WO1999038029A1 - Überwachungseinrichtung für signal-echo-sensoren - Google Patents

Überwachungseinrichtung für signal-echo-sensoren Download PDF

Info

Publication number
WO1999038029A1
WO1999038029A1 PCT/DE1998/003804 DE9803804W WO9938029A1 WO 1999038029 A1 WO1999038029 A1 WO 1999038029A1 DE 9803804 W DE9803804 W DE 9803804W WO 9938029 A1 WO9938029 A1 WO 9938029A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
echo
monitoring device
signals
echo monitoring
Prior art date
Application number
PCT/DE1998/003804
Other languages
English (en)
French (fr)
Inventor
Roland Klinnert
Wolfgang Grimm
Hauke Schmidt
Bernhard Wirnitzer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP98966588A priority Critical patent/EP1049945B1/de
Priority to DE59806380T priority patent/DE59806380D1/de
Priority to JP2000528883A priority patent/JP2002501206A/ja
Priority to US09/600,850 priority patent/US6404702B1/en
Publication of WO1999038029A1 publication Critical patent/WO1999038029A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • G01S15/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector wherein transceivers are operated, either sequentially or simultaneously, both in bi-static and in mono-static mode, e.g. cross-echo mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the invention relates to a monitoring device for
  • Signal-echo sensors preferably for measuring the distance in motor vehicles with ultrasound pulses, with the features mentioned in the preamble of claim 1.
  • the known ultrasonic sensors which always work with the same pulse repetition frequency, can only be used to a limited extent in the case of several obstacles because they are disruptive
  • Cross measurement can distinguish between walls, corners and edges.
  • the disadvantage here is that the two sensors must be operated sequentially, which makes the system relatively slow. If the object moves between the measurements of the two sensors, this can lead to misinterpretations.
  • the object of the invention is to create an ultrasound monitoring device which, by suppressing interference from ultrasound distance sensors, also enables rapid tracking of moving objects.
  • Rapid detection of moving objects is also possible by means of an ultrasound monitoring device with the features mentioned in claim 1.
  • This is done by sending out a characteristic waveform, e.g. a random signal or a stochastic pulse sequence, which is evaluated together with an echo signal via an adaptive filter integrated in an evaluation unit for determining the distance of an object from the transmitting unit.
  • a characteristic waveform e.g. a random signal or a stochastic pulse sequence
  • an adaptive filter integrated in an evaluation unit for determining the distance of an object from the transmitting unit.
  • This adaptive filter can advantageously be designed as a digital filter.
  • the filter is preferably a so-called FIR (Finite Impulse Response) filter, which works non-recursively.
  • Figure 1 is a block diagram showing the structure of the ultrasonic monitoring device
  • Figure 2 is a block diagram showing the wiring of an adaptive filter
  • Figure 3 is a diagram showing the conversion of random signals into binary values
  • Figure 4 is a diagram showing the results of the evaluation unit when four interference signals are operating.
  • FIG. 1 shows a block diagram of the basic structure of the ultrasound monitoring device according to the invention.
  • This ultrasound monitoring device consists of a transmission and reception unit 1 and a control and evaluation unit 2.
  • the transmission and reception unit 1 has an ultrasound transmitter 5 for emitting ultrasound signals 3 and an ultrasound receiver 6 for receiving ultrasound echoes 4. If (as in pulse-echo operation) the transmission and reception process are possible sequentially, the transmitter 5 and the receiver 6 can use internal components of the transceiver unit 1 together, such as the radiation and reception membrane.
