WO1998050329A1 - Procede de preparation de 1,1,1,3,3-pentachlorobutane - Google Patents

Procede de preparation de 1,1,1,3,3-pentachlorobutane Download PDF

Info

Publication number
WO1998050329A1
WO1998050329A1 PCT/EP1998/002585 EP9802585W WO9850329A1 WO 1998050329 A1 WO1998050329 A1 WO 1998050329A1 EP 9802585 W EP9802585 W EP 9802585W WO 9850329 A1 WO9850329 A1 WO 9850329A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
equal
process according
reaction
solvent
Prior art date
Application number
PCT/EP1998/002585
Other languages
English (en)
Inventor
Jean-Paul Schoebrechts
Véronique Mathieu
Francine Janssens
Original Assignee
Solvay (Societe Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27159858&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998050329(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from BE9700399A external-priority patent/BE1011142A3/fr
Priority claimed from BE9700669A external-priority patent/BE1011319A3/fr
Priority claimed from BE9800140A external-priority patent/BE1011758A6/fr
Priority to HU0002105A priority Critical patent/HU227087B1/hu
Priority to CA002288939A priority patent/CA2288939A1/fr
Priority to DE69810099T priority patent/DE69810099T2/de
Priority to PL98336664A priority patent/PL189264B1/pl
Application filed by Solvay (Societe Anonyme) filed Critical Solvay (Societe Anonyme)
Priority to AU76519/98A priority patent/AU743129B2/en
Priority to BRPI9808730-4A priority patent/BR9808730B1/pt
Priority to AT98924264T priority patent/ATE229491T1/de
Priority to US09/423,258 priority patent/US6399840B1/en
Priority to KR1019997010158A priority patent/KR100557782B1/ko
Priority to EP98924264A priority patent/EP0980345B1/fr
Priority to JP54771398A priority patent/JP4111548B2/ja
Publication of WO1998050329A1 publication Critical patent/WO1998050329A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/275Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of hydrocarbons and halogenated hydrocarbons

