WO2000003820A1 - Method of recovering and regenerating mold lubricant for hot forging and method of reusing same - Google Patents

Method of recovering and regenerating mold lubricant for hot forging and method of reusing same Download PDF

Info

Publication number
WO2000003820A1
WO2000003820A1 PCT/JP1998/003221 JP9803221W WO0003820A1 WO 2000003820 A1 WO2000003820 A1 WO 2000003820A1 JP 9803221 W JP9803221 W JP 9803221W WO 0003820 A1 WO0003820 A1 WO 0003820A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
release agent
recovered
tank
oil
Prior art date
Application number
PCT/JP1998/003221
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Kawahara
Kiyohiko Matsuo
Tsuguo Mishima
Original Assignee
Mec International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mec International Corporation filed Critical Mec International Corporation
Priority to PCT/JP1998/003221 priority Critical patent/WO2000003820A1/en
Publication of WO2000003820A1 publication Critical patent/WO2000003820A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing

Definitions

  • the present invention relates to a method of recovering and regenerating a mold release agent for hot forging, which is mainly composed of graphite, and to a method of reusing a reclaimed release agent.
  • a steel ingot heated to a high temperature of about 1200 ° C. is pressed between a pair of forging dies to form the steel ingot into a desired shape.
  • the forging die is also made of steel, pressing the steel ingot heated to a high temperature may soften the forming surface of the forging die and cause the steel ingot to seize on the forging die.
  • a release agent is applied to the molding surface of the forging die.
  • a releasing agent for hot working one using graphite as a main agent is used. This release agent is obtained by dispersing graphite fine particles in water. The release agent is sprayed on the molding surface of the forging die for each forging. At this time, excess release agent flows down from the forging die and is collected.
  • hot forging is performed, a part of the moisture of the release agent evaporates due to the heat of the high-temperature steel ingot, and some of the release agent adheres to the formed steel ingot. The release agent flows down and is collected when the forging die is opened.
  • These recovered release agents contain impurities such as iron oxide film (scale) peeled off from the steel ingot and hydraulic oil leaked from the hot forging equipment. Therefore, unless these scales and oils are removed, they cannot be reused as a release agent. Among them, the scale can be removed by adsorbing the recovered release agent by magnetic force while stirring. On the other hand, to remove oil, the specific gravity is lower than that of water, which is the dispersion medium for the release agent, and the recovered release agent is allowed to stand still to collect the oil on the surface. Need to be collected. However, if the release agent is left standing for a long time, the dispersed graphite fine particles gradually precipitate. If the sedimentation amount is too large, the graphite fine particles cannot be re-dispersed even if the release agent is stirred, so that the performance as the release agent is significantly deteriorated.
  • impurities such as iron oxide film (scale) peeled off from the steel ingot and hydraulic oil leaked from the hot forging equipment. Therefore, unless
  • a release agent for hot forging that enables reuse by removing not only the scale but also the oil from the recovered release agent without substantially deteriorating the performance as the release agent. It is an object of the present invention to provide a method for collecting and regenerating the same.
  • an object of the present invention is to provide a method for reusing a release agent for hot forging that can cope with severe forging conditions. Disclosure of the invention
  • the present invention relates to a method of recovering and regenerating a mold releasing agent for hot forging obtained by dispersing graphite fine particles in water, wherein a step of removing scale using a magnetic force while stirring the collected mold releasing agent is provided.
  • Removing the oil floating on the surface by placing the release agent in a stationary state within the range where the amount of precipitated graphite fine particles due to the stationary state does not seriously affect the re-dispersion by stirring. It is characterized by the following. Therefore, the oil can be removed under the condition that the graphite fine particles can be redispersed at all times, so that the release agent can be reused.
  • FIG. 1 and FIG. 2 are overall constitutional views showing an apparatus for collecting and reusing a release agent for hot forging according to an embodiment of the present invention
  • FIGS. 3 to 10 show one embodiment of the present invention.
  • FIG. 11 is a flowchart showing a method for recovering and regenerating a hot-forming release agent according to the embodiment.
  • FIG. 11 is a timing chart showing a method for recovering and re-using a hot-forging releasing agent according to one embodiment of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. FIG. 1 and FIG. 2 are overall configuration diagrams showing a recovery and reuse device (hereinafter, also simply referred to as a “recovery and reuse device”) for a release agent for hot forging in the present embodiment.
  • Figure 1 shows the left half of the recovery and reuse unit
  • Figure 2 shows the right half of the recovery and reuse unit.
  • reference numeral 2 denotes a hot forging device
  • a pair of left and right recovery chutes 4a and 4b are provided below the hot forging device 2.
  • Below these collection shops 4a and 4b an underground collection tank 6 is installed.
  • the release agent for hot forging dropped from the hot forging device 2 is received by the recovery chutes 4 a and 4 b and flows into the underground recovery tank 6.
  • the underground recovery tank 6 is provided with a stirrer 8 for agitating the recovered hot forging release agent (hereinafter referred to as “recovered liquid”) stored in the tank.
  • the stirrer 8 has a stirring screw attached to a tip of a rotating shaft of an electric motor.
  • the underground recovery tank 6 is provided with a partition plate 6a to prevent scale and graphite particles from collecting at the bottom corner of the underground recovery tank 6 where the effect of stirring is difficult to reach.
  • four liquid level sensors LI, L2, L3 and L4 are mounted on the underground recovery tank 6 at different heights. These liquid level sensors L1 to L4 output an ON signal when they are in contact with liquid, and output OFF signals when they are above the liquid level and out in the air. Therefore, the level of the liquid in the underground recovery tank 6 is determined by the liquid level sensors L1 to L4. For example, when the liquid level sensor L 4 is ON, it can be seen that the liquid level may exceed the limit and the recovered liquid may overflow from the underground recovery tank 6. When the liquid level sensor L1 is OFF, it can be seen that the underground recovery tank 6 is almost empty.
  • a liquid receiving plate 6 b for receiving the recovered liquid overflowing from the underground recovery tank 6 is provided around a lower portion of the underground recovery tank 6.
  • two submersible pumps 10 and 12 are installed at the bottom of the underground recovery tank 6.
  • the submersible pump 10 is connected to the riding pipe 14 via a check valve 10a and an on-off valve 10b.
  • the lining pipe 14 is branched upward into two chute washing pipes 18 and 20.
  • electric valves 18a and 20a are provided, respectively.
  • the end of the chute washing tube 18 opens at the upper end of the collection chute 4b, and the end of the chute washing tube 20 opens at the upper end of the collection chute 4a.
  • the submersible pump 10 by operating the submersible pump 10, the collected liquid blows out from the tips of the chute washing tubes 18 and 20 and flows down on the collection chutes 4a and 4b. As a result, the scale and the fine graphite particles adhered to the collecting chutes 4a and 4b can be washed away.
  • the submersible pump 12 is connected to a spring hose 16 via a check valve 12a and an on-off valve 12b.
  • the tip of the spring-loaded hose 16 opens into a ground recovery tank 22 installed on the ground. Therefore, by operating the submersible pump 12, the recovered liquid flows into the ground recovery tank 22.
  • this underground recovery tank 22 also has a stirrer 24, a partition plate 22a, a liquid receiving plate 22b, and four liquid level sensors L5, L6, L7, L 8 is provided.
  • a magnet separator 30 is installed above the ground collection tank 22, a magnet separator 30 is installed.
  • the magnet separation 30 is a device that removes scale contained in the recovered liquid by magnetic attraction.
  • a submersible pump 26 is installed at the bottom of the above-ground collection tank 22, and the tip of a pumping pipe 28 connected to the submersible pump 26 opens at the top of the magnet separator 30. .
  • a check valve 28a and an on-off valve 28b are provided in the middle of the pumping pipe 28 in the middle of the pumping pipe 28 in the middle of the pumping pipe 28 in the middle of the pumping pipe 28, a check valve 28a and an on-off valve 28b are provided.
  • the recovered liquid pumped by the submersible pump 26 is supplied to the magnet separator 30 through the pumping pipe 28.
  • the recovered liquid from which scale has been removed in the magnetic separation 30 falls from below the magnetic separation 30 and returns to the ground recovery tank 22.
  • the scale adsorbed by the magnetic separation 30 is dropped and stored in the scale collection trolley 32 installed near the ground collection tank 22. If the recovered liquid is excessively supplied into the magnet separator 30, the recovered liquid overflows from the pipe 30 a and is returned to the ground recovery tank 22.
  • a pipe 22 c is connected to an upper part of the side wall of the ground collection tank 22. If the recovered liquid in the ground recovery tank 22 becomes too large and overflows, it is discharged from this pipe 22c. The recovered liquid that has overflowed is received by the liquid receiving plate 22b. A pipe 22d is also connected to the liquid receiving plate 22b, and the received recovered liquid is discharged from the pipe 22d.
  • a float suction 34 is floating on the liquid level of the recovered liquid __ in the ground recovery tank 22.
  • the float suction tube 34 is formed by fixing the tip (suction port) of a hose 36 with a spring to four floats.
  • the hose 36 with a spring is fixed to a float so that the suction port is located just below the level of the recovered liquid and does not come out into the atmosphere. Therefore, float suction 3 From the suction port (4), only the surface of the recovered liquid is always sucked.
  • the spring hose 36 is connected to the suction pump 40 via an on-off valve 36a.
  • the suction pump 40 is connected to a spring 46 containing a spring via an on-off valve 46a.
  • a pipe 38 branches from the spring-loaded hose 36 in front of the on-off valve 36a.
  • the pipe 38 is connected to the backup pump 42 via the on-off valve 3Sa.
  • a pipe 44 is connected to the backup pump 42 via an on-off valve 44a.
  • the piping 44 is connected to a spring-loaded hose 46 behind the on-off valve 46a.
  • the two suction pumps are provided in this way because the inner diameters of the spring-loaded hoses 36 and 46 are so small that the recovered liquid is sucked little by little from the float suction 34 and the clogging is likely to occur. That's why. Normally, the on-off valves 36a and 46a are opened, and the on-off valves 38a and 44a are closed. The suction pump 40 sucks up the recovered liquid from which the scale has been removed.
  • the pipes for sucking up the recovered liquid from the float suction 34 are spring-loaded hoses 36, 46 for the following reasons.
  • Float suction 34 may draw in air because it is located just below the level of the recovered liquid. Then, the collected liquid adheres only to the inner wall of the pipe, and the center of the pipe becomes a space. If left in this state, the recovered liquid adhering to the inner wall will dry and solidify, and if this is repeated, the piping will be clogged.
  • the piping is a hose with a spring, it vibrates when the suction pump 40 is operated, and the attached matter on the inner wall is shaken off by the vibration. Therefore, even if air is sucked in from the float suction box 34, there is no possibility of clogging.
  • the tip of the spring-loaded hose 46 opens into a reusable liquid supply tank 50 shown in FIG. Therefore, the recovered liquid sucked up by the suction pump 40 flows into the reuse liquid supply tank 50.
  • This reusable liquid supply tank 50 also has a stirrer 52, a partition plate 50a, a liquid receiving plate 50b, and four liquid level sensors L9, like the underground recovery tank 6 and the above-ground recovery tank 22. , L 1 0, L 1 1, L12 is provided.
  • a floating oil recovery device 54 is installed in the reusable liquid supply tank 50.
  • the floating oil recovery device 54 is a device for separating and recovering the oil floating on the liquid surface, and a belt is suspended between a pair of upper and lower pulleys.
  • This belt is made of highly lipophilic resin, and the pair of pulleys rotates, so that the belt also rotates, passes through the collected liquid, and adsorbs the oil floating on the surface of the collected liquid.
  • the adsorbed oil is removed from the belt by a scraper, and falls and stored in a drum 56 installed near the reusable liquid supply tank 50.
  • a liquid level sensor L13 is attached to the drum 56 to notify the operator that the recovered oil is full.
  • a pipe 50c is connected to an upper portion of the side wall of the reused liquid supply tank 50. If the recovered liquid in the reusable liquid supply tank 50 becomes too large and overflows, it is discharged from the pipe 50c. The recovered liquid still overflows,
  • a pipe 50d is also connected to the liquid receiving plate 50b, and the received recovered liquid is discharged from the pipe 50d.
  • a pipe 58 is connected to the lower part of the side wall of the reused liquid supply tank 50.
  • the pipe 58 is connected to a reusable liquid supply pump 60 via an on-off valve 58a.
  • the recovered liquid (hereinafter referred to as “reused liquid”) whose scale and oil have been removed from the ground recovery tank 22 and the reused liquid supply tank 50 (hereinafter referred to as “reused liquid”) is supplied to the reused liquid supply pump 60.
  • the reused liquid supply pump 60 is connected to a reused liquid supply pipe 62 via a check valve 60a and an on-off valve 60b.
  • the end of the reused liquid supply pipe 62 is connected to the release agent spray nozzle of the hot forging apparatus 2 via a solenoid valve 62 a shown in FIG.
  • a pipe 66 branches before the solenoid valve 62a.
  • the tip of the pipe 66 is open in the above-mentioned ground collection tank 22.
  • a pressure sensor 68 is attached to the reuse liquid supply pipe 62.
  • the reusable liquid supply pump 60 is operated continuously during the operation of the recovery and reuse device shown in FIG. 1 and FIG. Since the solenoid valve 62a is closed while the release agent is not sprayed, the reusable liquid supplied by the reusable liquid supply pump 60 is supplied from the reusable liquid supply pipe 62 to the pipe 66. And returned to the ground collection tank 22.
  • the solenoid valve 62 a is opened, and the re-use liquid is sprayed from the spray nozzle in the hot forging apparatus 2 to the forging die via the connection portion 64.
  • a part of the reused liquid escapes from the pipe 66, so that the spray amount and the spray pressure are controlled to appropriate values.
  • the pressure sensor 68 If the spray pressure deviates from an appropriate range, the flow is returned to an appropriate pressure by adjusting the flow rate of the pipe 66 using a flow control valve (not shown) provided in the pipe 66.
  • a new liquid dilution tank 70 is provided adjacent to the reuse liquid supply tank 50 in FIG.
  • a stock solution of a high concentration hot mold release agent supplied from a manufacturer is diluted to an appropriate concentration with industrial water.
  • the unused release agent thus produced is hereinafter referred to as “new solution”.
  • This new liquid dilution tank 70 is also provided with a stirrer 72, a partition plate 70a, a liquid receiving plate 70b, and three liquid level sensors L14, L15, L16.
  • a pipe 70c is connected to the upper part of the side wall of the new liquid dilution tank 70. If the undiluted solution and industrial water are excessively supplied into the new solution dilution tank 70 and the new solution is about to overflow, it is discharged from the pipe 70c. The new liquid still overflowing is received by the liquid receiving plate 70b.
  • a pipe 70d is also connected to the liquid receiver J7 ° rate 70b, and the received new liquid is discharged from the pipe 70d.
  • These pipes 70c and 70d are both connected to the overflow pipe 48B. Therefore, the new liquid discharged from the pipes 70 c and 70 d flows into the underground recovery tank 6. Further, a pipe 74 is connected to a lower portion of the side wall of the new liquid dilution tank 70.
  • the pipe 74 is connected to a new liquid supply pump 76 via an on-off valve 74 a.
  • a pipe 78 is connected to the new liquid supply pump 76 via an on-off valve 76 a, and the end of the pipe 78 opens into the reuse liquid supply tank 50.
  • a new liquid supply pipe 80 is connected to the bottom of the new liquid dilution tank 70.
  • the distal end of the new liquid supply pipe 80 opens into a new liquid supply tank 84 installed below the new liquid dilution tank 70.
  • an actuating valve 80a is provided in the middle of the new liquid supply pipe 80. Therefore, by opening the actuating one-time valve 80 a, the new liquid produced in the new liquid dilution tank 70 flows into the new liquid supply tank 84.
  • a pipe 82 is also connected to the bottom of the reused liquid supply tank 50, and the tip of the pipe 82 is also opened in the new liquid supply tank 84.
  • an actuating valve 82a is provided in the middle of the pipe 82. By opening the actuating valve 82a, the reused liquid flows into the new liquid supply tank 84.
  • This new liquid supply tank 84 also has a stirrer 86, a partition plate 84a, a liquid receiving plate 84b, and four liquid level sensors L17, L18, L19, and L20. It has been done.
  • a pipe 84c is connected to the upper part of the side wall of the new liquid supply tank 84. When the new liquid is supplied to the new liquid supply tank 84 excessively and is likely to overflow, the new liquid is discharged from the pipe 84c. The new liquid that still overflows is received by the liquid receiving plate 84.
  • a pipe 84d is also connected to the liquid receiving plate 84b, and the received new liquid is discharged from the pipe 84d.
  • the pipe 84c is connected to the overflow pipe 48C, and the pipe 84d is connected to the overflow pipe 48B. Therefore, the new liquid discharged from the pipes 84c and 84d flows into the underground recovery tank 6 in Fig. 1.
  • a pipe 88 is connected below the side wall of the new liquid supply tank 84. This pipe 88 is connected to a new liquid supply pump 90 via an on-off valve 88 a. The new liquid stored in the new liquid supply tank 84 is supplied to the hot forging device 2 in FIG. 1 by the new liquid supply pump 90.
  • New liquid is supplied to the new liquid supply pump 90 through the check valve 90 a and the on-off valve 90 b.
  • Tube 92 is connected.
  • the tip of the new liquid supply pipe 92 is connected to a connection portion 94 of the hot forging device 2 shown in FIG.
  • a pipe 96 is branched from the new liquid supply pipe 92 in front of the connection portion 94, and the end of the pipe 96 is returned to the new liquid supply tank 84 in FIG. .
  • the new liquid supply pump 90 is also operated continuously during the operation of the recovery and reuse device, similarly to the reuse liquid supply pump 60. ⁇
  • the solenoid valve 94a in the hot forging device 2 is closed. From 2, it is returned to the new liquid supply tank 84 through a pipe 96. Then, when the release agent is sprayed, the solenoid valve 94a is opened, and the new liquid is sprayed from the spray nozzle in the hot forging device 2 onto the forging die.
  • the apparatus for collecting and reusing the release agent for hot forging having the configuration as described above is automatically controlled by a control unit (not shown). That is, the ON-OFF signals output from the liquid level sensors L1 to L20 are input to this control unit. Then, based on the input signal, the control unit causes each agitator 24, 52, 72, each pump 10, 12, 26, 40, 76, each automatic valve 18a, 20a, 80a and 82a are controlled.