  • the transmission and reception unit 1 converts transmission requests from a control part 9 of the control and evaluation unit 2 into ultrasound signals 3, sends them out with the ultrasound transmitter 5 and receives the echoes 4 with the ultrasound receiver 6.
  • the received sound signal 4 is transmitted and Receiver unit 1 in an electrical Signal converted and returned to an evaluation unit 10 in the control and evaluation unit 2.
  • the control and evaluation unit 2 controls the ultrasound transmitter 5 in the transmission and reception unit 1 and determines from the electrical reception signal the location of objects 12 which are located in the transmission range of the device.
  • the control part 9 of the control and evaluation unit 2 generates a random signal s (t) and sends this to the transmission unit 5.
  • the evaluation part 10 of the control and evaluation unit 2 receives the random signal s (t) together with the electrical one
  • the evaluation part 10 uses a so-called adaptive filter 14 to determine the delay between the transmission signal s (t) and the reception signal e (t).
  • FIG. 2 shows a block diagram which represents the wiring of such an adaptive filter 14. From the impulse response b (t) of the adaptive filter 14, the distance of the detected object 12 from the location of the delivery of an ultrasound signal 3 can be taken directly.
  • the adaptive filter
  • the adaptive filter 14 is preferably designed as a digital transversal filter.
  • the filter equation is:
  • the number of filter coefficients N is typically between 100 and 1000, depending on the resolution and maximum distance of the objects 12 to be detected.
  • the adaptive filter 14 automatically minimizes the influence of any kind of interference from e (t) that is not correlated with the signal s (t). This includes temperature drifts or noise from amplifiers.
  • the non-linearities 15, 16 in the evaluation unit 10 enable the adaptive filter 14 to be implemented very efficiently without appreciably influencing the robustness of the evaluation unit 10.
  • the computing effort is reduced typically by a factor of 1000, which means that the system can be represented inexpensively using integrated circuits.
  • Simple threshold value formations can in each case be used as nonlinearities 15 and 16, that is to say the signal is set to one if the signal value is greater than the threshold value and set to zero if it is less than the threshold value.
  • the signals s (t) and e (t) thus become zero in wide ranges and a large part of the multiplications and additions are completely eliminated in the filter equation.
  • FIG. 3 shows a variant in which further savings can be achieved in the computing effort.
  • the signal is only set to one at points of the positive threshold value crossings (each marked by an arrow) and otherwise to zero. This means that another part of the
  • FIG. 4 shows in a diagram the results of such an evaluation unit with the simultaneous operation of four jamming transmitters.
  • four conventional transmitters each of which emits a similar signal based on the pulse-echo principle, were added to the normal operation of the device according to the invention.
  • the indices k of the coefficients bk are on the horizontal axis of the diagram shown in FIG.
  • the horizontal axis can also be interpreted as a time axis.
  • the coefficient values bk which result from the adaptation, are plotted on the vertical axis. A strong peak at the 25th sample value can be seen in the representation. Here the coefficient value is approximately 0.03 compared to one Average of 0.01 in the remaining places. This 25th sample value can thus be assigned to the position or the distance of an object 12 from the ultrasound transmission unit 5 via the sound propagation time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

