WO2001021969A1 - Palier a pression dynamique dote de caracteristiques de demarrage ameliorees - Google Patents

Palier a pression dynamique dote de caracteristiques de demarrage ameliorees Download PDF

Info

Publication number
WO2001021969A1
WO2001021969A1 PCT/JP2000/006297 JP0006297W WO0121969A1 WO 2001021969 A1 WO2001021969 A1 WO 2001021969A1 JP 0006297 W JP0006297 W JP 0006297W WO 0121969 A1 WO0121969 A1 WO 0121969A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
bearing
dynamic pressure
shaft
thrust plate
Prior art date
Application number
PCT/JP2000/006297
Other languages
English (en)
French (fr)
Inventor
Hisao Takeuchi
Osamu Komura
Kaoru Murabe
Makoto Otsuki
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP00961008A priority Critical patent/EP1132633A4/en
Priority to US09/856,093 priority patent/US6702464B1/en
Priority to KR1020017006153A priority patent/KR20010080462A/ko
Publication of WO2001021969A1 publication Critical patent/WO2001021969A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • G11B19/2036Motors characterized by fluid-dynamic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a storage device such as a hard disk drive (hereinafter referred to as “HDD”) and a dynamic pressure bearing of a spindle motor used for driving a polygon mirror of a barcode scanning device.
  • HDD hard disk drive
  • the present invention relates to a dynamic pressure bearing having improved starting characteristics.
  • FIG. 8 shows an example of a spindle motor according to the related art.
  • a cylindrical shaft 1 and a disk-shaped thrust plate 4 which is attached to one end of the shaft 1 perpendicularly to the shaft are fixed to a base 10.
  • a hollow cylindrical sleeve 3 is fitted on the outer peripheral surface parallel to the shaft of the shaft 1 with a predetermined gap so as to be relatively rotatable, and a dynamic pressure bearing is formed between these members.
  • a radial bearing portion that generates a dynamic pressure in the radial direction perpendicular to the axis is formed, and the thrust plate 4 and the thrust plate
  • a thrust bearing portion that generates a dynamic pressure in a thrust direction that is a direction parallel to the axis is formed between the sleeve 3 and the one end surface of the sleeve 3 facing the sleeve 4.
  • a groove 5 for generating dynamic pressure indicated by a broken line is provided on the surface of the thrust plate 4 on the side facing the sleeve 3.
  • the lower end surface of the sleeve 3 facing the thrust plate 4 is referred to as a thrust facing surface 13.
  • the rotor 17 is fixed to the sleeve 3, so that the rotor 17 can rotate about the shaft 1 together with the sleeve 3.
  • an information medium (not shown) (for HDD) Rigong Mirai (in the case of a barcode scanning device) is installed.
  • a rotor magnet 18 is mounted on the inner peripheral surface of the rotor 17, and the rotor magnet 18 faces the stator coil 19 mounted on the base 10.
  • FIG. 9 shows the details of the dynamic pressure generating groove 5 provided in the thrust plate 4.
  • the groove 5 is formed on the surface of the thrust plate 4 as a plurality of spiral grooves inclined at a constant angle with respect to the circumferential direction, and the depth of the groove is generally several meters. (1-5 / m).
  • FIG. 9 shows an example in which the groove 5 is provided on the surface of the thrust plate 4, the groove 5 may be provided on the thrust facing surface 13 side of the sleeve 3.
  • the thrust dynamic pressure is generated by the action of the groove 5 due to the relative movement between the thrust plate 4 and the thrust facing surface 13 which is one end surface of the sleeve 3. Due to the generation of these two dynamic pressures, the rotating member such as the sleeve 3, the rotor 17 and the like are brought into a non-contact state with the shaft 1 and the thrust plate 4, which are the fixed side members, and rotate around the shaft 1.
  • FIG. 10 is an enlarged perspective view showing only the dynamic bearing portion of the spindle motor shown in FIG.
  • a thrust plate 4 is fixed to one end of a shaft 1 perpendicular to the shaft, and a sleeve 3 indicated by a broken line is rotatably fitted on the outer peripheral surface of the shaft 1.
  • the spindle motor is started by being energized, the sleeve 3 and other rotating members start rotating with their sleeves in contact with the sleeve 3 and the thrust plate 4.
  • a fluid such as air is introduced between the sleeve 3 and the thrust plate 4 by the action of the groove 5 provided in a spiral shape by the rotation of the sleeve 3 in the direction of the arrow 6, and along the direction shown by the arrow 7.
  • the thrust plate 4 is pushed into the inner periphery.
  • the land between the groove 5 on the surface of the thrust plate 4 and the outer peripheral surface of the shaft 1 There is a part 9, wherein the pushed-in fluid is compressed between the land part 9 and the edge of the groove 5 to generate a dynamic pressure, and acts to lift the sleeve 3.
  • the thrust dynamic pressure is locally generated at the edge of the groove 5 near the land 9.
  • a groove 2 inclined with respect to the axial direction is provided on the outer peripheral surface of the shaft 1, and the groove 2 faces the inner peripheral surface of the sleeve 3.
  • the groove 2 is not necessarily required for generating radial dynamic pressure.
  • the rotating side member (sleeve 3 in the illustrated example) is eccentric from the axis of the fixed side member (same as shaft 1) separately from rotation (rotation) with respect to the axis. Makes a whirling rotation (orbit). A phenomenon called half-whirl may occur. When this half-whirl occurs, functional components such as an information medium and a polygon mirror mounted on the rotor 17 also oscillate, which hinders the use of these components.
  • the groove 2 provided on the outer peripheral surface of the shaft 1 has an effect of avoiding such a half-whirl phenomenon, it is effective to provide the groove 2.
  • the groove 2 is a groove inclined with respect to the axis as shown in the figure, a groove parallel to the axis, or a herringbone-shaped groove, the same applies to avoiding the half-whirl phenomenon.
  • the effect of is obtained.
  • the groove 2 is inclined as shown in the figure, the fluid is pushed from the upper side to the lower side of the figure due to its own viscosity by the rotation of the inner peripheral surface of the sleeve 3 in the direction of the arrow 8 in the figure, and the thrust.
  • the groove 2 may be provided on the inner peripheral surface of the sleeve 3 instead of the shaft 1 side.
  • the pressure distribution of the fluid in the groove 2 provided in the radial bearing portion is in the groove 2 due to the movement of the sleeve 3 opposed to the groove 2 indicated by the arrow 8, as in the thrust bearing portion described above. Due to the viscous action of the fluid itself, the fluid is pressed into the groove 2 along the direction of the arrow 8 from the upper side (the right side in the figure) of the arrow 8 crossing the groove 2 to the lower side (the same, the left side). As a result, it is estimated that there is an uneven pressure distribution in which the pressure near the edge of the lower groove 2 increases.
  • FIG. 11 shows a state in which the dynamic pressure bearing according to the above configuration swings due to an external factor, and the sleeve 3 is relatively inclined with respect to the shaft 1 and the thrust plate 4.
  • the shaft 1 Part A on the upper right between the thrust plate 3 and part B on the lower left, and part C on the left end between the thrust plate 4 and the thrust facing surface 13 approach each other.
  • the parallel lines shown in the figure schematically show the dynamic pressures generated in the respective bearing portions when they are relatively inclined in the figure.
  • section A when the shaft 1 and the sleeve 3 approach each other, the dynamic pressure increases as the wedge effect of the dynamic pressure due to the entrainment of the fluid in that part increases and approaches.
  • Part B due to the increasing dynamic pressure of the parts A and B, a drag against the approach acts between the shaft 1 and the sleeve 3, and the effect of avoiding contact is avoided as long as the drag overcomes the swing from the outside. Spawn.
  • the conventional dynamic pressure bearing has several problems.
  • the pressure when the fluid to be introduced is a gas such as air, the above-mentioned local pressure
  • the water vapor component contained in the air is compressed in the relevant portion due to the increase in the pressure, which may lead to condensation.
  • the sleeve 3 and the thrust plate 4 come into contact with the moisture remaining. Stop. Or stop with the shaft 1 and the sleeve 3 still in contact. As a result, these parts come into close contact with each other due to the action of moisture, and the phenomenon of poor startup may occur when the next attempt is made to restart.
  • the rotating side member is lowered by its own weight, and stops while the thrust facing surface 13, which is the lower surface of the sleeve 3, is in contact with the thrust plate 4.
  • both are flat surfaces, they are in full contact with each other, and the next restart requires a large starting torque to overcome the resistance due to this contact. For this reason, it is necessary to increase the motor capacity, and there is a problem that power consumption increases.
  • the bearings rotate while the bearing members are in contact with each other until the rotating member floats due to the action of dynamic pressure. If they are adversely affected, or if they are severely worn, they will seize and the durability and reliability of the hydrodynamic bearing or spindle motor will be impaired.
  • Japanese Patent Application Laid-Open No. 60-234210 discloses that at least An invention is disclosed in which a convex surface is formed on one surface of a member constituting a thrust bearing.
  • FIG. 12 shows the thrust bearing.
  • the shaft 33 rotates in the direction of the arrow, facing the dynamic pressure generating groove 32 provided in the thrust plate 31.
  • a thrust member 34 is fixed to the lower end surface of the shaft 33 in the drawing, and faces the thrust plate 31. Both of them constitute a thrust bearing.
  • the thrust member 34 has a spherical surface 35 formed with a predetermined curvature R on a surface facing the thrust plate 31 so as to protrude by a protruding amount N.
  • the thrust plate 31 and the thrust member 34 are kept in a non-contact state by the action of dynamic pressure during rotation, but both members are stopped during rotation. Are in contact. However, since the contact area at this time is almost point contact, an excessive torque is not required at the time of starting, and the starting and the floating of the rotating member are performed without galling.
  • the center thereof may contact the thrust plate 31. Some will not be able to emerge.
  • an amorphous hard carbon film is formed on one of the sliding surfaces of the thrust member, and the other sliding surface (formed of a ceramic material) is void-occupied.
  • An invention is disclosed in which the maximum void diameter is 10% or less and the friction coefficient between the two members is thereby reduced by 6% or less.
  • the present invention eliminates the above-mentioned disadvantages of the related art, and realizes a substantially uniform pressure distribution by avoiding the occurrence of local high pressure in the dynamic pressure generating groove.
  • the purpose of the present invention is to eliminate functional impairment at the time of bearing startup due to dew condensation in the dynamic pressure gas bearing, and at the same time, to realize a dynamic pressure bearing with strong opposition to oscillation in the thrust bearing.
  • the present invention further includes a method of reducing the maximum pressure generated in the groove by making the pressure distribution in the groove for generating dynamic pressure substantially uniform, thereby preventing dew condensation on the dynamic pressure gas bearing.
  • the present invention avoids contact between the thrust plate and the thrust-facing surface on the entire surface when the bearing is stopped, avoids problems such as wear and energy loss at the time of startup in the conventional technology, and reduces the bearing with a small startup torque. It is an object of the present invention to provide a dynamic pressure bearing in which a rotating-side member is reliably lifted from a fixed-side member and has excellent swing resistance.
  • the present invention provides a spindle motor which improves the above-mentioned starting characteristics and realizes stable rotation excellent in falling rigidity, and is provided with the spindle motor to improve durability and reliability. It is an object to provide a high storage device and a barcode scanning device.
  • one embodiment according to the present invention has opposing surfaces that face each other with a predetermined gap in a radial direction that is a direction perpendicular to the axis of the bearing or a thrust direction that is a direction parallel to the axis of the bearing. It is composed of a rotating side member and a fixed side member, and the two members are brought into a non-contact state by utilizing a dynamic pressure generated by the fluid by interposing a fluid between opposing surfaces of the two members and rotating them relative to each other.
  • the depth of a groove provided on one of the opposing surfaces of the two members facing each other in the radial direction or the thrust direction is determined according to a location in the groove.
  • a dynamic pressure bearing wherein the pressure in the groove during bearing rotation is substantially uniformly distributed.
  • the generated pressure can be dispersed, and the resistance to falling can be increased, especially in the thrust bearing, and both the radial bearing and the thrust bearing, especially in the case of the hydrodynamic gas bearing This is to avoid the occurrence of condensation under peak pressure in the section.
  • the depth of the groove should be changed so that the depth changes continuously from upstream to downstream, or from the upper to the lower in the rotational direction so as to be continuously shallow. preferable.
  • Another aspect according to the present invention is a disk-shaped thrust extending in a direction perpendicular to the axis of the bearing. And a circular thrust-facing surface facing the thrust plate and extending in a direction perpendicular to the axis of the bearing, and a spiral dynamic pressure generated on either the thrust plate or the thrust-facing surface. Due to the action of the groove, a relative rotation between the thrust plate and the thrust-facing surface generates a dynamic pressure in a thrust direction that is a direction parallel to the axis of the bearing.
  • the dynamic pressure bearing having a thrust bearing portion, one or both of the thrust plate and the thrust-facing surface are opposed to each other from the inner peripheral portion of the thrust bearing portion to the radially outer peripheral portion.
  • the present invention relates to a dynamic pressure bearing characterized by being inclined so as to widen a gap between surfaces.
  • the inclination preferably does not significantly affect the generation of the thrust dynamic pressure, and is preferably provided so as to avoid contact due to falling.
  • one or both of the opposing surfaces of the thrust bearing portion is formed into a truncated cone, a spherical shape, or the like, and a change in the gap of the thrust bearing portion due to the inclination is about 2 ⁇ m or less. Les, prefer to do.
  • Still another aspect according to the present invention includes a cylindrical shaft, and a hollow cylindrical sleeve rotatably fitted on an outer peripheral surface parallel to an axis of the shaft, wherein the shaft and the sleeve have a relative position.
  • a radial bearing portion that generates radial dynamic pressure by rotation; a thrust plate formed or fixed to one axial end face of the shaft perpendicular to the axis; and a radially formed one end face of the sleeve in the axial direction.
  • the gap in the direction parallel to the axis between the second thrust plate and the other end face in the axial direction of the shaft facing the second thrust plate is a, and the thrust plate is opposed to the second thrust plate.
  • the present invention relates to a dynamic pressure bearing characterized by the following relationship.