Definitions

  • the present invention relates to a process for the preparation of 1,1,1,3,3-pentachlorobutane, more particularly by telomerization between carbon tetrachloride and 2-chloroprop-1-ene.
  • 1,1,3,3,3 -pentachlorobutane is of considerable industrial interest insofar as it leads by fluorination to the corresponding pentafluorinated derivative (HFC-365mfc) usable in particular as a swelling agent or solvent of the third generation, devoid of harmful effect on the ozone layer and not contributing to global warming by greenhouse effect.
  • HFC-365mfc pentafluorinated derivative
  • the invention therefore aims to provide a process which gives access, in a single step and at the expense of easily accessible reagents, to 1,1,1,3,3-pentachlorobutane with excellent yields.
  • the invention therefore relates to a process for the manufacture of 1,1,1,3,3-pentachlorobutane by reaction between carbon tetrachloride and 2-chloroprop-1-ene in the presence of a catalyst comprising at least one copper compound (I) or a copper (II) compound.
  • a catalyst comprising at least one copper compound (I) or a copper (II) compound.
  • copper (II) compounds are preferred.
  • the copper compound (I) or (II) is preferably chosen from copper halides, copper carboxylates, mixed copper salts or complexes formed with neutral ligands.
  • copper halides (I) or (II) there are in particular fluorides, chlorides, bromides or iodides. Chlorides and iodides are preferred. Copper (II) chloride is particularly preferred.
  • copper carboxylates (I) or (II) there are in particular the salts formed from carboxylic acids such as acetic acid, propionic acid, butyric acid, cyclohexanebutyric acid or acid benzoic.
  • carboxylic acids such as acetic acid, propionic acid, butyric acid, cyclohexanebutyric acid or acid benzoic.
  • Copper acetates (I) or (II) i.e. the salts formed at the expense of acetic acid, are preferred.
  • Copper (II) cyclohexanebutyrate is very particularly preferred.
  • complexes formed with copper (I) or (II) compounds there are in particular the complexes formed with neutral ligands such as phosphines such as triphenylphosphine or with acetylacetone. Copper (II) acetylacetonate is preferred.
  • the catalyst is chosen from copper acetate (I) or (II), copper cyclohexanebutyrate (II), the complex formed between cuprous chloride and triphenylphosphine, copper acetylacetonate (II), copper (II) hydroxychloride, copper (I) chloride, copper (I) iodide or copper (II) chloride.
  • copper (II) chloride, copper (II) acetate, copper (II) hydroxychloride, copper (II) cyclohexanebutyrate and copper (II) acetylacetonate are preferred.
  • the molar ratio between the copper compound engaged and the 2-chloroprop-1-ene is generally greater than or equal to 0.001.
  • it is greater than or equal to 0.002.
  • it is greater than or equal to 0.005.
  • the molar ratio between the copper compound engaged and the 2 chloroprop-1-ene is most often less than or equal to 5.
  • it is less than or equal to 1.
  • it is less than or equal to 0.5. In a particularly preferred manner, this ratio is greater than or equal to 0.01 and less than or equal to 0.1.
  • the molar ratio between the catalyst engaged and the 2-chloroprop-1-ene evolves approximately between the same limits as in a batch process but it can however reach the value of 50.
  • the amount of catalyst used is expressed, in a batch process, relative to the initial amount of 2-chloroprop- 1-ene implementation and, in a continuous process, relative to the stationary amount of 2-chloroprop-l-ene present in the reactor.
  • the molar ratio between carbon tetrachloride and the 2-chloroprop-1-enene used can vary within wide limits. This ratio is generally equal to or greater than 0.1. Advantageously, this ratio is equal to or greater than 0.5. Preferably, it is greater than or equal to 1. Generally, this ratio is however equal to or less than 20. Advantageously, this ratio is equal to or less than 10. In a preferred manner, this ratio is equal to or less than 8.
  • the reaction takes place at a temperature greater than or equal to room temperature.
  • the temperature is equal to or higher than 40 ° C.
  • it is equal to or greater than 80 ° C.
  • the reaction temperature does not exceed 200 ° C.
  • the reaction temperature is greater than or equal to 90 ° C., preferably it is greater than or equal to 100 ° C. It is usually less than or equal to 150 ° C, more precisely less than or equal to 140 ° C.
  • copper hydroxychloride (H) it is particularly advantageous to carry out the reaction at a temperature close to 130 ° C.
  • the duration of the reaction in a batch process, or the residence time in a continuous process are a function of various parameters such as the reaction temperature, the concentration of reactants and catalyst in the reaction mixture and their molar ratios. In general, depending on these parameters, the residence time or the duration of the reaction can vary from 5 seconds to 20 hours.
  • the pressure is usually greater than or equal to atmospheric pressure and equal to or less than 15 bars. It is advantageously less than or equal to 10 bars.
  • the pressure is advantageously chosen, as a function of the temperature of the reaction medium, so as to maintain the reaction medium essentially in the condensed phase.
  • the reaction is carried out in the presence of a solvent.
  • a solvent Any solvent in which the reactants form the desired product with a satisfactory yield can be used.
  • the solvent of the reaction is an alcohol, a nitrile, an amide, a lactone, a trialkylphosphine oxide, a trialkyl phosphate or another polar solvent.
  • the alcohols which can be used as solvent for the reaction there are in particular methanol, ethanol, isopropanol and tert-butanol.
  • nitriles which can be used as solvent for the reaction there are in particular aliphatic nitriles, in particular acetonitrile, propionitrile, or radiponitrile and aromatic nitriles, in particular benzonitrile or tolunitrile.
  • nitriles propionitrile and padiponitrile are preferred.
  • amides which can be used as solvent for the reaction there are linear amides such as N, N-dimethylacetamide and N, N-dimethylformamide and cyclic amides such as N-methylpyrrolidone. Mention may also be made of hexamethylphosphoramide.
  • lactones which can be used as solvent for the reaction
  • examples mention may in particular be made of ⁇ -butyrolactone.
  • trialkylphosphine oxides which can be used as solvent for the reaction, mention may be made in particular of the compounds of formula (R1R2R3) PO, in which RI, R2 and R3 represent identical or different, preferably linear, C3-C10 alkyl groups.
  • the solvent is an amide or a trialkylphosphine oxide.
  • Good results have in particular been obtained with N-methylpyrrolidone, with N, N- dimethylacetamide, as well as with a mixture of tri- (n-hexyl) phosphine oxide, tri- (n- octyi) phosphine, n-octyl-di- (n-hexyl) -phosphine oxide and n-hexyl-di- (n-octyl) -phosphine oxide.
  • the quantity of solvent used in the first embodiment of the process according to the invention is not critical. However, an overly diluted solution is not conducive to high yield and high conversion rate.
  • the molar ratio of the solvent to 2-chloroprop-1-ene is equal to or greater than 0.05.
  • this ratio is equal to or greater than 0.1.
  • the molar ratio of solvent to 2-chloroprop-1-ene is generally equal to or less than 20.
  • it is equal to or less than 15.
  • this ratio is equal to or greater than 0.2 and equal or less than 10.