  • stirrers 8, 72, 86 and the magnetic separator 30 start operation at the same time as the automatic operation of the recovery and reuse device, and are continuously operated during the operation of the recovery and reuse device.
  • the reusable liquid supply pump 60 and the new liquid supply pump 90 also start operating at the same time as the automatic operation of the recovery and reuse device, and are continuously operated during the operation of the recovery and reuse device.
  • the electromagnetic valves 62a and 94a are opened and closed in synchronization with the opening and closing of the forging die of the hot forging device 2, and the spraying of the reused liquid or the new liquid is controlled.
  • the spray nozzle is connected to the reuse liquid supply pipe 62, and only the reuse liquid is sprayed on the molding surface of the forging die.
  • a new liquid supply pipe 92 is connected to an important portion of the molding surface of the forging die, that is, a spray nozzle at a portion where seizure is likely to occur.
  • an important part of the molding surface of the forging die is sprayed with a new liquid having better releasability, and other less important parts are sprayed with a reused liquid.
  • FIGS. 1 and 2 control contents of each tank by the control unit will be described with reference to FIGS. 1 and 2 and according to FIGS. FIG. 3 to FIG. 10 are flowcharts showing the procedure of control by the control unit.
  • step S10 When the control is started in step S10, first, it is determined whether or not the liquid level sensor L2 outputs an ON signal, that is, whether or not the recovered liquid is sufficiently stored in the underground recovery tank 6 (step S1). 1). If the determination is NO, the process waits until the liquid level sensor L2 is in the ON state, that is, until the collected liquid is equal to or higher than the level of the liquid level sensor L2. When the determination in step S11 becomes YES, the operation of the submersible pump 10 is started (step S12), and the recovered liquid in the underground recovery tank 6 is pumped. Here, at the start of operation of the recovery and reuse device, one of the motor-operated valves 18a and 20a is open.
  • the recovered liquid pumped by the submersible pump 10 flows down from the lining pipe 14 through one of the chute washing pipes 18 and 20 to the upper end of one of the recovery chutes 4a and 4b. As a result, one of the collecting chutes 4a and 4 is washed.
  • step S13 it is determined whether or not the liquid level sensor L1 is OFF, that is, whether or not the underground recovery tank 6 is almost empty. If the determination is Y E S, proceed to step S 14 to stop the operation of the submersible pump 10, return to step S 11 and wait for the collection of the collected liquid again ⁇
  • step S13 determines whether the operation of the submersible pump 10 is continued for a certain period of time (step S15), and one of the recovery chutes 4a and 4b is washed.
  • step S15 the operation of the submersible pump 10 is continued for a certain period of time (step S15), and one of the recovery chutes 4a and 4b is washed.
  • step S16 the closed one of the motorized valves 18a and 20a is opened and the open one is closed.
  • step S16 the flow from step S11 is repeated. Will be returned.
  • the other of the collecting chutes 4a and 4b is washed.
  • the amount of the collected liquid flowing in the chute washing pipes 18 and 20 is set. Is not uniform.
  • step S18 it is first determined whether or not the liquid level sensor L7 is in an OFF state, that is, whether or not the collected liquid in the ground collection tank 22 is excessive (step S19). . If the determination is NO, that is, if the liquid level sensor L7 is ON, there is a possibility that the recovered liquid may overflow from the ground recovery tank 22. Therefore, the process proceeds to step S23 to stop the operation of the submersible pump 12 ( If operation was started in step S21). Then, the determination in step S19 is repeated.
  • step S19 it is determined whether the liquid level sensor L3 is in the ON state, that is, whether a large amount of recovered liquid is stored in the underground recovery tank 6 (step S20). ). If the determination is YES, the operation of the submersible pump 12 is started (step S21), and the recovered liquid is pumped from the underground recovery tank 6 to the aboveground recovery tank 22. Then, the determination in step S19 is repeated.
  • step S20 determines whether the liquid level sensor L2 is in the OFF state, that is, whether the underground recovery tank 6 is almost empty. If the determination is YES, the operation of the submersible pump 12 is stopped (step S23), and the process returns to step S11. On the other hand, if this determination is also NO, the process directly returns to step S11.
  • the collected liquid is pumped while the amount of the collected liquid in the underground collection tank 6 and the above-ground collection tank 22 is constantly monitored by the liquid level sensor.
  • the stirrer 24 starts operation at the same time as the operation of the recovery and reuse device.
  • step S24 When the control is started in step S24, first check whether the liquid level sensor L6 is in the ON state. That is, it is determined whether there is a sufficient amount of the recovered liquid in the ground recovery tank 22 (step S25). If this determination is NO, the system waits until a sufficient amount of the collected liquid is stored in the ground collection tank 22. If the determination in step S25 is YES, the process proceeds to step S26, and it is determined whether the operating conditions of the suction pump 40 are satisfied. The operating conditions of the suction pump 40 are determined by the flow of FIG. 6 described below. one
  • step S28 If NO is determined, that is, if the suction pump 40 is not operated, the submersible pump 26 and the agitator 24 (if stopped in step S27) are operated (step S28). As a result, the recovered liquid is supplied to the magnetic separator 30 through the pumping pipe 28 while being stirred. As a result, the graphite particles in the recovered liquid are circulated between the ground recovery tank 22 and the magnet separator 30 while maintaining the dispersed state. Then, in the magnet separator 30, the scale in the recovered liquid is adsorbed and removed. Then, the process returns to step S25.
  • step S26 determines whether the suction pump 40 is operated. If the suction pump 40 is operated, the operation of the submersible pump 26 and the stirrer 24 is stopped (step S27). This is to prevent the scale from remaining in the recovered liquid by sinking by leaving the recovered liquid in the ground recovery tank 22 in a still state, thereby preventing the scale from being sucked from the flow suction 34. Then, the process returns to step S25.
  • step S30 it is determined whether the liquid level sensor L6 is in the ON state, that is, whether there is a sufficient amount of the collected liquid in the ground collection tank 22 (step S30). 3 1). If the determination is NO, the process stands by until a sufficient amount of the collected liquid is stored in the ground collection tank 22.
  • step S31 determines whether the liquid level sensor LI1 is in the OFF state, That is, it is determined whether there is room in the reuse liquid supply tank 50 (step S32). If the determination is N ⁇ , the operation of the suction pump 40 is stopped in step S37 (if the operation was performed in step S36), and the operation of the submersible pump 26 and the stirrer 24 in step S38. Resume. Then, the process returns to step S31.
  • step S32 determines whether the suction pump 40 is operating. —If driving, repeat step S32.
  • the operation conditions of the suction pump 40 are satisfied in steps S31 and S32, and the operation of the submersible pump 26 and the agitator 24 is performed as described in step S27 of FIG. Is stopped (step S34).
  • step S35 After securing the settling time for the scale near the float suction 34 to settle (step S35), the operation of the suction pump 40 is started (step S36). As a result, the recovered liquid not containing scale is sucked up from the float suction 34 and supplied to the reuse liquid supply tank 50 through the hoses 36 and 46 with springs. Thereafter, the determination in step S32 is repeated.
  • the stirrer 52 starts operating at the same time as the operation of the recovery and reuse device.
  • step S41 it is determined whether or not the interval timer in the control unit is ON (step S41). This interval timer is turned on at regular time intervals, and at this time, oil removal processing is executed. If this determination is NO, the system waits until the interval timer turns on. When the interval timer reaches ⁇ N, the process proceeds to step S42, where it is determined whether the liquid level sensor L10 is in the ON state, that is, whether there is a sufficient amount of recovered liquid in the reusable liquid supply tank 50. If this determination is NO, the process returns to step JS41.
  • step S43 it is determined whether the floating oil recovery device 54 is operating. Whether this determination is YES or NO, it is first determined whether the liquid level sensor L13 is OFF (steps S44, S48). If these determinations are NO, a full warning of drum 56 is issued in step S52, The operator replaces the drum 56 filled with the collected oil with an empty drum.
  • step S48 determines whether the stirrer 52 is first stopped in order to operate the floating oil recovery device 54 (step S49). Then, after a certain oil floating time is secured (step S50), the operation of the floating oil recovery device 54 is started (step S51). After that, the process returns to step S43. However, since the determination here is YES, the process proceeds to step S44.
  • step S45 it is determined whether the operation time of the floating oil recovery device 54 has timed up (step S45). That is, the operation time of the floating oil recovery device 54 is controlled by the operation time in the control unit. When a predetermined time has elapsed since the operation of the floating oil recovery device 54 started in step S51, the operation time outputs a time-up signal.
  • step S45 determines whether the operation of the floating oil recovery device 54 is stopped (step S46), and the operation of the stirrer 52 is restarted (step S47). Then, the process returns to step S41. If the determination in step S45 is NO, the process returns to step S43, and the operation of the floating oil recovery device 54 is continued until the operation time expires.
  • the total of the oil floating time in step S50 and the operation time set in the operation time ie, the time in which the stirrer 52 is stopped, is determined by the amount of precipitated graphite fine particles due to the stoppage of the recovered liquid. It is set within a range that does not seriously affect re-dispersion by stirring. Therefore, when the operation of the stirrer 52 is restarted in step S47, the graphite fine particles that have settled while standing still disperse uniformly.
  • step S54 it is first determined whether the liquid level sensor L11 is in the ON state, that is, whether there is an excessive amount of the recovered liquid in the reused liquid supply tank 50 (step S54). 5 5). If this determination is NO, the process waits until it becomes YES. This When the determination is YES, it is determined whether the liquid level sensor L7 of the ground collection tank 22 is ON (step S56). The reason for this is that if the ground collection tank 22 is not full, there is no need to suck up the collected liquid and transfer it to the reused liquid supply tank 50, so there is no need to release the reused liquid.
  • step S55 If the determination is YES, it is determined whether the liquid level sensor L19 of the new liquid supply tank 84 is in the ON state, that is, whether the new liquid supply tank 84 is full (step S57). In the case of YES, an overflow alarm is issued because the reused liquid cannot be escaped (step S58).
  • step S59 the actuating overnight valve 82a is opened (step S59), and the reused liquid is discharged to the new liquid supply tank 84.
  • step S60 it is determined whether the liquid level sensor L19 is in the ON state. If the determination is YES, the actuator overnight valve 82a is closed (step S62), and the process returns to step S55. Also, even if the determination in step S60 is NO, if the liquid level sensor L11 becomes OFF (step S61), the process proceeds to step S62, and the actuator overnight valve 82a is closed.
  • step S61 If the determination in step S61 is also NO, the actuating overnight valve 82a is open until the condition in either step S60 or S61 is satisfied, and the reused liquid is stored in the new liquid supply tank 84. Escaped.
  • This process is an emergency measure, and we want to minimize the possibility of reusing the new solution in the new solution supply tank 84 with the reused solution, so this process is performed unless the three conditions of steps S55, S56, and S57 are met. Not done.
  • step S65 When the control is started in step S64, it is first determined whether the liquid level sensor L14 is in the 0N state, that is, whether the new liquid dilution tank 70 is almost empty (step S65). If this determination is NO, a new solution dilution tank empty alarm is issued (step S70), and the stock solution of the release agent and industrial water are refilled in the new solution dilution tank 70. If the determination in step S65 is YE S, it is determined whether the liquid level sensor L10 is in the OFF state, that is, whether the reusable liquid in the reusable liquid supply tank 50 is insufficient. 6 6). If this determination is NO, the process returns to step S65. If YES, the new liquid supply pump 76 is operated (step S67), and the new liquid is supplied from the new liquid dilution tank 70.
  • step S68 it is determined whether the liquid level sensor L10 has been turned ON. If YES, the new liquid supply pump 76 is stopped (step S69), and the process returns to step S65. If the determination in step S68 is NO, the flow returns to step S67 to continue the operation of the new liquid supply pump 76.
  • Step S 7 2 When the control is started in Step S 7 2, first liquid level sensor L 1 4 Do ⁇ _N state, i.e. new chemical dilution tank 7 0 Do not spend emptied is determined (Step S 7 3) 0 If the determination is N ⁇ , a new solution dilution tank empty alarm is issued (step S78), and the stock solution of the release agent and industrial water are refilled in the new solution dilution tank # 0.
  • step S73 it is determined whether the liquid level sensor L18 is in the OFF state, that is, whether the new liquid in the new liquid supply tank 84 is insufficient (step S74). If this determination is NO, the process returns to step S73. If YES, the actuating overnight valve 80a is opened (step S75), and the new liquid is supplied from the new liquid dilution tank 70.
  • step S76 it is determined whether the liquid level sensor L19 is in the ⁇ N state, that is, whether the new liquid supply tank 84 is full (step S76). If the determination is YES, the actuating valve 80a is closed (step S77), and the process returns to step S73. If the determination in step S76 is NO, it is determined in step S79 whether the liquid level sensor L14 is in the 0N state.
  • step S78 If the determination is YES, the flow returns to step S75 to continue supplying the new liquid. If NO, an alarm for emptying the new liquid dilution tank is issued in step S78.
  • FIG. Fig. 11 is a timing chart showing an example of the operation timing of the main components of the recovery and reuse device.
  • the stirrer 24 in the ground collection tank 22
  • the stirrer 52 in the reused liquid supply tank 50
  • the stirrer 24 also start operating when the recovery and reuse unit starts operating.
  • the submersible pump 26 is started and the scale is collected by the magnet separator 30.
  • the liquid level sensor L 11 becomes OFF, the operating conditions of the suction pump 40 are satisfied as described above, so that the agitator 24 and the submersible pump 26 are stopped. After a predetermined settling time has elapsed therefrom, the suction pump 40 is started, and the recovered liquid is transferred to the reuse liquid supply tank 50. After a while, the liquid level sensor L 11 becomes ON, the suction pump 40 stops, and at the same time, the agitator 24 and the submersible pump 26 resume operation. Thereafter, this cycle has been repeated.
  • the stirrer 52 continues to operate while the timer in the control unit is OFF, and stops when the interval timer reaches ⁇ N. After a predetermined oil floating time has elapsed from this point, the floating oil recovery device 54 has started operation. After a lapse of a predetermined operation time set for the operation time, the floating oil recovery device 54 stops operating. At the same time, the stirrer 52 resumes operation, and this cycle is repeated thereafter.
  • the sum of the oil floating time and the operating time that is, the time during which the stirrer 52 is stopped, is within the range in which the amount of precipitated graphite fine particles due to the rest of the recovered liquid does not seriously affect redispersion Is set within.
  • the stirrer 52 restarts its operation, the precipitated graphite fine particles are uniformly dispersed again.
  • the conditioner for releasing the reused liquid into the new liquid supply tank 84 is closed all the time, but the liquid level sensors L11 and L7 are ON and L19 is OFF. Is open at the time when is established.
  • the liquid level sensor L19 is closed again when either the condition of ON or the condition of L11 is satisfied is satisfied.
  • the new liquid supply pump 76 for supplying the new liquid to the reused liquid supply tank 50 starts when the condition that the liquid level sensor 14 is ⁇ N and L10 is OFF is satisfied. . And it stops when the liquid level sensor L10 is turned ON.
  • the actuating valve 80a for replenishing the new liquid to the new liquid supply tank 84 is opened when the condition that the liquid level sensor L14 is 0 1 ⁇ and L18 is OFF is satisfied. ing. When the liquid level sensor L 19 becomes ⁇ N, it is closed again.
  • the method of collecting and regenerating the release agent for hot forging according to the present embodiment can remove scale and oil from the recovered liquid without substantially deteriorating the performance as the release agent.
  • the agent can be used repeatedly. Further, in the method for reusing the release agent for hot forging of the present embodiment, since the re-use liquid is used only in a portion where seizure does not easily occur, it can withstand severe forging conditions.
  • the oil is recovered in the reusable liquid supply tank 50 after the scale is recovered in the ground recovery tank 22.
  • the scale may be recovered after recovering the oil first. good.
  • the method of collecting and regenerating a hot forging release agent according to the present invention enables the hot forging release agent containing graphite as a main component to be repeatedly used, so that the release agent is extremely efficiently used. It can be used and is useful for reducing the running cost of hot forging equipment. In addition, since space for storing waste liquid is not required, it is useful for saving space when installing hot forging equipment. ⁇
  • the method for reusing the release agent for hot forging according to the present invention can cope with severe forging conditions, and is therefore useful for forging a product having a complicated shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method of recovering and regenerating a mold lubricant for hot forging, in which a recovered liquid flows into a reusable liquid supply tank (50) through a springed hose (46) after scale is removed from a recovered mold lubricant (recovered liquid) for hot forging. When it becomes necessary to operate a floating oil recovering device (54), an agitator (52) stops to make the recovered liquid stationary. After a predetermined period of time required for an oil to float has elapsed, the oil recovering device (54) is operated to separate and recover the oil floating on the recovered liquid surface. When an operation time set in an operation timer has elapsed, the oil recovering device (54) stops and the agitator (52) resumes its operation. Incidentally, the sum of a floating time of the oil and an operation time, that is, a stopping time of the agitator (52) is set within a range in which redispersion is not seriously affected by the amount of graphite particulates settled due to standstill of the recovered liquid. Accordingly, the graphite particulates are homogeneously redispersed by restarting the operation of the agitator (52), so that the oil can be recovered to enable the reuse of the mold lubricant with little deterioration of the performance of the mold lubricant.