Die Erfindung betrifft eine Signal-Echo-Überwachungseinrichtung, die wenigstens eine Sendeeinheit zum Abstrahlen eines Signals und eine Empfangseinheit zum Empfangen eines von einem Gegenstand reflektierten Echosignals des abgestrahlten Signals umfasst, und einer Steuer- und Auswerteeinheit zum Generieren des Signals und Auswerten des Echosignals, wobei das Signal (s(t)) eine charakteristische Signalform besitzt und gemeinsam mit dem Echosignal (e(t)) über ein in die Auswerteeinheit (10) integriertes Adaptives Filter (14) zur Bestimmung eines Abstandes des Gegenstandes (12) von der Sendeeinheit (5) ausgewertet wird. Es ist vorgesehen, dass das Adaptive Filter (14) seine Impulsantwort (b(t)) automatisch abgleicht und dass das Adaptive Filter (14) ein digitales Filter sein kann.

Description

Überwachunσseinrichtunσ für Siσnal-Echo-Sensoren
Stand der Technik
Die Erfindung betrifft eine Überwachungseinrichtung für
Signal-Echo-Sensoren, vorzugsweise zur AbStandsmessung bei Kraftfahrzeugen mit Ultraschallpulsen, mit den im Oberbegriff des Patentanspruchs 1 genannten Merkmalen.
Bekannt sind verschiedenartige, als Abstandssensoren eingesetzte, Überwachungseinrichtungen, die auf verschiedenartigen physikalischen Sensorprinzipien, wie z.B. Ultraschall, Infrarot oder Mikrowelle, beruhen. So sind
Abstandssensoren bekannt, bei denen von einer Auswerteeinheit ein Pulssignal ausgesendet und die Zeit bis zum Eingang eines Echosignales gemessen wird. Erst danach erfolgt ein neuer Sendeimpuls. Als nachteilig erweist sich die Störanfälligkeit des Systems gegenüber gleichartigen empfangenen Signalen.
Sind beispielsweise bei Verwendung von Ultraschall andere, sich in der Nähe befindende Fahrzeuge ebenfalls mit Ultraschallüberwachungseinrichtungen ausgerüstet, kann es zu FehlInterpretationen beziehungsweise Falschmeldungen kommen. Hat ein anderes Fahrzeug beispielsweise die gleiche Pulsfolgefrequenz, kann es zu Falschmessungen kommen, ohne daß dies bemerkt wird, da die Ultraschallüberwachungseinrichtung den Empfang eines Echosignales annimmt.
Weiterhin sind die bekannten Ultraschall-Sensoren, die immer mit der gleichen Pulsfolgefrequenz arbeiten, bei mehreren Hindernissen nur eingeschränkt verwendbar, da störende
Mehrfachechos oft falsch interpretiert werden. Bei Mehrfachechos sind zudem zusätzliche Wartezeiten notwendig, bevor erneut ein Sendeimpuls ausgesandt werden kann. Auch ohne solche Störungen ist mindestens die Wartezeit einzuhalten, die ein Signal benötigt, um eine maximale Distanz hin und zurück zu durchlaufen .
Aus der DE 40 23 538 AI ist weiterhin eine Kollisionswarneinrichtung bekannt, die aufgrund eines Betriebes von zwei Sensoren und einer sogenannten
Kreuzmessung zwischen Wänden, Ecken und Kanten unterscheiden kann. Nachteilig hierbei ist, daß die beiden Sensoren sequentiell betrieben werden müssen, wodurch das System relativ langsam wird. Falls sich der Gegenstand zwischen den Messungen der beiden Sensoren bewegt, kann dies zu Fehlinterpretationen führen.
Der Erfindung liegt die Aufgabe zugrunde, eine Ultraschallüberwachungseinrichtung zu schaffen, die durch eine Unterdrückung von Interferenzen von Ultraschallabstands- sensoren eine schnelle Verfolgung auch von bewegten Gegenständen ermöglicht. Vorteile der Erfindung