  • the amount of solvent can vary, on a molar basis, from approximately 5 to about 500 times the amount of catalyst, preferably about 10 to about 200 times.
  • the reaction is carried out in the presence of a cocatalyst.
  • the cocatalyst can be chosen in particular from amines, amides and trialkylphosphine oxides.
  • amines which can be used as cocatalyst there may be mentioned aliphatic amines or aromatic amines.
  • aliphatic amines are primary amines, secondary amines and tertiary amines.
  • the alkanolamines, the alkylamines for example ethanolamine, n-butylamine, tert-butylamine, n-propylamine, isopropylamine, benzylamine, hexamethylene diamine, are used as amine.
  • diethylamine, triethylamine or aromatic amines such as pyridine or aniline.
  • amides which can be used as cocatalyst there may be mentioned N-methylpyrrolidone and N, N-dimethylformamide.
  • trialkylphosphine oxides which can be used as cocatalyst mention may be made of the same compounds as those which can be used as solvent in the first embodiment of the invention.
  • Aliphatic alkylamines such as n-butylamine, tert-butylamine, n-propylamine and isopropylamine are preferred cocatalysts. Isopropylamine and tert-butylamine are very particularly preferred. Trialkylphosphine oxides are other preferred cocatalysts.
  • the reaction temperature can be equal to or less than 120 ° C.
  • the presence of the cocatalyst makes it possible to carry out the reaction at a temperature equal to or less than 100 ° C. while retaining a high conversion rate and excellent selectivity. A temperature close to 90 ° C is particularly recommended.
  • the molar ratio between the cocatalyst and the 2-chloroprop-1-ene engaged is generally greater than or equal to 0.001.
  • this ratio is equal to or greater than 0.005.
  • This ratio is usually equal to or less than 1.
  • this ratio is equal to or less than 0.5.
  • this ratio is greater than or equal to 0.01 and less than or equal to 0.25. In a particularly preferred manner, this ratio is greater than or equal to 0, 1 and _ less than or equal to 0.2.
  • the amount of cocatalyst used can vary, on a molar basis, from about 0.1 to about 25 times the amount of catalyst, preferably from about 0.5 to about 20 times.
  • the presence of a cocatalyst in the reaction mixture does not exclude the use of a nitrile or another compound as solvent.
  • carbon tetrachloride can be used both as a reagent and as a solvent.
  • the molar ratio between carbon tetrachloride and 2-chloroprop-1-ene is then greater than or equal to 2.
  • this ratio is greater than or equal to 4.
  • this ratio is greater than or equal to 4 , 5.
  • this ratio is generally less than or equal to 10 and preferably it is less than or equal to 8. In a preferred manner, this ratio is less than or equal to 6.
  • the process of the invention therefore makes it possible to synthesize 1,1,1,3,3-pentachlorobutane in a single step, starting from reagents easily accessible, with typically a selectivity of more than 90%.
  • the 1,1, 1,3, 3 -pentachlorobutane obtained according to the process of the invention is a precursor of the analogous pentafluorinated analogue 1,1,1,3,3-pentafluorobutane (HFC- 365mfc), which can be easily obtained by treatment with hydrogen fluoride in the presence of a catalyst such as an antimony salt, a titanium salt, a tantalum salt or a tin salt.
  • a catalyst such as an antimony salt, a titanium salt, a tantalum salt or a tin salt.
  • the examples below illustrate the invention without limitation.
  • the reagents, the solvent and the catalyst were introduced into a 300 ml autoclave, the internal walls of which are covered with TEFLON®. Then, the apparatus was closed hermetically, placed in a vertical oven and the temperature was gradually increased and maintained at the desired value for several hours. The stirring was carried out by a magnetic bar placed at the bottom of the autoclave. At the end of the reaction, the autoclave was allowed to cool, a sample of liquid was withdrawn by syringe and assayed by a chromatographic method to determine the degree of conversion of 2-chloroprop-l-ene and the selectivity to 1.1 , 1,3,3-pentachlorobutane.
  • the conversion rate is the ratio, expressed in percent, between the amount of 2-chloroprop-l-ene used less the amount not converted at the end of the reaction and the amount used ;
  • the selectivity for 1,1,1,3,3-pentachlorobutane is the ratio, expressed in percent, between the amount of 1,1, 1,3, 3 -pentachlorobutane formed and the amount of 1, 1, 1,3,3-pentachlorobutane which would have formed if all of the converted 2-chloroprop-l-ene had generated 1,1,1,3,3-pentachlorobutane. Examples 1 to 4
  • 1,1,1,3,3-pentachlorobutane was prepared in the presence of different nitriles and in the presence of a mixture containing 20% CuCl and 80% CuClOH (and symbolized by CuCl-CuClOH below). below) as a copper compound.
  • the 2-chloroprop-1-ene / CCl4 / CuCl-CuClOH / nitrile molar ratio was 1/2 / 0.01 / 1.
  • the reaction proceeded at 130 ° C for 13 hours. The results obtained are collated in Table I.
  • Example 1 was repeated with a 2-chloroprop-1-ene / nitrile molar ratio of 1 / 0.5. A conversion rate of 85% and a selectivity of 85% were obtained.
  • Example 6 Example 1 was repeated with a 2-chloroprop-1-ene / nitrile molar ratio of 1/4. A 90% conversion rate and a 89% selectivity were obtained.
  • Example 6 was repeated using anhydrous copper (II) chloride as the catalyst. A conversion rate of 92% and a selectivity of 98% were obtained.
  • Example 6 was repeated at different molar ratios between 2-chloroprop-1-ene and CuCl-CuClOH.
  • the molar ratio was determined by the molar ratio of 2-chloroprop-1-ene and CuCl-CuClOH.
  • Example 6 was repeated at a temperature of 150 ° C. A 99% conversion rate and a 91% selectivity were obtained. Examples 11 and 12
  • 1,1,1,3,3 -pentachlorobutane was prepared in the presence of different amines and in the presence of CuCl-CuClOH.
  • the chloroprop-1-ene / CC 2 / CuCl-CuClOH / amine 2 molar ratio was 1/5 / 0.05 / 0.1.
  • the reaction proceeded at 90 ° C for 2 hours. The results obtained are collated in Table III.
  • Example 12 was repeated with copper (II) acetate as catalyst and a reaction time of 1 hour at 90 ° C.
  • the 2-chloroprop-1-ene / CCl / Cu (COOCH3) 2 / amine molar ratio was 1/5 / 0.05 / 0.15.
  • a conversion rate of 96% and a selectivity of 97% were obtained.
  • Example 11 was repeated with various copper compounds. The results are collated in Table IV. Table IV
  • Example 21 (not in accordance with the invention) Example 6 was repeated but in the absence of copper compound. The formation of 1,1,1,3,3-pentachlorobutane is not observed.
  • Example 24 was repeated with copper acetate (H) as the catalyst. There was obtained a conversion rate of 55% and a selectivity to 1,1, 1,3,3 - pentachlorobutane of 94%.
  • Example 29
  • 1,1,1,3,3-Pentachlorobutane was prepared in the presence of CuCl2 as catalyst and N-methylpyrrolidone as solvent.
  • the chloroprop-1-ene / CClVCuC ⁇ / N-methylpyrrolidone 2 molar ratio was 1 / 2.2 / 0.05 / 3.3. After 5 hours of reaction at 115 ° C, the conversion rate was 100% and the selectivity to 1,1, 1,3, 3 -pentachlorobutane 94%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Le 1,1,1,3,3-pentachlorobutane est obtenu par réaction entre du tétrachlorure de carbone et du 2-chloroprop-1-ène en présence d'au moins un composé de cuivre (I) ou (II) à titre de catalyseur de télomérisation. Avantageusement, un composé polaire peut être présent dans le mélange réactionnel à titre de solvant et une amine, un amide ou un oxyde de trialkylphosphine à titre de cocatalyseur.