Description

明 細 書 熱間鍛造用離型剤の回収再生方法および再使用方法 技術分野  Description Recovery and recycling method of mold release agent for hot forging and reuse method
この発明は、 黒鉛を主剤とする熱間鍛造用の離型剤の回収再生方法および再生 処理した離型剤の再使用方法に関するものである。 背景技術  The present invention relates to a method of recovering and regenerating a mold release agent for hot forging, which is mainly composed of graphite, and to a method of reusing a reclaimed release agent. Background art
熱間锻造においては、 約 1 2 0 0 °Cの高温に加熱された鋼塊を一対の鍛造型間 で押圧して、 鋼塊を所望の形状に成形する。 ここで、 鍛造型も鋼材で作られてい るため、 高温に加熱された鋼塊を押圧することによって鍛造型の成形面が軟化し て、 鍛造型に鋼塊が焼き付いてしまう恐れがある。  In hot working, a steel ingot heated to a high temperature of about 1200 ° C. is pressed between a pair of forging dies to form the steel ingot into a desired shape. Here, since the forging die is also made of steel, pressing the steel ingot heated to a high temperature may soften the forming surface of the forging die and cause the steel ingot to seize on the forging die.
そこで、 かかる焼き付きを防ぐために、 鍛造型の成形面に離型剤が塗布される 。 このような熱間锻造用の離型剤の一種として、 黒鉛を主剤としたものが用いら れている。 この離型剤は、 黒鉛の微粒子を水中に分散させてなるものである。 離型剤は、 一回の鍛造ごとに鍛造型の成形面に吹き付けられる。 このとき、 余 分な離型剤は鍛造型から流れ落ちて回収される。 そして、 熱間鍛造が実施される と、 離型剤の水分の一部は高温の鋼塊の熱によって蒸発し、 また一部の離型剤は 成形された鋼塊に付着するが、 大部分の離型剤は鍛造型が開かれると流れ落ちて 回収される。  Therefore, in order to prevent such seizure, a release agent is applied to the molding surface of the forging die. As one type of such a releasing agent for hot working, one using graphite as a main agent is used. This release agent is obtained by dispersing graphite fine particles in water. The release agent is sprayed on the molding surface of the forging die for each forging. At this time, excess release agent flows down from the forging die and is collected. When hot forging is performed, a part of the moisture of the release agent evaporates due to the heat of the high-temperature steel ingot, and some of the release agent adheres to the formed steel ingot. The release agent flows down and is collected when the forging die is opened.
これらの回収された離型剤中には、 鋼塊から剥がれ落ちた酸化鉄の皮膜 (スケ ール) や熱間鍛造装置から漏れた作動油といった不純物が混入している。 従って 、 これらのスケールや油分を除去しないと 離型剤として再使用することができ ない。 このうち、 スケールは、 回収した離型剤を攪拌しながら磁力によって吸着 して除去することができる。 一方、 油分を除去するには、 離型剤の分散媒である 水よりも比重が小さいことを利用して、 回収した離型剤を静止状態に置くことに よって油分を浮上させ、 表面に集めて回収する必要がある。 しかしながら、 離型剤を長時間静止させておくと、 分散していた黒鉛の微粒子 が次第に沈殿してくる。 この沈殿量があまり多くなると、 離型剤を攪拌しても黒 鉛微粒子を再分散させることができなくなってしまうため、 離型剤としての性能 が著しく劣化してしまう。 These recovered release agents contain impurities such as iron oxide film (scale) peeled off from the steel ingot and hydraulic oil leaked from the hot forging equipment. Therefore, unless these scales and oils are removed, they cannot be reused as a release agent. Among them, the scale can be removed by adsorbing the recovered release agent by magnetic force while stirring. On the other hand, to remove oil, the specific gravity is lower than that of water, which is the dispersion medium for the release agent, and the recovered release agent is allowed to stand still to collect the oil on the surface. Need to be collected. However, if the release agent is left standing for a long time, the dispersed graphite fine particles gradually precipitate. If the sedimentation amount is too large, the graphite fine particles cannot be re-dispersed even if the release agent is stirred, so that the performance as the release agent is significantly deteriorated.
このような理由によって、 回収した離型剤の性能を著しく劣化させることなく 油分を除去することができないため "回収した離型剤は再使用することができず 、 廃液として貯蔵しておくしかなかった。  For these reasons, it is not possible to remove the oil without significantly deteriorating the performance of the recovered release agent. "The recovered release agent cannot be reused and must be stored as waste liquid. Was.
そこで、 本発明においては、 離型剤としての性能を殆ど劣化させることなく、 回収した離型剤からスケールだけでなく油分をも除去することによって再使用を 可能とする熱間鍛造用離型剤の回収再生方法を提供することを目的とする。  Therefore, in the present invention, a release agent for hot forging that enables reuse by removing not only the scale but also the oil from the recovered release agent without substantially deteriorating the performance as the release agent. It is an object of the present invention to provide a method for collecting and regenerating the same.
また、 このようにして回収再生処理した離型剤は、 使用前の離型剤に比べて若 干離型性に劣ることは避け難い。 このため、 熱間锻造の条件が苛酷な場合には離 型性が不十分となる恐れがあった。  Further, it is inevitable that the release agent thus recovered and regenerated has a slightly lower releasability than the release agent before use. For this reason, when the conditions of the hot working were severe, there was a possibility that the releasability would be insufficient.
そこで、 本発明においては、 苛酷な鍛造条件にも対応できる熱間鍛造用離型剤 の再使用方法を提供することをも目的とする。 発明の開示  In view of the above, an object of the present invention is to provide a method for reusing a release agent for hot forging that can cope with severe forging conditions. Disclosure of the invention
本発明は、 黒鉛微粒子を水中に分散してなる熱間鍛造用離型剤の回収再生方法 であって、 回収した離型剤を攪拌しながら磁力を用いてスケールを除去する工程 と、 回収した離型剤を静止状態に置いて表面に浮上した油分を除去する工程とを 有し、 静止状態に置く時間を静止による黒鉛微粒子の沈殿量が攪拌による再分散 に深刻な影響を与えない範囲内とすることを特徴とする。 従って、 常に黒鉛微粒 子の再分散が可能な条件下で油分を除去できるため、 離型剤の再使用が可能とな る。  The present invention relates to a method of recovering and regenerating a mold releasing agent for hot forging obtained by dispersing graphite fine particles in water, wherein a step of removing scale using a magnetic force while stirring the collected mold releasing agent is provided. Removing the oil floating on the surface by placing the release agent in a stationary state, within the range where the amount of precipitated graphite fine particles due to the stationary state does not seriously affect the re-dispersion by stirring. It is characterized by the following. Therefore, the oil can be removed under the condition that the graphite fine particles can be redispersed at all times, so that the release agent can be reused.
また、 このようにして再生処理した離型剤の再使用方法であって、 熱間鍛造用 の鍛造型の焼き付きが起こり易い部分にはより離型性に優れた未使用の離型剤を 用い、 その他の部分には再生処理した離型剤を用いることを特徴とする熱間鍛造 用離型剤の再使用方法を創出したため、 苛酷な鍛造条件にも対応することができ る。 図面の簡単な説明 In addition, in the method of reusing the release agent thus regenerated, an unused release agent having better releasability is used in a portion where the forging die for hot forging is liable to burn. The use of recycled mold release agents in other parts has created a method for reusing mold release agents for hot forging, which makes it possible to cope with severe forging conditions. You. BRIEF DESCRIPTION OF THE FIGURES
第 1図および第 2図は、 本発明の一実施形態に係る熱間鍛造用離型剤の回収再 使用装置を示す全体構成図であり、 第 3図乃至第 1 0図は本発明の一実施形態に 係る熱間锻造用離型剤の回収再生方法を示すフローチャートであり、 第 1 1図は 本発明の一実施形態に係る熱間鍛造用離型剤の回収再生方法を示すタイミングチ ヤートである。 発明を実施するための最良の形態  FIG. 1 and FIG. 2 are overall constitutional views showing an apparatus for collecting and reusing a release agent for hot forging according to an embodiment of the present invention, and FIGS. 3 to 10 show one embodiment of the present invention. FIG. 11 is a flowchart showing a method for recovering and regenerating a hot-forming release agent according to the embodiment. FIG. 11 is a timing chart showing a method for recovering and re-using a hot-forging releasing agent according to one embodiment of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の一実施形態について、 添付の図面を参照しつつ説明する。  Next, an embodiment of the present invention will be described with reference to the accompanying drawings.
まず、 本実施形態の熱間鍛造用離型剤の回収再生方法および再使用方法に用い られる回収再使用装置について、 第 1図および第 2図を参照して説明する。 第 1 図および第 2図は、 本実施形態における熱間鍛造用離型剤の回収再使用装置 (以 下、 単に 「回収再使用装置」 ともいう。) を示す全体構成図である。 第 1図は回 収再使用装置の左半分を示し、 第 2図は回収再使用装置の右半分を示している。 第 1図において、 引用符号 2は熱間鍛造装置を示し、 この熱間鍛造装置 2の下 方には左右一対の回収シュート 4 a, 4 bが設けられている。 これらの回収シュ ート 4 a, 4 bのさらに下方には、 地下回収タンク 6が設置されている。 熱間鍛 造装置 2から落下した熱間鍛造用離型剤は、 回収シュート 4 a , 4 bで受けられ て、 地下回収タンク 6内に流れ込む。  First, a recovery and reuse apparatus used in a recovery and recycling method and a reuse method of a release agent for hot forging according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 and FIG. 2 are overall configuration diagrams showing a recovery and reuse device (hereinafter, also simply referred to as a “recovery and reuse device”) for a release agent for hot forging in the present embodiment. Figure 1 shows the left half of the recovery and reuse unit, and Figure 2 shows the right half of the recovery and reuse unit. In FIG. 1, reference numeral 2 denotes a hot forging device, and a pair of left and right recovery chutes 4a and 4b are provided below the hot forging device 2. Below these collection shops 4a and 4b, an underground collection tank 6 is installed. The release agent for hot forging dropped from the hot forging device 2 is received by the recovery chutes 4 a and 4 b and flows into the underground recovery tank 6.
地下回収タンク 6には、 タンク内に貯められた回収された熱間鍛造用離型剤 ( 以下、 「回収液」 という。) を攪拌するための攪拌機 8が設けられている。 この攪 拌機 8は、 電動モータの回転軸の先端に攪 用スクリュ一を取付けてなるもので ある。  The underground recovery tank 6 is provided with a stirrer 8 for agitating the recovered hot forging release agent (hereinafter referred to as “recovered liquid”) stored in the tank. The stirrer 8 has a stirring screw attached to a tip of a rotating shaft of an electric motor.
また、 地下回収タンク 6には、 攪拌の効果が届きにくい地下回収タンク 6の底 部の隅にスケールや黒鉛微粒子が溜まるのを防ぐために、 仕切り板 6 aが設けら れている。 さらに、 地下回収タンク 6には、 四個の液面センサ L I , L 2 , L 3 , L 4が それぞれ異なる高さに取付けられている。 これらの液面センサ L 1〜L 4は、 液 体に接触しているときは O N信号を出力し、 液面より上にあって空気中に出てい るときは O F F信号を出力する。 従って、 これらの液面センサ L 1〜L 4によつ て、 地下回収タンク 6内の液面の高さが判別される。 例えば、 液面センサ L 4が O Nのときは、 液面の高さが限界を超えて地下回収タンク 6から回収液が溢れる 恐れがあることがわかる。 また、 液面センサ L 1が O F Fのときは、 地下回収夕 ンク 6内が空になりかけていることがわかる。 The underground recovery tank 6 is provided with a partition plate 6a to prevent scale and graphite particles from collecting at the bottom corner of the underground recovery tank 6 where the effect of stirring is difficult to reach. Further, four liquid level sensors LI, L2, L3 and L4 are mounted on the underground recovery tank 6 at different heights. These liquid level sensors L1 to L4 output an ON signal when they are in contact with liquid, and output OFF signals when they are above the liquid level and out in the air. Therefore, the level of the liquid in the underground recovery tank 6 is determined by the liquid level sensors L1 to L4. For example, when the liquid level sensor L 4 is ON, it can be seen that the liquid level may exceed the limit and the recovered liquid may overflow from the underground recovery tank 6. When the liquid level sensor L1 is OFF, it can be seen that the underground recovery tank 6 is almost empty.
また、 地下回収タンク 6から溢れた回収液を受けるための液受けプレート 6 b が、 地下回収タンク 6の下部の周囲に設けられている。  Further, a liquid receiving plate 6 b for receiving the recovered liquid overflowing from the underground recovery tank 6 is provided around a lower portion of the underground recovery tank 6.
さらに、 地下回収タンク 6の底部には、 二つの水中ポンプ 1 0 , 1 2が設置さ れている。 水中ポンプ 1 0は、 逆流防止弁 1 0 a, 開閉弁 1 0 bを介してライ二 ング管 1 4に接続されている。 このライニング管 1 4は、 上方で二本のシュート 洗浄管 1 8, 2 0に分岐している。 シュート洗浄管 1 8, 2 0の途中には、 それ ぞれ電動弁 1 8 a , 2 0 aが設けられている。 そして、 シュート洗浄管 1 8の先 端は回収シュート 4 bの上端に開口しており、 シュート洗浄管 2 0の先端は回収 シュート 4 aの上端に開口している。  Further, two submersible pumps 10 and 12 are installed at the bottom of the underground recovery tank 6. The submersible pump 10 is connected to the riding pipe 14 via a check valve 10a and an on-off valve 10b. The lining pipe 14 is branched upward into two chute washing pipes 18 and 20. In the middle of the chute washing pipes 18 and 20, electric valves 18a and 20a are provided, respectively. The end of the chute washing tube 18 opens at the upper end of the collection chute 4b, and the end of the chute washing tube 20 opens at the upper end of the collection chute 4a.
従って、 水中ポンプ 1 0を作動させることによって、 回収液がシュート洗浄管 1 8, 2 0の先端から吹き出して回収シュート 4 a , 4 b上を流れ落ちる。 これ によって、 回収シュート 4 a, 4 b上に付着したスケールや黒鉛微粒子等を洗い 流すことができる。  Therefore, by operating the submersible pump 10, the collected liquid blows out from the tips of the chute washing tubes 18 and 20 and flows down on the collection chutes 4a and 4b. As a result, the scale and the fine graphite particles adhered to the collecting chutes 4a and 4b can be washed away.
一方、 水中ポンプ 1 2は、 逆流防止弁 1 2 a, 開閉弁 1 2 bを介してスプリン グ入りホース 1 6に接続されている。 このスプリング入りホース 1 6の先端は、 地上に設置された地上回収タンク 2 2内に 口している。 従って、 水中ポンプ 1 2を作動させることによって、 回収液が地上回収タンク 2 2内に流れ込む。 この地上回収タンク 2 2にも、 地下回収タンク 6と同様に、 攪拌機 2 4, 仕切 り板 2 2 a, 液受けプレート 2 2 bおよび四個の液面センサ L 5, L 6, L 7, L 8が設けられている。 また、 地上回収タンク 2 2の上方には、 マグネットセパレ一夕 3 0が設置され ている。 このマグネットセパレ一夕 3 0は、 回収液中に含まれるスケールを磁力 によって吸着して除去する装置である。 さらに、 地上回収タンク 2 2の底部には 水中ポンプ 2 6が設置されており、 水中ポンプ 2 6に接続された汲み上げ管 2 8 の先端は、 マグネットセパレ一夕 3 0の上部に開口している。 なお、 汲み上げ管 2 8の途中には、 逆流防止弁 2 8 aと開閉弁 2 8 bが設けられている。 On the other hand, the submersible pump 12 is connected to a spring hose 16 via a check valve 12a and an on-off valve 12b. The tip of the spring-loaded hose 16 opens into a ground recovery tank 22 installed on the ground. Therefore, by operating the submersible pump 12, the recovered liquid flows into the ground recovery tank 22. Like the underground recovery tank 6, this underground recovery tank 22 also has a stirrer 24, a partition plate 22a, a liquid receiving plate 22b, and four liquid level sensors L5, L6, L7, L 8 is provided. Above the ground collection tank 22, a magnet separator 30 is installed. The magnet separation 30 is a device that removes scale contained in the recovered liquid by magnetic attraction. In addition, a submersible pump 26 is installed at the bottom of the above-ground collection tank 22, and the tip of a pumping pipe 28 connected to the submersible pump 26 opens at the top of the magnet separator 30. . In the middle of the pumping pipe 28, a check valve 28a and an on-off valve 28b are provided.
