WO1999040645A1 - Batterie au lithium et son procede de fabrication - Google Patents

Batterie au lithium et son procede de fabrication Download PDF

Info

Publication number
WO1999040645A1
WO1999040645A1 PCT/JP1998/000471 JP9800471W WO9940645A1 WO 1999040645 A1 WO1999040645 A1 WO 1999040645A1 JP 9800471 W JP9800471 W JP 9800471W WO 9940645 A1 WO9940645 A1 WO 9940645A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
separators
electrode
electrodes
Prior art date
Application number
PCT/JP1998/000471
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Yoshida
Michio Murai
Takayuki Inuzuka
Shigeru Aihara
Daigo Takemura
Hisashi Shiota
Jun Aragane
Hiroaki Urushibata
Kouji Hamano
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN98804952A priority Critical patent/CN1255249A/zh
Priority to PCT/JP1998/000471 priority patent/WO1999040645A1/ja
Priority to EP98901513A priority patent/EP0973223A1/en
Publication of WO1999040645A1 publication Critical patent/WO1999040645A1/ja
Priority to KR1019997008954A priority patent/KR100312253B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery in which a positive electrode and a negative electrode face each other across a separator holding an electrolyte, and more particularly to a method for manufacturing a battery structure in which a positive electrode, a negative electrode, and a separator are bonded to each other. It is. Background art
  • Lithium-ion batteries are secondary batteries that are expected to achieve the highest voltage and the highest energy density among batteries to date, and improvements are being actively pursued today.
  • This lithium ion battery has a positive electrode plate, a negative electrode plate, and an ion conductive layer sandwiched between them as main components.
  • Lithium ion batteries that are currently in practical use have a positive electrode in which a powder of lithium cobalt oxide or the like as an active material is applied to a current collector to form a plate, and a negative electrode also has a carbon material as an active material.
  • a plate made by applying a powder of a base material to a current collector is used.
  • As the ion conductive layer a material filled with a non-aqueous electrolyte with a separator made of a porous film such as polypropylene interposed therebetween is used.
  • US Pat. No. 5,437,692 discloses a structure in which an electrode and a separator are bonded with a liquid bonding mixture. A method of integrally laminating the current collector, the separator and the electrode is disclosed in US Pat. No. 5,546,000.
  • the positive electrode and the negative electrode are arranged on both surfaces of a single separator, and there is a risk that a short circuit may occur between the positive electrode and the negative electrode if the electrodes are misaligned. .
  • the area of the separator is usually larger than the area of the electrodes, but this has hindered the compactness of the battery.
  • the present invention has been made to solve the above problems, and provides a lithium ion battery and a method for manufacturing the lithium ion battery, which can easily produce a lithium ion battery which is compact and hardly causes a short circuit between electrodes. It is intended to do so. Disclosure of the invention
  • a first method for manufacturing a lithium ion battery in the method for manufacturing a lithium ion battery in which a positive electrode and a negative electrode are arranged to face each other via a separator, at least the facing surface of each of the positive electrode and the negative electrode is covered. And a step of fixing the separate separation surfaces of the positive electrode and the negative electrode covered with the separation one another, respectively. In this manner, the positive and negative electrodes are covered with separate separators, and then the positive electrode and the negative electrode are superimposed. Therefore, deviation is less likely to occur. Since it is covered in the evening, a short circuit between the electrodes is unlikely to occur. In addition, the area of Separe It is not necessary to make it larger than the area of the pole.
  • the positive electrode and the negative electrode are fixed to each of the separators by bonding, whereby the electrodes and the separator are fixed to each other. The deviation is less likely to occur between them.
  • a third method for producing a lithium ion battery according to the present invention the method according to the above second method, wherein the positive electrode and the negative electrode are bonded to each of the separators by a homopolymer or copolymer of vinylidene fluoride or vinyl alcohol. And a homopolymer or copolymer of vinylidene vinylidene or vinyl alcohol is preferred because it is difficult to dissolve in an electrolytic solution and is stable.
  • the fourth method of manufacturing a lithium ion battery according to the invention of the present invention is the method according to the first method, wherein the overlapping surfaces of the separated separators are bonded to each other, so that the displacement is less likely to occur between the separators. .
  • a fifth method for manufacturing a lithium ion battery according to the present invention in the above-mentioned fourth method, the bonding between the separation surfaces is performed via a film having a plurality of holes, and Since it is not adhered, it is possible to prevent all the openings in Separee from being covered with the adhesive and adversely affecting ion conductivity.
  • the first lithium ion battery according to the present invention has at least two separators between the positive electrode and the negative electrode, and has an adhesive layer between the positive electrode and the negative electrode, the separator, and the separator.
  • An electrode laminate having the following.
  • a second lithium-ion battery according to the present invention is the same as the first battery, except that the second lithium-ion battery includes a plurality of electrode laminates.
  • a third lithium-ion battery according to the present invention is the second battery according to the second battery, wherein a plurality of layers of the electrode laminate are formed by alternately laminating a positive electrode and a negative electrode each having a separate adhesive bonded to both surfaces. is there.
  • the fourth lithium-ion battery according to the present invention is the second battery according to the second battery, wherein the plurality of layers of the electrode laminate have a band-shaped positive electrode and a negative electrode having separated surfaces adhered to both sides, and the positive electrode and the negative electrode are alternately arranged. It is formed by winding up.
  • the electrode and the negative electrode can be overlapped with each other by covering the opposing surfaces of the positive electrode and the negative electrode with separate separators and then overlapping the positive electrode and the negative electrode, respectively. Even when the electrodes are overlapped with a further shift, the opposing surfaces of the two poles are covered with the separation, so that a short circuit between the electrodes is unlikely to occur. Also, it is not necessary to make the area of the separation overnight larger than the area of the electrodes. Therefore, even as a stacked electrode type battery having a plurality of layers of a stacked body, a practical lithium ion battery having a large battery capacity that is compact, hardly causes a short circuit between the electrodes, and can easily be manufactured. . BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 and FIG. 2 are schematic cross-sectional views of a main part showing a lithium ion battery according to an embodiment of the present invention.
  • FIG. 1 and FIG. 2 are schematic cross-sectional views of a main part showing a lithium ion battery according to an embodiment of the present invention.
  • 1 is a positive electrode
  • 2 is a negative electrode
  • 10 is a positive electrode
  • the reference numeral 20 denotes a fixed separator
  • the numeral 20 denotes a separator fixed to the negative electrode
  • the numeral 3 denotes an adhesive layer.
  • a plurality of electrode laminates each having an adhesive layer 3 between them are provided.
  • Fig. 1 shows a structure in which a positive electrode 1 with separate separators 10 bonded to both sides and a negative electrode 2 with separate separators 20 bonded to both sides are alternately stacked and the separator surfaces are bonded to each other. Rolls up a strip-shaped positive electrode 1 with separated surfaces 10 bonded to both sides and a strip-shaped negative electrode 2 bonded to separate surfaces 20 on both sides so that the positive electrodes 1 and the negative electrodes 2 are alternately arranged. The evening surfaces are bonded together.
  • a method for manufacturing a lithium ion battery according to an embodiment of the present invention includes a method for manufacturing a lithium ion battery in which a positive electrode and a negative electrode are arranged to face each other via a separator, for example, as shown in FIGS.
  • a process of superposing and fixing the surfaces is performed. In this way, the opposite surfaces of the positive electrode 1 and the negative electrode 2 are covered with separate separators 10 and 20, respectively, and then the positive electrode 1 and the negative electrode 2 are overlapped. Also in this case, the opposite surfaces of the electrodes are covered with a separator, so that a short circuit between the electrodes is unlikely to occur. Also, it is not necessary to make the area of the separation overnight larger than the area of the electrodes.
  • the method of covering the positive electrode and the negative electrode with a separator is only necessary if the separator is fixed to the electrode and at least the part of the surface of the active material of the positive electrode and the negative electrode that faces the counter electrode is covered. Although it is not available, wrap it in a bag with a separator, sandwich the separator from both sides with a separator There is a method of bonding the pallets together.
  • the fixing of each electrode to the separator is stronger.
  • the method of bonding is not particularly limited, but it is desired that the bonding has sufficient ion conductivity and that there is little non-uniformity such as uneven adhesive application over the entire bonding surface. If the ion conductivity is not sufficient or the adhesive is unevenly applied, the battery characteristics such as charge / discharge characteristics deteriorate.
  • Various adhesives can be used as long as they do not dissolve in the electrolytic solution.
  • a solvent-containing adhesive such as a synthetic rubber-based resin, a resin containing polyvinyl alcohol in its main chain, and a reactive adhesive such as an epoxy resin or a urethane resin
  • a homopolymer or copolymer of vinylidene fluoride or vinyl alcohol is preferably used because it does not easily react with the electrolytic solution and is stable.
  • Copolymers of vinylidene fluoride include those obtained by copolymerizing vinylidene fluoride with a fluorine-based monomer such as hexafluoropropylene and tetrafluoroethylene. is not.
  • the homopolymer or copolymer of vinylidene fluoride or vinyl alcohol does not adversely affect battery characteristics, such as other high-molecular organic compounds, low-molecular organic compounds, and inorganic compounds. If present, they may be mixed.
  • the method of stacking by stacking the positive electrode and the negative electrode whose surfaces are covered by separation is performed by arranging and stacking the negative electrode active material layer and the positive electrode active material layer so as to face each other. It may have a structure in which flat plates are overlapped as shown in FIG. 1, a wound structure as shown in FIG. 2, or a composite structure thereof. Further, it may have a single-layer structure including one layer of the electrode laminate. It is necessary to overlap the positive and negative electrodes so as to minimize gaps. / Five
  • the opposite surface of the separator can be bonded either to the periphery of the separator or to the entire surface, but in general, the ion conductivity of the bonded part of the separator is often reduced.