  • the second thrust plate By providing the second thrust plate, when the bearing is stopped, the load of the rotating side member is supported between the second thrust plate and the shaft, and the contact resistance arm at the time of restart is shortened to improve the startability. It is.
  • a protruding portion such as a spherical surface or a truncated cone is formed on one of the second thrust plate and the end face of the shaft facing the second thrust plate, so that a contact point between the two members is closer to the axis. Preferred above.
  • a ceramic material is selected from the group consisting of alumina, zirconia, silicon carbide, silicon nitride, and sialon.
  • a spindle motor having a dynamic pressure bearing having the above-described startup characteristics and high rigidity, and a storage device or a barcode scanner including the spindle motor.
  • a storage device or a barcode scanner including the spindle motor.
  • FIG. 1 is an explanatory diagram showing the relationship between the shape of the thrust dynamic pressure generating groove and the pressure distribution.
  • FIG. 2 is a computer analysis diagram showing a pressure distribution in a thrust dynamic pressure generating groove according to a conventional technique.
  • FIG. 3 is a computer analysis diagram showing the pressure distribution of the thrust dynamic pressure generating groove according to the present invention.
  • FIG. 4 is a sectional view showing a dynamic pressure bearing according to one embodiment of the present invention.
  • FIG. 5 is a partially enlarged sectional view showing an alternative of the dynamic pressure bearing shown in FIG.
  • FIG. 6 is a cross-sectional view showing another embodiment of the dynamic pressure bearing according to the present invention.
  • FIG. 7 is a sectional view showing an alternative to the dynamic pressure bearing shown in FIG.
  • FIG. 8 is a cross-sectional view of a spindle motor provided with a dynamic pressure bearing according to the related art.
  • FIG. 9 is a perspective view showing a thrust plate provided with a thrust dynamic pressure generating groove according to a conventional technique.
  • FIG. 10 is an enlarged perspective view showing only the dynamic pressure bearing portion shown in FIG.
  • FIG. 11 is an explanatory diagram showing a dynamic pressure distribution state of the dynamic pressure bearing portion shown in FIG.
  • FIG. 12 is a partial cross-sectional side view showing a specific example for improving the starting characteristics of a conventional dynamic pressure bearing.
  • a dynamic pressure bearing according to a first embodiment of the present invention will be described with reference to the drawings.
  • a dynamic pressure is generated by introducing a fluid such as air from the outside into the thrust bearing portion by the action of the spiral groove.
  • the introduced fluid is sequentially pumped from the outer peripheral portion to the inner peripheral portion (in the axial direction of the bearing and near the outer peripheral surface of the shaft) by a pumping action associated with the relative rotation of the thrust bearing portion.
  • the pressure in the inner peripheral portion increases, and this pressure maintains the bearing levitation force. According to the numerical calculation, this pressure distribution is high near the axial center of the thrust plate, and if a land is provided, the land 9 and the groove 5 (see Fig.
  • the pressure is high near the boundary with the edge of, and the pressure gradually decreases toward the outer periphery in the radial direction. That is, in the hydrodynamic bearing according to the prior art, the high dynamic pressure generating portions in the thrust bearing portion are locally unevenly distributed.
  • FIG. 1A shows a cross section of a portion of the thrust plate 4 where the groove 5 is provided according to the conventional technique.
  • the groove 5 is actually provided in a spiral shape, but in FIG. 1 (a), one of the grooves 5 is taken out, and the spiral shape groove is formed in the radial direction.
  • the projection is shown.
  • X indicates the outer peripheral surface of the shaft (the inner peripheral portion of the thrust plate 4)
  • Y indicates the outer peripheral surface of the thrust plate 4.
  • the thrust plate 4 is provided with a land 9 extending a predetermined distance from the outer peripheral surface X of the shaft, and a groove 5 having a depth h is provided following the land 9.
  • a-a indicates the surface of the thrust plate 4, and b-b indicates the bottom surface of the groove 5.
  • An arrow 7 ′ indicates the flow of the fluid introduced into the groove 5, and the arrow 7 ′ is a projection of the arrow 7 shown in FIG. 10 in the radial direction.
  • the groove 5 shown in Fig. 1 (a) is of a type in which the outside in the radial direction is open to the outside.
  • the spiral groove 5 in the prior art is a flat groove having a constant depth h.
  • a dotted line J shown in FIG. 1 (b) is obtained by projecting the distribution of the dynamic pressure generated by the groove 5 having the above-described configuration when the bearing rotates, also projected in the radial direction.
  • the horizontal axis S is the distance from the inner peripheral part to the outer peripheral surface of the thrust plate 4, and the vertical axis P is the dynamic. Indicates the magnitude of pressure and pressure. Since this thrust bearing operates independently of the radial bearing, the inner peripheral part is also open to the outside like the outer peripheral part. Equal, assumed to be (zero). When connected to a radial bearing, the pressure distribution shows a similar tendency except that the inner peripheral pressure increases.
  • the pressure distribution of the thrust bearing according to the conventional technology shows the maximum pressure p a locally near the edge near the axis center of the groove 5 indicated by the dotted line J in the figure, and thereafter the outer peripheral portion It shows a tendency to decrease temporarily.
  • the thrust bearing diameter is 2 Omm
  • the thrust inner diameter is 14 mm
  • the groove depth h is 2 ⁇ m
  • the bearing clearance during rotation is 1.5 ⁇ m
  • the maximum pressure p a is about 1. 5 9 a tm. It is difficult to measure the pressure distribution by experiment, but the flying height (clearance) and load capacity
  • the pressure distribution is made uniform by changing the depth of the groove between the outer peripheral portion and the inner peripheral portion. That is, as shown in FIG. 1 (c), the bottom surface of the groove 5 is inclined obliquely as shown by b′-b ′, and moves from the groove depth of the outer peripheral portion of the thrust plate 4 to the inner peripheral portion X direction. groove depth shallow, but reduced to a depth h 2 at the boundary position between the La-end portion 9 according to.
  • the other symbols shown in the figure are the same as those in FIG. 1 (a).
  • the fluid force introduced into the groove 5 was pressed into the boundary between the land 9 and the groove 5 and locally generated a high pressure. Therefore, by gradually decreasing the depth (hl ⁇ h2), the pressure is gradually increased from near the inlet near the outer periphery.
  • the depth of the groove 5 is 2 ⁇ near the fluid inlet on the outer peripheral portion of the thrust plate 4 and 0.4 / m at h 2 at the boundary position with the land portion 9. Otherwise, the maximum pressure Pc when rotated under the same conditions as the above-mentioned conventional technology was about 1.31 atm, which was observed almost uniformly in the radial direction.
  • the maximum pressure p e is Although reduced compared to the pressure P a, result of the pressure is evenly distributed, there is no change in the overall lifting force of the bearing.
  • a further advantage is that, since the pressure generated at a position distant from the shaft center is high, an excellent effect (moment) against swinging can be exerted.
  • Fig. 2 (a) shows the results of computer analysis of the pressure distribution in the grooves of the hydrodynamic bearing according to the prior art shown above
  • Fig. 2 (b) shows a schematic representation of the results.
  • the thrust plate 4 is viewed from the axial direction.
  • a high-pressure section with a maximum pressure of 1.59 atm appears at the boundary between the groove 5 and the land 9 and a short pressure section of about 1.4 atm exists around it.
  • the pressure has since declined. That is, it is indicated that the high-pressure portion is locally concentrated so that the shape of the groove 5 is not completely determined.
  • FIG. 3 shows the same situation with the thrust plate 4 having the dynamic pressure generating groove according to the present invention having the specifications shown in the numerical calculation results.
  • Fig. 3 (a) shows the results of the computer analysis
  • Fig. 3 (b) schematically shows the results.
  • the maximum pressure of the bearing according to the present embodiment is 1.31 atm, which is lower than that of the conventional bearing, but the high pressure portion is formed by a groove.
  • the bearing according to the present invention supports the entire thrust surface. Can be seen.
  • dew condensation for example, when a dynamic pressure bearing is operated using air at room temperature and humidity of 60% as a fluid, the conventional technology compresses to 1.59 atm, and condensate easily occurs. However, with the maximum pressure of 1.31 atm according to the present invention, dew condensation rarely occurs. Therefore, it is difficult to cause a problem that restarting after stopping with the dew condensation included is not possible.
  • the pump-in type in which the dynamic pressure generating fluid is introduced from the outer peripheral portion of the thrust bearing portion to the inside. That is, the inclination of the spiral of the groove 5 is turned in the direction of sucking the fluid from outside to inside by the rotation of the sleeve 3 It has a format. Dynamic pressure can also be generated by using a pump-out type in which the spiral is inclined in the opposite direction (or the rotational direction of the sleeve 3 is reversed) and the fluid is discharged from the inside to the outside. In the case of this type, since the fluid is sequentially pushed out from the vicinity near the shaft to the outer peripheral portion of the thrust plate, the pressure increases toward the outer periphery of the thrust plate. Therefore, in the embodiment of the present invention, the inclination of the depth of the groove 5 should be opposite to that shown in FIG. 2 (c), and when the land is provided, it must be provided on the outer peripheral part.
  • a dotted line M shown in FIG. 1 (c) indicates an alternative of the present embodiment.
  • This alternative is characterized in that the depth of the groove 5 is not changed continuously but is gradually changed to be shallower.
  • the depth of the groove 5 is not changed continuously but is gradually changed to be shallower.
  • the thrust dynamic pressure generating groove 5 is provided on the thrust plate 4. This force may be provided on the surface of the thrust facing plate 13 facing the thrust plate 4.
  • the groove depth is shown to be changed linearly or stepwise at equal steps, but the purpose of the present invention is to make the pressure distribution inside the groove as uniform as possible. It is to make. Therefore, even if the change in the groove depth is, for example, a smooth curve change or a step change in unequal steps, the pressure distribution can be made uniform. Anything can be used.
  • the description in the above embodiments relates to the thrust bearing portion, but the present invention can be similarly applied to the groove 2 in the radial bearing portion.
  • the change in the groove was from the outer circumference to the center of the shaft in the thrust bearing (in the case of the pump-in type), but in the radial bearing, the relative rotation was from the upper side to the lower side. (In the direction of arrow 8 in FIG. 10). This is because the groove 2 is not the outer surface of the shaft 1, The same applies to the case where the sleeve 3 is provided on the inner peripheral surface.
  • one or two grooves with a maximum depth of 2 m and a width of 15 degrees of the type shown in Fig. 9 were formed.
  • a land with no groove was provided in the 0.75 mm width area on the inner diameter side, and the angle difference between the entrance and the exit of the groove was 45 degrees.
  • Example B> A groove whose step depth was changed stepwise as shown by the dotted line M in Fig. 1 ( C ) was fabricated by performing blasting multiple times with changing the mask. As shown by the dotted line M in Fig. 1 (c), the air flow inlet (hi) on the outer diameter side is 2 im, and the depth is changed at the same intervals and steps over three times. Connected to side land 9.
  • Sample C> A comparative example with a constant groove depth, which was manufactured by one blasting process.
  • the groove depth is 2 / m in the entire area, and the step at the connection with the inner diameter side land 9 is 2 / im.
  • FIG. 4 shows a bearing according to the present embodiment.
  • a sleeve 3 is rotatably fitted on the outer peripheral surface of a cylindrical shaft 1 with a predetermined gap provided, and a thrust plate 4a is fixed to one end of the shaft 1 along a surface perpendicular to the axis. ing.
  • the thrust plate 4a is opposed to the lower surface of the sleeve 3, and a groove 5 for generating thrust dynamic pressure is provided on the opposed surface.
  • the surface of the lower surface of the sleeve 3 that faces the thrust groove 5 is referred to as a thrust facing surface 13.
  • the rotor rotates by the rotational driving force generated between the stator coil of the spindle motor (not shown) and the rotor magnet, and the sleeve 3 fixed to the rotor rotates.
  • the thrust groove 5 generates thrust dynamic pressure in the thrust direction due to the relative movement between the thrust-facing surface 13 of the sleeve 3 and the thrust plate 4a. Rotates around the shaft 1 without contact.
  • the surface of the thrust plate 4a on which the thrust groove 5 is cut is directed from the inner peripheral portion of the thrust bearing portion to the outer peripheral portion in the radial direction. And is inclined away from the thrust facing surface 13. Due to this inclination, the sleeve 3 is inclined relative to the shaft 1 and the thrust plate 4a by some external factor from the steady rotation state of the sleeve 3 shown by the dotted line in the figure, and the solid line in the figure Even when the state shown by, the outer peripheral portion H of the thrust plate 4 is inclined and escapes from the approaching thrust facing surface 13, so that contact is avoided.
  • the above-mentioned avoidance is more effective as the angle of the inclined surface of the thrust plate 4a is larger.
  • the thrust grooves 5 are provided on this surface to generate thrust dynamic pressure, sufficient dynamic pressure cannot be expected when the inclination is large.
  • the inclination should be large enough to avoid contact and small enough to generate thrust dynamic pressure.
  • the inclination provided on the thrust plate 4a is such that the inclination from the innermost peripheral portion of the thrust bearing portion (the outer peripheral surface of the shaft 2 attached to the thrust plate 4) to the outermost peripheral portion of the thrust bearing portion in the radial direction.
  • the outer peripheral surface of the thrust plate 4 A straight slope inclined by the slope d, which is the height change in the axial direction, during the thrust width s, which is the distance to the thrust plate 4, is assumed. That is, the entire surface of the thrust plate 4a in which the thrust groove 5 is cut is formed in a truncated cone shape.
  • the inclination of the thrust plate 4 (same) 1 should be equal to or greater than the inclination of the radial portion. That is,
  • Another advantage of the dynamic pressure bearing according to the present embodiment is that the required torque at the time of starting the bearing is reduced.
  • the total load of the rotating member fixed to the sleeve 3 is equal to the thrust-facing surface 13 of the sleeve 3.
  • the contact between the thrust plate 4 and the thrust plate 4 causes the thrust plate 4 to contact the surface.
  • the thrust-facing surface 13 and the thrust plate 4 were flat, that is, the entire surfaces of both opposing surfaces were in contact with each other.
