 糖鎖 同士の相互作用等に用いることもできる。 センサー面に固定化される被 測定物質についても、 測定物質に応じて抗体以外の物質が固定化される 。 金属膜に付着させる誘電体層については、 実施の形態ではプラズマ重 合膜を用いたが、 膜形成手段はこれに限定されるものではなく、 他の公 知の薄膜形成手段を適宜採用することができる。 誘電体層は実施の形態 では H M D S膜であるが、 他の誘電体層を用いてもよい。 以下に述べる 実施の形態では、 膜厚の異なる誘電体膜を二つ形成することで動作面、 参照面を構成しているが、 例えば、 膜厚の異なる三つの誘電体膜を設け 、 二つにそれぞれ異なる抗体を固定化し、 他の一つを参照面として、 同 時に二つの物質を測定することもできる。 図面の簡単な説明
第 1図は ( a ) は S P Rセンサーの原理図、 ( b ) は観測される信号 であり、 第 2図 ( a ) は差動式 S P Rセンサーの原理図、 ( b ) は差動式 S P Rセンサーで観測される信号であり、 第 3図はプローブ型 S P Rセ ンサ一の正面図、 側面図およぴ端面図であり、 第 4図はセンサー面を示 すセンサープローブの拡大図であり、 第 5図は口ーブ型 S P Rセンサー の固定部分の概略図であり、 第 6図はプローブ型 S P Rセンサーの全体 図であり、 第 7図は公知のプローブ型 S P Rセンサー ( J o r g e n s o n e t . a 1 . 1 9 9 1 ) の模式図であり、 第 8図は公知のプロ一 ブ型 S P Rセンサー (C h a i 1 1 e t . a 1 1 9 9 7 ) の模式図で あり、 第 9図は差動式プローブ型 S P Rセンサーで得られた反射光強度 と波長の関係を示す図であり、 第 1 0図は動作面と参照面それぞれで得 られる結果を示す図であり、 第 1 1図は差動式で得られる結果を示す図 であり。 第 1 2図は差動式と一般的な方法を用いた場合に得られる B S A抗体濃度に対する検量線を表す図である。 発明を実施するための最良の形態
差動式 S P Rセンサーについて図 2に基づいて説明する。 図 2 ( a ) の模式図は、 同一の金属膜上に膜厚の異なる誘電体層を形成させて段差 状のセンサー面を構成し、 その一方の面に抗体を固定化することを示し ている。 この場合に得られる信号は図 2 ( b ) に示すように、 誘電体層 の厚い面と誘電体層の薄い面それぞれからの二つの共鳴波長である。 す なわち、 それぞれの面の誘電体層の厚さに依存する共鳴波長を得ること で、 それぞれの共鳴波長変化分を明確に観測することができる。
センサープローブの構成について図 3に基づいて説明する。 図 3は本 発明に係るセンサープローブの基本的構成を示すもので、 特に差動式に 限定するものではない。 センサープロープは長尺状の本体を有し、 先端 側 (図では下端側) には、 センサー面を備えた金属膜と、 反射鏡 (反射 面) とが形成されており、 一方該プロープの基端側 (図では上端側) は 光の入出端部を構成している。 該センサー面と該反射面とはプロープの 長さ方向に対して傾斜状に延出する傾斜面に形成されていると共に、 互 いに直角に会合するように構成されている。 センサープローブは図のも のでは上から平行光線が入射される。 センサ一面は光路に対して直交す る面に対して 6 8度の角度で傾斜状に延出しており、 上端面から入射し た光はセンサー面に入射角 6 8度で入射するように設計されている。 反 射面は光路に対して直交する面に対して 2 2度の角度で傾斜状に延出し ている。 センサー面で反射した光は反射面によって反射され、 上端面に 出射するように設計されている。 このセンサーでは、 初めに反射面で反 射した後にセンサー面に入射角 6 8度で入射する光路も考えられるが、 それぞれの光路で得られる S P R信号は同じである。 センサー面に対す る光の入射角は 6 8度に限定されるものではなく、 好ましくは 6 0度か ら 8 0度の間の入射角を適宜選択することが可能である。