水中ポンプ 2 6で汲み上げられた回収液は、 汲み上げ管 2 8を通ってマグネッ トセパレ一夕 3 0に供給される。 マグネッ トセパレ一夕 3 0内でスケールが除去 された回収液は、 マグネットセパレ一夕 3 0の下部から落下して地上回収タンク 2 2に戻る。 なお、 マグネットセパレ一夕 3 0で吸着されたスケールは、 地上回 収タンク 2 2に近接して設置されたスケール回収台車 3 2内に落下して貯蔵され る。 また、 マグネットセパレー夕 3 0内に回収液が過剰に供給された場合は、 配 管 3 0 aから溢れて地上回収タンク 2 2に戻される。  The recovered liquid pumped by the submersible pump 26 is supplied to the magnet separator 30 through the pumping pipe 28. The recovered liquid from which scale has been removed in the magnetic separation 30 falls from below the magnetic separation 30 and returns to the ground recovery tank 22. The scale adsorbed by the magnetic separation 30 is dropped and stored in the scale collection trolley 32 installed near the ground collection tank 22. If the recovered liquid is excessively supplied into the magnet separator 30, the recovered liquid overflows from the pipe 30 a and is returned to the ground recovery tank 22.
また、 地上回収タンク 2 2の側壁上部には、 配管 2 2 cが接続されている。 地 上回収タンク 2 2内の回収液が多くなりすぎて溢れそうになった場合には、 この 配管 2 2 cから排出される。 それでも溢れてしまった回収液は、 前記液受けプレ —ト 2 2 bで受けられる。 この液受けプレート 2 2 bにも配管 2 2 dが接続され ており、 受けられた回収液はこの配管 2 2 dから排出される。  In addition, a pipe 22 c is connected to an upper part of the side wall of the ground collection tank 22. If the recovered liquid in the ground recovery tank 22 becomes too large and overflows, it is discharged from this pipe 22c. The recovered liquid that has overflowed is received by the liquid receiving plate 22b. A pipe 22d is also connected to the liquid receiving plate 22b, and the received recovered liquid is discharged from the pipe 22d.
これらの配管 2 2 c, 2 2 dはいずれもオーバーフロー管 4 8 Aに接続され、 オーバ一フロー管 4 8 Aはさらにオーバ一フロー管 4 8 Bに接続されている。 そ して、 オーバ一フロー管 4 8 Bの先端は、 前記地下回収タンク 6内に開口してい る。 従って、 配管 2 2 c, 2 2 dから排出された回収液は、 地下回収タンク 6に 戻される。  These pipes 22c and 22d are both connected to an overflow pipe 48A, and the overflow pipe 48A is further connected to an overflow pipe 48B. The tip of the overflow pipe 48 B opens into the underground recovery tank 6. Therefore, the recovered liquid discharged from the pipes 22 c and 22 d is returned to the underground recovery tank 6.
さらに、 地上回収タンク 2 2内の回収液 __の液面には、 フロートサクシヨン 3 4 が浮かんでいる。 このフロートサクシヨン 3 4は、 四個のフロートにスプリング 入りホース 3 6の先端 (吸い込み口) が固定されてなるものである。 このスプリ ング入りホース 3 6は、 吸い込み口が回収液の液面すれすれに位置し、 かつ大気 中に出ないように、 フロートに固定されている。 従って、 フロートサクシヨン 3 4の吸い込み口からは、 常に回収液の表面部分のみが吸い込まれる。 In addition, a float suction 34 is floating on the liquid level of the recovered liquid __ in the ground recovery tank 22. The float suction tube 34 is formed by fixing the tip (suction port) of a hose 36 with a spring to four floats. The hose 36 with a spring is fixed to a float so that the suction port is located just below the level of the recovered liquid and does not come out into the atmosphere. Therefore, float suction 3 From the suction port (4), only the surface of the recovered liquid is always sucked.
スプリング入りホース 3 6は、 開閉弁 3 6 aを介してサクシヨンポンプ 4 0に 接続されている。 このサクシヨンポンプ 4 0には、 開閉弁 4 6 aを介してスプリ ング入りホース 4 6が接続されている。  The spring hose 36 is connected to the suction pump 40 via an on-off valve 36a. The suction pump 40 is connected to a spring 46 containing a spring via an on-off valve 46a.
また、 スプリング入りホース 3 6からは、 開閉弁 3 6 aの手前で配管 3 8が分 岐している。 配管 3 8は、 開閉弁 3 S aを介して予備ポンプ 4 2に接続されてい る。 この予備ポンプ 4 2には、 開閉弁 4 4 aを介して配管 4 4が接続されており In addition, a pipe 38 branches from the spring-loaded hose 36 in front of the on-off valve 36a. The pipe 38 is connected to the backup pump 42 via the on-off valve 3Sa. A pipe 44 is connected to the backup pump 42 via an on-off valve 44a.
、 配管 4 4は開閉弁 4 6 aの後方においてスプリング入りホース 4 6に接続され ている。 The piping 44 is connected to a spring-loaded hose 46 behind the on-off valve 46a.
このように吸い上げ用ポンプを二系統設けたのは、 フロートサクシヨン 3 4か ら少量ずつ回収液を吸い込むようにスプリング入りホース 3 6 , 4 6の内径を小 さくしており、 目詰まりを起こし易いためである。 通常は開閉弁 3 6 a, 4 6 a を開き、 開閉弁 3 8 a, 4 4 aを閉じて、 サクシヨンポンプ 4 0によって、 スケ ールが除去された回収液が吸い上げられる。  The two suction pumps are provided in this way because the inner diameters of the spring-loaded hoses 36 and 46 are so small that the recovered liquid is sucked little by little from the float suction 34 and the clogging is likely to occur. That's why. Normally, the on-off valves 36a and 46a are opened, and the on-off valves 38a and 44a are closed. The suction pump 40 sucks up the recovered liquid from which the scale has been removed.
また、 フロートサクション 3 4から回収液を吸い上げる配管をスプリング入り ホース 3 6, 4 6としたのは、 次のような理由からである。 フロートサクシヨン 3 4は、 回収液の液面すれすれに設けられているために、 空気を吸い込んでしま うことがある。 すると、 配管の内壁のみに回収液が付着して配管の中心は空間に なってしまう。 この状態で放置されると、 内壁に付着した回収液が乾燥固化し、 これが繰り返されると配管が目詰まりしてしまうことになる。 しかし、 配管をス プリング入りホースとしておけば、 サクションポンプ 4 0が運転されることによ つて振動し、 内壁の付着物は振動によって振り落とされる。 従って、 フロートサ クシヨン 3 4から空気が吸い込まれても、 目詰まりする恐れがなくなる。  The pipes for sucking up the recovered liquid from the float suction 34 are spring-loaded hoses 36, 46 for the following reasons. Float suction 34 may draw in air because it is located just below the level of the recovered liquid. Then, the collected liquid adheres only to the inner wall of the pipe, and the center of the pipe becomes a space. If left in this state, the recovered liquid adhering to the inner wall will dry and solidify, and if this is repeated, the piping will be clogged. However, if the piping is a hose with a spring, it vibrates when the suction pump 40 is operated, and the attached matter on the inner wall is shaken off by the vibration. Therefore, even if air is sucked in from the float suction box 34, there is no possibility of clogging.
前記スプリング入りホース 4 6の先端は 第 2図に示される再使用液供給タン ク 5 0内に開口している。 従って、 サクシヨンポンプ 4 0によって吸い上げられ た回収液は再使用液供給タンク 5 0内に流れ込む。 この再使用液供給タンク 5 0 にも、 地下回収タンク 6 , 地上回収タンク 2 2と同様に、 攪拌機 5 2, 仕切り板 5 0 a , 液受けプレート 5 0 bおよび四個の液面センサ L 9 , L 1 0 , L 1 1 , L 1 2が設けられている。 The tip of the spring-loaded hose 46 opens into a reusable liquid supply tank 50 shown in FIG. Therefore, the recovered liquid sucked up by the suction pump 40 flows into the reuse liquid supply tank 50. This reusable liquid supply tank 50 also has a stirrer 52, a partition plate 50a, a liquid receiving plate 50b, and four liquid level sensors L9, like the underground recovery tank 6 and the above-ground recovery tank 22. , L 1 0, L 1 1, L12 is provided.
さらに、 再使用液供給タンク 5 0内には、 浮上油回収装置 5 4が設置されそい る。 この浮上油回収装置 5 4は、 液体表面に浮上した油分を分離回収する装置で あり、 上下一対のプーリー間にベルトが懸けられている。 このベルトは親油性の 高い樹脂で作られており、 一対のプーリーが回転することによってベルトも回転 して回収液中をくぐり、 回収液表面に浮上した油分を吸着していく。  Further, a floating oil recovery device 54 is installed in the reusable liquid supply tank 50. The floating oil recovery device 54 is a device for separating and recovering the oil floating on the liquid surface, and a belt is suspended between a pair of upper and lower pulleys. This belt is made of highly lipophilic resin, and the pair of pulleys rotates, so that the belt also rotates, passes through the collected liquid, and adsorbs the oil floating on the surface of the collected liquid.
吸着された油分は、 スクレーバによってベルトから搔き落とされ、 再使用液供 給タンク 5 0の近傍に設置されたドラム缶 5 6内に落下し貯蔵される。 ドラム缶 5 6には液面センサ L 1 3が取付けられており、 回収された油分が一杯になった ことを作業者に知らせる。  The adsorbed oil is removed from the belt by a scraper, and falls and stored in a drum 56 installed near the reusable liquid supply tank 50. A liquid level sensor L13 is attached to the drum 56 to notify the operator that the recovered oil is full.
また、 再使用液供給タンク 5 0の側壁上部には、 配管 5 0 cが接続されている 。 再使用液供給タンク 5 0内の回収液が多くなりすぎて溢れそうになった場合に は、 配管 5 0 cから排出される。 それでも溢れた回収液は、 前記液受けプレート Further, a pipe 50c is connected to an upper portion of the side wall of the reused liquid supply tank 50. If the recovered liquid in the reusable liquid supply tank 50 becomes too large and overflows, it is discharged from the pipe 50c. The recovered liquid still overflows,
5 0 bで受けられる。 この液受けプレート 5 0 bにも配管 5 0 dが接続されてお り、 受けられた回収液はこの配管 5 0 dから排出される。 Received at 50 b. A pipe 50d is also connected to the liquid receiving plate 50b, and the received recovered liquid is discharged from the pipe 50d.
これらの配管 5 0 c , 5 0 dはいずれもォ一バーフロー管 4 8 Cに接続され、 オーバ一フロー管 4 8 Cはさらに前記オーバ一フロー管 4 8 Bに接続されている 。 従って、 配管 5 0 c , 5 0 dから排出された回収液は、 第 1図に示される地下 回収タンク 6に戻される。  These pipes 50 c and 50 d are both connected to an overflow pipe 48 C, and the overflow pipe 48 C is further connected to the overflow pipe 48 B. Therefore, the recovered liquid discharged from the pipes 50c and 50d is returned to the underground recovery tank 6 shown in FIG.
第 2図に戻って、 再使用液供給タンク 5 0の側壁下部には、 配管 5 8が接続さ れている。 この配管 5 8は、 開閉弁 5 8 aを介して再使用液供給ポンプ 6 0に接 続されている。 地上回収タンク 2 2と再使用液供給タンク 5 0でスケールと油分 が除去されて再使用可能になった回収液 (以下、 「再使用液」 という。) は、 この 再使用液供給ポンプ 6 0によって第 1図の |¾間鍛造装置 2に供給される。 再使用 液供給ポンプ 6 0には、 逆流防止弁 6 0 a, 開閉弁 6 0 bを介して再使用液供給 管 6 2が接続されている。 そして、 再使用液供給管 6 2の先端は、 第 1図に示さ れる電磁弁 6 2 aを介して、 熱間鍛造装置 2の離型剤吹き付けノズルへの接続部 Returning to FIG. 2, a pipe 58 is connected to the lower part of the side wall of the reused liquid supply tank 50. The pipe 58 is connected to a reusable liquid supply pump 60 via an on-off valve 58a. The recovered liquid (hereinafter referred to as “reused liquid”) whose scale and oil have been removed from the ground recovery tank 22 and the reused liquid supply tank 50 (hereinafter referred to as “reused liquid”) is supplied to the reused liquid supply pump 60. Is supplied to the cold forging device 2 in FIG. The reused liquid supply pump 60 is connected to a reused liquid supply pipe 62 via a check valve 60a and an on-off valve 60b. The end of the reused liquid supply pipe 62 is connected to the release agent spray nozzle of the hot forging apparatus 2 via a solenoid valve 62 a shown in FIG.
6 4に接続されている。 さらに、 再使用液供給管 6 2からは、 電磁弁 6 2 aの手前において配管 6 6が 分岐している。 この配管 6 6の先端は、 前記地上回収タンク 2 2内に開口してい る。 また、 再使用液供給管 6 2には圧力センサ 6 8が取付けられている。 6 Connected to 4. Further, from the reusable liquid supply pipe 62, a pipe 66 branches before the solenoid valve 62a. The tip of the pipe 66 is open in the above-mentioned ground collection tank 22. A pressure sensor 68 is attached to the reuse liquid supply pipe 62.
前記再使用液供給ポンプ 6 0は、 第 1図と第 2図で示される回収再使用装置の 運転中は、 連続運転される。 離型剤の吹き付けを行わない間は電磁弁 6 2 aが閉 じられているため、 再使用液供給ポンプ 6 0によって供給された再使用液は、 再 使用液供給管 6 2から配管 6 6を通って地上回収タンク 2 2に戻される。  The reusable liquid supply pump 60 is operated continuously during the operation of the recovery and reuse device shown in FIG. 1 and FIG. Since the solenoid valve 62a is closed while the release agent is not sprayed, the reusable liquid supplied by the reusable liquid supply pump 60 is supplied from the reusable liquid supply pipe 62 to the pipe 66. And returned to the ground collection tank 22.
そして、 離型剤を吹き付けるときには、 電磁弁 6 2 aが開かれて、 接続部 6 4 を介して熱間鍛造装置 2内の吹き付けノズルから再使用液が鍛造型に吹き付けら れる。 このとき、 一部の再使用液が配管 6 6から逃げることによって、 吹き付 け量と吹き付け圧が適切な値にコントロールされる。 吹き付け圧が適切な値に保 たれているかどうかは、 前記圧力センサ 6 8によって監視される。 吹き付け圧が 適切な範囲から外れた場合には、 配管 6 6に設けられている流量調節弁 (図示省 略) で配管 6 6の流量を調節することによって、 適切な圧力に戻す。  Then, when spraying the release agent, the solenoid valve 62 a is opened, and the re-use liquid is sprayed from the spray nozzle in the hot forging apparatus 2 to the forging die via the connection portion 64. At this time, a part of the reused liquid escapes from the pipe 66, so that the spray amount and the spray pressure are controlled to appropriate values. Whether the blowing pressure is maintained at an appropriate value is monitored by the pressure sensor 68. If the spray pressure deviates from an appropriate range, the flow is returned to an appropriate pressure by adjusting the flow rate of the pipe 66 using a flow control valve (not shown) provided in the pipe 66.
さて、 第 2図の再使用液供給タンク 5 0に隣接して、 新液希釈タンク 7 0が設 置されている。 この新液希釈タンク 7 0において、 メーカーから供給される高濃 度の熱間锻造用離型剤の原液が、 工業用水によって適切な濃度に希釈される。 こ うして作られる未使用の離型剤を、 以下、 「新液」 という。 この新液希釈タンク 7 0にも、 攪拌機 7 2, 仕切り板 7 0 a, 液受けプレート 7 0 bおよび三個の液 面センサ L 1 4 , L 1 5 , L 1 6が設けられている。  Now, a new liquid dilution tank 70 is provided adjacent to the reuse liquid supply tank 50 in FIG. In this new liquid dilution tank 70, a stock solution of a high concentration hot mold release agent supplied from a manufacturer is diluted to an appropriate concentration with industrial water. The unused release agent thus produced is hereinafter referred to as “new solution”. This new liquid dilution tank 70 is also provided with a stirrer 72, a partition plate 70a, a liquid receiving plate 70b, and three liquid level sensors L14, L15, L16.