  • the state bonding area is 5 mm 2 or less of the adhesive part are distributed over the entire surface of the opposing surfaces of the separator Isseki or it bonding method I on conductive heat transfer resistance can be secured is used, or the active It is preferable that the treatment is performed in a portion other than the portion where the substance is present. If the configuration is such that a portion having no local ionic conductivity is on the extension of the active material surface, the battery characteristics are adversely affected, which is not preferable.
  • the ratio of the through-holes in the separation to the total area of the through-holes is small due to the bonding of the separation surface, but the ratio of the through-holes to the total area after bonding is at least 10%, preferably It is desirable that it be 30% or more.
  • the separation surfaces are bonded through a membrane with multiple holes, the holes are not bonded, so all the openings in the separation are covered with adhesive, which adversely affects ion conductivity. Can be prevented.
  • the film used must have a surface that can be adhered to the surface of the separator and that does not dissolve in the electrolyte.
  • a porous membrane or a net made of a thermoplastic resin such as polypropylene or polyethylene or a thermo-crosslinkable resin can be used.
  • the separation surfaces are bonded by applying heat and pressure, the manufacturing process can be simplified since no adhesive is required.
  • the adhesive surface may be only on the periphery of the separator or on the entire surface.
  • the means for applying heat and pressure is not particularly limited, but means by press or roll can be used. W 9/406 5
  • the heat is desirably in the range of 50 ° C. to 120 ° C. At 50 ° C. or lower, it is difficult to adhere, and at 120 ° C. or higher, the separee is undesirably damaged.
  • proper value of pressure is to depend on the temperature, 5 kg to heavy / cm 2 not in the range of 1 5 O kg weight / cm 2, it is desirable as possible unevenness in the bonding surface small. If the pressure is too low, the separation will not be sufficiently performed, and good adhesion cannot be achieved. Conversely, if it is too large, it is not preferable because the porous structure of the separator is destroyed and the function as a battery is impaired.
  • Separators can be made of any insulating porous membrane, mesh, non-woven fabric, etc. as long as they have sufficient strength.
  • a porous membrane made of polypropylene, polyethylene, or the like is preferable from the viewpoint of ensuring adhesiveness and safety.
  • the ratio of the through hole to the entire area is preferably at least 10%, and more preferably 30% or more.
  • an active material coated on a current collector is used.
  • an oxide of a transition metal such as cobalt, manganese, and nickel, a chalcogen compound, a composite compound thereof, or a compound having various additional elements can be used without any limitation.
  • a carbonaceous material is preferably used, but in the battery of the present invention, it can be used regardless of chemical characteristics.
  • the shape of these active materials is granular. Particles having a particle size of 0.3 ⁇ 111 to 20 ⁇ m can be used. Particularly preferred are those of 1 zm to 5111.
  • the current collector can be used as long as it is a stable metal in the battery, but aluminum is preferably used for the positive electrode and copper is preferably used for the negative electrode.
  • the shape of the current collector can be any of foil, mesh, and expanded metal.
  • the type of separator used for the positive electrode and the negative electrode may be different, for example, by using one having a large strength and a large through-hole diameter and the other having a high melting property at the time of temperature rise.
  • bonding by pressure and heat can be easily performed, and mechanical strength and ionic conductivity can be secured.
  • a negative electrode active material paste was prepared by adjusting 95% by weight of mesophase microbead carbon (manufactured by Osaka Gas Co., Ltd.) to 5% by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF 1100) as a binder.
  • a negative electrode was prepared by coating the copper foil having a thickness of about 100 m on a 12-m thick copper foil serving as a current collector by the Docu-Yuichi blade method.
  • the positive and negative electrodes were cut into rectangles of 5 cm x 4 cm, and terminals for current collection were attached. Cut the Separete (made by Hoechst Celanese Co., Ltd., product name: Celgard # 2400) into ll cm x 5 cm, fold it in half and cut the electrode O 5
  • the battery characteristics of the fabricated battery were 106 Wh / kg by weight energy density. Even after 200 charge / discharge cycles at a current value of C / 2, the initial charge capacity was 60%.
  • Separate separators were bonded to the opposing surfaces prepared in the same manner as in Example 2.
  • a small amount of an adhesive (Scotch-Grip4693, manufactured by Sumitomo Suriname Co., Ltd.) is applied to the surface of the separator bonded to the positive electrode, and then superimposed on the separator surface of the negative electrode.
  • the positive and negative electrodes were bonded. This was inserted into a cylindrically processed aluminum laminated film, dried sufficiently, injected with the same electrolytic solution as in Example 1, and the aluminum film was sealed to complete the battery.
  • the battery characteristics of the fabricated battery were approximately 10 OWh / kg in terms of weight energy density. Even after 200 charge / discharge cycles at a current value of C / 2, the initial charge capacity was 60%.
  • polyvinylidene fluoride product name: KF 1100, manufactured by Kureha Chemical Industry Co., Ltd.
  • KF 1100 manufactured by Kureha Chemical Industry Co., Ltd.
  • a 10% by weight N-methyl bilolidone (NMP) solution was applied to each, and Separei overnight (Hexist Celanese Co., Ltd., trade name: Celgard # 2400) was cut into 5 cm x 4 cm rectangles. Pasted separately. This was vacuum dried to bond the electrode and the separator overnight.
  • NMP N-methyl bilolidone
  • the polyvinylidene fluoride solution was again applied to the surface of the separator on the positive electrode, adhered to the separator on the negative electrode, and vacuum-dried to bond both electrodes. This was inserted into an aluminum laminate film processed into a cylindrical shape, and after being sufficiently dried, the same electrolytic solution as in Example 1 was poured, and the aluminum laminate film was sealed to complete the battery.
  • the battery characteristics of the fabricated battery were about 8 OWh / kg in terms of weight energy density. Even after charging and discharging 200 times at the current value of C / 2, the initial charge capacity was 65%.
  • Polyethylene porous film made by stretching polyethylene film did.
  • a 10% by weight NMP solution was applied to both sides of polyvinylidene fluoride (product name: KF 1100, manufactured by Kureha Chemical Industry Co., Ltd.), and a positive electrode to which separate separators prepared in the same manner as in Example 4 were adhered.
  • the negative electrode was sandwiched in the evening. This was vacuum dried and both electrodes were adhered.
  • the battery characteristics of the fabricated battery were approximately 75 Wh / kg by weight energy density. After 200 charge / discharge cycles at a current of C / 2, the initial charge capacity was 50%.
  • Separators of the positive electrode and the negative electrode to which the separator prepared in the same manner as in Example 2 were adhered were overlapped with each other and passed through a mouthpiece having a temperature of 95 ° C. and a pressure of SkgZcm 2 . If the flatness of the electrode surface is sufficiently maintained, the separators will adhere to each other. This was vacuum-dried at 80 ° C, inserted into a cylindrical aluminum laminating film, dried sufficiently, injected with the same electrolytic solution as in Example 1, and the aluminum laminating film was sealed to complete the battery. I let it.
  • the battery characteristics of the fabricated battery were about 8 OWh / kg in terms of weight energy density. Even after 200 charge / discharge cycles at a current value of C / 2, the initial charge capacity was 60%.
  • the polyethylene film was stretched, and immediately before and after the plasma-treated polyethylene porous membrane was sandwiched between the positive and negative electrode separators, each of which was prepared in the same manner as in Example 4, and the temperature was 95 ° C. These were passed through a roll press with a pressure of 5 kg / cm 2 to bond them. This is vacuum-dried at 80 ° C and inserted into an aluminum laminated film processed into a cylindrical shape. Then, the same electrolytic solution as in Example 1 was injected, and the aluminum film was sealed to complete the battery.
  • the battery characteristics of the fabricated battery were about 6 O W h / kg in terms of weight energy density. Even after charging and discharging 200 times at a current value of C / 4, the initial charge capacity was about 60%.
  • FIG. 1 a method of manufacturing a multi-layer lithium-ion battery having a plate-like laminated structure in which positive electrodes 1 and negative electrodes 2 having separators 10 and 20 bonded on both sides are alternately laminated, as shown in FIG. Will be described.
  • This laminate was rolled so as to have a thickness of 400 zm, thereby producing a belt-shaped positive electrode 1 in which a positive electrode active material layer was laminated on a positive electrode current collector.
  • This laminate was rolled to 400 / ⁇ 1, whereby a strip-shaped negative electrode 2 in which a negative electrode active material layer was laminated on a negative electrode current collector was produced.
  • the positive electrode 1 and the negative electrode 2 each having a separator adhered to both sides are punched into a predetermined size, and a polyfoil is used as an adhesive on one side of the positive electrode 1 (or the negative electrode) that has been punched into the predetermined size.
  • Vinylidene chloride (Kureha Chemical Industry Co., Ltd., trade name: KF 1100) Apply 10% by weight NMP solution Cloth and punched out to one size of the negative electrode 2 (or the positive electrode) —Stick the 20 face, and then cut out another positive electrode 1 (or the negative electrode) of the predetermined size.
  • the current collector tabs connected to the respective ends of the positive electrode and the negative electrode current collector of the flat plate-shaped laminated battery body are spot-welded to each other between the positive electrode and the negative electrode to electrically connect the flat laminated battery body. Connected in parallel.
  • the tabular laminated structure cell body (a molar ratio of 1: 1) mixed solvent of ethylene carbonate ne one Bok and Jimechiruka one Boneto dissolved lithium hexafluorophosphate in 1 at a concentration of O mo 1 / dm 3. After being immersed in the electrolyte solution, it was sealed by heat fusion in a bag made of aluminum laminating film to obtain a lithium-ion secondary battery having a flat laminated battery structure.
  • the positive electrode 1 and the negative electrode 2 with the separator attached on both sides were wound up so that the positive electrode 1 and the negative electrode 2 were alternately arranged.
  • a method for manufacturing the manufactured multilayer lithium ion battery having the flat-plate-shaped laminated structure will be described.
  • Example 8 the same adhesive as in Example 8 was applied to one surface of the strip-shaped separator with the positive electrode 1 (or the negative electrode) joined therebetween.
  • One end of 1 is bent by a certain amount, the negative electrode 2 (or positive electrode) with the separator is sandwiched between the folds, and this negative electrode 2 (or positive electrode) is wrapped around the bent end surface of the positive electrode 1 (or negative electrode).
  • An adhesive is applied to the opposite surface of the bend and adhered.
  • the positive electrode 1 and the negative electrode 2 are simultaneously wound up while the separation surfaces of the positive electrode 1 and the negative electrode 2 are adhered to each other with an adhesive, so that a battery body having a plurality of electrode laminates is obtained.
  • the battery body was vacuum-dried while pressing the battery body, thereby fabricating a battery structure having a plate-shaped winding laminated structure as shown in FIG. Industrial applicability
  • It is used as a secondary battery in portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped along with improved battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