センサープローブのセンサー面は、 金を膜厚 5 2 n m、 クロムを 2 n mスパッタリ ングすることによって作製してある。 反射面はクロムを約 1 0 0 n mスパッタリ ングすることで作製した。 センサープローブは B K 7ガラスを使用してある。 センサープローブの直径は 3 mni、 長さは 1 5 mniである。 尚、 図 7、 図 8は公知のプローブ型 S P Rセンサーを 示す図であって、 本発明に係る差動式の方式はこれらの公知のプローブ 型 S P Rセンサーに適用することも可能である。
図 4に差動式 S P Rセンサーのセンサープローブの拡大図を示す。 セ ンサ一面の左右それぞれに膜厚の異なる誘電体層を形成させて差動式の センサープローブを構成する。 センサ一面は金属膜上に膜厚の異なるプ ラズマ重合膜を形成して差動式 S P Rセンサーを構成する。 誘電体層は H e x a m e t h y l d i s i 1 o x a n e (HMD S ) をプラズマ重 合することで作製した。 HMD Sプラズマ重合膜は金属膜上に強固に形 成され、 また疎水性であることから、 非特異的なタンパク質の吸着を妨 げる。 プラズマ重合膜の厚さは、 それぞれの共鳴波長が十分離れるため に必要な厚さと して、 それぞれ l n m、 3 4 n mと した。 プラズマ重合 は、 ペルジャ一内の真空度 1. 3 P a とした後、 m o n o m e rガスを
4 0 P a導入し、 R F発振器によって m o n o m e rガスをプラズマと する。 実施例では、 H e x a m e t h y 1 d i s i 1 o x a n e (HM D S ) (信越シリ コーン) を m o n o m e rガスとして用い、重合時間は 参照面 5秒間、 動作面 1 5 0秒間であり、 発振出力はいずれの場合も 1
5 0Wである。
図 4において、 センサー面 ( a ) で示した面には膜厚の薄いプラズマ 重合膜のみを形成した。 センサー面 (b ) で示した面には膜厚の厚いプ ラズマ重合膜を形成し、 プラズマ重合膜上にゥシ血清アルブミン (B o i n e S e r u m A l b u m i n : B S A) を固定ィヒした。 本明 細書では、 誘電体層が薄い面で B S Aが固定化されていない面を参照面 、 誘電体層が厚く B S Aが固定化されている面を動作面という。 もちろ ん、 誘電体層の膜厚が薄い方に B S Aを固定化して動作面としてもよい 。 センサープローブへの抗体の固定化については、 リ ン酸緩衝液に 1 0 g / 1 のゥシ血清アルプミンを混合した液体にセンサープローブを約 8 時間浸すことで、 ゥシ血清アルプミンをセンサープローブへ固定化した 。 この際、 センサープローブの参照面には粘着テープを貼り、 B S Aが 参照面に固定されるのを防止した。
図 5に基づいてセンサープローブの固定について説明する。 図 5では 筒状の固定部材に対して右側からセンサープローブを挿入するように記 载してあり、 該固定部材には左側から光ファイバ一を挿入するようにな つている。 光ファイバ一のコアの直径は 2 0 0 mであり、 開口数は 0 . 3 9である。 光ファイバ一からの光を平行光線とするために、 本実施 例では平凸レンズを用いた。 用いた平凸レンズの直径は 4 mmであり、 焦点距離は 4 mmである。 また、 このレンズはセンサープローブからの 反射光線を、 光ファイバ一端面に焦点を持つ集光光線あるいは収束光線 とする働きも担っている。