  • the contact surface between the two members is limited to only the end of the inner peripheral surface near the axis of the bearing among the thrust facing surfaces 13. It will be present in a ring shape.
  • the load is concentrated at a position close to the center of rotation in the present invention, compared to the case where the load has spread over the entire plane until now, so that the load point from the axis center Arm length can be reduced, and thus the starting torque can be kept small.
  • the motor capacity can be reduced, and thus the overall size can be reduced, power consumption can be reduced, and the number of revolutions can be easily increased, thus minimizing contact rotation and reducing wear between contact members. Can be reduced, As a result, the effect of improving the bearing life is also produced.
  • FIG. 5 is a partially enlarged view showing only one side of a thrust bearing portion of a dynamic pressure bearing according to an alternative of the present embodiment.
  • the same components as those described in FIG. 4 are denoted by the same reference numerals.
  • the inclined surface of the thrust plate 4 is changed from a straight line to an arc, and therefore, when viewed as a whole bearing, this inclined surface appears as a spherical shape .
  • the parallel lines drawn on the dynamic pressure generation surface of the thrust plate 4b in the figure schematically illustrate the distribution of the dynamic pressure generated on this surface.
  • the vicinity of the outer peripheral portion of the thrust plate 4b hits the suction portion of the gas for generating the dynamic pressure, and thus the generated dynamic pressure is low.
  • the dynamic pressure becomes higher toward the inner peripheral portion of the thrust bearing near the outer peripheral surface of the shaft 1, and most of the thrust dynamic pressure is generated near the shaft 1.
  • the advantage of this alternative is that, since the inclined portion of the thrust plate 4 has an arc shape, the inclination is gentle at a position close to the axis, and the inclination increases as approaching the outer peripheral portion. This is because, in the part where the dynamic pressure is generated, the distance close to the thrust-facing surface 13 of the facing sleeve 3 is maintained, so that a decrease in the dynamic pressure is avoided, and conversely, the outer peripheral part where contact is concerned In the vicinity, the part that does not contribute much to the generation of dynamic pressure is far from the thrust-facing surface 13. In other words, by forming the inclined surface in such an arc shape, it is possible to provide a preferable inclination that can simultaneously secure the dynamic pressure and avoid the contact.
  • the inclination d of the thrust plate 4b is set to about 2 / m or less in this alternative. That is, the curvature at this time is 2 m, and the thrust width s, which is the distance from the innermost peripheral portion of the thrust bearing portion (the outer peripheral surface of the shaft 1) to the outermost peripheral portion (the outer peripheral surface of the thrust plate 4).
  • the shape of the inclined surface in a sectional view is referred to as “arc shape”, and the shape as a whole is referred to as “spherical shape”.
  • arc shape the shape of the inclined surface in a sectional view
  • spherical shape the shape as a whole is referred to as “spherical shape”.
  • the center of the arc of the inclined portion is provided on the axis of the shaft 1, and the curvature of the arc is obtained from the two and the inclination amount d. It may be a part of a true spherical surface.
  • An “arc” is not necessarily a perfect circle, but if the shape is such that the inclination is small on the inner peripheral surface near the axis of the thrust bearing and the inclination progresses on the outer peripheral part, an ellipse, part of a parabola, and other curved lines It may be.
  • the effect of reducing the starting torque at the time of restarting and reducing the power consumption is the same as that of the second embodiment.
  • the inclination at the thrust bearing portion is provided on the thrust plate 4, and this inclination is caused by the thrust of the sleeve 3 facing the thrust plate 4. Exactly the same effect can be obtained even when provided on the surface 13.
  • this inclination may be provided on a thrust facing plate configured as a separate component.
  • both the thrust plate 4b and the thrust-facing surface 13 facing each other may be inclined. In the case where the both are inclined, it is preferable that the sum of the inclination amounts provided on both members corresponds to the inclination amount d according to the above description.
  • the radial bearing has a diameter of 15 mm, a length of 15 mm, a radial gap on one side in the radial direction of 2 ⁇ m, and the thrust plate has an outer diameter of 20 mm.
  • the inner diameter was 15 mm, and a spiral dynamic pressure generating groove with a depth of 5 m was provided. Spiral grooves can be made by shot blasting, laser abrasion, plasma etching, and the like.
  • the thrust plate has a slope (difference in axial height between the innermost and outermost peripheral parts of the thrust bearing) of 0.1, 0.3, 0.5, 1.0, 1.0.
  • Various types of 5, 2.0 m were prepared, assembled with a motor, driven at 12 V, and rotated at a rotational speed of 10,000 rpm. The starting current was evaluated based on the maximum current value from when the motor was started until steady rotation was reached.
  • FIG. 6 shows a dynamic pressure bearing according to the present embodiment.
  • a hollow cylindrical sleeve 3 is fitted on the outer peripheral surface of a cylindrical shaft 1, and a thrust plate 4 is vertically combined with the shaft 1 and faces the lower end surface of the sleeve 3.
  • a second thrust plate 11 is further provided in addition to the bearing members according to the related art.
  • the second thrust plate 11 is formed of a disk-shaped member or the like, and is bonded to, for example, an end surface in the axial direction of the sleeve 3 on the opposite side to the end surface facing the thrust plate 4. Fixed by means.
  • a groove 5 for generating thrust dynamic pressure is cut in the surface of the thrust plate 4, and the surface having the groove 5 faces the thrust facing surface 13, which is the lower end surface of the sleeve 3. .
  • the sleeve 3 relatively rotates between the shaft 1 and the thrust plate 4 as in the previous embodiments, and the sleeve 3 and the shaft 1
  • a radial dynamic pressure is generated between the thrust plate 3 and the thrust facing surface 13 which is the lower end surface of the sleeve 3.
  • the generation of these dynamic pressures causes the sleeve 3 to rotate relative to the shaft 1 and the thrust plate 4 in a non-contact state.
  • the gap between the second thrust plate 11 and the end surface of the shaft 1 facing the second thrust plate is a, and the gap between the thrust facing surface 13 of the sleeve 3 and the thrust plate 4 (thrust bearing portion) is
  • the length can be reduced in proportion to the length of the arm.
  • the friction speed at the contact portion can be reduced, the wear can be reduced, and the risk of seizure at the portion can be avoided. Since the resistance force due to the friction is smaller than that of the prior art, and therefore, the rotation speed at the time of start-up is fast, the floating rotation speed can be reached early, thereby producing an effect of minimizing the friction.
  • FIG. 7 shows an alternative of the hydrodynamic bearing according to the present embodiment.
  • the figure shows the stopped state of the dynamic pressure bearing.
  • a curved surface is formed at the upper end 12 of the shaft 1a.
  • Other configurations are the same as those of the third embodiment.
  • the upper end 12 of the shaft 1a a curved surface, when the bearing stops, the second thrust plate 11 and the upper end 12 of the shaft 1a and the force are almost on the center axis of the bearing.
  • the arm length of the frictional force at the time of restart rotation described in the previous embodiment can be made substantially equal to 0, and the driving torque can be further reduced.
  • the upper end portion 12 of the shaft is spherical, the entire rotary member side member is not stable on the upper end portion 2, and therefore, as shown in FIG.
  • the diameter of the shaft 1a is usually about 10 to 15 mm
  • the length of the shaft 1a is about 10 to 20 mm
  • the gap is about 15 ⁇ m in diameter. Even if 12 is slightly spherical, the sleeve 3 is slightly inclined.
  • the present invention compared to the state in which the thrust facing surface 13 of the end face of the sleeve 3 and the thrust plate 4 in the prior art are in full contact with each other, even if the frictional resistance at the contact point G is added, the present invention It can be said that the reduction in starting torque is still significant.
  • the upper end surface 12 of the shaft 1a is formed in a spherical shape, but the present embodiment is not limited to this.
  • other geometric shapes such as conical or frusto-conical which produce the effect of shortening the distance of the contact portion from the axis will produce the same effect.
  • various convex portions as described above are provided on the surface of the second thrust plate 4 opposed thereto. Is also good.
  • the gap between the thrust-facing surface 13 of the sleeve 3 that generates the thrust dynamic pressure and the thrust plate 4 is narrowed to increase the load capacity.
  • the squareness between the shaft 1 and the thrust plate 3 fixed to the shaft 1 becomes a problem.
  • the sleeve 3 is fitted on the shaft 1 and rotates, and generates dynamic pressure by relative rotation between the sleeve 3 and the thrust plate 4. Therefore, when the perpendicularity does not occur, the sleeve 3 is the end face of the sleeve 3. This is because the gap between the thrust facing surface 13 and the thrust plate 3 cannot be kept uniform, and sufficient thrust dynamic pressure cannot be obtained.
  • the inventors of the present invention have found that, for example, when a disc-shaped thrust plate having a diameter of 2 O mm is used, the deviation of the right angle at the outer peripheral edge of the thrust plate is 0.7 / m or less. For example, it was found that the rigidity against falling could be exhibited without reducing the dynamic pressure generation in the thrust bearing.
  • the thrust plate 4 of the dynamic pressure bearing used for the spindle motor is a disk having a diameter of 20 mm inside and outside. The inclination of the thrust plate 4 is about 0.7 ⁇ m or less at this 20 mm diameter. In this way, the contact between the second thrust plate 11 and the end face of the shaft 1 can be more reliably avoided. To generalize this, in the present embodiment, this shaft 1 and a thrust plate fixed to the shaft 1
  • the perpendicularity with 4 is specified to be about 0.7 mZ 2 O mm or less. This can be done even if the diameter of the thrust plate is other than 2 Omm, or if the thrust plate is not fixed directly to the end face of the shaft but is indirectly fixed via other parts. It can also be applied to odors.
  • the dynamic pressure bearing according to the present embodiment uses a ceramic material having excellent wear resistance and durability, light weight, and high rigidity as a material of the bearing components.
  • Ceramic materials that can be used include ceramic materials such as alumina, zirconia, silicon carbide, silicon nitride, and sialon.
  • the Young's modulus is about 300 to 40 OGpa, which is about twice that of steel.
  • the specific gravity of alumina-based ceramics is 3.9, which is about half that of steel. In other words, roughly speaking, alumina-based ceramics can obtain about twice the rigidity with about half the mass of steel.
  • the dynamic pressure bearing can be reduced in weight and size.
  • excellent wear resistance of ceramics As described above, when the dynamic pressure bearing is started, the bearing members rotate while they are in contact with each other.Therefore, there is a problem of wear and seizure during that time. The use of materials makes it easier to avoid such problems.
  • ceramic materials have less plastic deformation and elastic deformation than metal materials, so the use of ceramic materials can reduce deformation during processing and provide high-precision bearing members. It can be done.
  • the dynamic pressure bearing shown in FIG. 6 it is possible to replace all the bearing components in the figure with ceramic materials.
  • the surface of each bearing member facing the mating member may be replaced with a ceramic material, and the other portions may be left as conventional stainless steel.
  • the shaft portion of the shaft 1 may be formed of stainless steel, and a hollow cylindrical ceramic may be shrink-fitted around the shaft 1, cold-fitted, and fixed by bonding or the like. .
  • the present embodiment relates to a spindle motor using the dynamic pressure bearing described in each of the above embodiments, a storage device including the spindle motor, and a barcode scanning device.
  • the dynamic pressure bearing according to the present invention by using the dynamic pressure bearing according to the present invention, the resistance between the contact members at the time of starting can be minimized, and a large starting torque is not required. Operation can be realized. Also, since wear between bearing members can be eliminated as much as possible, a spindle motor having excellent durability can be realized. By providing the spindle motor, it is possible to provide an efficient and highly reliable storage device and a bar code driving device. Can be.
  • the shaft and the thrust plate are used as the fixed-side members, and the sleeve is used as the rotation-side member.
  • the present invention is not limited to such a form, and can be similarly applied to the reverse combination, that is, a structure in which the shaft is the rotating member and the sleeve is the fixed member. .
  • the depth of the spiral groove provided in the thrust bearing portion is gradually reduced from the outer peripheral portion toward the axis center, or the depth of the spiral groove provided in the radial bearing portion is reduced.
  • the thrust plate and the thrust-facing surface (or thrust-facing plate) facing the thrust plate face each other as in the prior art, if the thrust plate and the thrust-facing surface oppose each other on a flat surface, the thrust plate will oscillate due to an external factor and the two will move relative to each other. If it falls down, the thrust may come into contact.
  • the sliding surface of the thrust plate is inclined from the inner peripheral portion toward the outer peripheral portion in the radial direction, and the gap between the thrust bearing portions becomes wider toward the outer peripheral portion. For example, even if the thrust plate and the thrust-facing surface are relatively inclined, contact at this portion can be avoided, and a dynamic pressure bearing that is resistant to rocking can be obtained.
  • the thrust members are in contact with each other over the entire surface at rest, the starting torque when restarting is increased. If the sliding surface of the thrust plate is inclined from the inner peripheral part to the outer peripheral part in the radial direction, the contact part at rest will concentrate on the inner peripheral part of the thrust bearing near the center of rotation. The arm length up to the point is shortened, and the starting torque can be reduced.
  • a second thrust plate is additionally provided, and when the bearing is stopped, this second thrust plate is ADVANTAGE OF THE INVENTION
  • the dynamic pressure bearing which concerns on this invention which supports the load of a rotating side member by contacting with one end surface of a shaft, a thrust board and a thrust opposing surface do not contact on the whole surface, and a bearing Since the load of the rotating member is applied to the shaft end face with a short arm length from the axis, the torque at the time of restart can be reduced. In addition, since the contact portion is close to the axis, the peripheral speed at the number of revolutions up to floating can be reduced, reducing wear between the contact surfaces and avoiding problems such as seizure due to friction. be able to. Furthermore, by using a ceramic material having excellent wear resistance and rigidity for the bearing member, a more reliable and highly durable bearing can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Description