明 細 書 リチウムィオン電池およびその製造方法 技術分野
本発明は電解質を保持するセパレー夕を挟んで正極および負極が対向 してなるリチウムイオン電池に関するもので、 詳しくは、 正極、 負極、 セパレ一夕が相互に接着された電池構造の製造方法に関するものである。 背景技術
携帯電子機器の小型 ·軽量化への要望は非常に大きい。 その実現は電 池の性能向上に大きく依存する。 これに対応すべく多様な電池の開発、 改良が進められてきた。 電池に要求されている特性は、 高電圧、 高エネ ルギ一密度、 安全性、 形状の任意性等がある。 リチウムイオン電池は、 これまでの電池の中でも最も高電圧かつ高工ネルギ一密度が実現される ことが期待される二次電池であり、 現在でもその改良が盛んに進められ ている。
このリチウムイオン電池はその主要な構成要素として正極板、 負極板 とそれらに挟まれるイオン伝導層を有する。 現在実用に共されているリ チウムイオン電池においては、 正極には活物質としてのリチウムコバル ト酸化物等の粉末を集電体に塗布し板状としたもの、 負極には同様に活 物質として炭素系材料の粉末を集電体に塗布し板状としたものが用いら れている。 イオン伝導層に関してはポリプロビレン等の多孔質フィルム であるセパレ一夕を挟み非水系の電解液で満たされているものが用いら れている。
現状のリチウムイオン電池においては、 正極—セパレ一夕—負極間の 電気的 ·機械的接合を維持する方法として、 電極とセパレ一夕を液体接 着混合物で接合した構造が米国特許第 5 4 3 7 6 9 2号に開示されてい る。 また、 集電体とセパレ一夕と電極を一体的にラミネートしていく方 法が米国特許第 5 4 5 6 0 0 0号に開示されている。
しかしながら、 上記何れの従来技術においても一枚のセパレ一夕の両 面に正極と負極を配置する構成であり、 ズレて配置された場合には正極 と負極間で短絡が生じる危険性があった。 これを防止するためにセパレ —夕の面積を電極の面積より大きくするのが一般的であるが、 電池のコ ンパクト化の支障となっていた。 さらにその製造工程においても一枚の セパレ一夕の両面に正極と負極をズレないように位置合わせして配置す るのは簡単ではなかった。
本発明は上記のような問題点を解消するためになされたもので、 コン パクトでしかも電極間で短絡の生じにくいリチウムイオン電池を容易に 製造することができるリチウムイオン電池およびその製造方法を提供す ることを目的としている。 発明の開示
本発明に係る第 1のリチウムイオン電池の製造方法は、 セパレ一夕を 介して正極と負極を対向配置したリチウムイオン電池の製造方法におい て、 上記正極および負極それぞれの少なくとも上記対向面を覆うように それぞれ別々のセパレ一夕を固定する工程、 および上記セパレ一夕で覆 つた正極と負極のセパレ一夕面同士を重ね合わせて固定する工程を施す ものである。 このように、 正極および負極の対向面をそれぞれ別々のセ パレ一夕で覆ってから正極と負極を重ね合わせるのでズレが生じにくく、 さらにズレて重ね合わされた場合にも両極の対向面はセパレ一夕で覆わ れているので電極間で短絡が生じにくい。 また、 セパレ一夕の面積を電 極の面積より大きくする必要もない。
本発明に係る第 2のリチウムィォン電池の製造方法は、 上記第 1の方 法において、 正極および負極とそれぞれのセパレー夕は、 それぞれ接着 により固定するものであり、 これにより電極とセパレ一夕との間でズレ がより生じにくい。
本発明に係る第 3のリチウムィォン電池の製造方法は、 上記第 2の方 法において、 正極および負極とそれぞれのセパレー夕の接着は、 フヅ化 ビニリデンまたはビニルアルコールの単独重合体または共重合体を用い て行うものであり、 フヅィ匕ビニリデンまたはビニルアルコールの単独重 合体または共重合体は電解液に溶解しにくく安定であるため好ましい。 木発明に係る第 4のリチウムイオン電池の製造方法は、 上記第 1の方 法において、 重ね合わせたセパレ一夕面同士を接着するものであり、 こ れによりセパレー夕間でズレがより生じにくい。
本発明に係る第 5のリチウムィォン電池の製造方法は、 上記第 4の方 法において、 セパレ一夕面同士の接着は複数の孔を有する膜を介して行 うものであり、 孔の部分は接着されないので、 セパレ一夕の開孔が全て 接着剤で覆われてイオン伝導性に悪影響を及ぼすのを防止できる。
本発明に係る第 6のリチウムィォン電池の製造方法は、 上記第 4の方 法において、 セパレ一夕面同士の接着は熱および圧力を加えることによ り行うものであり、 接着剤が不要であるので製造工程を簡略化できる。 本発明に係る第 1のリチウムイオン電池は、 正極と負極間に少なくと も 2枚のセパレ一夕を有し、 上記正極および負極とセパレ一夕間並びに セパレ一夕同士の間にそれぞれ接着層を有する電極積層体を備えたもの る。
本発明に係る第 2のリチウムイオン電池は、 上記第 1の電池において、 電極積層体の複数層を備えたものである。 本発明に係る第 3のリチウムイオン電池は、 上記第 2の電池において、 電極積層体の複数層が、 両面にセパレ一夕を接着した正極および負極を 交互に積層することにより形成されたものである。
本発明に係る第 4のリチウムイオン電池は、 上記第 2の電池において、 電極積層体の複数層が、 両面にセパレ一夕を接着した帯状の正極および 負極を、 正極と負極が交互に配置されるように巻き上げることにより形 成されたものである。
この第 1ないし第 4のリチウムイオン電池により、 電極積層体を作製 するのに正極および負極の対向面をそれぞれ別々のセパレ一夕で覆って から正極と負極を重ね合わせることができるのでズレが生じにくく、 さ らにズレて重ね合わされた場合にも両極の対向面はセパレ一夕で覆われ ているので電極間で短絡が生じにくい。 また、 セパレ一夕の面積を電極 の面積より大きくする必要もない。 よって、 積層体の複数層を有する積 層電極型の電池としても、 コンパクトでしかも電極間で短絡が生じにく く、 電池容量が大きな実用的なリチウムイオン電池を容易に製造するこ とができる。 図面の簡単な説明
第 1図および第 2図は、 本発明の一実施の形態によるリチウムイオン 電池を示す主要部断面模式図である。 発明を実施するための最良の形態
以下に、 図に従って本発明の実施の形態を説明する。
第 1図および第 2図は、 本発明の一実施の形態によるリチウムイオン 電池を示す主要部断面模式図である。
第 1図および第 2図において、 1は正極、 2は負極、 1 0は正極に固 定されたセパレ一夕、 2 0は負極に固定されたセパレ一夕、 3は接着層 である。 正極 1と負極 2間に少なくとも 2枚のセパレ一夕 1 0および 2 0を有し、 上記正極 1および負極 2とセパレ一夕 1 0および 2 0間並び にセパレ一夕 1 0と 2 0同士の間にそれぞれ接着層 3を有する電極積層 体の複数層を備えている。