図 6に基づいてプローブ型 S R Pセンサーの全体構成について説明 する。 5 0Wのハロゲンランプ (光源) からの光をレンズと鏡を用いて 平行光線とする。 平行光線は、 ビームスプリ ツターを通してレンズによ つて光ファイバ一に導かれる。 図中の光ファイバ一の端面には、 センサ 一プローブとセンサープローブの固定部材が接続されている。 センサー プローブからの反射光はビームスプリ ツターと光ファイバ一を通して、 分光器に導かれる。 分光器からの光は C C Dによって検出され、 コンビ ユータによって共鳴波長が読み取られる。
図 9に差動式 S P Rセンサープローブで得られた反射光強度と波長 の関係を示す。 図から二つの共鳴波長が確認できる。 これらはそれぞれ 、 プラズマ重合膜が厚く B S Aが固定化されている面での共鳴波長と、 プラズマ重合膜が薄く B S Aが固定化されていない面での共鳴波長を示 している。 ここでは、 プラズマ重合膜が厚くかつ B S Aが固定されてい る面を動作面、 プラズマ重合膜が薄く B S Aが固定化されていない面を 参照面と呼ぶ。
図 1 0に差動式 S P Rセンサ—で抗原抗体反応を測定した結果の一 例を示す。 図では動作面で得られた結果と、 参照面で得られた結果とを 併せて示した。 両者の結果において ( a ) の領域で抗体を含まない緩衝 液を 1 0分間測定し、 ( b )の領域で抗体を含む緩衝液を 2 0分間測定す る。 再び ( c ) の領域で抗体を含まない緩衝液を 1 0分間測定する。 図 1 0から、 動作面で得られた結果では (b ) の領域において、 抗原 抗体反応による共鳴波長の増加が観測されていることが判る。 一方で、 参照面での領域 (b ) では、 試料全体の誘電率変化のみに依存する変化 しか確認できない。 一般的な S P Rセンサーでは、 図 1 0の動作面での 信号における領域 ( a ) と ( c ) の共鳴波長を比較することで、 抗体の 結果量を定量する。
図 1 1 に図 1 0における動作面で得られた共鳴波長引く参照面で得 られた信号の時間変化を示した。 図 1 1においても、 図 1 0の動作面か ら得られた結果と同様に、 領域 (b ) における共鳴波長の増加が確認で きる。 この場合、 抗体の結合量は領域 (b ) の開始時刻の共鳴波長と領 域 (b ) の終止時刻の共鳴波長の変化分で特徴付けられると考えられる 。 この方法に従い抗体濃度算出する場合、 領域 ( a ) 及び ( c ) に示さ れる測定は不要である。
図 1 2に一般的な方法で得られた抗体濃度に対する検量線と差動式 を用いた場合の検量線を併せて示した。 図 1 2の結果から両者の方法に 基づく抗体濃度の算出方法には大きな相違はないと判断できる。 以上の 考察から、 差動式のプローブ型 S P Rセンサーを用いた場合、 測定試料 のみを必要とする測定が可能となる。 また、 測定試料中に様々な物質が 存在する場合、 それらの物質が非特異的に金属膜へ結合し測定制度の低 下となることが予想できる。 しかし、 差動式プローブ型 S P Rセンサー の場合、 動作面の信号から参照面の信号を引いた値を有効な値とするの で、 それら非特異的な結合に共鳴波長変化は相殺されると考えられる。 産業上の利用可能性
本発明に係る S P Rセンサーは、 生体中あるいは環境中に存在する特 定のタンパク質や化学物質を測定することに利用できる。 特に、 プロ一 ブ型 S P Rセンサーにおいては、 試料を i n s i t uで測定すること ができる。