また、 新液希釈タンク 7 0の側壁上部には、 配管 7 0 cが接続されている。 新 液希釈タンク 7 0内に原液と工業用水が過剰に供給されて、 新液が溢れそうにな つた場合には、 配管 7 0 cから排出される。 それでも溢れた新液は、 前記液受け プレート 7 0 bで受けられる。 この液受け J7°レート 7 0 bにも配管 7 0 dが接続 されており、 受けられた新液はこの配管 7 0 dから排出される。 これらの配管 7 0 c , 7 0 dは、 いずれも前記オーバ一フロー管 4 8 Bに接続されている。 従つ て、 配管 7 0 c, 7 0 dから排出された新液は、 地下回収タンク 6に流れ込む。 さらに、 新液希釈タンク 7 0の側壁下部には、 配管 7 4が接続されている。 こ の配管 7 4は、 開閉弁 7 4 aを介して新液補給ポンプ 7 6に接続されている。 こ の新液補給ポンプ 7 6には、 開閉弁 7 6 aを介して配管 7 8が接続されており、 配管 7 8の先端は再使用液供給タンク 5 0内に開口している。 A pipe 70c is connected to the upper part of the side wall of the new liquid dilution tank 70. If the undiluted solution and industrial water are excessively supplied into the new solution dilution tank 70 and the new solution is about to overflow, it is discharged from the pipe 70c. The new liquid still overflowing is received by the liquid receiving plate 70b. A pipe 70d is also connected to the liquid receiver J7 ° rate 70b, and the received new liquid is discharged from the pipe 70d. These pipes 70c and 70d are both connected to the overflow pipe 48B. Therefore, the new liquid discharged from the pipes 70 c and 70 d flows into the underground recovery tank 6. Further, a pipe 74 is connected to a lower portion of the side wall of the new liquid dilution tank 70. This The pipe 74 is connected to a new liquid supply pump 76 via an on-off valve 74 a. A pipe 78 is connected to the new liquid supply pump 76 via an on-off valve 76 a, and the end of the pipe 78 opens into the reuse liquid supply tank 50.
そして、 新液希釈タンク 7 0の底部には、 新液補給管 8 0が接続されている。 この新液補給管 8 0の先端は、 新液希釈タンク 7 0の下方に設置された新液供給 タンク 8 4内に開口している。 また 新液補給管 8 0の途中にはァクチユエ一夕 弁 8 0 aが設けられている。 従って、 このァクチユエ一夕弁 8 0 aを開くことに よって、 新液希釈タンク 7 0で作られた新液が、 新液供給タンク 8 4内に流れ込 む。  A new liquid supply pipe 80 is connected to the bottom of the new liquid dilution tank 70. The distal end of the new liquid supply pipe 80 opens into a new liquid supply tank 84 installed below the new liquid dilution tank 70. Further, an actuating valve 80a is provided in the middle of the new liquid supply pipe 80. Therefore, by opening the actuating one-time valve 80 a, the new liquid produced in the new liquid dilution tank 70 flows into the new liquid supply tank 84.
また、 前記再使用液供給タンク 5 0の底部にも配管 8 2が接続されており、 こ の配管 8 2の先端も新液供給タンク 8 4内に開口している。 配管 8 2の途中には ァクチユエ一夕弁 8 2 aが設けられており、 このァクチユエ一夕弁 8 2 aを開く ことによって、 再使用液が新液供給タンク 8 4内に流れ込む。  Further, a pipe 82 is also connected to the bottom of the reused liquid supply tank 50, and the tip of the pipe 82 is also opened in the new liquid supply tank 84. In the middle of the pipe 82, an actuating valve 82a is provided. By opening the actuating valve 82a, the reused liquid flows into the new liquid supply tank 84.
この新液供給タンク 8 4にも、 攪拌機 8 6 , 仕切り板 8 4 a , 液受けプレート 8 4 bおよび四個の液面センサ L 1 7 , L 1 8 , L 1 9 , L 2 0が設けられてい る。 また、 新液供給タンク 8 4の側壁上部には、 配管 8 4 cが接続されている。 新液供給タンク 8 4内に新液が過剰に供給されて溢れそうになった場合には、 配 管 8 4 cから排出される。 それでも溢れた新液は、 前記液受けプレート 8 4 で 受けられる。 この液受けプレート 8 4 bにも配管 8 4 dが接続されており、 受け られた新液はこの配管 8 4 dから排出される。  This new liquid supply tank 84 also has a stirrer 86, a partition plate 84a, a liquid receiving plate 84b, and four liquid level sensors L17, L18, L19, and L20. It has been done. In addition, a pipe 84c is connected to the upper part of the side wall of the new liquid supply tank 84. When the new liquid is supplied to the new liquid supply tank 84 excessively and is likely to overflow, the new liquid is discharged from the pipe 84c. The new liquid that still overflows is received by the liquid receiving plate 84. A pipe 84d is also connected to the liquid receiving plate 84b, and the received new liquid is discharged from the pipe 84d.
配管 8 4 cは前記オーバーフロー管 4 8 Cに接続されており、 配管 8 4 dは前 記オーバ一フロー管 4 8 Bに接続されている。 従って、 配管 8 4 c, 8 4 dから 排出された新液は、 第 1図の地下回収タンク 6に流れ込む。  The pipe 84c is connected to the overflow pipe 48C, and the pipe 84d is connected to the overflow pipe 48B. Therefore, the new liquid discharged from the pipes 84c and 84d flows into the underground recovery tank 6 in Fig. 1.
そして、 新液供給タンク 8 4の側壁下 には、 配管 8 8が接続されている。 こ の配管 8 8は、 開閉弁 8 8 aを介して新液供給ポンプ 9 0に接続されている。 新 液供給タンク 8 4内に貯められた新液は、 この新液供給ポンプ 9 0によって第 1 図の熱間鍛造装置 2に供給される。  A pipe 88 is connected below the side wall of the new liquid supply tank 84. This pipe 88 is connected to a new liquid supply pump 90 via an on-off valve 88 a. The new liquid stored in the new liquid supply tank 84 is supplied to the hot forging device 2 in FIG. 1 by the new liquid supply pump 90.
新液供給ポンプ 9 0には、 逆流防止弁 9 0 a , 開閉弁 9 0 bを介して新液供給 管 9 2が接続されている。 新液供給管 9 2の先端は、 第 1図に示される熱間鍛造 装置 2の離型剤吹き付けノズルへの接続部 9 4に接続されている。 さらに、 '新液 供給管 9 2からは接続部 9 4の手前において配管 9 6が分岐しており、 この配管 9 6の先端は第 2図の新液供給タンク 8 4内に戻されている。 New liquid is supplied to the new liquid supply pump 90 through the check valve 90 a and the on-off valve 90 b. Tube 92 is connected. The tip of the new liquid supply pipe 92 is connected to a connection portion 94 of the hot forging device 2 shown in FIG. Further, a pipe 96 is branched from the new liquid supply pipe 92 in front of the connection portion 94, and the end of the pipe 96 is returned to the new liquid supply tank 84 in FIG. .
前記新液供給ポンプ 9 0も、 再使用液供給ポンプ 6 0と同様に、 回収再使用装 置の運転中は連続運転される。 ―  The new liquid supply pump 90 is also operated continuously during the operation of the recovery and reuse device, similarly to the reuse liquid supply pump 60. ―
離型剤の吹き付けを行わない間は、 熱間鍛造装置 2内の電磁弁 9 4 aが閉じら れているため、 新液供給ポンプ 9 0によって供給された新液は、 新液供給管 9 2 から配管 9 6を通って新液供給タンク 8 4に戻される。 そして、 離型剤を吹き付 けるときには、 電磁弁 9 4 aが開かれて、 熱間鍛造装置 2内の吹き付けノズルか ら新液が鍛造型に吹き付けられる。  During the time when the release agent is not sprayed, the solenoid valve 94a in the hot forging device 2 is closed. From 2, it is returned to the new liquid supply tank 84 through a pipe 96. Then, when the release agent is sprayed, the solenoid valve 94a is opened, and the new liquid is sprayed from the spray nozzle in the hot forging device 2 onto the forging die.
以上説明したような構成を有する熱間鍛造用離型剤の回収再使用装置は、 図示 しない制御ユニットによって自動制御されている。 すなわち、 前記液面センサ L 1〜L 2 0の出力する O N— O F F信号は、 この制御ユニットに入力される。 そ して、 その入力信号に基づいて、 制御ユニットによって、 各攪拌機 2 4 , 5 2, 7 2、 各ポンプ 1 0 , 1 2, 2 6 , 4 0, 7 6、 各自動弁 1 8 a, 2 0 a , 8 0 a , 8 2 aが制御される。  The apparatus for collecting and reusing the release agent for hot forging having the configuration as described above is automatically controlled by a control unit (not shown). That is, the ON-OFF signals output from the liquid level sensors L1 to L20 are input to this control unit. Then, based on the input signal, the control unit causes each agitator 24, 52, 72, each pump 10, 12, 26, 40, 76, each automatic valve 18a, 20a, 80a and 82a are controlled.
但し、 攪拌機 8 , 7 2 , 8 6、 およびマグネットセパレー夕 3 0は、 回収再使 用装置の自動運転開始とともに運転を開始し、 回収再使用装置の運転中は連続運 転される。 また、 上述の如く、 再使用液供給ポンプ 6 0と新液供給ポンプ 9 0も 、 回収再使用装置の自動運転開始とともに運転を開始し、 回収再使用装置の運転 中は連続運転される。 そして、 熱間鍛造装置 2の鍛造型の開閉に同期して電磁弁 6 2 a , 9 4 aが開閉され、 再使用液あるいは新液の吹き付けが制御される。 ここで、 熱間锻造装置 2における鍛造条一件がそれほど苛酷でない工程では、 吹 き付けノズルが再使用液供給管 6 2に接続され、 再使用液のみが锻造型の成形面 に吹き付けられる。 これに対して、 鍛造条件が苛酷な工程では、 鍛造型の成形面 のうち重要な箇所、 すなわち焼き付きが起こり易い箇所の吹き付けノズルには、 新液供給管 9 2が接続される。 これによつて、 鍛造型の成形面のうち重要な箇所にはより離型性に優れた新液 が吹き付けられ、 それ以外の余り重要でない箇所には再使用液が吹き付けら hる 。 このようにして、 苛酷な鍛造条件にも対応できる熱間鍛造用離型剤の再使用方 法が提供される。 However, the stirrers 8, 72, 86 and the magnetic separator 30 start operation at the same time as the automatic operation of the recovery and reuse device, and are continuously operated during the operation of the recovery and reuse device. As described above, the reusable liquid supply pump 60 and the new liquid supply pump 90 also start operating at the same time as the automatic operation of the recovery and reuse device, and are continuously operated during the operation of the recovery and reuse device. Then, the electromagnetic valves 62a and 94a are opened and closed in synchronization with the opening and closing of the forging die of the hot forging device 2, and the spraying of the reused liquid or the new liquid is controlled. Here, in a process in which one forging strip in the hot forging apparatus 2 is not so severe, the spray nozzle is connected to the reuse liquid supply pipe 62, and only the reuse liquid is sprayed on the molding surface of the forging die. On the other hand, in a process where the forging conditions are severe, a new liquid supply pipe 92 is connected to an important portion of the molding surface of the forging die, that is, a spray nozzle at a portion where seizure is likely to occur. As a result, an important part of the molding surface of the forging die is sprayed with a new liquid having better releasability, and other less important parts are sprayed with a reused liquid. In this way, a method for reusing a mold releasing agent for hot forging that can cope with severe forging conditions is provided.
次に、 前記制御ユニットによる各タンクにおける制御内容について、 第 1図, 第 2図を参照しつつ、 第 3図乃至第 Ί 0図に従って説明する。 第 3図乃至第 1 0 図は、 制御ュニットによる制御の手順を示すフローチャートである。  Next, control contents of each tank by the control unit will be described with reference to FIGS. 1 and 2 and according to FIGS. FIG. 3 to FIG. 10 are flowcharts showing the procedure of control by the control unit.
まず、 第 1図の地下回収タンク 6におけるシュート洗浄の手順について、 第 3 図に従って説明する。  First, the chute cleaning procedure in the underground recovery tank 6 in FIG. 1 will be described with reference to FIG.
ステップ S 1 0で制御が開始されると、 まず液面センサ L 2が O N信号を出力 しているかどうか、 すなわち地下回収タンク 6内に回収液が十分貯まっているか が判定される (ステップ S 1 1 )。 この判定が N Oであれば、 液面センサ L 2が O N状態になるまで、 すなわち回収液が液面センサ L 2のレベル以上貯まるまで 待機する。 ステップ S 1 1の判定が Y E Sとなったら、 水中ポンプ 1 0の運転が 開始され (ステップ S 1 2 )、 地下回収タンク 6内の回収液が汲み上げられる。 ここで、 回収再使用装置の運転開始時には、 電動弁 1 8 a, 2 0 aのいずれか が開いている。 従って、 水中ポンプ 1 0で汲み上げられた回収液は、 ライニング 管 1 4からシュート洗浄管 1 8, 2 0のいずれかを通って、 回収シュート 4 a , 4 bのいずれかの上端部に降り注ぐ。 これによつて、 回収シュート 4 a, 4 の 一方が洗浄される。  When the control is started in step S10, first, it is determined whether or not the liquid level sensor L2 outputs an ON signal, that is, whether or not the recovered liquid is sufficiently stored in the underground recovery tank 6 (step S1). 1). If the determination is NO, the process waits until the liquid level sensor L2 is in the ON state, that is, until the collected liquid is equal to or higher than the level of the liquid level sensor L2. When the determination in step S11 becomes YES, the operation of the submersible pump 10 is started (step S12), and the recovered liquid in the underground recovery tank 6 is pumped. Here, at the start of operation of the recovery and reuse device, one of the motor-operated valves 18a and 20a is open. Therefore, the recovered liquid pumped by the submersible pump 10 flows down from the lining pipe 14 through one of the chute washing pipes 18 and 20 to the upper end of one of the recovery chutes 4a and 4b. As a result, one of the collecting chutes 4a and 4 is washed.
次に、 ステップ S 1 3で液面センサ L 1が O F Fになっていないか、 すなわち 地下回収タンク 6が空になりかけていないかの判定が行われる。 この判定が Y E Sならば、 ステップ S 1 4へ進んで水中ポンプ 1 0の運転を停止し、 ステップ S 1 1へ戻って再び回収液が貯まるのを待つ ^  Next, in step S13, it is determined whether or not the liquid level sensor L1 is OFF, that is, whether or not the underground recovery tank 6 is almost empty. If the determination is Y E S, proceed to step S 14 to stop the operation of the submersible pump 10, return to step S 11 and wait for the collection of the collected liquid again ^
一方、 ステップ S 1 3の判定が N Oであれば、 そのまま水中ポンプ 1 0の運転 を一定時間続け (ステップ S 1 5 )、 回収シュート 4 a , 4 bの一方の洗浄を行 う。 一定時間経過後、 電動弁 1 8 a, 2 0 aのうち閉じていた方を開き、 開いて いた方を閉じる (ステップ S 1 6 )。 そして、 ステップ S 1 1からのフローが繰 り返される。 これによつて、 今度は回収シュート 4 a, 4 bの他方の洗浄が行わ れる。 このように、 回収シュート 4 a, 4 bを一方ずつ洗浄することとしためは 、 電動弁 1 8 a, 2 0 aを同時に開くと、 シュート洗浄管 1 8, 2 0内を流れる 回収液の量が均等にならないためである。 On the other hand, if the determination in step S13 is NO, the operation of the submersible pump 10 is continued for a certain period of time (step S15), and one of the recovery chutes 4a and 4b is washed. After a certain period of time, the closed one of the motorized valves 18a and 20a is opened and the open one is closed (step S16). Then, the flow from step S11 is repeated. Will be returned. As a result, the other of the collecting chutes 4a and 4b is washed. Thus, in order to wash the collecting chutes 4a and 4b one by one, when the electric valves 18a and 20a are simultaneously opened, the amount of the collected liquid flowing in the chute washing pipes 18 and 20 is set. Is not uniform.
次に、 地下回収タンク 6から地上回収タンク 2 2へ回収液を汲み上げる手順に ついて、 第 4図に従って説明する。 一  Next, the procedure for pumping the recovered liquid from the underground recovery tank 6 to the above-ground recovery tank 22 will be described with reference to FIG. One
ステップ S 1 8で制御が開始されると、 まず液面センサ L 7が O F F状態かど うか、 すなわち地上回収タンク 2 2内の回収液が過剰になっていないかが判定さ れる (ステップ S 1 9 )。 この判定が N Oすなわち液面センサ L 7が O N状態の 場合には、 地上回収タンク 2 2から回収液が溢れる恐れがあるので、 ステップ S 2 3へ進んで水中ポンプ 1 2の運転を停止する (ステツプ S 2 1で運転開始して いた場合)。 そして、 ステップ S 1 9の判定が繰り返される。  When the control is started in step S18, it is first determined whether or not the liquid level sensor L7 is in an OFF state, that is, whether or not the collected liquid in the ground collection tank 22 is excessive (step S19). . If the determination is NO, that is, if the liquid level sensor L7 is ON, there is a possibility that the recovered liquid may overflow from the ground recovery tank 22. Therefore, the process proceeds to step S23 to stop the operation of the submersible pump 12 ( If operation was started in step S21). Then, the determination in step S19 is repeated.
一方、 ステップ S 1 9の判定が Y E Sの場合には、 液面センサ L 3が O N状態 か、 すなわち地下回収タンク 6内に多量の回収液が貯まっているかの判定が行わ れる (ステップ S 2 0 )。 この判定が Y E Sの場合には、 水中ポンプ 1 2の運転 が開始され (ステップ S 2 1 )、 地下回収タンク 6から地上回収タンク 2 2へ回 収液が汲み上げられる。 そして、 ステップ S 1 9の判定が繰り返される。  On the other hand, if the determination in step S19 is YES, it is determined whether the liquid level sensor L3 is in the ON state, that is, whether a large amount of recovered liquid is stored in the underground recovery tank 6 (step S20). ). If the determination is YES, the operation of the submersible pump 12 is started (step S21), and the recovered liquid is pumped from the underground recovery tank 6 to the aboveground recovery tank 22. Then, the determination in step S19 is repeated.