第 1図は、 両面にセパレ一夕 1 0を接着した正極 1と両面にセパレ一 夕 2 0を接着した負極 2を交互に積層してセパレー夕面同士を接着した 構造であり、 第 2図は、 両面にセパレ一夕 1 0を接着した帯状の正極 1 と両面にセパレ一夕 2 0を接着した帯状の負極 2を、 正極 1と負極 2が 交互に配置されるように巻き上げてセパレ一夕面同士を接着した構造で ある。
本発明の一実施の形態によるリチウムイオン電池の製造方法は、 セパ レ一夕を介して正極と負極を対向配置した例えば第 1図および第 2図に 示すようなリチウムイオン電池の製造方法において、 正極 1および負極 2それぞれの少なくとも対向面を覆うようにそれぞれ別々のセパレ一夕 1 0および 2 0を固定する工程、 およびセパレー夕 1 0および 2 0で覆 つた正極 1と負極 2のセパレ一夕面同士を重ね合わせて固定する工程を 施すものである。 このように、 正極 1および負極 2の対向面をそれぞれ 別々のセパレ一夕 1 0および 2 0で覆ってから正極 1と負極 2を重ね合 わせるのでズレが生じにくく、 さらにズレて重ね合わされた場合にも両 極の対向面はセパレー夕で覆われているので電極間で短絡が生じにくい。 また、 セパレ一夕の面積を電極の面積より大きくする必要もない。
なお、 正極および負極をセパレ一夕で覆う方法は、 電極に対しセパレ —夕が固定され、 正極および負極の活物質の表面のうち少なくとも対極 に対向する部分が覆われていればよく、 限定はないが、 セパレ一夕によ り袋状に包む方法、 電極両面からセパレー夕で挟み込み電極外周部でセ パレ一夕同士を接着する方法等がある。
また、 正極および負極とそれぞれのセパレ一夕とが、 それぞれ接着に より固定されていると、 各電極とセパレ一夕との固定がより強固になる。 接着する方法は、 特に限定はないが、 接着においてはイオン伝導性が十 分に確保されていて、 接着面全面に接着剤塗布むら等の不均一性が少な いことが望まれる。 イオン伝導性が十分でない場合や接着剤塗布むらの ある場合には、 充放電特性等の電池特性が悪くなる。 接着剤は電解液に 溶解しないものであれば各種のものが使用できる。 限定するものではな いが、 合成ゴム系樹脂、 ポリビニルアルコールを主鎖に含む樹脂等の溶 剤含有型の接着剤、 エポキシ樹脂、 ウレタン樹脂等の反応型の接着剤が 使用可能である。 特に、 フッ化ビニリデンまたはビニルアルコールの単 独重合体または共重合体は電解液と反応しにくく安定であるため好まし く用いられる。 フッ化ビニリデンの共重合体としては、 フッ化ビニリデ ンと例えばへキサフルォロプロピレン、 テトラフルォロエチレン等のフ ッ素系のモノマ一と共重合させたものがあるが限定されたものではない。 また、 このフヅ化ビニリデンまたはビニルアルコールの単独重合体また は共重合体には、 他の高分子有機化合物、 低分子有機化合物、 無機化合 物等、 電池特性に対して悪影響を与えないものであれば混合していても よい。
セパレ一夕で表面を覆った正極および負極を重ね合わせて積層を行う 方法は、 負極活物質層と正極活物質層とが対向するように配置して重ね 合わせるものである。 第 1図に示すような平板状のものを重ね合わせた 構造、 第 2図に示すような巻き型構造、 あるいはこれらの複合構造とし てもよい。 さらに、 電極積層体の 1層を備えた単層構造のものでもよい。 正極および負極をできるだけ間隙を生じさせないように重ね合わせるこ とが必要である。 / 5
セパレ一夕面同士を重ね合わせて固定する方法は、 ケース、 バンド、 テープ等を用いて電極を固定する方法等があるが、 重ね合わせたセパレ 一夕面同士を接着すればセパレ一夕間でズレがより生じにく く、 より有 効である。
セパレー夕の対向面を接着する方法は、 セパレ一夕周辺部のみ、 全面 いずれの場合でもよいが、 一般にセパレ一夕同士の接着部分のイオン伝 導性は低下することが多く、 この様な場合は、 接着面積が 5 mm2以下の 接着部分がセパレ一夕の対向面の全面に分布している状態、 または、 ィ オン導伝性が確保できる接着方法が用いられていること、 あるいは、 活 物質の存在する部分以外の部分で行われていることが好ましい。 局所的 なイオン伝導性のない部分が活物質表面の延長上にあるような構成にす ると、 電池特性に悪影響を与え好ましくない。
セパレ一夕面の接着によって、 セパレ一夕に有する貫通孔の全体の面 積に対する比率が小さくなる場合が多いが、 張り合わせた後の貫通孔の 全体の面積に対する比率は少なくとも 1 0 %、 好ましくは 3 0 %以上あ ることが望ましい。
また、 セパレ一夕面同士の接着は複数の孔を有する膜を介して行うと、 孔の部分は接着されないので、 セパレー夕の開孔が全て接着剤で覆われ てイオン伝導性に悪影響を及ぼすのを防止できる。 用いられる膜は、 表 面がセパレ一夕表面と接着可能であり、 電解液に対して溶解しないもの である必要がある。 ポリプロピレン、 ポリエチレン等の熱可塑性樹脂や 熱架橋性樹脂からなる多孔膜、 網等が使用可能である。
また、 セパレ一夕面同士の接着は熱および圧力を加えることにより行 うと、 接着剤が不要であるので製造工程を簡略化できる。 接着面はセパ レー夕周辺部のみ、 全面いずれの場合でもよい。 熱および圧力を加える 手段は、 特に限定はないが、 プレス、 ロールによるものが利用可能であ W 9/406 5
る。 この場合の熱は、 5 0 °Cないし 1 2 0 °Cの範囲が望ましく、 5 0 °C 以下では接着は困難であり、 1 2 0 °C以上ではセパレ一夕が損傷を受け 好ましくない。 圧力の適正値は温度に依存するのであるが、 5 k g重/ c m2ないし 1 5 O k g重/ c m2の範囲であり、 接着面でのむらができ るだけ小さいことが望ましい。 圧力が小さすぎる場合は、 セパレ一夕同 士の接触が十分行われず良好な接着ができない。 逆に大きすぎる場合に は、 セパレ一夕の多孔質構造が破壊され電池としての機能が損なわれる ため好ましくない。
なお、 セパレー夕は、 絶縁性の多孔膜、 網、 不繊布等で十分な強度が あればどのようなものでも使用可能である。 特に限定するものではない が、 ポリプロピレン、 ポリエチレン等からなる多孔質膜の使用が接着性、 安全性の確保の観点から好ましい。 イオン伝導性を確保するために、 貫 通孔を有する必要があるが、 貫通孔の全体の面積に対する比率は少なく とも 1 0 %、 好ましくは 3 0 %以上あることが望ましい。
また、 電極は、 例えば活物質を集電体上に塗着したものが用いられる。 活物質は、 正極においては、 例えばコバルト、 マンガン、 ニッケル等 の遷移金属の酸化物、 カルコゲン化合物、 あるいはこれらの複合化合物、 各種の添加元素を有するものが限定されることなく使用可能である。 負 極においては、 炭素質材料が好ましく用いられるが、 本発明の電池にお いては、 化学的特性に関わらず用いることができる。 これら活物質の形 状は粒状のものが用いられる。 粒径は 0 . 3〃111ないし 2 0〃mのもの が使用可能である。 特に好ましくは 1 zmないし 5 111のものである。 粒径が小さすぎる場合には接着時の接着剤による活物質表面の被覆面積 が大きくなりすぎ、 充放電時のリチウムイオンのドープ、 脱ドープが効 率よく行われず、 電池特性が低下してしまう。 粒径が大きすぎる場合、 薄膜化が容易でなく、 また、 充填密度が低下するため好ましくない。 集電体は電池内で安定な金属であれば使用可能であるが、 正極ではァ ルミ二ゥム、 負極では銅が好ましく用いられる。 集電体の形状は箔、 網 状、 ェクスパンドメタル等いずれのものでも使用可能である。