Claims

請 求 の 範 囲
1 . 金属膜上に被測定物質を固定化した面と固定化していない面とを形 成してなる差動式 S P Rセンサーであって、 該金属膜に膜厚の異なる誘 電体膜を複数形成し、 一つの誘電体膜の表面を参照面と し、 他の少なく とも一つの誘電体膜の表面を動作面と して被測定物質を固定化するよう に構成したことを特徴とする差動式 S P Rセンサー。
2 . 請求項 1において、 前記センサーはプローブ型 S P Rセンサーであ り、 プローブのセンサー面を形成する金属膜に動作面と参照面とを形成 したことを特徴とする差動式 S P Rセンサー。
3 . 請求項 2において、 前記センサーは、 光源と、 センサープローブと 、 光検出器とを有し、 該プローブはセンサー面を備えた金属膜と、 反射 面とを有しており、 該プローブの基端側は光の入出端部を構成しており 、 該光源は該プロープの基端側に光学的に連結されており、 該光検出器 は該金属膜及ぴ該反射面を介して該プロープの基端側から出射された光 を受光するように構成されていることを特徴とする差動式プローブ型 S P Rセンサー。
4 . 請求項 3において、 前記金属膜及ぴ反射面はプロープの先端側に形 成してあることを特徴とする差動式プローブ型 S P Rセンサー。
5 . 請求項 4において、 センサー面に対する光の入射角は略 6 0度から 略 8 0度の間であることを特徴とする差動式プローブ型 S P Rセンサー
6 . 請求項 4において、 該センサー面と該反射面とはプロープの長さ方 向に対して傾斜状に延出する傾斜面に形成されていると共に、 互いに直 角に会合するように構成されていることを特徴とする差動式プローブ型 S P Rセンサー。
7 . 請求項 5において、 該センサー面と該反射面とはプローブの長さ方 向に対して傾斜状に延出する傾斜面に形成されていると共に、 互いに直 角に会合するよ うに構成されていることを特徴とする差動式プローブ型 S P Rセンサ一。
8 . 金属膜上に被測定物質を固定化した面と固定化していない面とを形 成してなる差動式 S P Rセンサーであって、 該金属膜に膜厚の異なる誘 電体膜を複数形成し、 一つの誘電体膜の表面を参照面と し、 他の少なく とも一つの誘電体膜の表面を動作面として被測定物質を固定化してなる 差動式 S P Rセンサーを用いた測定法であって、 該動作面における測定 結果と該参照面における測定結果とを比較することで測定物質を測定す ることを特徴とする差動式 S P Rセンサーを用いた測定法。
9 . 請求項 8において、 該動作面における共鳴波長と該参照面における 共鳴波長とを比較することを特徴とする差動式 S P Rセンサーを用いた 測定法。
1 0 . 請求項 9において、 該センサーはプローブ型センサーであること を特徴とする差動式 S P Rセンサーを用いた測定法。
PCT/JP2001/004255 2000-05-25 2001-05-22 Capteur par resonance plasmonique de surface (spr) et procede de mesure utilisant ce capteur WO2001090728A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA 2407793 CA2407793A1 (en) 2000-05-25 2001-05-22 Differential spr sensor and measuring method using it
AU2001256790A AU2001256790A1 (en) 2000-05-25 2001-05-22 Differential spr sensor and measuring method using it
EP01930238A EP1306662A4 (en) 2000-05-25 2001-05-22 DIFFERENTIAL SPR SENSOR AND MEASURING PROCESS WITH THIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000154614A JP2001337036A (ja) 2000-05-25 2000-05-25 差動式sprセンサー及び該センサーを用いた測定法
JP2000-154614 2000-05-25

Publications (1)

Publication Number Publication Date
WO2001090728A1 true WO2001090728A1 (fr) 2001-11-29

Family

ID=18659684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004255 WO2001090728A1 (fr) 2000-05-25 2001-05-22 Capteur par resonance plasmonique de surface (spr) et procede de mesure utilisant ce capteur

Country Status (6)

Country Link
US (1) US20030113231A1 (ja)
EP (1) EP1306662A4 (ja)
JP (1) JP2001337036A (ja)
AU (1) AU2001256790A1 (ja)
CA (1) CA2407793A1 (ja)
WO (1) WO2001090728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057731B2 (en) * 2002-09-27 2006-06-06 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuated total reflection