Description

Procédé de préparation de 1,1.1,3.3 -pentachlorobutane
La présente invention concerne un procédé de préparation de 1,1,1,3,3- pentachlorobutane, plus particulièrement par télomérisation entre du tétrachlorure de carbone et du 2-chloroprop-l-ène.
Le 1,1, 1,3, 3 -pentachlorobutane présente un intérêt industriel non négligeable dans la mesure où il conduit par fluoration au dérivé pentafluoré correspondant (HFC-365mfc) utilisable notamment comme agent gonflant ou solvant de la troisième génération, dépourvu d'effet néfaste sur la couche d'ozone et ne participant pas au réchauffement global de la planète par effet de serre.
R. FREIDLΓNA et coll. (Bull. Acad. Sci. USSR, 28, 1766-69, 1979) ont obtenu du 1,1,1,3,3-pentachlorobutane avec un faible rendement par réaction entre le tétrachlorure de carbone et le 2-chloroprop-l-ène en présence de fer pentacarbonyle comme catalyseur, dans l'éthanol ou Pisopropanol. Le faible rendement, d'une part, et la toxicité élevée du catalyseur, d'autre part, font que cette méthode de synthèse apparaît difficilement utilisable industriellement. Une autre voie d'accès au 1, 1, 1,3,3-pentachlorobutane, décrite récemment par KOTORA et ses collaborateurs (React. Kinet. Catal. Lett. 44(2), 415-9, 1991), consiste à faire réagir du 1,1,1-trichloroéthane avec du 1,1-dichloroéthène en présence de chlorure cuivreux et d'aminé. Le rendement obtenu est faible (8 %) et cette méthode de synthèse apparaît dès lors également difficilement exploitable industriellement.
L'invention vise dès lors à fournir un procédé qui permet d'accéder, en une seule étape et aux dépens de réactifs facilement accessibles, au 1,1,1,3,3- pentachlorobutane avec d'excellents rendements.
L'invention concerne donc un procédé de fabrication de 1,1,1,3,3- pentachlorobutane par réaction entre du tétrachlorure de carbone et du 2- chloroprop-1-ène en présence d'un catalyseur comprenant au moins un composé de cuivre (I) ou un composé de cuivre (II). En règle générale, les composés du cuivre (II) sont préférés.
Le composé de cuivre (I) ou (II) est de préférence choisi parmi les halogénures de cuivre, les carboxylates de cuivre, les sels mixtes de cuivre ou les complexes formés avec des ligands neutres. Parmi les halogénures de cuivre (I) ou (II), on trouve notamment les fluorures, les chlorures, les bromures ou les iodures. Les chlorures et les iodures sont préférés. Le chlorure de cuivre (II) est particulièrement préféré.
Parmi les sels mixtes de cuivre (I) ou (II), on trouve notamment les hydroxyhalogénures. L'hydroxychlorure de cuivre (II) est préféré.
Parmi les carboxylates de cuivre (I) ou (II), on trouve notamment les sels formés au départ d'acides carboxyliques tels que l'acide acétique, l'acide propionique, l'acide butyrique, l'acide cyclohexanebutyrique ou l'acide benzoïque. Les acétates de cuivre (I) ou (II), c'est-à-dire les sels formés aux dépens de l'acide acétique, sont préférés. Le cyclohexanebutyrate de cuivre (II) est tout particulièrement préféré.
Parmi les complexes formés avec des composés du cuivre (I) ou (II), on trouve notamment les complexes formés avec des ligands neutres tels que les phosphines comme la triphénylphosphine ou avec l'acétylacétone. L'acétylacétonate de cuivre (II) est préféré.
Avantageusement, le catalyseur est choisi parmi l'acétate de cuivre (I) ou (II), le cyclohexanebutyrate de cuivre (II), le complexe formé entre le chlorure cuivreux et la triphénylphosphine, l'acétylacétonate de cuivre (II), l'hydroxychlorure de cuivre (II), le chlorure de cuivre (I), l'iodure de cuivre (I) ou le chlorure de cuivre (II). Parmi ces catalyseurs, le chlorure de cuivre (II), l'acétate de cuivre (II), l'hydroxychlorure de cuivre (II), le cyclohexanebutyrate de cuivre (II) et l'acétylacétonate de cuivre (II) sont préférés.
Dans un procédé en discontinu, le rapport molaire entre le composé de cuivre engagé et le 2-chloroprop-l-ène est en général supérieur ou égal à 0,001. Avantageusement, il est supérieur ou égal à 0,002. De préférence, il est supérieur ou égal à 0,005. Le rapport molaire entre le composé de cuivre engagé et le 2 chloroprop-1-ène est le plus souvent inférieur ou égal à 5. Avantageusement, il est inférieur ou égal à 1. De préférence, il est inférieur ou égal à 0,5. D'une manière particulièrement préférée, ce rapport est supérieur ou égal à 0,01 et inférieur ou égal à 0, 1.
Dans un procédé en continu, le rapport molaire entre le catalyseur engagé et le 2-chloroprop-l-ène évolue approximativement entre les mêmes limites que dans un procédé en discontinu mais il peut toutefois atteindre la valeur de 50.
Il est entendu que la quantité de catalyseur mise en oeuvre est exprimée, dans un procédé en discontinu, par rapport à la quantité initiale de 2-chloroprop- 1-ène mise en oeuvre et, dans un procédé en continu, par rapport à la quantité stationnaire de 2-chloroprop-l-ène présent dans le réacteur.
Le rapport molaire entre le tétrachlorure de carbone et le 2-chloroprop-l- ène mis en oeuvre peut varier dans de larges mesures. Ce rapport est en général égal ou supérieur à 0,1. Avantageusement, ce rapport est égal ou supérieur à 0,5. D'une manière préférée, il est supérieur ou égal à 1. Généralement, ce rapport est toutefois égal ou inférieur à 20. Avantageusement, ce rapport est égal ou inférieur à 10. D'une manière préférée, ce rapport est égal ou inférieur à 8.
Classiquement, la réaction se déroule à une température supérieure ou égale à la température ambiante. De préférence, la température est égale ou supérieure à 40 °C. Avantageusement, elle est égale ou supérieure à 80 °C. En général, la température de réaction ne dépasse pas 200 °C. Avantageusement, notamment avec de l'hydroxychlorure de cuivre (II) comme catalyseur, la température de réaction est supérieure ou égale à 90 °C, de préférence elle est supérieure ou égale à 100 °C. Elle est habituellement inférieure ou égale à 150 °C, plus précisément inférieure ou égale à 140 °C. Avec de l'hydroxychlorure de cuivre (H) , il est tout particulièrement avantageux d'effectuer la réaction à une température proche de 130 °C.