明 細 書 起動特性を改善した動圧軸受 技術分野
本発明は、 ハードディスクドライブ (以下、 「HD D」 という。 )のような記憶 装置や、 バーコ一ド走査装置のポリゴンミラ一駆動などに供されるスピンドルモ 一タの動圧軸受に関するものであり、 特に、 起動特性を改善した動圧軸受に関す るものである。
背景技術
H D Dのような記憶機器や、 バーコ一ド走査用ポリゴンミラーの駆動などに供 されるスピンドルモータで使用される動圧軸受においては、 高速 ·高負荷での安 定した回転が得られ、 外部からの揺動があっても相対回転する軸受部材間が接触 しない高い軸受剛性を備え、 さらに、 起動時のトルクが低く、 接触回転による摩 耗などが少ない優れた起動特性を備えること、 などが求められている。
図 8は、 従来技術にかかるスピンドルモータの例を示している。 図において、 ベース 1 0には、 円柱状のシャフト 1と、 シャフト 1の一端において軸に垂直に 取り付けられた円板状のスラスト板 4とが固定されている。 シャフト 1の軸に平 行な外周面には、 所定の間隙を設けて中空円筒状のスリーブ 3が相対回転可能に 嵌装されており、 これらの部材間で動圧軸受が構成されている。 すなわち、 シャ フト 1の外周面とスリーブ 3の内周面との間で、 軸に垂直な方向であるラジアル 方向の動圧を発生させるラジアル軸受部が構成され、 そしてスラスト板 4とスラ スト板 4に対向するスリーブ 3の一方の端末面との間で、 軸に平行な方向である スラスト方向の動圧を発生させるスラスト軸受部が構成されている。 スラスト板 4のスリーブ 3に対向する側の面には、 破線で示す動圧発生用の溝 5が設けられ ている。 本明細書では、 スラス ト板 4に対向する前記スリーブ 3の下端面を、 ス ラス ト対向面 1 3と呼ぶものとする。 スリーブ 3には、 ロータ 1 7が固定され、 したがってロータ 1 7は、 スリーブ 3と共にシャフト 1を中心として回転可能で ある。 ロータ 1 7の外周面には、 図示しない情報メディア (HD Dの場合) ゃポ リゴンミラ一 (バーコード走査装置の場合) などが搭載される。 ロータ 1 7の内 周面には、 ロータ磁石 1 8が装着されており、 このロータ磁石 1 8は、 ベース 1 0に装着されたステータコイル 1 9に対向している。
図 9は、 前記スラスト板 4に設けられた動圧発生用の溝 5の詳細を示している。 図のように、 溝 5は、 スラスト板 4の表面上に円周方向に対して一定の角度で傾 斜した複数のスパイラル状の溝として形成されており、 溝の深さは、 一般に数 m ( 1— 5 / m) 程である。 なお、 図 9では、 溝 5がスラス ト板 4の表面に設け られた例を示しているが、 この溝 5をスリーブ 3のスラスト対向面 1 3側に設け ることであってもよい。
以上のように構成されたスピンドルモータの動作時は、 図 8において、 ステー タコイル 1 9に通電されることにより、 ステ一タコイル 1 9とロータ磁石 1 8と の間に吸引 Z反発力が生じる。 それによつてロータ磁石 1 8を固着するロータ 1 7に回転駆動力が生じ、 ロータ 1 7と、 そのロータ 1 7に固定されているスリー ブ 3とが共にシャフト 1を中心に回転する。 この回転に伴うシャフト 1 とスリー ブ 3との相対運動で両者の間に介在する空気などの流体によってラジアル動圧が 発生する。 同様に、 スラス ト板 4とスリーブ 3の一方の端面であるスラス ト対向 面 1 3との間の相対運動によって溝 5の作用によりスラスト動圧が発生する。 こ の両動圧の発生により、 スリーブ 3、 ロータ 1 7ほかの回転側部材が、 固定側部 材であるシャフト 1およびスラスト板 4と無接触状態となり、 シャフト 1を中心 に回転する。
図 1 0は、 図 8に示すスピンドルモータの動圧軸受部分のみを拡大して示す斜 視図である。 図において、 シャフト 1の一端に、 軸に垂直にスラスト板 4が固定 され、 また、 シャフト 1の外周面には、 破線で示すスリーブ 3が回転可能に嵌装 されている。 上述のように、 スピンドルモータに通電されて起動する際には、 ス リーブ 3ほかの回転側部材は、 その自重によりスリーブ 3とスラスト板 4とが接 触したままで回転を始める。 このときスリーブ 3の矢印 6方向の回転によってス パイラル状に設けられた溝 5の作用により、 空気などの流体がスリーブ 3とスラ スト板 4との間に導入され、 矢印 7に示す方向に沿ってスラスト板 4の内周部に 押し込まれる。 スラスト板 4表面の溝 5とシャフト 1の外周面との間にはランド 部 9があり、 前記押し込まれた流体がこのランド部 9と溝 5の縁との間で圧縮さ れて動圧を発生させ、 スリーブ 3を持ち上げる作用をする。 従来技術による動圧 軸受においては、 このように、 スラスト動圧は溝 5のランド部 9に近い縁部分に 局部的に発生する。
図 1 0に示す例においては、 シャフ ト 1の外周面に、 軸方向に対して傾斜した 溝 2が設けられ、 この溝 2がスリーブ 3の内周面に対向している。 ラジアル動圧 の発生には、 この溝 2は必ずしも必要とはされない。 但し、 動圧軸受では、 回転 側部材 (図示の例では、 スリーブ 3 )が、 固定側部材(同、 シャフ ト 1 )の軸心に対 する回転 (自転) とは別に、 前記軸心から偏心した振れ回り回転 (公転) をする ハーフホワールと呼ばれる現象を発生させることがある。 このハーフホワールが 発生すると、 ロータ 1 7に搭載された情報メディァゃポリゴンミラーなどの機能 部品も振れ回るため、 これらを利用する際の障害となる。 前記のシャフ ト 1の外 周面に設けられた溝 2は、 このようなハーフホワール現象を回避する効果を有す ることから、 溝 2を設けることは有効である。 溝 2は、 図示のような軸に対して 傾斜した溝であっても、 軸に平行な溝であっても、 あるいはヘリングボーン状の 溝であっても、 前記ハーフホワール現象の回避に関しては同様の効果が得られる。 但し、 図示のように傾斜した溝 2とした場合には、 図においてスリーブ 3内周面 の矢印 8方向の回転により、 流体が自身の粘性によって図の上側から下側へ押し 込まれ、 スラス ト軸受部の動圧を更に高める効果を生むことから好ましい。 なお、 この溝 2は、 シャフト 1側でなく、 スリーブ 3の内周面に設けられていてもよい。 ラジアル軸受部に設けられた溝 2における流体の圧力分布は、 先のスラスト軸 受部におけるものと同様に、 矢印 8で示した溝 2に対向するスリーブ 3の動きに より、 溝 2内にある流体自身の有する粘性の作用によって、 流体は溝 2をクロス する矢印 8の上手側(図の右側)から下手側(同、 左側)へ、 矢印 8の方向に沿って 溝 2内に押しつけられる。 この結果、 下手側の溝 2の縁付近での圧力が高くなる 不均一な圧力分布が存在すると推定される。
次に、 図 1 1は、 前記構成にかかる動圧軸受が外部要因によって揺動し、 スリ ーブ 3がシャフト 1及びスラスト板 4に対して相対的に傾いた状態を示している。 図において、 スリーブ 3が反時計回りに相対的に傾いた結果、 シャフト 1とスリ ーブ 3との間の右上の A部、 同じく左下の B部、 そしてスラスト板 4とスラスト 対向面 1 3との間の左端の C部とがそれぞれ接近する。
ここで、 図に示す平行線は、 図示の相対的に傾斜した場合における各軸受部に 発生する動圧を模式的に示したものである。 まず A部において、 シャフ ト 1とス リーブ 3が接近すると、 その部分の流体の巻き込みによる動圧の楔効果が高まつ て接近するほど動圧が高くなる。 これは B部でも同様である。 したがつてこの A 部、 B部の高まる動圧によってシャフト 1とスリーブ 3との間においては接近に 対する抗力が働き、 その抗力が外部からの揺動に打ち勝つ限りにおいて接触を回 避する効果を生む。
一方、 スラス ト板 4とスラス ト対向面 1 3との間の C部においては、 スラス ト 板 4の外周部が流体の導入部に当たるため、 上述のように動圧が低く、 軸受の中 心である内周部に向かうほど動圧が高くなる。 したがって、 本来 C部での動圧の 発生は低く、 これは両部材が接近しても変りにくい。 このため、 外部からの揺動 など外力が加わった場合、 この部分においてスラスト板 4とスラスト対向面 1 3 とが接触する可能性がある。 そして一旦両者が接触してしまうと、 その間の摩擦 力で回転が不安定となり、 接触に伴う反発力から回転挙動にも悪影響が出て激し い場合には H D Dにおいて磁気へッドを破壊させるなど、 スピンドルモータとし ての機能を大いに損なう結果となる。
以上述べたことから、 従来技術による動圧軸受には幾つかの問題があることが わかる。 第 1に、 動圧軸受部に設けられる溝の内部においては、 局部的に圧力が 高まる箇所があり、 例えば導入される流体が空気などの気体である場合には、 前 記の局部的な圧力の高まりすなわち圧縮作用により、 当該部分において空気中に 含まれた水蒸気成分が圧縮され、 結露に至る恐れがある。 結露があっても回転動 作中又は気流によりその水分が吹き飛ばされている間は良いが、 通電が遮断され て停止状態になると、 水分が溜まったままでスリーブ 3とスラスト板 4とが接触 して停止する。 あるいはシャフト 1とスリーブ 3とが接触したままで停止する。 このため、 これらの部分が水分の作用で密着した状態となり、 次に再起動しょう としても起動不良の現象が生ずることがある。
第 2に、 軸受が外部からの揺動などで軸受部材間の相対的な倒れが起こつた場 合、 スラスト軸受部(特に外周部付近)においてはこの倒れを支える十分な抗カ
( トノレク) を発生させることができず、 したがってスラスト軸受部においてス リ —ブ 3とスラスト板 4とが接触し易い状況となる。 これは、 上述のスラスト軸受 部において発生する動圧が、 軸心に近い位置に局部的に集中することにも関連し ている。
そして、 第 3に、 スピンドルモータの停止時には、 回転側部材が自重により下 がり、 スリーブ 3の下面であるスラスト対向面 1 3とスラス卜板 4とが接触した ままで停止している。 この場合、 両者共に平坦面であることから全面で接触した 状態にあり、 次の再起動する時にはこの接触による抵抗に打ち勝つ大きな起動ト ルクを必要とする。 このため、 モータ容量を高める必要があり、 消費電力が多く なるという問題がある。 また、 回転側部材が動圧の作用で浮上するまでの間、 軸 受部材間が接触したままで回転することから、 両部材間での摩耗が生じ、 摩耗粉 が精密機材である軸受部に悪影響を及ぼしたり、 摩耗が激しい場合には焼き付き を生じたりして、 動圧軸受、 あるいはスピンドルモータの耐久性、 信頼性を損ね るものとなる。
これらの問題に対して、 従来技術においても幾つかの対応がなされている。 例 えば、 スラスト軸受部での倒れによる接触を回避する具体的な対策例として、 特 開平 1 1— 1 8 3 5 7号公報や、 特開平 1 1— 5 5 9 1 8号公報で開示された技 術は、 コイルとロータ磁石とを偏心して配置することにより、 スリーブに対して シャフトを一定方向に押しつけて安定させながら回転させるものである。 しかし、 この方法でシャフトをスリ一ブに対して平行に押しっけるためにはコイルの位置 が軸受中心になくてはならず、 設計上の制約のためにこのような配置が実現でき な 、場合が多レ、という問題があつた。
また、 実開昭 5 5— 3 6 4 5 6号公報に開示された内容では、 ロータ磁石に対 向してハウジング側に固定永久磁石を設け、 この両者の吸引力によってロータを 一定の方向に傾けて回転させるものである。 しカゝし、 この方法ではシャフトのェ ッジ部が片当たりし、 このため軸受寿命が短くなるという問題があった。
次に、 起動時の摩擦によるトルク問題を解決する具体策として、 特開昭 6 0— 2 3 4 1 2 0号公報では、 平面形の動圧スラスト軸受において、 少なくともその スラスト軸受を構成する部材の一方の面に、 凸面を形成するという内容の発明が 開示されている。 図 1 2は、 そのスラスト軸受を示したもので、 図において、 ス ラス ト板 3 1に設けられた動圧発生溝 3 2に対向し、 シャフト 3 3が矢印 の方 向に回転する。 シャフト 3 3の図面上で下端面にはスラスト部材 3 4が固定され て、 前記スラスト板 3 1に対向しており、 この両者でスラスト軸受を構成してい る。 前記スラスト部材 3 4には、 スラスト板 3 1に対向する面に所定の曲率 Rで 形成された球面 3 5が、 突出量 Nだけ突出するように形成されている。
上記のように構成されたスラスト軸受では、 回転中は動圧による作用で前記ス ラス ト板 3 1 とスラス ト部材 3 4とは非接触状態に保たれるが、 回転停止中には 両部材が接触している。 しかし、 このときの接触面積はほとんど点接触となるた めに起動時における過大なトルクを必要とせず、 またかじりを生ずることなく、 起動及び回転部材の浮上を行うものである。
し力 し、 この方法によれば、 前記スラスト部材 3 4に設けられた球面 3 5の曲 率 R及び突出量 N次第では、 その中心部がスラスト板 3 1に接触することも考え られ、 場合によっては浮上しきれないことになる。 又、 前記スラスト部材 3 4に 前記のような球面部 3 5の加工を追加する必要があり、 またその微小な凸形状の 形成は困難を伴う、 という問題もある。
また、 特開平 9 _ 3 2 8 3 8 1号公報においては、 スラスト部材摺動面の一方 に非晶質硬質炭素膜を形成し、 他方の摺動面 (セラミックス材で形成) をボイド 占有率 6 %以下、 最大ボイド径 1 0 μ m以下とし、 これによつて両部材間の摩擦 係数を低減する内容の発明が開示されている。
しかしながら、 この方法によれば、 前記固定潤滑膜による摩擦係数の低減に対 応したトルクの低下は見られるものの、 それ以上の改善は期待できない。 すなわ ち、 スラスト部材摺動面間においては引き続きその摺動面の全面で接触すること となり、 接触半径が大きい外周部での接触のため、 起動トルクを低減する効果は 僅かなものとしかならないからである。
発明の開示
以上より、 本発明は、 前記のような従来技術にある欠点をなくし、 動圧発生溝 における局部的な高圧力の発生を回避してほぼ均一な圧力分布を実現させ、 これ によって動圧気体軸受における結露による軸受起動時の機能障害をなくし、 同時 に、 スラスト軸受部における揺動への対抗力が強い動圧軸受を実現することを目 的とする。 本発明は更に、 動圧発生溝内での圧力分布をほぼ均一にすることによ り、 溝内で発生する最高圧力を低下させ、 動圧気体軸受の結露を防止する方法を 含む。
さらに本発明は、 軸受停止時においてスラスト板とスラスト対向面とが全面で 接触することを回避し、 従来技術における起動時の摩耗やエネルギロスなどの問 題を回避し、 僅かな起動トルクで軸受回転側部材を固定側部材から確実に浮上さ せ、 かつ耐揺動性にも優れた動圧軸受を提供することを目的とする。