なお、 正極と負極とで用いるセパレー夕の種類を違えてもよく、 例え ば、 一方を強度が大きくしかも貫通孔の孔径が大きなもの、 他方を昇温 時の溶融性に優れるものとすることにより、 加圧および加熱による接着 を容易に行え、 しかも機械的強度およびイオン伝導性を確保できる。 以下に、 本発明のリチウムイオン電池の実施例についてさらに詳しく 説明するが、 勿論、 これらにより本発明が限定されるものではない。 実施例 1.
(正極の作製)
L i Co02を 87重量%、 黒鉛粉 (ロンザ (株) 製、 商品名: KS— 6) を 8重量%、 バインダ樹脂としてポリフヅ化ビニリデン (呉羽化学 工業 (株) 製、 商品名: KF 1100) を 5重量%に調整した正極活物 質ペーストを、 集電体となる厚さ 20/ mのアルミ箔上にドクターブレ ード法で厚さ約 100 zmに塗布し、 正極を作製した。
(負極の作製)
メソフェーズマイクロビーズカーボン (大阪ガス (株) 製) を 95重 量%、 バインダとしてポリフッ化ビニリデン (呉羽化学工業 (株) 製、 商品名: KF 1100) を 5重量%に調整した負極活物質ペーストを、 集電体となる厚さ 12〃mの銅箔上にドク夕一ブレード法で厚さ約 10 0 mに塗布し、 負極を作製した。
(電池の作製)
正極および負極を 5 cmx 4 cmの長方形に切断し、 集電用の端子を 取り付けた。 セパレ一夕 (へキストセラニーズ (株) 製、 商品名:セル ガード #2400) を l l cmx 5 cmに切断し、 半分に折って電極を O 5
10 挟み込み、 端部を接着剤 (住友スリーェム (株) 製、 商品名: Scotch- Gr ip4693) で接着した。 この後、 両電極を重ね合わせて筒型に加工したァ ルミラミネートフィルムに挿入して固定し、 十分に乾燥した後、 これに エチレンカーボネート (関東化学 (株) 製) と 1, 2—ジメトキシェ夕 ン (和光純薬工業 (株) 製) の混合溶媒 (モル非で 1 : 1) に、 六フッ 化リン酸リチウム (東京化成工業 (株) 製) を 1. Omo lZdm3の濃 度で溶解させた電解液を注入後、 アルミラミネ一トフイルムを封口して 電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で 8 OWh/kgが 得られた。 電流値 C/2で 200回の充放電を行った後でも、 充電容量 は初期の 90%と高い値が維持された。
実施例 2.
5 cmx 4 cmの長方形に切断し、 接着剤 (住友スリ一ェム (株) 製、 商品名: Scotch-Grip4693) を希釈しスプレーにて少量塗布したセパレ一 夕 (へキストセラニーズ (株) 製、 商品名:セルガード # 2400) を、 実施例 1と同様の正極および負極を 5 cmx 4 cmの長方形に切断して 集電用の端子を取り付けた電極の対向面にそれぞれ張り付けた。 この後、 対向面にそれぞれ別々のセパレ一夕を張り付けた両電極のセパレー夕面 同士を重ね合わせて筒型に加工したアルミラミネートフィルムに揷入し て固定し、 十分に乾燥した後、 実施例 1と同様の電解液を注入後、 アル ミラミネ一トフィルムを封口して電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で 106Wh/kg が得られた。 電流値 C/2で 200回の充放電を行った後でも、 充電容 量は初期の 60 %が確保された。
実施例 3.
実施例 2と同様に作製した対向面にそれぞれ別々のセパレー夕を接着 した電極を用い、 正極に接着したセパレー夕表面にさらに接着剤 (住友 スリ一ェム (株) 製、 商品名: Scotch- Grip4693) を少量塗布し、 負極の セパレ一夕面と重ね合わせることで正極と負極を接着した。 これを筒型 に加工したアルミラミネートフィルムに挿入し、 十分に乾燥した後、 実 施例 1と同様の電解液を注入後、 アルミラミネ一トフイルムを封口して 電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で約 10 OWh/k gが得られた。 電流値 C/2で 200回の充放電を行った後でも、 充電 容量は初期の 60 %が確保された。
実施例 4.
実施例 1と同様の、 5 cmx4 cmの長方形に切断して集電用の端子 を取り付けた正極および負極の対向面に、 ポリフッ化ビニリデン (呉羽 化学工業 (株) 製、 商品名: KF 1100) 10重量%のN—メチルビ ロリ ドン (NMP) 溶液をそれぞれ塗布し、 セパレ一夕 (へキストセラ ニーズ (株) 製、 商品名:セルガード #2400) を 5 c mx 4cmの 長方形に切断したものをそれぞれ別々に張り付けた。 これを真空乾燥す ることで電極とセパレ一夕を接着した。 この正極のセパレ一夕表面に再 びポリフッ化ビ二リデン溶液を塗布し、 負極のセパレー夕と張り合わせ て真空乾燥し、 両極を接着した。 これを筒型に加工したアルミラミネ一 トフイルムに挿入し、 十分に乾燥した後、 実施例 1と同様の電解液を注 入後、 アルミラミネートフィルムを封口して電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で約 8 OWh/kg が得られた。 電流値 C/2で 200回の充放電を行った後でも、 充電容 量は初期の 65%が確保された。
実施例 5.
ポリエチレンフィルムを延伸して作成したポリエチレン多孔膜を作成 した。 この両面にポリフッ化ビニリデン (呉羽化学工業 (株) 製、 商品 名: KF 1100) 10重量%のNMP溶液を塗布し、 実施例 4と同様 に作製したそれぞれ別々のセパレ一夕を接着した正極と負極のセパレ一 夕間に挟み込んだ。 これを真空乾燥し両極を接着した。 これを筒型に加 ェしたアルミラミネートフィルムに挿入し、 十分に乾燥した後、 実施例 1と同様の電解液を注入後、 アルミラミネートフィルムを封口して電池 を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で約 75Wh/kg が得られた。 電流値 C/2で 200回の充放電を行った後で、 充電容量 は初期の 50 %が確保された。
実施例 6.