La durée de la réaction dans un procédé en discontinu, ou le temps de séjour dans un procédé en continu, sont fonction de divers paramètres tels que la température de réaction, la concentration en réactifs et en catalyseur dans le mélange réactionnel et leurs rapports molaires. En général, en fonction de ces paramètres, le temps de séjour ou la durée de la réaction peuvent varier de 5 secondes à 20 heures. La pression est habituellement supérieure ou égale à la pression atmosphérique et égale ou inférieure à 15 bars. Elle est avantageusement inférieure ou égale à 10 bars. Comme la réaction de télomérisation est généralement réalisée en phase liquide, la pression est avantageusement choisie, en fonction de la température du milieu réactionnel, de façon à maintenir le milieu réactionnel essentiellement en phase condensée.
Dans un premier mode de mise en oeuvre du procédé selon l'invention, la réaction est réalisée en présence d'un solvant. Tout solvant dans lequel les réactifs forment le produit recherché avec un rendement satisfaisant peut être utilisé. Avantageusement, le solvant de la réaction est un alcool, un nitrile, un amide, une lactone, un oxyde de trialkylphosphine, un phosphate de trialkyle ou un autre solvant polaire. Parmi les alcools utilisables comme solvant pour la réaction, on trouve notamment le méthanol, Péthanol, l'isopropanol et le tert-butanol. Parmi les nitriles utilisables comme solvant pour la réaction, on trouve notamment des nitriles aliphatiques, notamment l'acétonitrile, le propionitrile, ou radiponitrile et des nitriles aromatiques, notamment le benzonitrile ou le tolunitrile. Parmi les nitriles, le propionitrile et Padiponitrile sont préférés. Parmi les amides utilisables comme solvant pour la réaction, on trouve des amides linéaires comme le N,N- diméthylacétamide et le N,N-diméthylformamide et des amides cycliques comme la N-méthylpyrrolidone. On peut aussi mentionner l'hexaméthylphosphoramide. Parmi les lactones utilisables comme solvant pour la réaction, on peut citer notamment la γ-butyrolactone. Parmi les oxydes de trialkylphosphine utilisables comme solvant pour la réaction, on peut citer notamment les composés de formule (RlR2R3)PO, dans laquelle RI, R2 et R3 représentent des groupements alkyles en C3-C10, identiques ou différents, de préférence linéaires. On retient en particulier l'oxyde de tri-(n-butyl)phosphine, l'oxyde de tri-(n-hexyl)phosphine, l'oxyde de tri-(n-octyl)phosphine, l'oxyde de n-octyl-di-(n-hexyl)-phosphine et l'oxyde de n-hexyl-di-(n-octyl)-phosphine et leurs mélanges. Parmi les phosphates de trialkyle utilisables comme solvant pour la réaction, on peut citer notamment les composés de formule (RO)3PO, dans laquelle R représente un groupement alkyle en C3-C10, de préférence linéaire. On retient en particulier le phosphate de tributyle. Comme autres solvants polaires, on peut encore mentionner la 1,3- diméthyl-2-imidazolidinone, le diméthylsulfoxyde et le tétrahydrofuranne. De préférence, le solvant est un amide ou un oxyde de trialkylphosphine. De bons résultats ont en particulier été obtenus avec la N-méthylpyrrolidone, avec le N,N- diméthylacétamide, ainsi qu'avec un mélange d'oxyde de tri-(n-hexyl)phosphine, d'oxyde de tri-(n-octyi)phosphine, d'oxyde de n-octyl-di-(n-hexyl)-phosphine et d'oxyde de n-hexyl-di-(n-octyl)-phosphine.
La quantité de solvant engagé dans le premier mode de mise en oeuvre du procédé selon l'invention n'est pas critique. Toutefois, une solution trop diluée n'est pas favorable à un rendement et à un taux de conversion élevés. De préférence, le rapport molaire du solvant au 2-chloroprop-l-ène est égal ou supérieur à 0,05. Avantageusement, ce rapport est égal ou supérieur à 0,1. Le rapport molaire du solvant au 2-chloroprop-l-ène est en général égal ou inférieur à 20. Avantageusement, il est égal ou inférieur à 15. D'une manière préférée, ce rapport est égal ou supérieur à 0,2 et égal ou inférieur à 10. Dans le milieu réactionnel, la quantité de solvant peut varier, sur une base molaire, d'environ 5 à environ 500 fois la quantité de catalyseur, de préférence d'environ 10 à environ 200 fois.
Dans un deuxième mode, préféré, de mise en oeuvre du procédé selon l'invention, la réaction est réalisée en présence d'un cocatalyseur. Le cocatalyseur peut être choisi notamment parmi les aminés, les amides et les oxydes de trialkylphosphine. Comme aminés utilisables comme cocatalyseur, on peut citer les aminés aliphatiques ou les aminés aromatiques. Parmi les aminés aliphatiques, on trouve les aminés primaires, les aminés secondaires et les aminés tertiaires. D'une façon générale, on utilise comme aminé les alcanolamines, les alkylamines, comme par exemple l'éthanolamine, la n-butylamine, la tert- butylamine, la n-propylamine, l'isopropylamine, la benzylamine, l'hexaméthylène diamine, la diéthylamine, la triéthylamine ou des aminés aromatiques comme la pyridine ou l'aniline. Comme amides utilisables comme cocatalyseur, on peut citer la N-méthylpyrrolidone et le N,N-diméthylformamide. Comme oxydes de trialkylphosphine utilisables comme cocatalyseur, on peut citer les mêmes composés que ceux utilisables comme solvant dans le premier mode de réalisation de l'invention. Les alkylamines aliphatiques comme la n-butylamine, la tert- butylamine, la n-propylamine et l'isopropylamine sont des cocatalyseurs préférés. L'isopropylamine et la tert-butylamine sont tout particulièrement préférées. Les oxydes de trialkylphosphine sont d'autres cocatalyseurs préférés.
Les composés de cuivre (II) sont particulièrement préférés lorsqu'on réalise la réaction en présence d'un cocatalyseur. De très bons résultats ont été obtenus avec l'acétate de cuivre (II) comme catalyseur et la tert-butylamine comme cocatalyseur. Dans ce deuxième mode de mise en oeuvre préféré du procédé selon l'invention, la température de réaction peut être égale ou inférieure à 120 °C. En particulier, la présence du cocatalyseur permet de réaliser la réaction à une température égale ou inférieure à 100 °C tout en conservant un taux de transformation élevé et une excellente sélectivité. Une température proche de 90 °C est tout particulièrement recommandée.
Le rapport molaire entre le cocatalyseur et le 2-chloroprop-l-ène engagé est en général supérieur ou égal à 0,001. Avantageusement, ce rapport est égal ou supérieur à 0,005. Ce rapport est habituellement égal ou inférieur à 1. Avantageusement, ce rapport est égal ou inférieur à 0,5. D'une manière préférée, ce rapport est supérieur ou égal à 0,01 et inférieur ou égal à 0,25. D'une manière particulièrement préférée, ce rapport est supérieur ou égal à 0, 1 et _ inférieur ou égal à 0,2. La quantité de cocatalyseur mise en oeuvre peut varier, sur une base molaire, d'environ 0,1 à environ 25 fois la quantité de catalyseur, de préférence d'environ 0,5 à environ 20 fois.
La présence d'un cocatalyseur dans le mélange réactionnel n'exclut pas l'utilisation d'un nitrile ou d'un autre composé comme solvant.