Durch eine Ultraschallüberwachungseinrichtung mit den in Anspruch 1 genannten Merkmalen ist eine schnelle Detektion auch von bewegten Gegenständen möglich. Dies wird durch Aussenden einer charakteristischen Signalform, z.B. eines Zufallssignals oder einer stochastischen Pulsfolge erreicht, die gemeinsam mit einem Echosignal über ein in eine Auswerteeinheit integriertes Adaptives Filter zur Bestimmung des Abstandes eines Gegenstandes von der Sendeeinheit ausgewertet wird. Dadurch ist auch eine automatische Unterdrückung jeglicher Störungen durch Einsatz des Adaptiven Filters möglich. Als vorteilhaft erweist sich auch ein gleichzeitiger Betrieb von mehreren Sensoren ohne gegenseitige Störungen durch Verwendung unterschiedlicher Zufallssignale als Sendesignale in Verbindung mit einem Adaptiven Filter. Dieses Adaptive Filter kann vorteilhaft als digitales Filter ausgeführt sein. Vorzugsweise ist das Filter ein sogenanntes FIR- (Finite-Impulse-Response- ) Filter, welches nicht-rekursiv arbeitet.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Merkmalen.
Zeichnungen
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert . Es zeigen: Figur 1 ein Blockschaltbild, das den Aufbau der Ultraschallüberwachungseinrichtung zeigt ;
Figur 2 ein Blockschaltbild, das die Beschaltung eines Adaptiven Filters zeigt;
Figur 3 ein Diagramm, das die Umsetzung von Zufallssignalen in binäre Werte zeigt und
Figur 4 ein Diagramm, das die Ergebnisse der Auswerteeinheit beim Betrieb von vier Störsignalen darstellt.
Beschreibung des Ausführungsbeispiels
Die Figur 1 zeigt in einem Blockschaltbild den grundsätzlichen Aufbau der erfindungsgemäßen Ultraschallüberwachungseinrichtung. Diese Ultraschallüberwachungseinrichtung besteht aus einer Sende- und Empfangseinheit 1 und einer Steuer- und Auswerteeinheit 2. Die Sende- und Empfangseinheit 1 weist einen Ultraschallsender 5 zur Abstrahlung von Ultraschallsignalen 3 und eine Ultraschallempfänger 6 zum Empfangen von Ultraschallechos 4 auf. Falls (wie z.B. im Puls-Echobetrieb) der Sende- und Empfangsvorgang sequentiell möglich sind, so können der Sender 5 und der Empfänger 6 interne Komponenten der Sende- Empfangseinheit 1 gemeinsam verwenden, wie z.B. die Abstrahl und Empfangsmembrane. Die Sende- und Empfangseinheit 1 setzt Sendeanforderungen aus einem Steuerteil 9 der Steuer- und Auswerteeinheit 2 in Ultraschallsignale 3 um, sendet diese mit dem Ultraschallsender 5 aus und empfängt die Echos 4 mit dem Ultraschallempfänger 6. Das empfangene Schallsignal 4 wird in der Sende- und Empfangseinheit 1 in ein elektrisches Signal umgesetzt und an eine Auswerteeinheit 10 in der Steuer- und Auswerteeinheit 2 zurückgegeben. Die Steuer- und Auswerteeinheit 2 steuert den Ultraschallsender 5 in der Sende- und Empfangseinheit 1 und bestimmt aus dem elektrischen Empfangssignal den Ort von Gegenständen 12, die sich im Sendebereich der Einrichtung befinden. Der Steuerteil 9 der Steuer- und Auswerteeinheit 2 generiert ein Zufallssignal s(t) und sendet dieses an die Sendeeinheit 5. Dem Auswerteteil 10 der Steuer- und Auswerteeinheit 2 wird das Zufallssignal s(t) zusammen mit dem elektrischen
Empfangssignal e(t) zugeführt. Der Auswerteteil 10 verwendet ein sogenanntes Adaptives Filter 14, um die Verzögerung zwischen dem Sendesignal s(t) und dem Empfangssignal e(t) zu bestimmen.
Die Figur 2 zeigt ein Blockschaltbild, das die Beschaltung eines solchen Adaptiven Filters 14 darstellt. Aus der Impulsantwort b(t) des Adaptiven Filters 14 ist der Abstand des detektierten Gegenstandes 12 von dem Ort der Abgabe eines Ultraschallsignals 3 direkt entnehmbar. Das Adaptive Filter
14 gleicht seine Koeffizienten in bekannter Weise automatisch so ab, daß der Fehler f (t) zwischen dem gefilterten Signal y(t) und dem Echosignal e(t) minimiert wird. Durch diesen Abgleich wird nicht nur die Verzögerung zwischen den beiden Signalen bestimmt, sondern es kann gleichzeitig der Einfluß aller eventuell einwirkenden Störungen minimiert werden.