実施例 2と同様に作製したセパレー夕を接着した正極と負極のセパレ —夕面同士を重ね合わせ、 温度 95°C、 圧力 SkgZcm2の口一ルプレ スに通した。 電極表面の平面性が十分に保たれていればセパレー夕同士 が接着する。 これを 80°Cで真空乾燥し、 筒型に加工したアルミラミネ —トフイルムに挿入し、 十分に乾燥した後、 実施例 1と同様の電解液を 注入後、 アルミラミネ一トフィルムを封口して電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で約 8 OWh/kg が得られた。 電流値 C/2で 200回の充放電を行った後でも、 充電容 量は初期の 60 %が確保された。
実施例 7.
実施例 4と同様に作製したそれぞれ別々のセパレ一夕を接着した正極 と負極のセパレー夕間に、 ポリエチレンフィルムを延伸し直前にプラズ マ処理したポリエチレン多孔膜を挟んで重ね合わせ、 温度 95°C、 圧力 5 kg/cm2のロールプレスに通しこれらを接着した。 これを 80°Cで 真空乾燥し、 筒型に加工したアルミラミネートフィルムに挿入し、 十分 に乾燥した後、 実施例 1と同様の電解液を注入後、 アルミラミネ一トフ ィルムを封口して電池を完成させた。
作製した電池の電池特性は、 重量エネルギー密度で約 6 O W h/k g が得られた。 電流値 C/ 4で 2 0 0回の充放電を行った後でも、 充電容 量は初期の約 6 0 %が確保された。
実施例 8 .
なお、 上記各実施例では、 正極と負極がセパレー夕を介して対向配置 された電極積層体の 1層を有する単層型のリチウムイオン電池の製造に ついて説明したが、 上記電極積層体の複数層を有する多層型のリチウム イオン電池も同様に製造できる。
以下に、 第 1図に示すような、 両面にセパレー夕 1 0および 2 0を接 着した正極 1および負極 2を交互に積層した平板状積層構造を有する多 層型のリチウムイオン電池の製造方法について説明する。
(正極の作製)
L i C o 02を 8 7重量%、 黒鉛粉 (ロンザ (株) 製、 商品名: K S— 6 ) を 8重量%、 ポリフツ化ビニリデン (呉羽化学工業 (株) 製、 商品 名: K F 1 1 0 0 ) を 5重量%に調整した正極活物質ペーストを、 ドク 夕一ブレード法で厚さ 3 0 0〃mに調整しつつ塗布して帯状の活物質薄 膜を作製した。 その上部に正極集電体となる厚さ 3 0 /mの帯状のアル ミニゥム網を載せ、 さらにその上部にドクターブレード法で厚さ 3 0 0 mに調整して正極活物質ペーストを塗布した。 これを 6 0 °Cの乾燥機 中に 6 0分間放置して半乾き状態にして積層体を作製した。 この積層体 を 4 0 0 zmになるように圧延することにより正極集電体に正極活物質 層を積層した帯状の正極 1を作製した。
(負極の作製)
メソフェーズマイクロビーズ力一ボン (大阪ガス (株) 製) を 9 5重 量%、 ポリフッ化ビニリデン (呉羽化学工業 (株) 製、 商品名: KF 1 100) を 5重量%に調整した負極活物質ペーストを、 ドク夕一ブレー ド法で厚さ 300 mに調整しつつ塗布して帯状の活物質薄膜を作製し た。 その上部に負極集電体となる厚さ 20〃mの帯状の銅網を載せ、 さ らにその上部にドク夕一ブレード法で厚さ 300 /mに調整して負極活 物質ペーストを塗布した。 これを 60°Cの乾燥機中に 60分間放置して 半乾き状態にして積層体を作製した。 この積層体を 400/ Π1になるよ うに圧延することにより、 負極集電体に負極活物質層を積層した帯状の 負極 2を作製した。
(電池の作製)
ロール状に束ねられた多孔性のポリプロピレンシ一ト (へキストセラ ニーズ (株) 製、 商品名:セルガード # 2400) からなる帯状の 2枚 のセパレー夕 10のそれぞれの片面にポリフッ化ビニリデン (呉羽化学 工業 (株) 製、 商品名: KF 1100) 10重量%の NMP溶液を塗布 し、 帯状の正極 1をセパレ一夕の塗布面の間に挟み、 密着させて張り合 わせた後、 真空乾燥した。
同様に、 ロール状に束ねられた多孔性のポリプロピレンシート (へキ ストセラニーズ (株) 製、 商品名:セルガード #2400) からなる帯 状の 2枚のセパレ一夕 20のそれぞれの片面にポリフッ化ビニリデン (呉羽化学工業 (株) 製、 商品名: KF 1100) 10重量%の NMP 溶液を塗布し、 帯状の負極 2をセパレ一夕の塗布面の間に挟み、 密着さ せて張り合わせた後、 真空乾燥した。
次に、 両面にセパレー夕を接着した正極 1および負極 2を所定の大き さに打ち抜き、 この所定の大きさに打ち抜いた正極 1 (または負極) の 一方のセパレ一夕 10面に接着剤としてポリフッ化ビニリデン (呉羽化 学工業 (株) 製、 商品名: KF 1100) 10重量%のNMP溶液を塗 布し、 所定の大きさに打ち抜いた負極 2 (または正極) の一方のセパレ —夕 2 0面を張り合わせ、 さらに、 所定の大きさに打ち抜いた別の正極 1 (または負極) の一方のセパレ一夕 1 0面に同様の接着剤を塗布し、 このセパレ一夕の接着剤塗布面を先に張り合わせた負極 2 (または正 極) の他方のセパレ一夕 2 0面に張り合わせた。 この工程を繰り返し、 複数層の電極積層体を有する電池体を作製し、 この電池体を加圧しなが ら真空乾燥し、 第 1図に示すような、 平板状積層構造を有する電池構造 物を作製した。
この平板状積層構造電池体の正極および負極集電体それぞれの端部に 接続した集電タブを、 正極同士、 負極同士スポット溶接することによつ て、 上記平板状積層構造電池体を電気的に並列に接続した。
この平板状積層構造電池体を、 エチレンカーボネ一卜とジメチルカ一 ボネートの混合溶媒 (モル比で 1 : 1 ) に 6フッ化リン酸リチウムを 1 . O m o 1 /d m3の濃度で溶解させた電解液中に浸した後、 アルミラミネ 一トフイルムで作製した袋に熱融着で封入し、 平板状積層構造電池体を 有するリチウムイオン二次電池とした。
実施例 9 .
実施例 8と同様の電極を用いて、 第 2図に示すような、 両面にセパレ —夕を接着した正極 1および負極 2を、 正極 1と負極 2が交互に配置さ れるように巻き上げることにより作製された平板状卷型積層構造を有す る多層型のリチウムイオン電池の製造方法について説明する。
(電池の作製)
実施例 8と同様に、 両面にセパレ一夕を接着した帯状の正極 1および 負極 2を作製した。
次に、 正極 1 (または負極) を間に接合した帯状のセパレー夕の一方 の面に上記実施例 8と同じ接着剤を塗布し、 このセパレ一夕付きの正極 1の一端を一定量折り曲げ、 折り目に上記セパレー夕付きの負極 2 (ま たは正極) を挟み、 この負極 2 (または正極) を先の正極 1 (または負 極) の折り曲げた端面を包むように折り曲げ対向面に接着剤を塗布して 接着し、 後は、 正極 1と負極 2をそのセパレ一夕面同士を接着剤で接着 しながら同時に巻き上げて、 複数層の電極積層体を有する電池体を作製 し、 この電池体を押圧しながら真空乾燥し、 第 2図に示したような平板 状卷型積層構造を有する電池構造物を作製した。 産業上の利用可能性
携帯パソコン、 携帯電話等の携帯用電子機器の二次電池として用いら れ、 電池の性能向上と共に、 小型 ·軽量化、 任意形状化が可能となる。