Dans ce deuxième mode de mise en oeuvre du procédé selon l'invention, le tétrachlorure de carbone peut servir à la fois de réactif et de solvant. Le rapport molaire entre le tétrachlorure de carbone et le 2-chloroprop-l-ène est alors supérieur ou égal à 2. Avantageusement, ce rapport est supérieur ou égal à 4. D'une manière préférée, ce rapport est supérieur ou égal à 4,5. Toutefois, pour éviter une trop grande dilution des réactifs, ce rapport est généralement inférieur ou égal à 10 et de préférence, il est inférieur ou égal à 8. D'une manière préférée, ce rapport est inférieur ou égal à 6.
Le procédé de l'invention permet donc de synthétiser le 1,1,1,3,3- pentachlorobutane en une seule étape, au départ de réactifs facilement accessibles, avec typiquement une sélectivité de plus de 90 %.
Le 1,1, 1,3, 3 -pentachlorobutane obtenu selon le procédé de l'invention est un précurseur de l'analogue pentafluoré 1,1,1,3,3-pentafluorobutane (HFC- 365mfc) correspondant, lequel peut être facilement obtenu par traitement avec du fluorure d'hydrogène en présence d'un catalyseur tel qu'un sel d'antimoine, un sel de titane, un sel de tantale ou un sel d'étain.
Les exemples ci-après illustrent l'invention de manière non limitative. Dans ces exemples, on a introduit les réactifs, le solvant et le catalyseur dans un autoclave de 300 ml dont les parois internes sont recouvertes de TEFLON®. Ensuite, l'appareil a été fermé hermétiquement, placé dans un four vertical et la température a été augmentée progressivement et maintenue à la valeur désirée pendant plusieurs heures. L'agitation a été assurée par un barreau magnétique placé dans le fond de l'autoclave. En fin de réaction, on a laissé refroidir l'autoclave, un échantillon de liquide a été prélevé à la seringue et dosé par une méthode chromatographique pour déterminer le taux de conversion du 2-chloroprop-l-ène et la sélectivité en 1,1,1,3,3-pentachlorobutane.
Dans les tableaux ci-dessous, le taux de conversion est le rapport, exprimé en pourcents, entre la quantité de 2-chloroprop-l-ène mise en oeuvre diminuée de la quantité non convertie au terme de la réaction et la quantité mise en oeuvre; la sélectivité en 1,1,1,3,3-pentachlorobutane est le rapport, exprimé en pourcents, entre la quantité de 1,1, 1,3, 3 -pentachlorobutane formé et la quantité de 1, 1, 1,3,3-pentachlorobutane qui aurait été formée si tout le 2-chloroprop-l-ène converti avait généré du 1,1,1,3,3-pentachlorobutane. Exemples 1 à 4
Dans ces exemples, on a préparé du 1,1,1,3,3-pentachlorobutane en présence de différents nitriles et en présence d'un mélange contenant 20 % de CuCl et 80 % de CuClOH (et symbolisé par CuCl-CuClOH ci-dessous) à titre de composé de cuivre. Le rapport molaire 2-chloroprop-l-ène/CCl4/CuCl- CuClOH/nitrile était 1/2/0,01/1. La réaction s'est déroulée à 130 °C durant 13 heures. Les résultats obtenus sont rassemblés dans le tableau I.
Tableau I
Figure imgf000009_0001
Exemple 5
On a répété l'exemple 1 avec un rapport molaire 2-chloroprop-l-ène/nitrile de 1/0,5. On a obtenu un taux de conversion de 85 % et une sélectivité de 85 %.
Exemple 6 On a répété l'exemple 1 avec un rapport molaire 2-chloroprop-l-ène/nitrile de 1/4. On a obtenu un taux de conversion de 90 % et une sélectivité de 89 %.
Exemple 7
On a répété l'exemple 6 en utilisant du chlorure de cuivre (II) anhydre comme catalyseur. On a obtenu un taux de conversion de 92 % et une sélectivité de 98 %.
Exemples 8 et 9
Dans ces exemples, on a répété l'exemple 6 à différents rapports molaires entre le 2-chloroprop-l-ène et le CuCl-CuClOH. Le rapport molaire
2-chloroprop-l-ène/CCl4/propionitrile était 1/2/4. Les résultats obtenus sont rassemblés dans le tableau II. Tableau II
Figure imgf000010_0001
Exemple 10
Dans cet exemple, on a répété l'exemple 6 à une température de 150 °C. On a obtenu un taux de conversion de 99 % et une sélectivité de 91 %. Exemples 11 et 12
Dans ces exemples, on a préparé du 1,1, 1,3, 3 -pentachlorobutane en présence de différentes aminés et en présence de CuCl-CuClOH. Le rapport molaire 2 chloroprop-l-ène/CC^/CuCl-CuClOH/amine était 1/5/0,05/0,1. La réaction s'est déroulée à 90 °C durant 2 heures. Les résultats obtenus sont rassemblés dans le tableau III.
Tableau III
Figure imgf000010_0002
Exemple 13
On a répété l'exemple 12 avec de l'acétate de cuivre (II) comme catalyseur et un temps de réaction de 1 heure à 90 °C. Le rapport molaire 2-chloroprop-l- ène/CCl /Cu(COOCH3)2/amine était de 1/5/0,05/0,15. On a obtenu un taux de conversion de 96 % et une sélectivité de 97 %. Exemples 14 à 20
On a répété l'exemple 11 avec divers composés du cuivre. Les résultats sont rassemblés dans le tableau IV. Tableau IV
Figure imgf000011_0001
* : cyclohexanebutyrate de cuivre (II) ** : acétylacétonate de cuivre (II)
Exemple 21 (non conforme à l'invention) On a répété l'exemple 6 mais en l'absence de composé de cuivre. On n'observe pas la formation de 1,1,1,3,3-pentachlorobutane.
Exemples 22 à 25
On a préparé du 1,1, 1,3, 3 -pentachlorobutane en présence de différents solvants et d' acétylacétonate de cuivre (II) à titre de catalyseur. La durée de réaction était de 2 heures. Les rapports molaires des réactifs, les températures de réaction et les résultats obtenus sont rassemblés dans le tableau V.
Exemples 26-27
On a préparé du 1,1, 1,3, 3 -pentachlorobutane au départ de 2-chloroprop-l- ène et de tétrachlorure de carbone en présence d'acétylacétonate de cuivre (II) à titre de catalyseur et d'un mélange de 4 trialkylphosphine oxydes (tri-(n- hexyl)phosphine oxyde, tri-(n-octyl)phosphine oxyde, n-octyl-di-(n-hexyl)-phosphine oxyde et n-hexyl-di-(n-octyl)-phosphine oxyde), commercialisé par CYTEC sous la dénomination CYANEX® 923. La durée de réaction était de 2 heures. Les rapports molaires des réactifs, les températures de réaction et les résultats obtenus sont également présentés dans le tableau V. Tableau V
Figure imgf000012_0001
Exemple 28
On a répété l'exemple 24 avec de l'acétate de cuivre (H) comme catalyseur. On a obtenu un taux de conversion de 55 % et une sélectivité en 1,1, 1,3,3 - pentachlorobutane de 94 %. Exemple 29
On a préparé du 1,1,1,3,3-pentachlorobutane en présence de CuCl2 comme catalyseur et de N-méthylpyrrolidone comme solvant. Le rapport molaire 2 chloroprop-l-ène/CClVCuC^/N-méthylpyrrolidone était 1/2,2/0,05/3,3. Après 5 heures de réaction à 115 °C, le taux de conversion était de 100 % et la sélectivité en 1,1, 1,3, 3 -pentachlorobutane de 94 %.