さらに本発明は、 上述のような起動特性を改善し、 倒れ剛性にも優れた安定し た回転を実現するスピンドルモータを提供すること、 並びに該スピンドルモータ を備えることにより、 耐久性、 信頼性の高い記憶装置、 並びにバーコード走査装 置を提供することを目的とする。
より具体的には、 以下の内容を含む。 すなわち、 本発明にかかる 1つの態様は、 軸受の軸に垂直な方向であるラジアル方向、 もしくは軸受の軸に平行な方向であ るスラスト方向に所定の間隙を設けて対向する対向面をそれぞれ有する回転側部 材と固定側部材とからなり、 前記両部材の対向面間に流体を介在させて相対回転 させることにより前記流体が発生する動圧を利用して前記両部材間を非接触状態 に保って回転支承を行なう動圧軸受において、 前記ラジアル方向もしくはスラス ト方向に相対向する前記両部材の内のいずれか一方の対向面に設けられた溝の深 さを前記溝内の場所に応じて変化させ、 軸受回転時における前記溝内の圧力がほ ぼ均一に分布するようにしたことを特徴とする動圧軸受に関する。 溝の深さを変 化させることにより、 発生圧力を分散させ、 特にスラスト軸受部においては倒れ に対する抗カを高めることができ、 また、 特に動圧気体軸受においては、 ラジア ノレ、 スラス ト両軸受部におけるピーク圧力下での結露の発生を回避するものであ る。 前記溝内での圧力を均一にするには、 前記溝の深さの変化が、 流れの上流か ら下流へ、 もしくは回転方向の上手から下手へ、 連続的に浅くなるよう変化させ ることが好ましい。
本発明にかかる他の態様は、 軸受の軸に垂直な方向に広がる円板状のスラスト 板と、 前記スラスト板に対向し、 軸受の軸に垂直な方向に広がる円形のスラスト 対向面とからなり、 前記スラスト板もしくはスラスト対向面のいずれか一方に設 けられたスパイラル状の動圧発生溝の作用により、 前記スラスト板とスラスト対 向面との相対回転によって軸受の軸に平行な方向であるスラスト方向の動圧を発 生させ、 両者間を非接触状態に保って回転支承するスラス ト軸受部を有する動圧 軸受において、 前記スラス卜板及びスラスト対向面のいずれか一方もしくは双方 の相対向する面を、 前記スラスト軸受部の内周部から半径方向外周部に向かって 両対向する面の間隙が広がるよう傾斜させたことを特徴とする動圧軸受に関する。 前記傾斜は、 スラスト動圧の発生にはあまり影響せず、 倒れによる接触を回避す るように設けることが好ましい。 具体的には、 スラスト軸受部で対向するいずれ か一方、 もしくは双方の面を円錐台状、 球面状などに形成し、 前記傾斜によるス ラス 卜軸受部の間隙の変化を約 2 μ m以下とすることが好ましレ、。
本発明にかかる更に他の態様は、 円柱状のシャフト、 及び前記シャフ トの軸に 平行な外周面に回転自在に嵌装される中空円筒状のスリーブからなり、 前記シャ フト及び前記スリーブの相対回転によってラジアル動圧を発生させるラジアル軸 受部と、 前記シャフトの軸方向の一方の端面に軸と垂直に形成もしくは固定され るスラス ト板、 及び前記スリーブの軸方向の一方の端面に形成もしくは固定され、 前記スラスト板に対向するスラスト対向面からなり、 前記スラスト板及びスラス ト対向面の相対回転によってスラスト動圧を発生させるスラスト軸受部と、 の両 軸受部から構成される動圧軸受において、 前記スリーブの軸方向の他方の端面に て前記スリーブの中空部を閉塞するよう固定される第 2スラスト板が更に設けら れ、 前記第 2スラスト板と、 この第 2スラス ト板に対向する前記シャフ トの軸方 向の他方の端面との間の軸に平行な方向の間隙を a、 前記スラス ト板と、 これに 対向するスラスト対向面との間の軸に平行な方向の隙間を bとしたとき、 前記 a と bとの間に、
a < b
の関係が成立することを特徴とする動圧軸受に関する。 第 2スラスト板を設ける ことによって、 軸受停止時には、 この第 2スラスト板とシャフトの間で回転側部 材の荷重を支え、 再起動時の接触抵抗のアームを短くして起動性を改善するもの である。 前記第 2スラスト板、 もしくはこれに対向するシャフトの端面のいずれ か一方には、 球面状、 円錐台状などの突出部を形成することが、 前記両部材間の 接触点をより軸心に近付ける上で好ましい。
本発明にかかる更に他の態様では、 軸受部材を構成するシャフト、 スリーブ、 スラス ト板、 スラスト対向面、 前記第 2スラスト板のいずれか 1つ、 もしくは 2 つ以上の少なくとも軸受部で対向する部分が、 セラミックス材で形成されている こと特徴としている。 前記セラミックス材料は、 アルミナ、 ジルコニァ、 炭化ケ ィ素、 窒化ケィ素、 サイアロンからなる群の中から選択される。 耐摩耗性に優れ たセラミックス材を使用することにより、 接触回転による摩耗が回避されるほ力 \ 高剛性、 高精度の軸受部材を提供することができる。
本発明にかかる更に他の態様は、 以上述べた起動特性、 高剛性を備えた動圧軸 受を有するスピンドルモータ、 更には該スピンドルモータを備えたことを特徴と する記憶装置、 もしくはバーコード走査装置に関する。 安定性、 信頼性、 耐久性 に優れたこれら製品を提供するものである。
図面の簡単な説明
図 1は、 スラスト動圧発生溝の形状と圧力分布との関係を示す説明図である。 図 2は、 従来技術によるスラスト動圧発生溝の圧力分布を示すコンピュータ解 析図である。
図 3は、 本発明にかかるスラスト動圧発生溝の圧力分布を示すコンピュータ解 析図である。
図 4は、 本発明にかかる 1つの態様の動圧軸受を示す断面図である。
図 5は、 図 4に示す動圧軸受の代替案を示す部分拡大断面図である。
図 6は、 本発明にかかる他の態様の動圧軸受を示す断面図である。
図 7は、 図 6に示す動圧軸受の代替案を示す断面図である。
図 8は、 従来技術による動圧軸受を備えたスピンドルモータの断面図である。 図 9は、 従来技術によるスラスト動圧発生用溝を設けたスラスト板を示す斜視 図である。
図 1 0は、 図 8に示す動圧軸受部のみを拡大して示す斜視図である。
図 1 1は、 図 8に示す動圧軸受部分の動圧分布状況を示す説明図である。 図 1 2は、 従来技術による動圧軸受の起動特性を改善する具体案を示す部分断 面側面図である。
発明の実施の形態
本発明にかかる第 1の実施の形態の動圧軸受にっき、 図面を参照して説明する。 上述のように、 動圧軸受のスラスト軸受部においては、 スパイラル状の溝の作用 によって、 外部からスラスト軸受部に空気などの流体を導入することによって動 圧を発生させる。 前記導入される流体は、 スラスト軸受部での相対回転に伴うポ ンプ作用により、 順次外周部から内周部 (軸受の軸心方向で、 シャフトの外周面 近傍) に送り込まれる結果、 シャフト近傍の内周部の圧力が高まり、 この圧力に よって軸受浮上力が維持される。 この圧力の分布状況は、 数値計算によれば、 ス ラス 卜板の軸中心に近い位置で高く、 またランド部が設けられている場合には、 ランド部 9と溝 5 (図 1 0参照)の縁との境界付近で圧力が高く、 半径方向外周部 に向かって順次圧力が低下している。 すなわち、 従来技術による動圧軸受におい ては、 スラス卜軸受部での高い動圧発生箇所が局部的に偏在している。
図 1 ( a ) は、 従来技術による、 スラスト板 4の溝 5が設けられた部分を断面 状に示している。 図 9を参照して説明したように、 実際には溝 5はスパイラル状 に設けられているが、 図 1 ( a ) では、 この溝 5の一つを取り出し、 スパイラル 状の溝を半径方向に投影して示している。 図において、 Xはシャフトの外周面 (スラス ト板 4の内周部) 、 Yはスラスト板 4の外周面を示す。 スラス ト板 4に は、 シャフト外周面 Xから所定距離延びるランド部 9が設けられ、 このランド部 9に続いて深さ hの溝 5が設けられている。 図の a— aは、 スラスト板 4の表面 を、 b— bは、 溝 5の底面を示している。 矢印 7 ' は、 この溝 5に導入される流 体の流れを示しており、 この矢印 7 ' は、 図 1 0に示す矢印 7を半径方向に投影 したものである。 また、 図 1 ( a ) に示す溝 5は、 その半径方向外側が、 外部に 開放している形式のものである。 従来技術におけるスパイラル状の溝 5は、 図に 示すように、 その深さ hが一定の平坦な溝であった。
次に、 図 1 ( b ) に示す点線 Jは、 前記のような構成の溝 5が軸受回転時に発 生させる動圧の分布を、 やはり半径方向に投影して見たものである。 図 1 ( a ) に対応して、 横軸 Sはスラスト板 4の内周部から外周面に至る距離、 縦軸 Pは動 圧圧力の大きさを示す。 なお、 本スラス ト軸受部は、 ラジアル軸受部とは切り離 して単独で動作するものとしたため、 内周部も外周部と同様外部に開放されてお り、 この位置における圧力は外部圧力に等しレ、(ゼロ)と仮定した。 ラジアル軸受 部と結合している場合には、 内周部圧力が高くなる他は、 圧力分布は同様の傾向 を示す。 これまで説明したように、 従来技術によるスラスト軸受部の圧力分布は、 図の点線 Jで示す溝 5の軸中心に近い側の縁付近で局部的に最大圧力 p aを示し、 以下外周部に向かって暫減する傾向を示す。 本願発明者らが行なった数値計算に よれば、 スラス ト軸受部直径が 2 Omm、 スラス ト内径が 1 4mm、 溝深さ hが 2〃 m、 回転時の軸受クリアランスが 1. 5 μ m、 回転数を 1 6, 000 r p m としたとき、 前記最大圧力 paは、 約 1. 5 9 a tmであった。 実験によって圧 力分布を測定することは困難であるが、 浮上高さ (クリアランス) や負荷容量
(回転部質量) 等の関係は計算結果とよく一致しており、 本圧力も妥当と推定さ れる。
本発明においては、 この溝の深さを外周部と内周部との間で変化させることに より、 圧力分布を均一化させようとするものである。 すなわち、 図 1 (c) に示 すように、 溝 5の底面を b ' -b ' に示すように斜めに傾斜させ、 スラスト板 4 の外周部の溝深さ から内周部 X方向に移動するに従って溝深さを浅くし、 ラ ンド部 9との境界位置で深さ h2まで減少させるものである。 図に示す他の符号 は、 それぞれ図 1 (a) と同様である。 従来技術では、 溝 5に導入された流体力 ランド部 9と溝 5の境界部分に押し込められて局部的に高圧を発生していたのに 対し、 本実施の形態のように、 内部に進むにしたがって順次深さを浅くする (h l→h 2) ことによって、 外周部近傍の入口付近から徐々に圧力を高めるもので ある。
本発明にかかる軸受においては、 前記のように溝深さを調整した結果、 図 1 (b) の実線 Kで示すように、 動圧の分布はほぼ平均化された。 本願発明者らが 行なった数値計算によれば、 溝 5の深さを、 スラスト板 4外周部の流体入口近傍 の で 2 μιη、 ランド部 9との境界位置の h2で 0. 4 / mとし、 他は前記従来 技術と同じ条件で回転させたときの最大圧力 Pcは約 1. 3 1 a tmで、 これが 半径方向にほぼ均一に観察された。 すなわち、 最大圧力 peは、 従来技術の最大 圧力 P aに比較して減少するものの、 圧力が均一に分布される結果、 軸受の浮上 力全体としては変化はない。 更なる利点として、 軸中心から離れた位置で発生す る圧力が高いことから、 揺動に対して優れた効力(モーメント)を発揮できること が挙げられる。
図 2と図 3とは、 本願発明者らが行なった前記の数値計算結果を示すものであ る。 図 2 (a) は、 上に示す従来技術にかかる動圧軸受の溝における圧力分布を コンピュータ解析した結果を、 図 2 ( b ) は、 それを模式的に再現したものを示 している。 いずれもスラス ト板 4を軸方向から見た図である。 図 2 ( b ) に示す ように、 溝 5のランド部 9との境界部分に最高圧力 1 . 5 9 a t mを示す高圧部 分が現れ、 その周囲に約 1 . 4 a t mの圧力部分が短く存在し、 その後、 圧力は 暫減している。 すなわち、 溝 5の形状が全体として定かでないほどに高圧部分が 局部的に集中していることを示している。
図 3は、 同じ状況を前記数 計算結果に示す諸元の本発明にかかる動圧発生溝 を備えたスラス ト板 4で見たものである。 図 2と同様、 図 3 ( a ) はコンビユー タ解析結果、 図 3 ( b ) はその結果を模式的に示している。 図 3 ( b ) からも明 らかなように、 本実施の形態にかかる軸受においては、 最高圧力は 1 . 3 1 a t mと、 従来のものに比べて低くなつている反面、 その高圧部分が溝の形状をはつ きり示すほどに均一に分布しており、 その周囲には 1 . 2 a t mほどの圧力部分 が存在している。 すなわち、 従来技術によるものが軸又はランド部 9との境界部 に近い位置で集中してスラスト荷重を支えているのに対して、 本発明にかかる軸 受ではスラスト面全体で支えるものであることが看て取れる。
結露に関しては、 例えば常温で湿度 6 0 %の空気を流体として使用して動圧軸 受を動作させると、 従来技術によるものでは 1 . 5 9 a t mまで圧縮される結果、 結露を起し易い。 しかしながら、 本発明にかかる最大圧力 1 . 3 1 a t mでは、 結露を生ずることは少なく、 したがって結露を含んだままで停止した後の再起動 ができなくなるという問題が生じにくくなる。
なお、 本実施の形態では、 動圧発生流体がスラスト軸受部の外周部から内部に 導入されるポンプイン形式のものであった。 すなわち、 溝 5のスパイラルの傾斜 力 スリーブ 3の回転によって流体を外部から内部に吸い込む方向に向けられる 形式となっている。 このスパイラルの傾斜を逆方向とし (もしくはスリーブ 3の 回転方向を逆とし) 、 内部から流体を外部に排出するポンプアウト形式とするこ とによっても動圧を発生させることができる。 この形式の場合には、 流体が軸近 傍の内部から順次スラス卜板外周部に押し出されることから、 スラスト板の外周 に向かって圧力が高まることとなる。 従って、 本発明の実施の当っては、 溝 5の 深さの傾斜は、 図 2 ( c ) に示すものとは逆の傾斜とし、 ランド部を設ける場合 には外周部に設ける必要がある。
図 1 ( c ) に示す点線 Mは、 本実施の形態の代替案を示している。 この代替案 では、 溝 5の深さを連続的に傾斜させるのではなく、 段階的に浅くなるよう変化 させることを特徴とする。 例えば溝 5を形成するのに、 マスキングを用いてショ ットブラスト噴射を行なう場合やレーザビーム照射を行なう場合には、 このよう な段階的な深さ変化を設けて実施する方が簡便である。 溝 5をこのような構成で 形成しても、 前記と同様な効果を得ることができる。 ただし、 この場合において も、 流体の円滑な流れを考慮すれば、 この段差をできるだけ多く し、 1つの段差 当りの深さの変化をできるだけ小さくすることが好ましい。