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149383B2 (en) * 2003-06-30 2006-12-12 Finisar Corporation Optical system with reduced back reflection
EP1512961B1 (en) * 2003-09-02 2010-01-13 FUJIFILM Corporation Measuring apparatus based on surface plasmon resonance
JP2005121461A (ja) * 2003-10-16 2005-05-12 Tama Tlo Kk 光ファイバセンサおよびそれを用いた測定装置
US20050106068A1 (en) * 2003-11-18 2005-05-19 Abdul Malik Sol-gel dendron separation and extraction capillary column
US7151597B2 (en) * 2003-12-05 2006-12-19 Agilent Technologie, Inc Optical wavelength standard and optical wavelength calibration system and method
JP2005257455A (ja) * 2004-03-11 2005-09-22 Fuji Photo Film Co Ltd 測定装置および測定ユニット
US20060068424A1 (en) * 2004-08-13 2006-03-30 Fuji Photo Film Co., Ltd. Biosensor
JP2006098345A (ja) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd センサの固定量測定装置及び方法
US20070176728A1 (en) * 2006-01-31 2007-08-02 Ranganath Tirumala R Tiled periodic metal film sensors
CN101395462B (zh) * 2006-03-15 2011-08-31 欧姆龙株式会社 表面等离子体共振传感器用芯片和表面等离子体共振传感器
JP4893032B2 (ja) * 2006-03-15 2012-03-07 オムロン株式会社 光学部品、光学センサ及び表面プラズモンセンサ
JP5621983B2 (ja) * 2008-09-01 2014-11-12 日立化成株式会社 Sprセンサー
WO2010087142A1 (ja) 2009-01-27 2010-08-05 パナソニック株式会社 表面プラズモン共鳴センサ、局在プラズモン共鳴センサおよびその製造方法
ES2381087B1 (es) * 2009-04-07 2013-01-30 Universidad Publica De Navarra Sensores de fibra optica basados en el efecto de resonancia de plasmones superficiales utilizando oxidos metalicos conductores transparentes
WO2010134470A1 (ja) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ
JP5516197B2 (ja) * 2010-07-30 2014-06-11 コニカミノルタ株式会社 プラズモン励起センサおよび該センサを用いたアッセイ法
CN102213675A (zh) * 2011-03-31 2011-10-12 大连理工大学 角度调谐式多通道光纤表面等离子体共振传感探头
JP6248403B2 (ja) * 2013-03-28 2017-12-20 セイコーエプソン株式会社 検出装置及び電子機器
US10254228B2 (en) 2014-12-09 2019-04-09 Konica Minolta, Inc. Detection chip and detection method
JP6627778B2 (ja) * 2014-12-09 2020-01-08 コニカミノルタ株式会社 検出装置および検出方法
US11502477B2 (en) * 2020-02-26 2022-11-15 Lumentum Operations Llc In-fiber retroreflector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249240A (ja) * 1985-07-01 1987-03-03 プルーテック リミティド 分光分析用光学的プロ−ブとしての波動ガイド
JPH05288672A (ja) * 1992-04-06 1993-11-02 Nippon Laser Denshi Kk 被センシング物質の差動検出方法
JPH06506772A (ja) * 1991-04-26 1994-07-28 ブリテイッシュ・テクノロジー・グループ・リミテッド 光学プローブヘッド
JPH07239297A (ja) * 1994-02-28 1995-09-12 Shimadzu Corp 赤外分光光度計
JPH0875639A (ja) * 1994-09-09 1996-03-22 Agency Of Ind Science & Technol スラブ光導波路を利用した光吸収スペクトル測定装置
WO1997037258A1 (en) * 1996-03-29 1997-10-09 Midwest Research Institute Fiber-optic sensing device
JPH1038797A (ja) * 1996-07-18 1998-02-13 Fuji Electric Co Ltd 微量油分検知装置
JPH11271307A (ja) * 1998-03-25 1999-10-08 Dainippon Printing Co Ltd 光学的分析装置用測定チップ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8804074D0 (sv) * 1988-11-10 1988-11-10 Pharmacia Ab Sensorenhet och dess anvaendning i biosensorsystem
DE4305830C1 (de) * 1993-02-26 1994-08-18 Claus Dr Rer Nat Renschen SPR-Sensor
DE4424336A1 (de) * 1994-07-11 1996-01-18 Sigl Hubert Vorrichtung und Verfahren zur differentiellen Messung der Adsorbtion von Molekülen oder Ionen an Oberflächen mittels Oberflächenplasmonenresonanz
DE4424628B4 (de) * 1994-07-13 2005-11-17 Lau, Matthias, Dipl.-Ing. Verfahren und Anordnung zur Brechzahlmessung verschiedener Medien
WO1997015821A1 (en) * 1995-10-25 1997-05-01 University Of Washington Surface plasmon resonance probe systems based on a folded planar lightpipe
JP4185185B2 (ja) * 1997-05-08 2008-11-26 征夫 軽部 部分二重鎖dnaを利用したdnaの検出方法
JP2000039401A (ja) * 1998-03-24 2000-02-08 Dainippon Printing Co Ltd 表面プラズモン共鳴バイオセンサ―用測定セル及びその製造方法
US6111652A (en) * 1998-07-14 2000-08-29 Texas Instruments Incorporated High throughput surface plasmon resonance analysis system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249240A (ja) * 1985-07-01 1987-03-03 プルーテック リミティド 分光分析用光学的プロ−ブとしての波動ガイド
JPH06506772A (ja) * 1991-04-26 1994-07-28 ブリテイッシュ・テクノロジー・グループ・リミテッド 光学プローブヘッド
JPH05288672A (ja) * 1992-04-06 1993-11-02 Nippon Laser Denshi Kk 被センシング物質の差動検出方法
JPH07239297A (ja) * 1994-02-28 1995-09-12 Shimadzu Corp 赤外分光光度計
JPH0875639A (ja) * 1994-09-09 1996-03-22 Agency Of Ind Science & Technol スラブ光導波路を利用した光吸収スペクトル測定装置
WO1997037258A1 (en) * 1996-03-29 1997-10-09 Midwest Research Institute Fiber-optic sensing device
JPH1038797A (ja) * 1996-07-18 1998-02-13 Fuji Electric Co Ltd 微量油分検知装置
JPH11271307A (ja) * 1998-03-25 1999-10-08 Dainippon Printing Co Ltd 光学的分析装置用測定チップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1306662A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057731B2 (en) * 2002-09-27 2006-06-06 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuated total reflection