Claims

R E V E N D I C A T I O N S
1 - Procédé de préparation de 1, 1,1,3,3-pentachlorobutane par réaction entre du tétrachlorure de carbone et du 2-chloroprop-l-ène en présence d'un catalyseur de télomérisation caractérisé en ce que le catalyseur comprend au moins un composé de cuivre (I) ou un composé de cuivre (II).
2 - Procédé selon la revendication 1 caractérisé en ce que le composé de cuivre est choisi parmi les halogénures de cuivre, les sels mixtes de cuivre, les carboxylates de cuivre, les complexes avec une phosphine ou avec l'acétylacétone, ou leurs mélanges.
3 - Procédé selon la revendication 2 caractérisé en ce que le catalyseur est choisi parmi l'acétate de cuivre (II), l'hydroxychlorure de cuivre (II), le cyclohexanebutyrate de cuivre (II), l'acétylacétonate de cuivre (II) et le chlorure de cuivre (II).
4 - Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que la réaction se déroule en présence d'un solvant.
5 - Procédé selon la revendication 4 caractérisé en ce que le solvant est un nitrile, un amide ou un oxyde de trialkylphosphine.
6 - Procédé selon la revendication 5 caractérisé en ce que le solvant est choisi parmi la N-méthylpyrrolidone, le N,N-diméthylacétamide, l'oxyde de tri-(n- hexyl)phosphine, l'oxyde de tri-(n-octyl)phosphine, l'oxyde de n-octyl-di-(n- hexyl)-phosphine, l'oxyde de n-hexyl-di-(n-octyl)-phosphine et leurs mélanges.
7 - Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que la réaction se déroule en présence d'un cocatalyseur.
8 - Procédé selon la revendication 7 caractérisé en ce que le cocatalyseur est une aminé.
9 - Procédé selon la revendication 8 caractérisé en ce que l'aminé est l'isopropylamine ou la tert-butylamine. 10 - Procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que la réaction se déroule à une température supérieure ou égale à 40 °C et inférieure ou égale à 200 °C.
PCT/EP1998/002585 1997-05-05 1998-04-28 Procede de preparation de 1,1,1,3,3-pentachlorobutane WO1998050329A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP54771398A JP4111548B2 (ja) 1997-05-05 1998-04-28 1,1,1,3,3−ペンタクロロブタンの調製法
EP98924264A EP0980345B1 (fr) 1997-05-05 1998-04-28 Procede de preparation de 1,1,1,3,3-pentachlorobutane
KR1019997010158A KR100557782B1 (ko) 1997-05-05 1998-04-28 1,1,1,3,3-펜타클로로부탄의 제조방법
US09/423,258 US6399840B1 (en) 1997-05-05 1998-04-28 Method for the preparation of 1,1,1,3,3-pentachlorobutane
CA002288939A CA2288939A1 (fr) 1997-05-05 1998-04-28 Procede de preparation de 1,1,1,3,3-pentachlorobutane
DE69810099T DE69810099T2 (de) 1997-05-05 1998-04-28 Neue arzneimittel auf der basis von polymeren aus mit methacrylamid modifizierter gelatine
PL98336664A PL189264B1 (pl) 1997-05-05 1998-04-28 Sposób wytwarzania 1,1,1,3,3-pięciochlorobutanu
HU0002105A HU227087B1 (en) 1997-05-05 1998-04-28 Method for preparing 1,1,1,3,3-pentachlorobutane
AU76519/98A AU743129B2 (en) 1997-05-05 1998-04-28 Method for preparing 1,1,1,3,3-pentachlorobutane
BRPI9808730-4A BR9808730B1 (pt) 1997-05-05 1998-04-28 processo de preparação de 1,1,1,3,3-pentaclorobutano.
AT98924264T ATE229491T1 (de) 1997-05-05 1998-04-28 Neue arzneimittel auf der basis von polymeren aus mit methacrylamid modifizierter gelatine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
BE9700399A BE1011142A3 (fr) 1997-05-05 1997-05-05 Procede de preparation de 1,1,1,3,3,-pentachlorobutane.
BE9700399 1997-05-05
BE9700669 1997-08-08
BE9700669A BE1011319A3 (fr) 1997-05-05 1997-08-08 Procede de preparation d'hydrocarbures halogenes.
BE9800140A BE1011758A6 (fr) 1998-02-24 1998-02-24 Proecede de preparation de 1,1,1,3,3-pentachlorobutane.
BE9800140 1998-02-24

Publications (1)

Publication Number Publication Date
WO1998050329A1 true WO1998050329A1 (fr) 1998-11-12

Family

ID=27159858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/002585 WO1998050329A1 (fr) 1997-05-05 1998-04-28 Procede de preparation de 1,1,1,3,3-pentachlorobutane

Country Status (15)