Das Adaptive Filter 14 wird vorzugsweise als ein Digitales Transversalfilter ausgelegt. Die Filtergleichung lautet in diesem Fall:
y(k«D) = Si=0...(N-l) b(i»D) x((i - k) »D) mit einem Abtastabstand D.
Die Anzahl der Filterkoeffizienten N liegt typischerweise zwischen 100 und 1000, je nach Auflösung und maximalen Abstand der zu detektierenden Gegenstände 12. Der Rechenaufwand für ein derartiges Filter ist relativ hoch: Bei einer Abtastfrequenz von 50 kHz und N=500 müssen entsprechend der Filterung 25 Millionen Multiplikationen und Additionen in jeder Sekunde durchgeführt werden. Die Adaption der Filterkoeffizienten bi = b(t=iD) benötigt auch bei den einfachsten Algorithmen mindestens den gleichen Rechenaufwand, also insgesamt mindestens 50 Millionen Additionen und Multiplikationen. Derartige Rechenleistungen sind jedoch mit digitalen Signalprozessoren gut darstellbar.
Das Adaptive Filter 14 minimiert automatisch den Einfluß jeglicher Art von Störungen von e(t), die nicht mit dem Signal s(t) korreliert sind. Hierzu gehören auch Temperaturdrifts oder Rauschen von Verstärkern. Die
Verwendung eines Zufallssignales bewirkt, daß mehrere Kollisionswarneinrichtungen gleichzeitig arbeiten können, ohne sich gegenseitig zu stören. Bewegte Gegenstände können schneller erkannt werden, als bei bekannten Sensoren nach dem Puls-Echoprinzip. Der Grund liegt darin, daß quasikontinuierlich Schall ausgesandt wird, und ebenso kontinuierlich die Laufzeit des Schalls gemessen wird.
Die Nichtlinearitäten 15, 16 in der Auswerteeinheit 10 ermöglichen eine sehr effizient Realisierung des Adaptiven Filters 14, ohne die Robustheit der Auswerteeinheit 10 nennenswert zu beeinflussen. Der Rechenaufwand sinkt typischerweise um den Faktor 1000, womit das System preisgünstig mit Hilfe integrierter Schaltungen darstellbar wird. Als Nichtlinearitäten 15 und 16 können jeweils einfache Schwellwertbildungen verwendet werden, das heißt das Signal wird auf Eins gesetzt, falls der Signalwert größer als der Schwellwert ist und auf Null gesetzt, falls er kleiner als der Schwellwert ist. Damit werden die Signale s(t) und e(t) in weiten Bereichen Null und in der Filtergleichung entfällt ein Großteil der Multiplikationen und Additionen völlig.
Figur 3 zeigt eine Variante, bei der weitere Einsparungen im Rechenaufwand erzielbar sind. In diesem Fall wird nur an Stellen der positiven Schwellwertdurchgänge (jeweils durch einen Pfeil gekennzeichnet) das Signal auf Eins und sonst auf Null gesetzt. Somit entfällt ein weiterer Teil der
Multiplikationen und Additionen der Filtergleichung.
Die Figur 4 zeigt schließlich in einem Diagramm die Ergebnisse einer derartigen Auswerteeinheit bei gleichzeitigem Betrieb von vier Störsendern. Hierbei wurden vier Sender herkömmlicher Art, die jeweils ein gleichartiges Signal nach dem Puls-Echo-Prinzip aussenden, zum normalen Betrieb der erfindungsgemäßen Vorrichtung hinzugeschaltet. Auf der horizontalen Achse des in Figur 4 dargestellten Diagrammes sind die Indizes k der Koeffizienten bk der
Filtereinheit aufgetragen. Da diese Indizes festen zeitlichen Abständen entsprechen, kann die horizontale Achse gleichzeitig als Zeitachse aufgefaßt werden. Auf der vertikalen Achse sind die Koeffizientenwerte bk aufgetragen, die sich jeweils durch die Adaption ergeben. Erkennbar ist in der Darstellung eine starke Spitze beim 25. Abtastwert. Hier beträgt der Koeffizientenwert ca. 0,03 gegenüber einem Mittelwert von 0,01 an den übrigen Stellen. Dieser 25. Abtastwert kann somit über die Schallaufzeit der Position beziehungsweise dem Abstand eines Gegenstandes 12 von der Ultraschall-Sendeeinheit 5 zugeordnet werden.