Also Published As

Publication number Publication date
JP2001337036A (ja) 2001-12-07
EP1306662A1 (en) 2003-05-02
US20030113231A1 (en) 2003-06-19
CA2407793A1 (en) 2001-11-29
EP1306662A4 (en) 2006-01-18
AU2001256790A1 (en) 2001-12-03

Similar Documents

Publication Publication Date Title
WO2001090728A1 (fr) Capteur par resonance plasmonique de surface (spr) et procede de mesure utilisant ce capteur
US5229833A (en) Optical sensor
US20090116020A1 (en) Biosensor, method for producing the same and sensor measurement system
US20080074671A1 (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
Kunz et al. Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices
US7027159B2 (en) Sensor utilizing evanescent wave
Goddard et al. Real-time biomolecular interaction analysis using the resonant mirror sensor
JP2003139694A (ja) 測定プレート
JPH06500636A (ja) 化学、生化学および生物学的な測定試料の特異物質を選択的に検出する光学的な方法
JPH09257699A (ja) 表面プラズモン共鳴センサ装置
US7012693B2 (en) Sensor utilizing attenuated total reflection
US7267797B1 (en) Nanofabricated photon tunneling based sensor
Wiki et al. Compact integrated optical sensor system
JP3592065B2 (ja) 検出装置及びそれに用いる表面プラズモンセンサー
JP2004170286A (ja) 単色光を用いた差動式sprセンサー及び該センサーを用いた測定法
JP2005221274A (ja) 測定方法および測定装置
Dahne et al. Detection of antibody-antigen reactions at a glass-liquid interface: A novel fibre-optic sensor concept
KR20200021571A (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
JPH0996605A (ja) バイオセンサ
WO2014178384A1 (ja) 標的物質検出装置及び標的物質の検出方法
JP2003075334A (ja) 全反射減衰を利用したセンサー
JP2003065946A (ja) 全反射減衰を利用したセンサー
JP2002195942A (ja) 全反射減衰を利用したセンサー
JP4014805B2 (ja) 全反射減衰を利用したセンサー
JPH08193946A (ja) バイオセンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2407793

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10296194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001930238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001930238

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001930238

Country of ref document: EP