なお、 本実施の形態における説明では、 スラスト動圧発生用の溝 5をスラスト 板 4に設けることとしている力 この溝はスラスト板 4に対向するスラスト対向 板 1 3の面に設けられていてもよレ、。 さらに、 本実施の形態では、 溝深さを直線 的に、 もしくは等間隔等段差での段階的に変化させるよう図示してあるが、 本発 明の目的は、 溝内部における圧力分布をできるだけ均一にすることにある。 従つ て、 前記溝深さの変化は、 例えば滑らかな曲線的な変化であったり、 もしくは不 等間隔不等段差の段階的な変化であったりしても、 それが圧力分布を均一化させ るものであればよい。
又、 これまでの実施の形態における説明は、 スラスト軸受部に関したものであ るが、 ラジアル軸受部における溝 2に対しても、 本発明を同様に適用することが できる。 この場合の溝の変化は、 スラスト軸受部においては外周部から軸中心部 に向けて (ポンプイン 'タイプの場合) であったが、 ラジアル軸受部においては、 相対回転の上手側から下手側に (図 1 0の矢印 8方向に) 向けて深さが順次浅く なるよう変化して形成される。 これは、 同溝 2がシャフト 1の外周面ではなく、 スリーブ 3の内周面に設けられる場合においても同様である。
(実施例 1 )
外径 20mm、 内径 1 4 mmのスラス ト気体軸受の動圧発生部に、 図 9に示す 形式の最大深さ 2 m、 幅 1 5度の溝を 1 2本形成した。 内径側の 0. 75 mm 幅の領域には、 溝のないランド部を設け、 溝の入口部と出口部の角度差は 45度 とした。
く試料 A〉 溝深さを直線的に変化させたもので、 レーザー加工により作製し た。 溝深さは外径側の気流入口部深さ (図 1 (c) の 1^) が で、 内径側 のランド部 9との接続部で 0. (同、 h2) であり、 その問は直線的に減 少させた。
<試料 B〉 図 1 (C) の点線 Mに示すような溝深さを階段状に変化させた溝 を、 マスクを取り替えて複数回のブラスト加工を行って作製した。 溝深さは、 図 1 (c) の点線 Mの様に、 外径側の気流入口部 (h i) が 2 imで、 3回にわた り、 同じ間隔、 段差で深さを変化させ、 内径側ランド部 9と接続した。
く試料 C〉 溝深さが一定である比較例で、 1回のブラスト加工により作製し た。 溝深さは、 全領域 2 / mで、 内径側ランド部 9との接続部における段差は 2 /i mでめる。
これらの軸受に、 総質量が 200 gとなるよう錘を加え、 平板と組み合わせて、 回転数 1 6, 000 r pmで 1 0分回転させた後停止させ、 停止後直ちに再度回 転させることが可能かを試みることによって、 水の凝縮の有無を調べた。 また、 安定回転時の浮上高さを測定した。 周囲温度は 25°Cに保ち、 湿度を 50〜1 0 0%に変化させた。 尚、 測定は各湿度で 5回繰り返した。
以上の結果、 再現性よく再回転が可能な上限湿度は、 試料 Aでは 90%、 試料 Bでは 8 5%、 試料 Cでは 75%であった。 また、 安定回転時の浮上高さは、 レヽ ずれも約 1. 5 mであり、 数値計算から予想された値と良い一致を示した。 次に、 本発明にかかる第 2の実施の形態の動圧軸受にっき、 図面を参照して説 明する。 図 4は、 本実施の形態にかかる軸受を示している。 図において円柱状の シャフト 1の外周面には、 スリーブ 3が所定の間隙を設けて回転可能に嵌装され、 シャフト 1の一端には軸に垂直な面に沿ってスラスト板 4 aが固定されている。 スラスト板 4 aは、 スリーブ 3の下面と対向し、 その対向する面にはスラスト動 圧発生用の溝 5が設けられている。 スリーブ 3の下面で、 前記スラス ト溝 5に対 向する面をスラスト対向面 1 3と呼ぶ。
以上のように構成された動圧軸受けの動作時は、 図示しないスピンドルモータ のステータコイルとロータ磁石との間で発生する回転駆動力によりロータが回転、 そのロータに固定されているスリーブ 3が回転することによって、 シャフト 1と スリーブ 3との相対運動が生じ、 両者の間にラジアル方向の動圧が発生する。 同 様に、 スリーブ 3のスラスト対向面 1 3とスラスト板 4 aとの相対運動によって スラスト溝 5の作用でスラス ト方向の動圧が発生し、 これによつてスリーブ 3ほ かの回転側部材が無接触状態でシャフト 1を中心に回転する。
本実施の形態にかかる動圧軸受では、 図 4示すように、 スラスト板 4 aのスラ スト溝 5が刻まれた側の面が、 スラスト軸受部の内周部から半径方向外周部に向 けてスラスト対向面 1 3から離れる方向に傾斜していることを特徴とする。 この 傾斜が設けられていることにより、 図の点線で示すスリーブ 3の定常回転状態か ら、 何らかの外部要因によってシャフト 1とスラスト板 4 aに対してスリーブ 3 が相対的に傾斜し、 図の実線で示す状態に至ったとしても、 スラス ト板 4の外周 部 Hが傾斜しており、 接近するスラス ト対向面 1 3からは逃げているため、 接触 が回避される。
当然ながら、 前記回避をするには、 このスラスト板 4 aの傾斜面の角度が大き いほど効果がある。 し力 し、 この面にはスラスト溝 5が設けられてスラスト動圧 を発生させる軸受構成要素であることから、 大きく傾斜させた場合には十分な動 圧の発生が期待できなくなる。 接触を回避できるに十分大きな傾きを持ち、 スラ スト動圧を発生させるに十分小さな傾きであることが好ましレ、。
図 4の縦断面図において、 スラス ト板 4 aに設けられる傾斜は、 スラスト軸受 部最内周部 (スラスト板 4に取り付けられたシャフト 2の外周面) から半径方向 ヘスラス ト軸受部最外周部 (スラス ト板 4の外周面) に至る距離であるスラスト 幅 sの間に、 軸方向の高さ変化量である傾斜量 dだけ傾斜する直線状の傾斜にな つているものとする。 すなわち、 スラスト溝 5が刻まれたスラスト板 4 aの面全 体は円錐台状に形成されている。 このとき、 図の点線で示すスリーブ 3の定常状 態におけるシャフト 1の両側面においてスリーブ 3との問に存在するラジアル方 向の間隙をそれぞれ f l、 f 2、 その合計を F ( F = f 1 + f 2 ) とし、 ラジア ル軸受部の軸長を Lとすれば、 ラジアル部では
F/ L
の傾斜 (勾配) が可能である。 したがって、 スラスト部のコーナ部 Hでの接触を 回避するには、 スラス ト板 4における傾斜 (同) 1 前記ラジアル部の傾斜より も等しいか大きくなればよレ、。 すなわち、
F/ L≤ d / s
の関係の成立が、 スラスト部の接触を回避する条件となる。
本願発明者らが行なった実験によれば、 軸長 L = 1 5 mm、 ラジアル間隙 F =
4 m、 スラス ト板 4の直径 D = 2 0 mmの場合において、 傾斜量 = 2 111で あれば、 スラスト動圧を確保でき、 スラスト部での接触を十分回避できる効果が 認められた。 この傾斜量 dを約 2 μ以下とすることは、 +分なスラスト動圧を確 保する上で好ましい条件と考えられる。
本実施の形態にかかる動圧軸受において、 他の有利点として、 軸受起動時の必 要トルクを低下させる効果がある。 図 4からも理解できるように、 本実施の形態 の構成にかかる軸受が停止した状態においては、 スリ一ブ 3に固定された回転側 部材の全荷重は、 スリーブ 3のスラスト対向面 1 3とスラス ト板 4とが接触する ことにより、 スラスト板 4の表面にかかる。 この際、 従来技術においては、 スラ スト対向面 1 3とスラスト板 4とが平面で、 すなわち対向する両面の全面同士が 接触していた。 本実施の形態にかかる構成によれば、 スラス ト版が傾斜している ことから、 両部材の接触面は、 スラスト対向面 1 3の内、 軸受の軸心に近い内周 面端末部のみにリング状に存在することとなる。
したがって、 次に再起動する際、 これまでは平面全体に荷重が広がっていた場 合に比べて、 本発明では回転の中心に近い位置に荷重が集中していることから、 軸心から荷重点までのアーム長さを小さくすることができ、 したがって起動トル クを小さく押さえることができる。 このことは、 モータ容量を低くでき、 したが つて全体が小型化され、 電気消費を低減でき、 かつ、 容易に回転数を上げること ができるために接触回転を最小に抑えて接触部材間の摩耗を減らすことができ、 結果的に軸受寿命を向上させる効果も生まれる。
図 5は、 本実施の形態の代替案にかかる動圧軸受のスラスト軸受部片側のみを 示す部分拡大図である。 図 4において説明したものと同一部品には同一符号を付 している。 図の縦断面図に示すように、 本代替案では、 スラス ト板 4の傾斜面を 直線状から円弧状に改めたもので、 したがって軸受全体で見た場合にこの傾斜面 は球面状に現れる。
図のスラスト板 4 bの動圧発生面に描いた平行線は、 この面で発生する動圧の 分布状況を模式的に描いたものである。 先にも説明した通り、 スラス ト軸受部に おいては、 スラス ト板 4 bの外周部近傍は、 動圧発生用の気体の吸引部に当り、 したがって発生する動圧圧力は低い。 逆にシャフト 1外周面近傍のスラスト軸受 部内周部に向かうほど動圧が高くなり、 スラスト動圧のほとんどの部分がこのシ ャフト 1に近い場所で発生する。
本代替案の利点は、 前記スラスト板 4の傾斜部を円弧状としたことから、 軸心 に近い位置では前記傾斜が緩やかであり、 外周部に近づくにしたがって傾斜が大 きくなる。 このことは、 動圧が発生する部分においては、 対向するスリーブ 3の スラスト対向面 1 3に近い距離を維持しているために動圧の低下が避けられ、 逆 に接触が懸念される外周部付近においては、 動圧発生にあまり寄与しない部分で スラス ト対向面 1 3から離れている。 すなわち、 傾斜面をこのような円弧状とす ることにより、 動圧の確保と接触の回避とを同時に満たし得る好ましい傾斜を設 けることができる。
本願発明者らが行なった実験によれば、 本代替案においても、 スラス ト板 4 b の傾斜量 dは、 約 2 / m以下としておくことが好ましい。 すなわち、 このときの 曲率は、 この 2 mと、 スラス ト軸受部最内周部 (シャフト 1の外周面) から最 外周部 (スラス ト板 4の外周面) までの距離であるスラスト幅 sとから算出が可 能である。
なお、 ここで傾斜面の形状を断面図で見た場合を 「円弧状」 、 又、 全体で見た 場合を 「球面状」 と称しているが、 図 5を参照して分る通り、 スラスト軸受部最 内周部、 すなわちスラスト板 4 bの外周面から sの距離にある軸に平行な線上に 中心をおいて傾斜面の円弧を描いた場合、 軸受全体で見たときの球面状の形状は、 実際には真の球面の一部とはならない。 真の球面にするには、 円弧の中心をシャ フト 1の軸心上におく必要があるが、 ここではこの両者を合わせて 「球面状」 と 称するものとする。 前記スラスト最内周部がシャフト 1の軸に近接する場合には、 前記傾斜部の円弧の中心をシャフト 1の軸上に設け、 これと前記傾斜量 dの 2つ から円弧の曲率を求めて真の球面の一部とするようにしてもよい。 更に、 前記
「円弧」 は、 必ずしも真円でなくても、 スラスト軸受部の軸に近い内周面で傾斜 が少なく、 外周部で傾斜が進む形状であれば、 楕円や放物線の一部、 その他の曲 線であっても良い。 再起動時の起動トルクを小さく し、 電力消費を削減できるな どの効果は、 先の第 2の実施の形態と同様である。
なお、 上記代替案を含む本実施の形態における説明では、 スラス ト軸受部での 傾斜をスラスト板 4に設けるものとしている力'、 この傾斜は、 このスラスト板 4 に対向するスリーブ 3のスラスト対向面 1 3に設けるものとしても全く同様の効 果を得ることができる。 また、 形式によってはスリーブ 3ではなく、 別部品とし て構成されるスラスト対向板にこの傾斜を設けることとしてもよい。 更には、 相 互に対向するスラスト板 4 bとスラス ト対向面 1 3との両部材ともに傾斜を設け ることとしてもよい。 この両者に傾斜を設ける場合には、 両部材に設けられた傾 斜量の合計が、 前記説明にかかる傾斜量 dに相当するものとすることが好ましレ、。
(実施例 2 )
図 4に示す形式のスリーブ回転形式の動圧軸受において、 ラジアル軸受部は直 径 1 5 mm、 長さ 1 5 mm、 半径方向片側のラジアル間隙 2 μ m、 スラスト板は 外径 2 0 mm、 内径 1 5 mmとし、 深さ 5 mのスパイラル動圧発生溝を施した。 スパイラル溝は、 ショッ トブラスト、 レーザーアブレ一ジョン、 プラズマエッチ ングなどにより作製可能である。
スラス ト板は、 傾き (スラス ト軸受部の最内周部と最外周部の間の軸方向の高 さの差) で 0 . 1、 0 . 3、 0 . 5、 1 . 0、 1 . 5、 2 . 0 mの 各種のものを準備し、 これらをモータに組んで 1 2 Vにて駆動し、 回転数 1 0, 0 0 0 r p mにて回転させた。 起動電流はモータを起動させて、 定常回転に達す るまでの最大電流値により評価した。
軸受揺動のためのピッチングは、 ステツビングモータを備えた揺動試験機を用 いて、 回転速度を変化させて ± 6 0。 で回転させた。 接触の発生は異音を検知 することにより行ない、 ロータ部分の発生音をマイクロフォンでモニタして異音 が発生する回転速度を測定した。 異音が発生するときの回転速度が高い程、 ピッ チングに対して強いと評価する。
以上の結果から、 傾きが 0 . 3 / m以上となると起動電流ならびにピッチング に対して、 特性が向上することが明らかになった。
次に、 本発明にかかる動圧軸受の第 3の実施の形態について、 図面を参照して 説明する。 図 6は、 本実施の形態にかかる動圧軸受を示している。 図において、 円柱状のシャフト 1の外周面には中空円筒状のスリーブ 3が嵌装され、 スラスト 板 4がシャフト 1と垂直に組み合わされてスリーブ 3の下端面に対向している。 本実施の形態にかかる動圧軸受では、 これら従来技術にかかる軸受部材に加えて、 更に第 2スラス ト板 1 1が設けられている。 この第 2スラス ト板 1 1は、 円板状 の部材などで形成され、 スリーブ 3の軸方向の端面であって前記スラスト板 4に 対向している端面とは反対側の端面に、 例えば接着手段により固定される。 スラ スト板 4の表面には、 スラスト動圧発生用の溝 5が刻まれており、 この溝 5を有 する面が、 前記スリーブ 3の下端面であるスラスト対向面 1 3と対向している。 以上の構成にかかる動圧軸受の回転状態においては、 これまでの各実施の形態 と同様に、 スリーブ 3がシャフト 1及びスラスト板 4との間に相対回転し、 スリ ーブ 3とシャフ ト 1との間にはラジアル動圧を、 また前記スリーブ 3の下端面で あるスラスト対向面 1 3とスラスト板 3との間にはスラスト動圧をそれぞれ発生 させる。 これら動圧の発生により、 スリーブ 3がシャフト 1及びスラスト板 4に 対して非接触状態で相対回転を行なうものである。
図に示す回転状態において、 第 2スラスト板 1 1とこれに対向するシャフト 1 の端面と間の間隙を a、 スリーブ 3のスラスト対向面 1 3とスラスト板 4との間 (スラスト軸受部) の間隙を bとした場合、 本発明においてはこの aと bとの間 a < b
の関係が成立するよう構成されている。