Claims

Patentansprüche
1. Signal-Echo-Überwachungseinrichtung, die wenigstens eine Sendeeinheit zum Abstrahlen eines Signals und eine Emp- fangseinheit zum Empfangen eines von einem Gegenstand reflektierten Echosignals des abgestrahlten Signals umfaßt, und einer Steuer- und Auswerteeinheit zum Generieren des Signals und Auswerten des Echosignals, dadurch gekennzeichnet, daß das gesendete Signal eine charak- teristische Signalform besitzt und gemeinsam mit dem
Echosignal über ein in die Auswerteeinheit (10) integriertes Adaptives Filter (14) ausgewertet wird.
2. Signal-Echo-Überwachungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der charakteristischen Signalform des Sendesignals (s(t)) um eine durch einen Zufallsgenerator erzeugte Pulsfolge handelt.
3. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß das Adaptive Filter (14) seine Impulsantwort b(t) automatisch abgleicht .
4. Signal-Echo-Überwachungseinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das Adaptive Filter (14) ein digitales Filter ist.
5. Signal-Echo-Überwachungseinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Adaptive Filter (14) ein FIR-
(Finite-Impulse-Response) Filter ist.
6. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Signal (s(t)) und das Echosignal (e(t)) über jeweils ein nichtlineares Transformationsglied (15, 16) geführt werden.
7. Signal-Echo-Überwachungseinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß den nichtlinearen Transformationsgliedern (15, 16) ein Schwellwert vorgebbar ist, die das Signal (s(t)) und das Echosignal (e(t)) in Binärsignale wandeln.
8. Signal-Echo-Überwachungseinrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Binärsignale nur bei positivem Schwellwertdurchgang auf den Wert 1 gesetzt werden.
9. Signal-Echo-Überwachungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Signale (s(t), e(t)) vor dem Schwellwertvergleich quadriert werden.
10. Signal-Echo-Überwachungseinrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß der
Schwellwertvergleich in der Sende- und Empfangseinheit (1) durchgeführt wird.
11. Signal-Echo-Überwachungseinrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß das binarisierte Sendesignal s(t) oder das binarisierte Echosignal e(t) oder beide binarisierten Signale jeweils einer Lauflängencodierung unterzogen werden und das oder die auf diese Weise codierten Signale dem Adaptiven Filter zugeführt werden.
12. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sendeleistung der Signale (s(t)) in Abhängigkeit einer mittleren Empfangsleistung der Echosignale (e(t)) veränderbar, insbesondere reduzierbar, ist.
13. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zeitintervalle zwischen jeweils zwei Pulsen des Signals (s(t)) in Abhängigkeit der mittleren Empfangsleistung der Echosignale (e(t)) veränderbar ist.
14. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß durch die Auswertung der Impulsantwort (b(t)) die Verzögerungszeit zwischen dem Sendesignal (s(t)) und dem Echosignal (e(t)) bestimmt wird.
15. Signal-Echo-Überwachungseinrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Verzögerungszeit zur Verwendung beispielsweise in einer Abstandsmessung oder zur Zuführung in eine externe Raumüberwachungseinheit verwendet wird.
16. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die vom Sendesensor abgestrahlten und vom Empfangssensor empfangenen Signale Schallwellen beliebiger Wellenlänge, insbesondere Ultraschallwellen sind.
17. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die vom Sendesensor abgestrahlten und vom Empfangssensor empfangenen Signale elektromagnetische Wellen beliebiger Wellenlänge, insbesondere aus dem Infrarotbereich, dem ultravioletten Bereich und dem Mikrowellenbereich sind.
18. Signal-Echo-Überwachungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sendeeinheit und die Empfangseinheit als ein einziges Bauteil realisiert sind, daß im zeitlichen Wechsel im Sendebetrieb und im Empfangsbetrieb verwendet wird.
PCT/DE1998/003804 1998-01-24 1998-12-29 Überwachungseinrichtung für signal-echo-sensoren WO1999038029A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98966588A EP1049945B1 (de) 1998-01-24 1998-12-29 Verfahren zur Abstandsmessung und Durchführung des Verfahrens
DE59806380T DE59806380D1 (de) 1998-01-24 1998-12-29 Verfahren zur Abstandsmessung und Durchführung des Verfahrens
JP2000528883A JP2002501206A (ja) 1998-01-24 1998-12-29 信号エコーセンサ用監視装置
US09/600,850 US6404702B1 (en) 1998-01-24 1998-12-29 Surveillance device for signal-echo sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19802724A DE19802724A1 (de) 1998-01-24 1998-01-24 Überwachungseinrichtung für Signal-Echo-Sensoren
DE19802724.9 1998-01-24

Publications (1)