ステップ S 2 0の判定が N Oの場合には、 ステップ S 2 2に進んで液面センサ L 2が O F F状態か、 すなわち地下回収タンク 6が空になりかけているかの判定 が行われる。 この判定が Y E Sならば、 水中ポンプ 1 2の運転を停止し (ステツ プ S 2 3 )、 ステップ S 1 1へ戻る。 一方、 この判定も N Oであれば、 そのまま ステツプ S 1 1へ戻る。  If the determination in step S20 is NO, the process proceeds to step S22 to determine whether the liquid level sensor L2 is in the OFF state, that is, whether the underground recovery tank 6 is almost empty. If the determination is YES, the operation of the submersible pump 12 is stopped (step S23), and the process returns to step S11. On the other hand, if this determination is also NO, the process directly returns to step S11.
このようにして、 地下回収タンク 6と地上回収タンク 2 2の回収液の量を液面 センサで常に監視しながら、 回収液の汲み^:げが行われる。  In this way, the collected liquid is pumped while the amount of the collected liquid in the underground collection tank 6 and the above-ground collection tank 22 is constantly monitored by the liquid level sensor.
次に、 地上回収タンク 2 2において回収液からスケールを除去する手順につい て、 第 5図に従って説明する。 なお、 攪拌機 2 4は、 回収再使用装置の運転開始 とともに運転を開始する。  Next, the procedure for removing scale from the collected liquid in the above-ground collection tank 22 will be described with reference to FIG. The stirrer 24 starts operation at the same time as the operation of the recovery and reuse device.
ステップ S 2 4で制御が開始されると、 まず液面センサ L 6が O N状態か、 す なわち地上回収タンク 2 2内に十分な量の回収液があるかが判定される (ステツ プ S 2 5 )。 この判定が N Oであれば、 地上回収タンク 2 2内に十分な量の έΐ収 液が貯まるまで待機する。 ステップ S 2 5の判定が Y E Sになれば、 ステップ S 2 6に進んでサクションポンプ 4 0の運転条件が成立しているか否かが判定され る。 このサクシヨンポンプ 4 0の運転条件は、 次に説明する第 6図のフローで決 定される。 一 When the control is started in step S24, first check whether the liquid level sensor L6 is in the ON state. That is, it is determined whether there is a sufficient amount of the recovered liquid in the ground recovery tank 22 (step S25). If this determination is NO, the system waits until a sufficient amount of the collected liquid is stored in the ground collection tank 22. If the determination in step S25 is YES, the process proceeds to step S26, and it is determined whether the operating conditions of the suction pump 40 are satisfied. The operating conditions of the suction pump 40 are determined by the flow of FIG. 6 described below. one
この判定が N Oすなわちサクションポンプ 4 0が運転されない場合には、 水中 ポンプ 2 6および (ステップ S 2 7で停止していた場合) 攪拌機 2 4が運転され る (ステップ S 2 8 )。 この結果、 回収液が攪拌されながら汲み上げ管 2 8を通 つて、 マグネッ トセパレー夕 3 0に供給される。 これによつて、 回収液中の黒鉛 微粒子が分散状態を保ったまま、 地上回収タンク 2 2とマグネットセパレー夕 3 0の間を循環する。 そして、 マグネットセパレー夕 3 0において、 回収液中のス ケールが吸着除去される。 その後、 ステップ S 2 5に戻る。  If NO is determined, that is, if the suction pump 40 is not operated, the submersible pump 26 and the agitator 24 (if stopped in step S27) are operated (step S28). As a result, the recovered liquid is supplied to the magnetic separator 30 through the pumping pipe 28 while being stirred. As a result, the graphite particles in the recovered liquid are circulated between the ground recovery tank 22 and the magnet separator 30 while maintaining the dispersed state. Then, in the magnet separator 30, the scale in the recovered liquid is adsorbed and removed. Then, the process returns to step S25.
一方、 ステップ S 2 6の判定が Y E Sの場合、 すなわちサクシヨンポンプ 4 0 が運転される場合には、 水中ポンプ 2 6および攪拌機 2 4の運転が停止される ( ステップ S 2 7 )。 これは、 地上回収タンク 2 2内の回収液を沈静状態に置くこ とによって、 回収液中に残っているスケールを沈降させ、 フロ一トサクシヨン 3 4からスケールが吸い込まれるのを防ぐためである。 その後、 ステップ S 2 5に 戻る。  On the other hand, if the determination in step S26 is YES, that is, if the suction pump 40 is operated, the operation of the submersible pump 26 and the stirrer 24 is stopped (step S27). This is to prevent the scale from remaining in the recovered liquid by sinking by leaving the recovered liquid in the ground recovery tank 22 in a still state, thereby preventing the scale from being sucked from the flow suction 34. Then, the process returns to step S25.
このようにして、 サクシヨンポンプ 4 0の運転条件が成立していない間は、 連 続的にマグネッ トセパレー夕 3 0によるスケールの回収処理が行われる。  In this way, while the operation condition of the suction pump 40 is not satisfied, the scale recovery process is continuously performed by the magnetic separator 30.
次に、 地上回収タンク 2 2においてスケールが除去された回収液を吸い上げて 再使用液供給タンク 5 0に移す手順について、 第 6図に従って説明する。  Next, a procedure of sucking the recovered liquid from which scale has been removed in the ground recovery tank 22 and transferring the recovered liquid to the reuse liquid supply tank 50 will be described with reference to FIG.
ステップ S 3 0で制御が開始されると、 ず液面センサ L 6が O N状態か、 す なわち地上回収タンク 2 2内に十分な量の回収液があるかが判定される (ステツ プ S 3 1 )。 この判定が N Oであれば、 地上回収タンク 2 2内に十分な量の回収 液が貯まるまで待機する。  When the control is started in step S30, it is determined whether the liquid level sensor L6 is in the ON state, that is, whether there is a sufficient amount of the collected liquid in the ground collection tank 22 (step S30). 3 1). If the determination is NO, the process stands by until a sufficient amount of the collected liquid is stored in the ground collection tank 22.
ステップ S 3 1の判定が Y E Sになれば、 液面センサ L I 1が O F F状態か、 すなわち再使用液供給タンク 50に余裕があるかが判定される (ステップ S 32 )。 この判定が N〇であれば、 ステップ S 3 7でサクシヨンポンプ 40の運 ¾を 停止し (ステップ S 36で運転していた場合)、 ステップ S 3 8で水中ポンプ 2 6, 攪拌機 24の運転を再開する。 そして、 ステップ S 3 1へ戻る。 If the determination in step S31 is YES, whether the liquid level sensor LI1 is in the OFF state, That is, it is determined whether there is room in the reuse liquid supply tank 50 (step S32). If the determination is N〇, the operation of the suction pump 40 is stopped in step S37 (if the operation was performed in step S36), and the operation of the submersible pump 26 and the stirrer 24 in step S38. Resume. Then, the process returns to step S31.
一方、 ステップ S 32の判定が Y E Sであれば、 ステップ S 33でサクシヨン ポンプ 40が運転中かが判定される。—運転中であれば、 ステップ S 32の判定を 繰り返す。 運転中でない場合には、 ステップ S 3 1, S 32でサクシヨンポンプ 40の運転条件が成立しているので、 第 5図のステップ S 27で説明したように 、 水中ポンプ 26, 攪拌機 24の運転を停止する (ステップ S 34)。  On the other hand, if the determination in step S32 is YES, it is determined in step S33 whether the suction pump 40 is operating. —If driving, repeat step S32. When the operation is not being performed, the operation conditions of the suction pump 40 are satisfied in steps S31 and S32, and the operation of the submersible pump 26 and the agitator 24 is performed as described in step S27 of FIG. Is stopped (step S34).
そして、 フロートサクシヨン 34近傍のスケールが沈降するための沈静時間を 確保 (ステップ S 35) した後、 サクシヨンポンプ 40の運転を開始する (ステ ップ S 36)。 これによつて、 フロートサクシヨン 34からスケールを含まない 回収液が吸い上げられ、 スプリング入りホース 36, 46を通って再使用液供給 タンク 50に供給される。 その後、 ステップ S 32の判定を繰り返す。  Then, after securing the settling time for the scale near the float suction 34 to settle (step S35), the operation of the suction pump 40 is started (step S36). As a result, the recovered liquid not containing scale is sucked up from the float suction 34 and supplied to the reuse liquid supply tank 50 through the hoses 36 and 46 with springs. Thereafter, the determination in step S32 is repeated.
次に、 再使用液供給タンク 50において回収液から油分を除去する手順につい て、 第 7図に従って説明する。 なお、 攪拌機 52は、 回収再使用装置の運転開始 とともに運転を開始する。  Next, a procedure for removing oil from the recovered liquid in the reuse liquid supply tank 50 will be described with reference to FIG. The stirrer 52 starts operating at the same time as the operation of the recovery and reuse device.
ステップ S 40で制御が開始されると、 まず制御ュニット内のィンタ一バル夕 イマが ON状態かが判定される (ステップ S 4 1)。 このインタ一バルタイマは 一定時間間隔で ON状態になり、 このとき油分の除去処理が実行される。 この 判定が NOであれば、 インターバルタイマが ONになるまで待機する。 インタ一 バルタイマが〇Nになったら、 ステップ S 42へ進んで液面センサ L 1 0が ON 状態か、 すなわち再使用液供給タンク 50内に十分な量の回収液があるかが判定 される。 この判定が NOであれば、 ステツ J S 41へ戻る。  When the control is started in step S40, first, it is determined whether or not the interval timer in the control unit is ON (step S41). This interval timer is turned on at regular time intervals, and at this time, oil removal processing is executed. If this determination is NO, the system waits until the interval timer turns on. When the interval timer reaches 〇N, the process proceeds to step S42, where it is determined whether the liquid level sensor L10 is in the ON state, that is, whether there is a sufficient amount of recovered liquid in the reusable liquid supply tank 50. If this determination is NO, the process returns to step JS41.
一方、 この判定が YE Sであれば、 浮上油回収装置 54が運転中かの判定が行 われる (ステップ S 43)。 この判定が YE Sであっても NOであっても、 まず 液面センサ L 1 3が O F Fかが判定される (ステップ S 44, S 48)。 これら の判定が NOの場合には、 ステップ S 52でドラム缶 56の満杯警報が出され、 作業者が回収油で一杯になったドラム缶 5 6を空のドラム缶と交換する。 On the other hand, if this determination is YES, it is determined whether the floating oil recovery device 54 is operating (step S43). Whether this determination is YES or NO, it is first determined whether the liquid level sensor L13 is OFF (steps S44, S48). If these determinations are NO, a full warning of drum 56 is issued in step S52, The operator replaces the drum 56 filled with the collected oil with an empty drum.
ステップ S 4 8の判定が Y E Sの場合には、 浮上油回収装置 5 4を運転す >た めに、 まず攪拌機 5 2を停止する (ステップ S 4 9 )。 そして、 一定の油分浮上 時間を確保 (ステップ S 5 0 ) した後に、 浮上油回収装置 5 4の運転を開始する (ステップ S 5 1 )。 その後、 ステップ S 4 3へ戻るが、 ここでの判定は Y E S となるので、 ステップ S 4 4へ進む  If the determination in step S48 is YES, the stirrer 52 is first stopped in order to operate the floating oil recovery device 54 (step S49). Then, after a certain oil floating time is secured (step S50), the operation of the floating oil recovery device 54 is started (step S51). After that, the process returns to step S43. However, since the determination here is YES, the process proceeds to step S44.
ステップ S 4 4の判定が Y E Sの場合には、 浮上油回収装置 5 4の運転時間が タイムアップしたかの判定がなされる (ステップ S 4 5 )。 すなわち、 浮上油回 収装置 5 4の運転時間は、 制御ュニット内の運転時間夕イマによって管理されて いる。 ステップ S 5 1で浮上油回収装置 5 4の運転が開始されてから所定時間が 経過すると、 この運転時間夕イマがタイムアップ信号を出力する。  If the determination in step S44 is YES, it is determined whether the operation time of the floating oil recovery device 54 has timed up (step S45). That is, the operation time of the floating oil recovery device 54 is controlled by the operation time in the control unit. When a predetermined time has elapsed since the operation of the floating oil recovery device 54 started in step S51, the operation time outputs a time-up signal.
従って、 ステップ S 4 5の判定が Y E Sの場合には、 浮上油回収装置 5 4の運 転を停止し (ステップ S 4 6 )、 攪拌機 5 2の運転を再開する (ステップ S 4 7 )。 そして、 ステップ S 4 1に戻る。 ステップ S 4 5の判定が N Oの場合には、 ステップ S 4 3に戻り、 運転時間がタイムアップするまで浮上油回収装置 5 4の 運転が続けられる。  Therefore, if the determination in step S45 is YES, the operation of the floating oil recovery device 54 is stopped (step S46), and the operation of the stirrer 52 is restarted (step S47). Then, the process returns to step S41. If the determination in step S45 is NO, the process returns to step S43, and the operation of the floating oil recovery device 54 is continued until the operation time expires.
ここで、 ステップ S 5 0の油分浮上時間と運転時間夕イマにセッ卜された運転 時間との合計、 すなわち攪拌機 5 2が停止している時間が、 回収液の静止による 黒鉛微粒子の沈殿量が攪拌による再分散に深刻な影響を与えない範囲内に設定さ れている。 従って、 ステップ S 4 7で攪拌機 5 2の運転が再開されると、 静止中 に沈殿した黒鉛微粒子は、 再び均一に分散する。  Here, the total of the oil floating time in step S50 and the operation time set in the operation time, ie, the time in which the stirrer 52 is stopped, is determined by the amount of precipitated graphite fine particles due to the stoppage of the recovered liquid. It is set within a range that does not seriously affect re-dispersion by stirring. Therefore, when the operation of the stirrer 52 is restarted in step S47, the graphite fine particles that have settled while standing still disperse uniformly.
このようにして、 離型剤としての性能を殆ど劣化させることなく、 回収液から 油分を除去することができる熱間鍛造用離型剤の回収再生方法が提供される。 次に、 再使用液供給タンク 5 0がー杯によった場合に、 非常手段として再使用 液を新液供給タンク 8 4に逃がす手順について、 第 8図に従って説明する。  Thus, there is provided a method of recovering and regenerating a hot forging release agent capable of removing oil from the recovered liquid without substantially deteriorating the performance as the release agent. Next, a procedure for releasing the reused liquid to the new liquid supply tank 84 as an emergency measure when the reused liquid supply tank 50 becomes overfilled will be described with reference to FIG.
ステップ S 5 4で制御が開始されると、 まず液面センサ L 1 1が O N状態か、 すなわち再使用液供給タンク 5 0内に過剰な量の回収液があるかが判定される ( ステップ S 5 5 )。 この判定が N Oであれば、 Y E Sになるまで待機する。 この 判定が YE Sになったら、 地上回収タンク 2 2の液面センサ L 7が ON状態かが 判定される (ステップ S 56)。 この理由は、 地上回収タンク 22が満杯状^で なければ、 回収液を吸い上げて再使用液供給タンク 50に移す必要はないので、 再使用液を逃がす必要もないからである。 When the control is started in step S54, it is first determined whether the liquid level sensor L11 is in the ON state, that is, whether there is an excessive amount of the recovered liquid in the reused liquid supply tank 50 (step S54). 5 5). If this determination is NO, the process waits until it becomes YES. this When the determination is YES, it is determined whether the liquid level sensor L7 of the ground collection tank 22 is ON (step S56). The reason for this is that if the ground collection tank 22 is not full, there is no need to suck up the collected liquid and transfer it to the reused liquid supply tank 50, so there is no need to release the reused liquid.