Claims

請 求 の 範 囲
1 . セパレー夕を介して正極と負極を対向配置したリチウムイオン電池 の製造方法において、 上記正極および負極それぞれの少なくとも上記対 向面を覆うようにそれぞれ別々のセパレー夕を固定する工程、 および上 記セパレ一夕で覆った正極と負極のセパレ一夕面同士を重ね合わせて固 定する工程を施すことを特徴とするリチウムイオン電池の製造方法。
2 . 正極および負極とそれぞれのセパレ一夕は、 それぞれ接着により固 定することを特徴とする請求の範囲第 1項記載のリチウムイオン電池の 製造方法。
3 . 正極および負極とそれぞれのセパレー夕の接着は、 フッ化ビニリデ ンの単独重合体または共重合体を用いて行うことを特徴とする請求の範 囲第 2項記載のリチウムイオン電池の製造方法。
4 . 重ね合わせたセパレー夕面同士を接着することを特徴とする請求の 範囲第 1項記載のリチウムィォン電池の製造方法。
5 . セパレ一夕面同士の接着は複数の孔を有する膜を介して行うことを 特徴とする請求の範囲第 4項記載のリチウムィォン電池の製造方法。
6 . セパレー夕面同士の接着は熱および圧力を加えることにより行うこ とを特徴とする請求の範囲第 4項記載のリチウムィォン電池の製造方法。
7 . 正極と負極間に少なくとも 2枚のセパレー夕を有し、 上記正極およ び負極とセパレー夕間並びにセパレ一夕同士の間にそれぞれ接着層を有 する電極積層体を備えたことを特徴とするリチウムイオン電池。
8 . 電極積層体の複数層を備えたことを特徴とする請求の範囲第 7項記 載のリチウムイオン電池。
9 . 電極積層体の複数層が、 両面にセパレ一夕を接着した正極および負 極を交互に積層することにより形成されたことを特徴とする請求の範囲 第 8項記載のリチウムィォン電池。
1 0 . 電極積層体の複数層が、 両面にセパレ一夕を接着した帯状の正極 および負極を、 正極と負極が交互に配置されるように巻き上げることに より形成されたことを特徴とする請求の範囲第 8項記載のリチウムィォ ン電池。
PCT/JP1998/000471 1998-02-05 1998-02-05 Batterie au lithium et son procede de fabrication WO1999040645A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN98804952A CN1255249A (zh) 1998-02-05 1998-02-05 锂离子电池及其制造方法
PCT/JP1998/000471 WO1999040645A1 (fr) 1998-02-05 1998-02-05 Batterie au lithium et son procede de fabrication
EP98901513A EP0973223A1 (en) 1998-02-05 1998-02-05 Lithium battery and method for manufacturing the same
KR1019997008954A KR100312253B1 (ko) 1998-02-05 1999-09-30 리튬이온전지 및 그의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000471 WO1999040645A1 (fr) 1998-02-05 1998-02-05 Batterie au lithium et son procede de fabrication