前記関係が成立する動圧軸受の停止時においては、 スピンドルモータへの通電 が遮断されるとともに回転側部材の回転数が低下し、 軸受部での動圧発生が小さ くなつてそれまで浮上していたスリーブ 3ほかの回転側部材が自重により下降す る。 この下降により、 前記の関係式から、 間隙の狭い方である aがまず 0となり、 すなわち第 2スラスト板 1 1がシャフト 1の端面に接触した状態で停止するに至 る。 この状態において、 上式の関係から 0 < bとなるため、 理想的にはスリーブ 3とスラスト板 4とは非接触の状態のままとなり、 スリ一ブ 3ほかの軸受回転側 部材の全荷重が、 第 2スラスト板 1 1とシャフト 1上端との接触面に加わった状 態で停止する。
上述のような状態で停止している動圧軸受を再起動する場合には、 スピンドル モータの通電により回転側部材が回転を始めると、 当初の低い回転数においては 十分な動圧が発生しないために、 前記第 2スリーブ 1 1とシャフ ト 1の端面とが 接触した状態のままで回転を続け、 一定の回転数に至って十分な動圧発生による 浮上力が生じ、 回転側部材が固定側部材から浮上する。 この再起動時における従 来技術との相違点は、 従来技術においてはスラスト対向面 1 3とスラスト板 4と のスラス ト動圧発生部材間が全面で接触しており、 接触状態のままで回転するに 際して、 前記両部材間の摩擦力が回転中心からのアーム長の長い位置で発生する のに対し、 本発明にかかる実施の形態では、 回転中心に近くアーム長の短い第 2 スラスト板 1 1とシャフト 1端面との間の摩擦であるため、 起動トルクをはるか に小さくできる点にある。
更に、 前記の接触部のアーム長さの相違により、 回転側部材が浮上する際の回 転数が従来技術によるものと不変であるとすれば、 その回転数における摩擦接触 部の回転周速を、 本発明では前記アームの長さに比例して小さくすることができ る。 これによつて接触部における摩擦速度を下げ、 摩耗を低減できるほか、 当該 部分における焼付きの虞を回避することができる。 前記摩擦による抵抗力が従来 技術に比較して小さく、 従って起動時における回転数の上昇が早いために早期に 浮上回転数に到達できることから、 摩擦を最小限に抑える効果を生む。
ところで、 上述のように
a < b
の関係が成り立つていたとしても、 bが aに対して極端に大きな場合には、 停止 後の再起動時にスリーブ 3の端面にあるスラスト対向面 1 3とスラスト板 4との 間隙 (b— a ) が広くなりすぎて十分なスラス ト動圧が発生しない事態が考えら れる。 更には、 たとえ動圧が発生して回転側部材が浮上していても、 軸受に揺動 が加わった場合には容易に第 2スラスト板 1 1とシャフト 1の端面とが接触する 虞がある。 軸受部材間が一旦接触すると軸受の回転が不安定となり、 これを使用 する H D Dなどの機能を損ねることになりかねない。
力かる事態を避けるには、 aと bとの差をできるだけ小さくすることが必要と なる。 一般に動圧軸受においては、 相対回転する 2部材間の間隙が 2 以下に なれば負荷容量 (スラスト部における浮上力) が増すことが知られている。 すな わち、 前記のように揺動によって第 2スラス ト板 1 1とシャフ ト 1の端面とが揺 動により接近し、 接触する事態が起こる前に、 スリーブ 2の端面とスラスト板 3 との間隙 bが 2 μ m以下になって十分な負荷容量が得られれば、 前記のような接 触を回避できる公算が高い。 すなわち、 両者の間隙 a、 bの間に、
0 < b - a≤ 2 ^ m
の関係が成り立つていることが好ましい。
前記のような接触による問題をより確実に回避するには、 両間隙 a、 bの差を 更に小さくし、 スリーブ 3の端面とスラスト板 3との間隙 bをより狭くできるよ うにして負荷容量 (スラス ト部における浮上力)を高めることである。 この際の より好ましい関係としては、
0 < b - a≤0 . 5 m
の関係を成り立たせることである。
更に、 揺動時における第 2スラスト板 1 1とシャフト 1の端面との接触を回避 する手段として、 この両部材間においてもスラスト動圧を発生させることが考え られる。 すなわち、 第 2スラス ト板 1 1とシャフト 1の端面との対向するいずれ か一方の面に、 スラス ト板 4に形成された動圧発生用の溝 5と同様な溝を設ける ことである。 この溝の形成によって両部材間の相対回転に伴う動圧 (すなわち両 対向面間の接近に対する反発力) が生じ、 両部材間の接触を回避する作用を生む。 この浮上カは両対向面が接近するほど強くなることから、 接触を回避する力とし て良好な作用を及ぼす。 図 7は、 本実施の形態にかかる動圧軸受の代替案を示している。 図は、 動圧軸 受の停止状態を示している。 図において、 シャフト 1 aの上端部 1 2には曲面が 形成されている。 他の構成は、 第 3の実施の形態と同様である。 本図のように、 シャフト 1 aの上端部 1 2を曲面とすることにより、 軸受停止時においては第 2 スラスト板 1 1とシャフト 1 aの上端部 1 2と力 ほぼ軸受の中心軸上の点丁で 接することとなり、 先の実施の形態で説明した再起動回転時の摩擦力のアーム長 をほぼ 0に等しくすることができ、 駆動トルクを更に低く抑えることができる。 なお、 シャフト上端部 1 2を球面にしたために回転部側部材全体が前記上端部 丄 2上においては安定せず、 したがって図に示すようにいずれかに傾斜してスリ ーブ 3の端面とスラスト板 4との間の一点 Gで接触して安定する傾向になる。 こ のような状況は、 先の第 1の実施の形態においても、 例えばシャフト 1 aの径が 細かったり、 もしくはシャフト 1 aの端面の軸に対する直角度が出ていないとき などにも起こり得るものといえる。 但し、 通常はシャフト 1 aの直径は 1 0— 1 5 mm程度、 シャフト 1 aの長さは 1 0— 2 0 mm程度、 間隙は直径で 1一 5 μ m程度であるので、 シャフト上端面 1 2を若干の球面にしても、 スリーブ 3の傾 きは僅かである。
スラスト対向面 1 3とスラスト板 4との間で一点でも接触している場合には、 軸受再起動時においてこの接触による摩擦抵抗が加わることは避けられなレ、。 し かしながら、 図からも想定されるように、 回転側部材の重心はその回転軸近傍に あることから、 回転側部材の荷重のほぼ全てはシャフト上端面 1 2と第 2スラス ト板 1 1の接触点 Tにかかっており、 前記接触点 Gにおいてスラスト板 4にかか つている荷重は僅かなものといえる。 このため接触点 Gにおける起動時の摩擦抵 抗があったとしても、 荷重が小さいためにその抵抗は僅かなものでしかなレ、。 特 に、 従来技術におけるスリーブ 3端面のスラスト対向面 1 3とスラスト板 4とが 全面的に接触している状態と比較すれば、 前記接触点 Gにおける摩擦抵抗が加わ つたとしても、 本発明による起動トルクの低減はなお大幅なものであると言うこ とができる。
なお、 図面においては、 前記シャフト 1 aの上端面 1 2を球面状に形成したも のを表示しているが、 本実施の形態ではこれに限定されるものではなく、 たとえ ば、 円錐状、 円錐台状など、 接触部分の軸心からの距離を短くする効果を生ずる 他の幾何学的形状のものであっても、 同様な効果を生ずる。 更には、 このような 球面をシャフト 1 aの端面側に形成するのではなく、 逆にこれに対向する第 2ス ラスト板 4の表面に上記のような各種凸状部を設けることであっても良い。 次に、 本発明にかかる動圧軸受の第 4の実施の形態に付き、 説明する。 第 3の 実施の形態において図 6を用いて説明したように、 スラスト動圧を発生させるス リーブ 3のスラスト対向面 1 3とスラスト板 4との間隙をより狭くして負荷容量 を高めようとする際、 シャフト 1と、 シャフ ト 1に固定されたスラス ト板 3との 直角度が問題となる。 スリーブ 3は、 シャフ ト 1に嵌装されて回転し、 スラスト 板 4との間の相対回転により動圧を発生させるため、 前記直角度が出ていない場 合には、 スリーブ 3の端面であるスラスト対向面 1 3とスラスト板 3との間の間 隙を均一に保つことができず、 十分なスラスト動圧が得られないからである。 本願発明者らは、 実験の結果、 例えば直径 2 O mmの円板状のスラス ト板を用 いた場合、 このスラス ト板の外周の縁における直角のずれが、 0 . 7 / m以下で あればスラスト軸受部における動圧発生が低減することなく、 倒れに対する剛性 も発揮できることが分かった。 通常、 スピンドルモータに用いる動圧軸受のスラ スト板 4は、 直径 2 0 mm内外の円板状のものであるが、 スラスト板 4の傾きを この 2 O mm径において約 0 . 7 μ m以下に抑えることで、 第 2スラスト板 1 1 とシャフト 1端面との接触をより確実に回避できるようになる。 これを一般化し て、 本実施の形態では、 このシャフト 1 と、 シャフト 1に固定されるスラス ト板
4との直角度を約 0 . 7 mZ 2 O mm以下と定めるものである。 このィ直は、 ス ラスト板の直径が 2 O mm以外のものであっても、 あるいは、 スラスト板がシャ フトの端面に直接固定されず、 他の部品を介して間接的に固定される場合におい ても適用できるものである。
次に、 本発明にかかる第 5の実施の形態につき、 説明する。 本実施の形態にか かる動圧軸受は、 軸受構成部品の材料として、 耐摩耗性、 耐久性に優れ、 軽量で かつ高剛性を有するセラミックス材を使用するものである。 使用できるセラミッ クス材としては、 アルミナ、 ジルコユア、 炭化ケィ素、 窒化ケィ素、 サイアロン などの各セラミックス材料が考えられる。 例えば、 アルミナ系セラミックスの場合、 ヤング率は約 3 0 0から 4 0 O G p aあり、 これは鋼の約 2倍である。 一方、 アルミナ系セラミックスの比重は 3 . 9と、 鋼に比べて約半分である。 すなわち、 大雑把に言えば、 アルミナ系セラミ ックスは、 鋼の約半分の質量で、 約 2倍の剛性を得ることができる。 従来のステ ンレス鋼などの材料に代えてセラミックス材を使用することで、 動圧軸受を軽 量■小型化することができる。 更に特筆すべきは、 セラミックスの優れた耐摩耗 性にある。 上述のように、 動圧軸受の起動時には、 軸受部材間が接触したままで 回転するため、 その間での摩耗や焼き付きの問題があるが、 軸受構成部材の内、 少なくとも接触回転する部分にはセラミックス材料を使用することで、 このよう な問題を回避することが容易となる。 他の利点としては、 セラミックス材は金属 材料と比較して塑性変形並びに弾性変形が小さいことから、 セラミックス材の使 用により、 加工時の変形を少なく抑えることができ、 高精度の軸受部材を提供す ることができる点にある。
図 6に示す動圧軸受を例に採れば、 図中の全ての軸受構成部材をセラミックス 材に置き換えることが可能である。 但し、 コス ト対効果の観点から、 各軸受部材 の相手側部材と対向する面のみをセラミックス材に置き換え、 他の部分を従来の ステンレス鋼のままとすることであっても良い。 例えば、 シャフト 1について言 えば、 シャフ ト 1の軸心部分をステンレス鋼で形成し、 その周囲に中空円筒状の セラミックスを焼嵌め、 冷やし嵌め、 接着などにより固定することであっても良 レ、。 他の軸受部材についても同様である。
次に、 本発明にかかる第 6の実施の形態につき、 説明する。 本実施の形態は、 これまでの各実施の形態で説明してきた動圧軸受を使用するスピンドルモータ、 さらに、 該スピンドルモータを備えた記憶装置、 並びにバーコード走査装置に関 する。 上述のように、 本発明にかかる動圧軸受を使用することにより、 起動時に おける接触部材間の抵抗を極力小さくすることができ、 大きな起動トルクを必要 としないことから、 効率的なスピンドルモータの稼動を実現することができる。 また、 軸受部材間の摩耗を極力排除できることから、 耐久性に優れたスピンドル モータを実現することができる。 そして、 当該スピンドルモータを備えることに より、 効率的で信頼性の高い記憶装置、 並びにバーコ一ド走查装置を提供するこ とができる。
以上、 本発明にかかる各実施の形態につき説明してきたが、 参考として図示し た例では、 シャフト及びスラスト板を固定側部材とし、 スリーブを回転側部材と するものであった。 本発明は、 このような形式に限定されるものではなく、 この 逆の組合わせ、 すなわちシャフトを回転側部材とし、 スリーブを固定側部材とす るものであっても同様に適用することができる。
発明の効果
本発明にかかる効果を要約すれば、 スラスト軸受部に設けられるスパイラル状 の溝の深さを外周部から軸中心に向かう従って徐々に浅くし、 もしくはラジアル 軸受部に設けられるスパイラル状溝の深さを回転の上手方向から下手方向に向か うに従って徐々に浅くして、 圧力上昇を緩やかにすることにより、 局部的な高圧 部分がなくなって広い領域で高い圧力を発生させることができる。 これによつて、 所定の負荷容量を得るのに必要な最高圧力を低く抑えることが可能になるため、 動圧気体軸受においては圧縮に伴って生じる水の凝縮を防止することができ、 流 体動圧軸受一般においては、 スラスト軸受の揺動に対する対抗力を高めることが できる。
従来技術における動圧軸受のように、 スラス ト板と、 これに対向するスラスト 対向面 (もしくはスラス ト対向板) が平面同士で対向していれば、 外部要因で揺 動してこの両者が相対的に倒れた場合、 スラスト部が接触する恐れがあった。 こ れに対し、 スラスト板の摺動面が内周部から半径方向外周部に向けて傾斜してス ラスト軸受部の間隙が外周部に向かうほど広くなる本発明にかかる動圧軸受によ れば、 スラスト板とスラス ト対向面とが相対的に傾いても、 この部分における接 触を回避することができ、 揺動に強い動圧軸受を得ることができる。 また、 従来 技術による動圧軸受では、 静止時にスラス ト部材同士が全面で接触するため、 再 起動する場合の起動トルクが大きくなつた。 スラスト板の摺動面が内周部から半 径方向外周部に向かって傾斜していれば、 静止時の接触部が回転中心に近いスラ スト軸受内周部に集中するため、 回転中心から荷重点までのアーム長が短くなり、 起動トルクを小さくすることができる。
また、 第 2スラスト板を追加して設け、 軸受停止時にはこの第 2スラス ト板と シャフトの一方の端面との間で接触して回転側部材の荷重を支える本発明にかか る動圧軸受によれば、 スラスト板とスラスト対向面とが全面で接触することが無 く、 軸受回転部材の荷重は軸心からのアーム長さの短いシャフト端面に加わるこ と力ゝら、 再起動時のトルクを小さくすることができる。 又、 接触部分が軸心に近 いことから、 浮上に至る回転数における周速を小さくすることができ、 接触面の 間での摩耗を少なくし、 又摩擦による焼付きなどの問題を回避することができる。 さらに、 軸受部材を、 耐摩耗性、 剛性に優れたセラミックス材とすることによ り、 より耐久性の優れた、 信頼性の高い軸受を提供することができる。