Publication Number Publication Date
WO1999038029A1 true WO1999038029A1 (de) 1999-07-29

Family

ID=7855608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003804 WO1999038029A1 (de) 1998-01-24 1998-12-29 Überwachungseinrichtung für signal-echo-sensoren

Country Status (6)

Country Link
US (1) US6404702B1 (de)
EP (1) EP1049945B1 (de)
JP (1) JP2002501206A (de)
DE (2) DE19802724A1 (de)
ES (1) ES2188039T3 (de)
WO (1) WO1999038029A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049906A1 (de) 2000-10-10 2002-04-11 Bosch Gmbh Robert Sensoranordnung mit einem Puls-Echo-Radar
DE10138001A1 (de) 2001-08-02 2003-02-20 Bosch Gmbh Robert Echosignalüberwachungsvorrichtung und -verfahren
EP1450128A1 (de) * 2003-02-19 2004-08-25 Leica Geosystems AG Verfahren und Vorrichtung zur Ableitung geodätischer Entfernungsinformationen
DE10343175A1 (de) * 2003-09-18 2005-04-14 Robert Bosch Gmbh Verfahren zur Abstandsmessung und Messeinrichtung hierzu
DE10360889A1 (de) * 2003-12-19 2005-07-14 Robert Bosch Gmbh System mit zwei oder mehr Sensoren
DE102006041225B4 (de) * 2006-09-02 2008-05-15 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und System zur Abwehr von Boden-Luft-Flugkörpern
DE102008042278A1 (de) * 2008-06-13 2009-12-24 Ge Inspection Technologies Gmbh Verfahren zur zerstörungsfreien Ultraschalluntersuchung sowie Vorrichtung zur Durchführung des Verfahrens
DE102008040248A1 (de) 2008-07-08 2010-01-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Geschwindigkeit eines Objekts
US20100103432A1 (en) * 2008-10-27 2010-04-29 Mcginnis William J Positioning system and method of using same
US9373089B2 (en) * 2012-12-19 2016-06-21 Robert Bosch Gmbh Intelligent electronic monitoring system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054862A (en) * 1975-10-28 1977-10-18 Raytheon Company Ranging system with resolution of correlator ambiguities
DE4023538A1 (de) * 1990-07-25 1992-01-30 Bosch Gmbh Robert Kollisionswarneinrichtung
WO1993006503A1 (en) * 1991-09-17 1993-04-01 British Nuclear Fuels Plc Ultrasonic ranging devices
US5349567A (en) * 1993-08-24 1994-09-20 Hughes Aircraft Company Least mean square (LMS) normalizer for active sonar
EP0642033A2 (de) * 1993-09-08 1995-03-08 The Laitram Corporation Unterwasserimpulsverfolgesystem
DE4433957A1 (de) * 1994-09-23 1996-03-28 Mayser Gmbh & Co Verfahren zur Ultraschall-Hinderniserkennung
WO1997011364A1 (en) * 1995-09-18 1997-03-27 Combustion Engineering, Inc. Ultrasonic testing (ut) system signal processing
US5631875A (en) * 1991-11-11 1997-05-20 Robert Bosch Gmbh Device for measuring distance with ultrasound
WO1997028461A1 (en) * 1996-01-30 1997-08-07 Dronningborg Industries A/S Method and device for measuring the height of the cutting table