従って、 この判定が NOの場合には、 そのままステップ S 55に戻る。 この判 定が YE Sの場合には、 新液供給タンク 84の液面センサ L 19が ON状態か、 すなわち新液供給タンク 84がー杯かが判定される (ステップ S 57)。 この判 定も YE Sの場合には、 再使用液を逃がすことができないので、 オーバーフロー 警報が出される (ステップ S 58)。  Therefore, if this determination is NO, the process directly returns to step S55. If the determination is YES, it is determined whether the liquid level sensor L19 of the new liquid supply tank 84 is in the ON state, that is, whether the new liquid supply tank 84 is full (step S57). In the case of YES, an overflow alarm is issued because the reused liquid cannot be escaped (step S58).
一方、 この判定が NOであれば、 ァクチユエ一夕弁 82 aが開かれて (ステツ プ S 5 9)、 再使用液が新液供給タンク 84に逃がされる。 続いて、 ステップ S 60で液面センサ L 1 9が ON状態かの判定が行われる。 この判定が YESであ れば、 ァクチユエ一夕弁 82 aが閉じられて (ステップ S 62)、 ステップ S 5 5へ戻る。 また、 ステップ S 60の判定が NOであっても、 液面センサ L 1 1が OF Fになれば (ステップ S 6 1 )、 ステップ S 62へ進んでァクチユエ一夕弁 82 aが閉じられる。  On the other hand, if this determination is NO, the actuating overnight valve 82a is opened (step S59), and the reused liquid is discharged to the new liquid supply tank 84. Subsequently, in step S60, it is determined whether the liquid level sensor L19 is in the ON state. If the determination is YES, the actuator overnight valve 82a is closed (step S62), and the process returns to step S55. Also, even if the determination in step S60 is NO, if the liquid level sensor L11 becomes OFF (step S61), the process proceeds to step S62, and the actuator overnight valve 82a is closed.
ステップ S 6 1の判定も NOの場合には、 ステップ S 60, S 6 1のいずれか の条件が成立するまでァクチユエ一夕弁 82 aは開状態で、 再使用液が新液供給 タンク 84に逃がされる。  If the determination in step S61 is also NO, the actuating overnight valve 82a is open until the condition in either step S60 or S61 is satisfied, and the reused liquid is stored in the new liquid supply tank 84. Escaped.
この処理はあくまでも非常手段であり、 新液供給タンク 84内の新液に再使用 液が混入することは極力避けたいため、 ステップ S 5 5, S 56 , S 57の三条 件が揃わない限り実施されない。  This process is an emergency measure, and we want to minimize the possibility of reusing the new solution in the new solution supply tank 84 with the reused solution, so this process is performed unless the three conditions of steps S55, S56, and S57 are met. Not done.
次に、 再使用液供給タンク 50内の再使用液が不足した場合に、 新液希釈タン ク 70から新液を補給する手順について、 第 9図に従って説明する。  Next, a procedure for replenishing a new solution from the new solution dilution tank 70 when the reusable solution in the reusable solution supply tank 50 runs short will be described with reference to FIG.
ステップ S 64で制御が開始されると、 まず液面センサ L 14が 0 N状態か、 すなわち新液希釈タンク 7 0が空になりかけていないかが判定される (ステップ S 6 5)。 この判定が NOであれば、 新液希釈タンク空警報が出され (ステップ S 70)、 新液希釈タンク 70内に離型剤の原液と工業用水が補充される。 ステップ S 6 5の判定が YE Sであれば、 液面センサ L 1 0が OF F状態か、 すなわち再使用液供給タンク 5 0内の再使用液が不足しているかが判定され ¾ ( ステップ S 6 6)。 この判定が NOであれば、 ステップ S 6 5へ戻る。 YE Sで あれば、 新液補給ポンプ 7 6が運転されて (ステップ S 6 7)、 新液希釈タンク 7 0から新液が補給される。 When the control is started in step S64, it is first determined whether the liquid level sensor L14 is in the 0N state, that is, whether the new liquid dilution tank 70 is almost empty (step S65). If this determination is NO, a new solution dilution tank empty alarm is issued (step S70), and the stock solution of the release agent and industrial water are refilled in the new solution dilution tank 70. If the determination in step S65 is YE S, it is determined whether the liquid level sensor L10 is in the OFF state, that is, whether the reusable liquid in the reusable liquid supply tank 50 is insufficient. 6 6). If this determination is NO, the process returns to step S65. If YES, the new liquid supply pump 76 is operated (step S67), and the new liquid is supplied from the new liquid dilution tank 70.
続いて、 ステップ S 6 8で液面セジサ L 1 0が ONになったかが判定され、 Y E Sであれば新液補給ポンプ 7 6を停止して (ステップ S 6 9)、 ステップ S 6 5へ戻る。 ステップ S 6 8の判定が NOの場合には、 ステップ S 6 7へ戻って新 液補給ポンプ 7 6の運転を続ける。  Subsequently, in step S68, it is determined whether the liquid level sensor L10 has been turned ON. If YES, the new liquid supply pump 76 is stopped (step S69), and the process returns to step S65. If the determination in step S68 is NO, the flow returns to step S67 to continue the operation of the new liquid supply pump 76.
次に、 新液供給タンク 84内の新液が不足した場合に、 新液希釈タンク 7 0か ら新液を補給する手順について、 第 1 0図に従って説明する。  Next, a procedure for replenishing the new liquid from the new liquid dilution tank 70 when the new liquid in the new liquid supply tank 84 becomes insufficient will be described with reference to FIG.
ステップ S 7 2で制御が開始されると、 まず液面センサ L 1 4が〇N状態か、 すなわち新液希釈タンク 7 0が空になりかけていないかが判定される (ステップ S 7 3 )0 この判定が N〇であれば、 新液希釈タンク空警報が出され (ステップ S 7 8)、 新液希釈タンク Ί 0内に離型剤の原液と工業用水が補充される。 When the control is started in Step S 7 2, first liquid level sensor L 1 4 Do 〇_N state, i.e. new chemical dilution tank 7 0 Do not spend emptied is determined (Step S 7 3) 0 If the determination is N〇, a new solution dilution tank empty alarm is issued (step S78), and the stock solution of the release agent and industrial water are refilled in the new solution dilution tank # 0.
ステップ S 7 3の判定が YE Sであれば、 液面センサ L 1 8が OFF状態か、 すなわち新液供給タンク 84内の新液が不足しているかが判定される (ステップ S 7 4)o この判定が NOであれば、 ステップ S 7 3へ戻る。 YE Sであれば、 ァクチユエ一夕弁 8 0 aが開かれて (ステップ S 7 5)、 新液希釈タンク 7 0か ら新液が補給される。  If the determination in step S73 is YES, it is determined whether the liquid level sensor L18 is in the OFF state, that is, whether the new liquid in the new liquid supply tank 84 is insufficient (step S74). If this determination is NO, the process returns to step S73. If YES, the actuating overnight valve 80a is opened (step S75), and the new liquid is supplied from the new liquid dilution tank 70.
続いて、 液面センサ L 1 9が〇N状態か、 すなわち新液供給タンク 84がー杯 になったかの判定が行われる (ステップ S 7 6)。 この判定が YE Sであれば、 ァクチユエ一夕弁 8 0 aを閉じ (ステップ S 7 7)、 ステップ S 7 3へ戻る。 ス テツプ S 7 6の判定が NOの場合には、 ステップ S 7 9で液面センサ L 1 4が 0 N状態かが判定される。  Subsequently, it is determined whether the liquid level sensor L19 is in the 〇N state, that is, whether the new liquid supply tank 84 is full (step S76). If the determination is YES, the actuating valve 80a is closed (step S77), and the process returns to step S73. If the determination in step S76 is NO, it is determined in step S79 whether the liquid level sensor L14 is in the 0N state.
この判定が YE Sであれば、 ステップ S 7 5へ戻って新液の補給が続けられる 。 NOの場合には、 ステップ S 7 8で新液希釈タンク空警報が出される。  If the determination is YES, the flow returns to step S75 to continue supplying the new liquid. If NO, an alarm for emptying the new liquid dilution tank is issued in step S78.
以上、 第 1図と第 2図に示される回収再使用装置の各機器の制御手順について 説明したが、 次にこれらの機器のうち主なものの作動のタイミングをまとめて、 第 1 1図を参照して説明する。 第 1 1図は、 回収再使用装置の主な機器の作動夕 ィミングの一例を示すタイミングチヤ一トである。 The control procedure of each device of the recovery and reuse equipment shown in Fig. 1 and Fig. 2 Having described, the operation timings of the main ones of these devices will be summarized and described with reference to FIG. Fig. 11 is a timing chart showing an example of the operation timing of the main components of the recovery and reuse device.
第 1 1図に示されるように、 回収再使用装置の運転開始とともに、 攪拌機 2 4 (地上回収タンク 2 2内), 攪拌機 5 2 (再使用液供給タンク 5 0内) も運転を 開始する。 地上回収タンク 2 2内に回収液が貯まって液面センサ L 6が O Nにな つたら、 水中ポンプ 2 6が起動してマグネットセパレー夕 3 0によるスケールの 回収が行われる。  As shown in Fig. 11, the stirrer 24 (in the ground collection tank 22) and the stirrer 52 (in the reused liquid supply tank 50) also start operating when the recovery and reuse unit starts operating. When the collected liquid is stored in the ground collection tank 22 and the liquid level sensor L6 becomes ON, the submersible pump 26 is started and the scale is collected by the magnet separator 30.
ここで、 液面センサ L 1 1が O F Fとなると、 上述の如くサクションポンプ 4 0の運転条件が成立するので、 攪拌機 2 4 , 水中ポンプ 2 6が停止する。 そこか ら所定の沈静時間が経過した後、 サクシヨンポンプ 4 0が起動して、 回収液が再 使用液供給タンク 5 0に移される。 しばらくして液面センサ L 1 1が O Nになり 、 サクシヨンポンプ 4 0が停止すると同時に、 攪拌機 2 4 , 水中ポンプ 2 6が運 転を再開する。 以後、 このサイクルが繰り返されている。  Here, when the liquid level sensor L 11 becomes OFF, the operating conditions of the suction pump 40 are satisfied as described above, so that the agitator 24 and the submersible pump 26 are stopped. After a predetermined settling time has elapsed therefrom, the suction pump 40 is started, and the recovered liquid is transferred to the reuse liquid supply tank 50. After a while, the liquid level sensor L 11 becomes ON, the suction pump 40 stops, and at the same time, the agitator 24 and the submersible pump 26 resume operation. Thereafter, this cycle has been repeated.
攪拌機 5 2は、 制御ュニット内のィン夕一バル夕イマが O F Fの間は運転を続 けており、 インターバルタイマが〇Nになると停止する。 この時点から所定の油 分浮上時間が経過した後に、 浮上油回収装置 5 4が運転を開始している。 そして 、 運転時間夕イマにセットされた所定の運転時間経過後に、 浮上油回収装置 5 4 が運転を停止している。 同時に攪拌機 5 2が運転を再開し、 以後このサイクルが 繰り返されている。  The stirrer 52 continues to operate while the timer in the control unit is OFF, and stops when the interval timer reaches 〇N. After a predetermined oil floating time has elapsed from this point, the floating oil recovery device 54 has started operation. After a lapse of a predetermined operation time set for the operation time, the floating oil recovery device 54 stops operating. At the same time, the stirrer 52 resumes operation, and this cycle is repeated thereafter.
ここで、 上述の如く、 油分浮上時間と運転時間の合計すなわち攪拌機 5 2が停 止している時間が、 回収液の静止による黒鉛微粒子の沈殿量が再分散に深刻な影 響を及ぼさない範囲内に設定されている。 これによつて、 攪拌機 5 2が運転を再 開すると、 沈殿した黒鉛微粒子は再び均一」こ分散するのである。  Here, as described above, the sum of the oil floating time and the operating time, that is, the time during which the stirrer 52 is stopped, is within the range in which the amount of precipitated graphite fine particles due to the rest of the recovered liquid does not seriously affect redispersion Is set within. As a result, when the stirrer 52 restarts its operation, the precipitated graphite fine particles are uniformly dispersed again.
再使用液を新液供給タンク 8 4に逃がすためのァクチユエ一夕弁 8 2 aは、 ず つと閉じられているが、 液面センサ L 1 1, L 7がO N、 L 1 9が O F Fという 条件が成立した時点で開かれている。 そして、 液面センサ L 1 9が O Nか L 1 1 が O F Fのいずれかの条件が成立した時点で再び閉じられている。 新液を再使用液供給タンク 5 0に補給するための新液補給ポンプ 7 6は、 液面 センサし 1 4が〇N、 L 1 0が O F Fという条件が成立した時点で起動して^る 。 そして、 液面センサ L 1 0が O Nになった時点で停止している。 また、 新液を 新液供給タンク 8 4に補給するためのァクチユエ一夕弁 8 0 aは、 液面センサ L 1 4が0 1^、 L 1 8が O F Fという条件が成立した時点で開かれている。 そして 、 液面センサ L 1 9が〇Nになった時点で再び閉じられている。 The conditioner for releasing the reused liquid into the new liquid supply tank 84 is closed all the time, but the liquid level sensors L11 and L7 are ON and L19 is OFF. Is open at the time when is established. The liquid level sensor L19 is closed again when either the condition of ON or the condition of L11 is satisfied is satisfied. The new liquid supply pump 76 for supplying the new liquid to the reused liquid supply tank 50 starts when the condition that the liquid level sensor 14 is 〇N and L10 is OFF is satisfied. . And it stops when the liquid level sensor L10 is turned ON. The actuating valve 80a for replenishing the new liquid to the new liquid supply tank 84 is opened when the condition that the liquid level sensor L14 is 0 1 ^ and L18 is OFF is satisfied. ing. When the liquid level sensor L 19 becomes ΔN, it is closed again.
以上説明したように、 本実施形態の熱間鍛造用離型剤の回収再生方法は、 離型 剤としての性能を殆ど劣化させることなく、 回収液からスケールと油分を除去で きるので、 離型剤を繰り返し使用することができる。 また、 本実施形態の熱間鍛 造用離型剤の再使用方法は、 焼き付きの起こりにくい部分にのみ再使用液を使用 するので、 苛酷な鍛造条件にも耐えることができる。  As described above, the method of collecting and regenerating the release agent for hot forging according to the present embodiment can remove scale and oil from the recovered liquid without substantially deteriorating the performance as the release agent. The agent can be used repeatedly. Further, in the method for reusing the release agent for hot forging of the present embodiment, since the re-use liquid is used only in a portion where seizure does not easily occur, it can withstand severe forging conditions.
本実施形態においては、 地上回収タンク 2 2でスケールを回収した後に再使用 液供給タンク 5 0で油分を回収しているが、 先に油分の回収を行ってからスケー ルの回収を行っても良い。  In the present embodiment, the oil is recovered in the reusable liquid supply tank 50 after the scale is recovered in the ground recovery tank 22.However, the scale may be recovered after recovering the oil first. good.
本発明の熱間鍛造用離型剤の回収再生方法および再使用方法を実施するための 回収再使用装置の構成や各タンクおよび各機器の構造, 形状, 配置, 接続関係等 についても、 本実施形態に限定されるものではない。 産業上の利用の可能性  The configuration of the recovery and reuse apparatus for implementing the method for recovering and reusing and releasing the mold release agent for hot forging of the present invention and the structure, shape, arrangement, connection relationship, etc. of each tank and each device are also described in this embodiment. It is not limited to the form. Industrial applicability
以上のように、 本発明に係る熱間鍛造用離型剤の回収再生方法は、 黒鉛を主剤 とする熱間鍛造用離型剤の繰り返し使用を可能とするので、 離型剤を極めて効率 良く利用でき、 熱間鍛造装置のランニングコストを低減するのに有用である。 ま た、 廃液を貯蔵するためのスペースも不要となるので、 熱間鍛造装置を設置する 際の省スペース化にも役立つものである。 ―  As described above, the method of collecting and regenerating a hot forging release agent according to the present invention enables the hot forging release agent containing graphite as a main component to be repeatedly used, so that the release agent is extremely efficiently used. It can be used and is useful for reducing the running cost of hot forging equipment. In addition, since space for storing waste liquid is not required, it is useful for saving space when installing hot forging equipment. ―
また、 本発明に係る熱間鍛造用離型剤の再使用方法は、 苛酷な鍛造条件にも対 応できるので、 複雑形状品を鍛造するのに有用である。  Further, the method for reusing the release agent for hot forging according to the present invention can cope with severe forging conditions, and is therefore useful for forging a product having a complicated shape.