Publications (1)

Publication Number Publication Date
WO1999040645A1 true WO1999040645A1 (fr) 1999-08-12

Family

ID=14207543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000471 WO1999040645A1 (fr) 1998-02-05 1998-02-05 Batterie au lithium et son procede de fabrication

Country Status (4)

Country Link
EP (1) EP0973223A1 (ja)
KR (1) KR100312253B1 (ja)
CN (1) CN1255249A (ja)
WO (1) WO1999040645A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020350A1 (ja) * 2003-08-26 2005-03-03 Nitto Denko Corporation 電池用セパレータのための反応性ポリマー担持多孔質フィルムとその利用
JP2008135289A (ja) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd 二次電池およびその製造方法
JP2008302359A (ja) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd 多成分系複合分離膜及びその製造方法
JP2010529617A (ja) * 2007-06-04 2010-08-26 エスケー エナジー カンパニー リミテッド 高出力リチウム電池の積層方法
WO2012002358A1 (ja) * 2010-06-28 2012-01-05 株式会社村田製作所 蓄電デバイス及びその製造方法
WO2013002119A1 (ja) * 2011-06-28 2013-01-03 株式会社 村田製作所 蓄電デバイスとその製造方法
JPWO2012002359A1 (ja) * 2010-06-28 2013-08-22 株式会社村田製作所 蓄電デバイスとその製造方法
WO2014014118A1 (ja) * 2012-07-18 2014-01-23 住友化学株式会社 接着層、層及び組成物
WO2017208512A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス
CN108023092A (zh) * 2016-11-02 2018-05-11 罗伯特·博世有限公司 包括电活性材料的电池组电池和电池组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406690B1 (ko) 2001-03-05 2003-11-21 주식회사 엘지화학 다성분계 복합 필름을 이용한 전기화학소자
JP5648284B2 (ja) * 2009-12-24 2015-01-07 住友化学株式会社 積層フィルムおよび非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628471A (ja) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd 空気ボタン電池
US5437692A (en) * 1994-11-02 1995-08-01 Dasgupta; Sankar Method for forming an electrode-electrolyte assembly
JPH09500485A (ja) * 1993-11-30 1997-01-14 ベル コミュニケーションズ リサーチ,インコーポレイテッド 電解質活性可能なリチウムイオン再充電可能電池セルおよびその製造方法
JPH09293518A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628471A (ja) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd 空気ボタン電池
JPH09500485A (ja) * 1993-11-30 1997-01-14 ベル コミュニケーションズ リサーチ,インコーポレイテッド 電解質活性可能なリチウムイオン再充電可能電池セルおよびその製造方法
US5437692A (en) * 1994-11-02 1995-08-01 Dasgupta; Sankar Method for forming an electrode-electrolyte assembly
JPH09293518A (ja) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302359A (ja) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd 多成分系複合分離膜及びその製造方法
US8277897B2 (en) 2003-08-26 2012-10-02 Nitto Denko Corporation Reactive polymer-supporting porous film for battery separator and use thereof
JP2005100951A (ja) * 2003-08-26 2005-04-14 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
WO2005020350A1 (ja) * 2003-08-26 2005-03-03 Nitto Denko Corporation 電池用セパレータのための反応性ポリマー担持多孔質フィルムとその利用
JP4662533B2 (ja) * 2003-08-26 2011-03-30 日東電工株式会社 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
US8062387B2 (en) 2003-08-26 2011-11-22 Nitto Denko Corporation Reactive polymer-supporting porous film for battery separator and use thereof
JP2008135289A (ja) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd 二次電池およびその製造方法
JP2010529617A (ja) * 2007-06-04 2010-08-26 エスケー エナジー カンパニー リミテッド 高出力リチウム電池の積層方法
WO2012002358A1 (ja) * 2010-06-28 2012-01-05 株式会社村田製作所 蓄電デバイス及びその製造方法
JPWO2012002359A1 (ja) * 2010-06-28 2013-08-22 株式会社村田製作所 蓄電デバイスとその製造方法
JP5435131B2 (ja) * 2010-06-28 2014-03-05 株式会社村田製作所 蓄電デバイス及びその製造方法
US9368776B2 (en) 2010-06-28 2016-06-14 Murata Manufacturing Co., Ltd. Power storage device and manufacturing method therefor
WO2013002119A1 (ja) * 2011-06-28 2013-01-03 株式会社 村田製作所 蓄電デバイスとその製造方法
JP5477609B2 (ja) * 2011-06-28 2014-04-23 株式会社村田製作所 蓄電デバイスとその製造方法
WO2014014118A1 (ja) * 2012-07-18 2014-01-23 住友化学株式会社 接着層、層及び組成物
US10522809B2 (en) 2012-07-18 2019-12-31 Sumitomo Chemical Company, Limited Adhesive layer, layer, and composition
WO2017208512A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス
CN108023092A (zh) * 2016-11-02 2018-05-11 罗伯特·博世有限公司 包括电活性材料的电池组电池和电池组
CN108023092B (zh) * 2016-11-02 2022-07-05 罗伯特·博世有限公司 包括电活性材料的电池组电池和电池组

Also Published As

Publication number Publication date
KR20010005878A (ko) 2001-01-15
CN1255249A (zh) 2000-05-31
KR100312253B1 (ko) 2001-11-03
EP0973223A1 (en) 2000-01-19

Similar Documents

Publication Publication Date Title
JP3997573B2 (ja) リチウムイオン二次電池およびその製造方法
US6225010B1 (en) Lithium ion secondary battery and manufacture thereof
US6291102B1 (en) Lithium ion secondary battery
JP4008508B2 (ja) リチウムイオン二次電池の製造方法
WO1999026307A1 (en) Lithium ion secondary battery and manufacture thereof
JP2002260739A (ja) 非水電解質二次電池およびその製造法
US6692543B1 (en) Method for manufacturing lithium ion secondary battery
WO1999048163A1 (fr) Batterie aux ions lithium et son procede de fabrication
JPH10284055A (ja) リチウムイオン二次電池用電極およびそれを用いたリチウムイオン二次電池
JP2000030742A (ja) リチウムイオン二次電池要素
JP3811353B2 (ja) リチウムイオン二次電池
WO1999031751A1 (fr) Batterie auxiliaire au lithium et sa fabrication
WO1999040645A1 (fr) Batterie au lithium et son procede de fabrication
US6537705B1 (en) Lithium ion secondary battery and its manufacture
JPH11154534A (ja) リチウムイオン二次電池要素
US20030134202A1 (en) Lithium polymer battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same
WO1999048164A1 (fr) Accumulateur et son procede de fabrication
KR100329294B1 (ko) 리튬이온 전지의 제조방법
JP3385319B2 (ja) 積層バッテリ
KR100301996B1 (ko) 리튬이온 2차전지의 제조방법
KR100393138B1 (ko) 스택 전지 구조
KR100301995B1 (ko) 리튬이온 2차전지 및 그 제조방법
KR100300530B1 (ko) 리튬이온 2차전지
KR100300531B1 (ko) 리튬이온 2차전지 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98804952.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997008954

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998901513

Country of ref document: EP

Ref document number: 09381979

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998901513

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008954

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997008954

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998901513

Country of ref document: EP