Claims

請 求 の 範 囲
1 . 軸受の軸に垂直な方向であるラジアル方向、 もしくは軸受の軸に平行な方 向であるスラスト方向に所定の間隙を設けて対向する対向面をそれぞれ有する回 転側部材と固定側部材とからなり、 前記両部材の対向面間に流体を介在させて相 対回転させることにより前記流体が発生する動圧を利用して前記両部材間を非接 触状態に保って回転支承を行なう動圧軸受において、
前記ラジアル方向もしくはスラスト方向に相対向する前記両部材の内のいずれ か-一方の対向面に設けられた溝の深さを前記溝内の場所に応じて変化させ、 軸受 回転時における前記溝内の圧力がほぼ均一に分布するようにしたことを特徴とす る動圧軸受。
2 . 前記スラスト方向を非接触状態に保っための相対向する両部材のいずれか の対向面に設けられた溝の深さが、 前記溝を通過する流体の流れの上流から下流 に向けて順次浅くなるよう形成されていることを特徴とする、 請求項 1に記載さ れた動圧軸受。
3 . 前記ラジアル方向を非接触状態に保っための相対向する両部材のいずれか の対向面に設けられた溝の深さが、 前記溝を横断する相対回転方向の上手から下 手に向けて順次浅くなるよう形成されていることを特徴とする、 請求項 1に記載 された動圧軸受。
4 . 前記溝の深さの変化が、 流れの上流から下流へ、 もしくは回転方向の上手 から下手へ、 連続的に滑らかに浅くなるよう変化することを特徴とする、 請求項 1から請求項 3のいずれか一に記載された動圧軸受。
5 . 前記溝の深さの変化が、 流れの上流から下流へ、 もしくは回転方向の上手 から下手へ、 段階的に段差を設けて浅くなるよう変化することを特徴とする、 請 求項 1から請求項 3のいずれか一に記載された動圧軸受。
6 . 軸受の軸に垂直な方向に広がる円板状のスラス ト板と、 前記スラス ト板に 対向し、 軸受の軸に垂直な方向に広がる円形のスラスト対向面とからなり、 前記 スラスト板もしくはスラスト対向面のいずれか一方に設けられたスパイラル状の 動圧発生溝の作用により、 前記スラスト板とスラスト対向面との相対回転によつ て軸受の軸に平行な方向であるスラスト方向の動圧を発生させ、 両者間を非接触 状態に保って回転支承するスラスト軸受部を有する動圧軸受において、
前記スラスト板及びスラスト対向面のいずれか一方もしくは双方の相対向する 面を、 前記スラスト軸受部の内周部から半径方向外周部に向かって相対向する両 面の間隙が広がるよう傾斜させたことを特徴とする動圧軸受。
7 . 前記傾斜した面が、 軸受の軸を含む軸に平行な断面で見た場合に直線状に 傾斜する円錐台状の傾斜面であることを特徴とする、 請求項 6に記載された動圧 軸受。
8 . 前記傾斜した面が、 軸受の軸を含む軸に平行な断面で見た場合に円弧状に 傾斜する球面状の傾斜面であることを特徴とする、 請求項 6に記載された動圧軸 受。
9 . 前記円弧が、 前記軸受の軸を含む軸に平行な断面で見た場合、 スラスト軸 受部の最内周部から軸に平行に引いた線上に中心を持つ円の円弧であることを特 徴とする、 請求項 8に記載された動圧軸受。
1 0 . 前記傾斜に伴ぅスラスト軸受部での軸方向の間隙の変化量である傾斜量 1)、 約 2 z m以下であることを特徴とする、 請求項 6から請求項 9のいずれか一 に記載された動圧軸受。
1 1 . 前記動圧軸受が更に、 円柱状のシャフトと、 前記シャフトの軸に平行な 外周面に回転自在に嵌装された中空円筒状のスリーブとからなり、 前記シャフト 及び前記スリーブの相対回転によって前記軸に垂直な方向であるラジアル方向に 動圧を発生させるラジアル軸受部を備え、
前記スラスト軸受部の最内周部から半径方向最外周部までの距離であるスラス ト軸受部の半径方向片側の幅を s、 前記スラスト軸受部の幅 s全体での軸受の軸 方向の間隙の変化量である傾斜量を d、 また、 前記ラジアル軸受部の軸方向の長 さを L、 前記シャフトとスリーブとの間の直径方向の合計のラジアル間隙を Fと したとき、
F / L < d / s
の関係が成り立つことを特徴とする、 請求項 6に記載された動圧軸受。
1 2 . 円柱状のシャフト、 及び前記シャフトの軸に平行な外周面に回転自在に 嵌装される中空円筒状のスリーブからなり、 前記シャフト及び前記スリーブの相 対回転によってラジアノレ動圧を発生させるラジアル軸受部と、
前記シャフトの軸方向の一方の端面に軸と垂直に形成もしくは固定されるスラ スト板、 及び前記スリ一ブの軸方向の一方の端面に軸に垂直に形成もしくは固定 され、 前記スラス ト板に対向するスラス ト対向面からなり、 前記スラス ト板及び スラスト対向面の相対回転によってスラスト動圧を発生させるスラスト軸受部と、 の両軸受部から構成される動圧軸受において、
前記スリ一ブの軸方向の他方の端面にて前記スリーブの中空部を閉塞するよう 固定される第 2スラスト板が更に設けられ、
前記第 2スラス ト板と、 この第 2スラスト板に対向する前記シャフ トの軸方向 の他方の端面との間の軸に平行な方向の間隙を a、 前記スラス ト板と、 これに対 向するスラスト対向面との間の軸に平行な方向の隙間を bとしたとき、 前記 aと bとの間に、
a < b
の関係が成立することを特徴とする動圧軸受。
1 3 . 前記 aと bとの間に、 更に、
b— a≤ 2 μ m
の関係が成立することを特徴とする、 請求項 1 2に記載された動圧軸受。
1 4 . 前記 aと bとの間に、 更に、
b - a≤0 . 5 i m
の関係が成立することを特徴とする、 請求項 1 2に記載された動圧軸受。
1 5 . 前記シャフトと、 前記シャフ トに形成もしくは固定される前記スラスト 板との直角度が、 約 0 . 7 Ai mZ 2 O mm以下であることを特徴とする、 請求項 1 2から請求項 1 4のいずれか一に記載された動圧軸受。
1 6 . 前記第 2スラス ト板、 もしくは前記シャフトの軸方向の端面であって、 互いに対向する面のいずれか一方に、 両者間の相対回転によって軸に平行なスラ スト方向の動圧を発生させる動圧発生用の溝が設けられていることを特徴とする、 請求項 1 2から請求項 1 5のいずれか一に記載された動圧軸受。
1 7 . 前記シャフトの軸方向の端面に対向する前記第 2スラスト板の面、 もし くは前記第 2スラスト板に対向する前記シャフトの軸方向の端面のいずれか一方 に、 球面状、 円錐状、 もしくは円錐台状の突起部が形成されていることを特徴と する、 請求項 1 2から請求項 1 5のいずれか一に記載された動圧軸受。
1 8 . 前記シャフト、 前記スリーブ、 前記スラスト板、 前記スラスト対向面、 前記第 2スラスト板のいずれか 1つ、 もしくは 2つ以上の少なくとも軸受部で対 向する部分がセラミックス材で形成されていること特徴とする、 請求項 1から請 求項 1 7のいずれか一に記載された動圧軸受。
1 9 . 前記セラミックス材料が、 ァノレミナ、 ジルコユア、 炭化ケィ素、 窒化ケ ィ素、 サイアロンからなる群の中から選択されることを特徴とする、 請求項 1 8 に記載された動圧軸受。
2 0 . 請求項 1から請求項 1 9のいずれか一に記載された動圧軸受を備えてい ることを特徴とするスピンドルモータ。
2 1 . 請求項 2 0に記載されたスピンドルモータを備えていることを特徴とす る記憶装置、 もしくはバーコ一ド走査装置。
2 2 . 軸受の軸に垂直な方向であるラジアル方向、 もしくは軸受の軸に平行な 方向であるスラスト方向に所定の間隙を設けて対向する対向面をそれぞれ有する 回転側部材と固定側部材とからなり、 前記両部材の対向面間に気体を介在させて 相対回転させることにより前記気体が発生する動圧を利用して前記両部材間を非 接触状態に保って回転支承を行なう動圧軸受の軸受部における結露防止方法であ つて、
前記回転側部材もしくは固定側部材のいずれか一方の対向面に設けられた溝の 深さを場所に応じて変化させることによって、 前記溝内の回転時における圧力分 布をほぼ均一に保ち、 負荷容量を得るために必要な溝内の最高圧力を低く抑えて 前記対向面間の圧力上昇により生ずる水の凝固を防ぐことを特徴とする動圧気体 軸受の結露防止方法。
PCT/JP2000/006297 1999-09-17 2000-09-14 Palier a pression dynamique dote de caracteristiques de demarrage ameliorees WO2001021969A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00961008A EP1132633A4 (en) 1999-09-17 2000-09-14 DYNAMIC PRESSURE BEARING WITH IMPROVED STARING CHARACTERISTICS
US09/856,093 US6702464B1 (en) 1999-09-17 2000-09-14 Dynamic pressure bearing with improved starting characteristics
KR1020017006153A KR20010080462A (ko) 1999-09-17 2000-09-14 기동 특성을 개선한 동압 베어링

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/263614 1999-09-17
JP26361499 1999-09-17
JP32108699 1999-11-11
JP11/321086 1999-11-11
JP33121199 1999-11-22
JP11/331211 1999-11-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/856,093 A-371-Of-International US6702464B1 (en) 1999-09-17 2000-09-14 Dynamic pressure bearing with improved starting characteristics
US10/775,120 Division US20040156569A1 (en) 1999-09-17 2004-02-11 Dynamic pressure bearing with improved starting characteristics

Publications (1)

Publication Number Publication Date
WO2001021969A1 true WO2001021969A1 (fr) 2001-03-29

Family

ID=27335239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006297 WO2001021969A1 (fr) 1999-09-17 2000-09-14 Palier a pression dynamique dote de caracteristiques de demarrage ameliorees

Country Status (4)

Country Link
US (2) US6702464B1 (ja)
EP (1) EP1132633A4 (ja)
KR (1) KR20010080462A (ja)
WO (1) WO2001021969A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170338A (ja) * 2004-12-16 2006-06-29 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
JP2007177808A (ja) * 2005-12-27 2007-07-12 Hitachi Powdered Metals Co Ltd 動圧軸受ユニット
WO2008146468A1 (ja) * 2007-05-25 2008-12-04 Nidec Copal Electronics Corporation 気体動圧軸受機構を備えたモータ
CN101957497A (zh) * 2009-07-14 2011-01-26 柯尼卡美能达商用科技株式会社 光偏转装置
JP2013068285A (ja) * 2011-09-22 2013-04-18 Ihi Corp 回転軸支持構造
JP2013164624A (ja) * 2013-05-15 2013-08-22 Konica Minolta Inc 光偏向装置
CN108150523A (zh) * 2017-12-20 2018-06-12 中国船舶重工集团公司第七0三研究所 一种适用于正反转的高效滑动推力轴承轴瓦

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336628A (ja) * 2002-03-12 2003-11-28 Nippon Densan Corp 気体動圧軸受、スピンドルモータ、記録ディスク駆動装置、及びポリゴンスキャナ
US7438476B2 (en) * 2002-10-21 2008-10-21 Seiko Instruments Inc. Hydraulic dynamic bearing and spindle motor
JP2006071062A (ja) * 2004-09-06 2006-03-16 Hitachi Powdered Metals Co Ltd 動圧軸受
TWI273187B (en) * 2005-01-28 2007-02-11 Foxconn Tech Co Ltd Fluid dynamic bearing
JP2007092799A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd 流体軸受装置
JP2008082414A (ja) * 2006-09-27 2008-04-10 Nippon Densan Corp 流体動圧軸受装置、磁気ディスク装置、及び携帯型電子機器
DE102007061454A1 (de) * 2007-12-20 2009-06-25 Minebea Co., Ltd. Verfahren zur Optimierung einer Lagerrillenstruktur auf einer Lagerfläche eines fluiddynamischen Lagers zur Verbesserung der Lagereigenschaften und entsprechende Lagerrillenstrukturen
GB2469804B (en) 2009-04-27 2013-08-21 Messier Dowty Ltd Bearing assembly
DE102010022574A1 (de) * 2010-06-02 2011-12-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotorwelle mit Gleitlager
KR20130074571A (ko) * 2011-12-26 2013-07-04 삼성전기주식회사 동압 베어링 장치 및 이를 구비하는 스핀들 모터
KR101197897B1 (ko) 2012-09-14 2012-11-05 삼성전기주식회사 스핀들 모터 및 이를 포함하는 하드 디스크 드라이브
KR102102818B1 (ko) 2017-08-10 2020-05-29 고려대학교산학협력단 발광소자와 기판 및 그 정렬방법과 정렬장치
KR102514025B1 (ko) 2020-11-06 2023-03-24 고려대학교 산학협력단 마이크로 발광소자 구조 및 마이크로 발광소자 전사 방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536456A (en) 1978-09-08 1980-03-14 Torii Yakuhin Kk 1,2-benzodiazepine derivative and its preparation
JPS60234120A (ja) 1984-05-07 1985-11-20 Canon Inc 動圧スラスト軸受
JPS63157520U (ja) * 1987-04-01 1988-10-17
JPH02278007A (ja) * 1989-04-20 1990-11-14 Nippon Seiko Kk スラスト軸受
JPH0399219U (ja) * 1990-01-30 1991-10-16
JPH05141419A (ja) * 1991-11-18 1993-06-08 Fujitsu Ltd 動圧流体軸受装置
JPH05240241A (ja) * 1992-02-28 1993-09-17 Ebara Corp スピンドルモータ
JPH08296649A (ja) * 1995-04-26 1996-11-12 Kyocera Corp 軸受け装置
JPH09328381A (ja) 1996-05-31 1997-12-22 Kyocera Corp 摺動装置
JPH1118357A (ja) 1997-06-19 1999-01-22 Toshiba Ave Corp 回転電機
JPH1155918A (ja) 1997-08-05 1999-02-26 Seiko Instr Inc スピンドルモータ、及びスピンドルモータを採用した回転体装置
JPH11311245A (ja) * 1998-04-24 1999-11-09 Seiko Instruments Inc 動圧軸受、該軸受を備えたスピンドルモータ及び回転体装置
JP2000120664A (ja) * 1998-10-16 2000-04-25 Ngk Spark Plug Co Ltd セラミックス製動圧軸受

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157520A (ja) 1986-12-22 1988-06-30 Toshiba Corp 信号切換回路
JPH0399219A (ja) 1989-09-13 1991-04-24 Tamagawa Seiki Co Ltd エンコーダ
US5980113A (en) * 1997-06-11 1999-11-09 Seagate Technology, Inc. Asymmetric sealing means for fluid dynamic bearings

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536456A (en) 1978-09-08 1980-03-14 Torii Yakuhin Kk 1,2-benzodiazepine derivative and its preparation
JPS60234120A (ja) 1984-05-07 1985-11-20 Canon Inc 動圧スラスト軸受
JPS63157520U (ja) * 1987-04-01 1988-10-17
JPH02278007A (ja) * 1989-04-20 1990-11-14 Nippon Seiko Kk スラスト軸受
JPH0399219U (ja) * 1990-01-30 1991-10-16
JPH05141419A (ja) * 1991-11-18 1993-06-08 Fujitsu Ltd 動圧流体軸受装置
JPH05240241A (ja) * 1992-02-28 1993-09-17 Ebara Corp スピンドルモータ
JPH08296649A (ja) * 1995-04-26 1996-11-12 Kyocera Corp 軸受け装置
JPH09328381A (ja) 1996-05-31 1997-12-22 Kyocera Corp 摺動装置
JPH1118357A (ja) 1997-06-19 1999-01-22 Toshiba Ave Corp 回転電機
JPH1155918A (ja) 1997-08-05 1999-02-26 Seiko Instr Inc スピンドルモータ、及びスピンドルモータを採用した回転体装置
JPH11311245A (ja) * 1998-04-24 1999-11-09 Seiko Instruments Inc 動圧軸受、該軸受を備えたスピンドルモータ及び回転体装置
JP2000120664A (ja) * 1998-10-16 2000-04-25 Ngk Spark Plug Co Ltd セラミックス製動圧軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1132633A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170338A (ja) * 2004-12-16 2006-06-29 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
JP4616632B2 (ja) * 2004-12-16 2011-01-19 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 磁気ディスク装置
JP2007177808A (ja) * 2005-12-27 2007-07-12 Hitachi Powdered Metals Co Ltd 動圧軸受ユニット
WO2008146468A1 (ja) * 2007-05-25 2008-12-04 Nidec Copal Electronics Corporation 気体動圧軸受機構を備えたモータ
US8449189B2 (en) 2007-05-25 2013-05-28 Nidec Copal Electronics Corporation Motor with aerodynamic pressure bearing mechanism
CN101957497A (zh) * 2009-07-14 2011-01-26 柯尼卡美能达商用科技株式会社 光偏转装置
JP2011022245A (ja) * 2009-07-14 2011-02-03 Konica Minolta Business Technologies Inc 光偏向装置
US8531749B2 (en) 2009-07-14 2013-09-10 Konica Minolta Business Technologies, Inc. Light deflection apparatus
JP2013068285A (ja) * 2011-09-22 2013-04-18 Ihi Corp 回転軸支持構造
JP2013164624A (ja) * 2013-05-15 2013-08-22 Konica Minolta Inc 光偏向装置
CN108150523A (zh) * 2017-12-20 2018-06-12 中国船舶重工集团公司第七0三研究所 一种适用于正反转的高效滑动推力轴承轴瓦

Also Published As

Publication number Publication date
EP1132633A4 (en) 2006-08-16
US6702464B1 (en) 2004-03-09
EP1132633A1 (en) 2001-09-12
KR20010080462A (ko) 2001-08-22
US20040156569A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
WO2001021969A1 (fr) Palier a pression dynamique dote de caracteristiques de demarrage ameliorees
WO2001018413A1 (fr) Palier a pression dynamique et moteur a broche comprenant le palier a pression dynamique
KR920006624B1 (ko) 셀프액팅가스 베어링장치
US6672767B2 (en) Dynamic bearing device and motor having the same
US20060002641A1 (en) Fixed shaft type fluid dynamic bearing motor
JP2004286145A (ja) 動圧軸受及びこれを用いたスピンドルモータ並びにこのスピンドルモータを備えたディスク駆動装置
JP2728202B2 (ja) 半球型流体ベアリング
JP4194348B2 (ja) 記録ディスク用駆動モータ及び記録ディスク駆動装置
US6664686B2 (en) Motor having single cone air dynamic bearing balanced with shaft end magnetic attraction
US20050201864A1 (en) Centrifugal fan
JP2005354895A (ja) スピンドルモータ
JP2006218010A (ja) 血液ポンプおよび動圧軸受
JP2002213436A (ja) モータ用流体軸受け装置
JPH1068416A (ja) 空気力学軸受
WO2000065246A1 (fr) Moteur a axe et roulement a pression dynamique
JP2003009462A (ja) スピンドルモータ
JPH10131957A (ja) 円錐ベアリング装置
JPH10131954A (ja) 動圧形流体ベアリング装置
JPH0691717B2 (ja) 電動機械
JPH10184302A (ja) 流体機械
JP2003158861A (ja) スピンドルモータ及びこのスピンドルモータを用いたディスク駆動装置
JP2001069719A (ja) 動圧軸受モータ
JP3936527B2 (ja) 動圧型軸受装置の製造方法
JPS60179517A (ja) 動圧気体軸受
JP2003023751A (ja) 記録ディスク駆動用モータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 525104

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017006153

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000961008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09856093

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017006153

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000961008

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017006153

Country of ref document: KR