Claims

請 求 の 範 囲 黒鉛微粒子を水中に分散してなる熱間鍛造用離型剤の回収再生方法であ つて、 回収した離型剤を攪拌しながら磁力を用いてスケールを除去する工程 と、 回収した離型剤を静止状態に置いて表面に浮上した油分を除去する工程 とを有し、 前記静止状態に置く時間を静止による黒鉛微粒子の沈殿量が攪拌 による再分散に深刻な影響を与えない範囲内とすることを特徴とする熱間鍛 造用離型剤の回収再生方法。  Scope of the request This is a method for recovering and regenerating a mold release agent for hot forging made by dispersing graphite fine particles in water.The process of removing scale using a magnetic force while stirring the collected release agent; and Removing the oil floating on the surface by placing the release agent in a stationary state, wherein the amount of precipitated graphite fine particles due to the stationary state does not seriously affect redispersion by stirring. A method for recovering and reclaiming a release agent for hot forging, which is within the range.
請求の範囲 1に記載の熱間鍛造用離型剤の回収再生方法によって再生処 理された離型剤の再使用方法であって、 熱間鍛造用の鍛造型の焼き付きが起 こり易い部分には未使用の離型剤を用い、 前記鍛造型の焼き付きが起こりに くい部分には前記再生処理された離型剤を用いることを特徴とする熱間鍛造 用離型剤の再使用方法。  A method for reusing a release agent reclaimed by the method for recovering and reclaiming a release agent for hot forging according to claim 1, wherein the forging die for hot forging is liable to seize. A method of reusing a release agent for hot forging, wherein an unused release agent is used, and the regenerated release agent is used in a portion where seizure of the forging die hardly occurs.
PCT/JP1998/003221 1998-07-16 1998-07-16 Method of recovering and regenerating mold lubricant for hot forging and method of reusing same WO2000003820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003221 WO2000003820A1 (en) 1998-07-16 1998-07-16 Method of recovering and regenerating mold lubricant for hot forging and method of reusing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003221 WO2000003820A1 (en) 1998-07-16 1998-07-16 Method of recovering and regenerating mold lubricant for hot forging and method of reusing same

Publications (1)

Publication Number Publication Date
WO2000003820A1 true WO2000003820A1 (en) 2000-01-27

Family

ID=14208651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003221 WO2000003820A1 (en) 1998-07-16 1998-07-16 Method of recovering and regenerating mold lubricant for hot forging and method of reusing same

Country Status (1)

Country Link
WO (1) WO2000003820A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247657A (en) * 2002-02-22 2003-09-05 Mitsubishi Motors Corp Fluid control valve and mold releasing agent supply system using the same
CN102615082A (en) * 2012-04-09 2012-08-01 浙江跃进机械有限公司 Aquadag recycling bin
CN102615080A (en) * 2012-04-09 2012-08-01 浙江跃进机械有限公司 Method for recovering aquadag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642959U (en) * 1979-09-12 1981-04-18
JPS574348A (en) * 1980-06-11 1982-01-09 Sakamura Kikai Seisakusho:Kk Detection for failure in plastic work
JPS61176437A (en) * 1985-01-30 1986-08-08 Nissan Motor Co Ltd Lubricating method of forging die

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642959U (en) * 1979-09-12 1981-04-18
JPS574348A (en) * 1980-06-11 1982-01-09 Sakamura Kikai Seisakusho:Kk Detection for failure in plastic work
JPS61176437A (en) * 1985-01-30 1986-08-08 Nissan Motor Co Ltd Lubricating method of forging die

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247657A (en) * 2002-02-22 2003-09-05 Mitsubishi Motors Corp Fluid control valve and mold releasing agent supply system using the same
CN102615082A (en) * 2012-04-09 2012-08-01 浙江跃进机械有限公司 Aquadag recycling bin
CN102615080A (en) * 2012-04-09 2012-08-01 浙江跃进机械有限公司 Method for recovering aquadag

Similar Documents

Publication Publication Date Title
US4100066A (en) Treating paint waste solids
US5336333A (en) Method for cleaning waste collection systems
CN103781525B (en) Continuous circulation sand filter and continuous circulation sand filter method
US5129957A (en) Method for cleaning sewers
WO2000003820A1 (en) Method of recovering and regenerating mold lubricant for hot forging and method of reusing same
KR100393007B1 (en) Regenerating process and regenerating system to regenerate waste slurry from semiconductor wafer manufacturing process
JP2002283236A (en) Plastic lens grinding liquid distributing system
CN211561999U (en) Environment-friendly wastewater recycling and filtering device
JPH06304420A (en) Coating sludge discarding device in coating booth water tank
KR100625289B1 (en) Solid material reclaimer for food waste treatment apparatus
KR20110110458A (en) A machine tool's contamination oil refining apparatus
US5849100A (en) Method for cleaning oily objects
KR100501686B1 (en) Parting agent sprayer for die casting
JP4928438B2 (en) Levitation separation apparatus and levitation separation method
US4894170A (en) Liquid recovery system and method
CN103833153A (en) Recycle separator for integrated extraction of organic phase and working method thereof
CN220804684U (en) Impurity removing device for ore processing
CN208772377U (en) A kind of centrifugal old-sand regenerating machine
CN217092492U (en) Oil field environmental protection operation washs retrieves sled
CN208787460U (en) Reclaimed sand surface impurity cleaning device
CN219128686U (en) Tail gas device of dust remover
US20220362781A1 (en) Apparatus to recover incoherent material present in a process fluid, and corresponding method
JP3699140B2 (en) Pressure floating separator
JP3300140B2 (en) Paint mist removal equipment for painting equipment
JP2009028751A (en) Release agent regeneration system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000559950

Format of ref document f/p: F