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8701633A (nl) * 1987-07-10 1989-02-01 Philips Nv Digitale echocompensator.
GB2208770A (en) * 1987-08-14 1989-04-12 Philips Electronic Associated Chirp ranging & velocity measurement
GB9502087D0 (en) * 1995-02-02 1995-03-22 Croma Dev Ltd Improvements relating to pulse echo distance measurement
US5889490A (en) * 1996-08-05 1999-03-30 Wachter; Eric A. Method and apparatus for improved ranging
GB2350969B (en) * 1999-06-07 2003-11-05 Ericsson Telefon Ab L M Loudspeaker volume range control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054862A (en) * 1975-10-28 1977-10-18 Raytheon Company Ranging system with resolution of correlator ambiguities
DE4023538A1 (de) * 1990-07-25 1992-01-30 Bosch Gmbh Robert Kollisionswarneinrichtung
WO1993006503A1 (en) * 1991-09-17 1993-04-01 British Nuclear Fuels Plc Ultrasonic ranging devices
US5631875A (en) * 1991-11-11 1997-05-20 Robert Bosch Gmbh Device for measuring distance with ultrasound
US5349567A (en) * 1993-08-24 1994-09-20 Hughes Aircraft Company Least mean square (LMS) normalizer for active sonar
EP0642033A2 (de) * 1993-09-08 1995-03-08 The Laitram Corporation Unterwasserimpulsverfolgesystem
DE4433957A1 (de) * 1994-09-23 1996-03-28 Mayser Gmbh & Co Verfahren zur Ultraschall-Hinderniserkennung
WO1997011364A1 (en) * 1995-09-18 1997-03-27 Combustion Engineering, Inc. Ultrasonic testing (ut) system signal processing
WO1997028461A1 (en) * 1996-01-30 1997-08-07 Dronningborg Industries A/S Method and device for measuring the height of the cutting table

Also Published As

Publication number Publication date
US6404702B1 (en) 2002-06-11
JP2002501206A (ja) 2002-01-15
DE59806380D1 (de) 2003-01-02
EP1049945A1 (de) 2000-11-08
EP1049945B1 (de) 2002-11-20
DE19802724A1 (de) 1999-07-29
ES2188039T3 (es) 2003-06-16

Similar Documents

Publication Publication Date Title
DE3812293C2 (de)
EP1058126B1 (de) Abstandserfassungsvorrichtung
DE102017123049B3 (de) Echokodierung und -Dekodierung von Ultraschallsignalen unter Verwendung von zweiwertigen Chirp-Signalen durch Vorzeichenermittlung der Frequenzänderung
EP0987563B1 (de) Verfahren zur Bestimmung des Abstandes zwischen einem Objekt und einer sich örtlich verändernden Einrichtung, insbesondere einem Kraftfahrzeug
EP0689679B1 (de) Verfahren zur erkennung und separation von nutz- und störechos im empfangssignal von abstandssensoren, welche nach dem impuls-echo-prinzip arbeiten
EP0746775B1 (de) Mit akustischen oberflächenwellen arbeitende identifizierungsmarke
EP1417509B1 (de) Echosignalüberwachungsvorrichtung und -verfahren
DE112006002310T5 (de) Verarbeitung des Tanksignals in einem Radarfüllstandsmesssystem
EP2943806A1 (de) Vorrichtung und verfahren zur umfeldsensorik
DE10103936A1 (de) Ultraschall-Sonarsystem und -verfahren mit Verwendung einer Sendefrequenz, die von einer Nachschwingungsfrequenz verschieden ist
DE3438045A1 (de) Verfahren und anordnung zur signaluebertragung bei ultraschall-echolotgeraeten
EP0573034A2 (de) Verfahren und Anordnung zur Abstandsmessung nach dem Impulslaufzeitprinzip
EP1049945A1 (de) Überwachungseinrichtung für signal-echo-sensoren
DE3513270A1 (de) Einrichtung zur abstandsmessung, insbesondere fuer kraftfahrzeuge
DE10140346B4 (de) Verfahren zur Entfernungsmessung
DE102022101229A1 (de) Ultraschallsensorsystem mit einer Objekterkennung für Objekte im Nahbereich eines Ultraschallsensors und zugehöriges Verfahren
DE3805439A1 (de) Verfahren zur ueberwachung eines raumes gegen unbefugten eintritt mittels ultraschall
EP3258296A1 (de) Reflexionsmikrowellenschranke
DE102014219399A1 (de) Ultraschallmesssystem, Ultraschallsensor und Verfahren zur Untersuchung eines Ultraschallechos
EP1182434B1 (de) Multi-Frequenz-Füllstandmessradargerät
DE102022004971B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022101227B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022004969B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022004970B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022004967B3 (de) Verfahren zur Erkennung von Objekten im Nahbereich eines Ultraschallsensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998966588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09600850

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998966588

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998966588

Country of ref document: EP