Country Link
US (1) US6399839B1 (fr)
EP (1) EP0980345B1 (fr)
JP (1) JP4111548B2 (fr)
CN (1) CN1131849C (fr)
AR (1) AR015632A1 (fr)
AT (1) ATE229491T1 (fr)
AU (1) AU743129B2 (fr)
BR (1) BR9808730B1 (fr)
CA (1) CA2288939A1 (fr)
CZ (1) CZ297256B6 (fr)
DE (1) DE69810099T2 (fr)
ES (1) ES2189172T3 (fr)
HU (1) HU227087B1 (fr)
TW (1) TW467762B (fr)
WO (1) WO1998050329A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999196A1 (fr) * 1998-11-05 2000-05-10 SOLVAY (Société Anonyme) Procédé de préparation d'hydrocarbures halogénés
US6369285B1 (en) 1999-10-06 2002-04-09 Solvay (Societe Anonyme) Process for preparing halohydrocarbons
US6399840B1 (en) 1997-05-05 2002-06-04 Solvay (Societe Anonyme) Method for the preparation of 1,1,1,3,3-pentachlorobutane
US6399839B1 (en) 1997-05-05 2002-06-04 Solvay (Societe Anonyme) Method for preparing halogenated hydrocarbons
US6441256B1 (en) 1997-08-08 2002-08-27 Solvay (Societe Anonyme) Method for preparing of halogenated hydrocarbons
US6452057B1 (en) 1999-10-06 2002-09-17 Solvay (Societe Anonyme) Process for preparing halohydrocarbons in the presence of a co-catalyst
US6518467B2 (en) 2000-12-29 2003-02-11 Honeywell International Inc. Method of making hydrofluorocarbons and hydrochlorofluorocarbons
WO2008040803A1 (fr) 2006-10-06 2008-04-10 Solvay (Société Anonyme) Procédé de préparation d'hydrocarbones halogénés possédant au moins trois atomes de carbone en présence de fer et de phosphite
WO2008043720A2 (fr) * 2006-10-09 2008-04-17 Solvay (Société Anonyme) Procédé destiné à la préparation d'hydrocabures halogénés comprenant au moins 3 atomes de carbone

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1222155B1 (fr) * 1999-10-06 2009-03-25 SOLVAY (Société Anonyme) Procede de preparation d'un compose organique et methode de recuperation d'un cocatalyseur
ATE552228T1 (de) * 2001-10-24 2012-04-15 Daikin Ind Ltd Verfahren zur rückgewinnung von katalysatoren in einem verfahren und zur herstellung von perfluoralkyliodid-telomeren
JP4259808B2 (ja) * 2002-03-27 2009-04-30 セントラル硝子株式会社 1,1,1,3,3−ペンタクロロプロパンの製造方法
US7102041B2 (en) * 2004-12-08 2006-09-05 Honeywell International Inc. Continuous process for preparing halogenated compounds
US9738577B2 (en) * 2006-10-11 2017-08-22 Honeywell International Inc. Process for the manufacture of 1,1,1,3,3-pentachloropropane
US8288131B2 (en) * 2008-08-27 2012-10-16 Codexis, Inc. Ketoreductase polypeptides and uses thereof
JP2012508778A (ja) * 2008-11-13 2012-04-12 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング ヒドロフルオロオレフィン、ヒドロフルオロオレフィンの製造およびヒドロフルオロオレフィンを用いる方法
ES2568795T3 (es) * 2008-11-25 2016-05-04 Solvay Fluor Gmbh Proceso para la preparación de clorofluoroalquenos
CN105418360B (zh) * 2015-11-11 2017-09-08 西安近代化学研究所 一种制备1,1,1,3,3‑五氯丁烷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862978A (en) * 1967-08-24 1975-01-28 Dow Chemical Co Catalytic synthesis of organic halogen compounds from an ethylenically unsaturated compound and a halogenated organic compound
WO1997007083A1 (fr) * 1995-08-14 1997-02-27 Alliedsignal Inc. Procede de preparation d'alcanes halogenes
EP0787707A1 (fr) * 1996-02-01 1997-08-06 Elf Atochem S.A. Préparation du 1,1,1,3,3-pentachlorobutane et du 1,1,1,3,3-pentafluorobutane

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1288511A (fr) 1960-05-08 1962-03-24 Procédé de préparation des télomères ou des produits d'addition
BE622938A (fr) 1961-09-28
NL135032C (fr) 1962-05-15
US3454657A (en) * 1967-08-24 1969-07-08 Dow Chemical Co Catalytic synthesis of organic halogen compounds
US3649698A (en) 1968-12-02 1972-03-14 Universal Oil Prod Co Preparation of haloabkanes
CS257965B1 (en) * 1986-04-10 1988-07-15 Milan Hajek Method of halogenated organic compounds production
US5395997A (en) 1993-07-29 1995-03-07 Alliedsignal Inc. Process for the preparation of hydrofluorocarbons having 3 to 7 carbon atoms
ES2123803T3 (es) 1993-07-29 1999-01-16 Allied Signal Inc Proceso para la preparacion de 1,1,1,3,3-pentafluoropropano.
US5446217A (en) 1994-05-16 1995-08-29 Alliedsignal Inc. Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin
ES2104521T3 (es) 1994-07-11 1999-05-01 Allied Signal Inc Proceso para la fabricacion de 1,1,1,3,3-pentafluoropropano.
FR2724167B1 (fr) * 1994-09-05 1996-11-29 Solvay Procede pour l'hydrofluoration de chloro (fluoro) butane
EP0729932A1 (fr) 1995-03-03 1996-09-04 Central Glass Company, Limited Procédé pour la préparation de propane halogéné
EP0876314B1 (fr) 1995-08-01 2003-02-26 E.I. Du Pont De Nemours And Company Procedes de fabrication d'halocarbures et de composes selectionnes, et azeotropes formes avec hf
FR2740132B1 (fr) 1995-10-23 1997-12-19 Solvay Procede pour la preparation de 1,1,1,3,3-pentafluoropropane
US5792893A (en) 1996-07-09 1998-08-11 Vulcan Materials Company Method for the manufacture of 1,1,1,3,3,3-hexachloropropane
ATE229491T1 (de) 1997-05-05 2002-12-15 Solvay Neue arzneimittel auf der basis von polymeren aus mit methacrylamid modifizierter gelatine
DE69823189T2 (de) 1997-05-05 2005-04-21 Solvay Sa Bruessel Bruxelles Verfahren zur herstellung von haloginierten kohlenwasserstoffen
US6441256B1 (en) 1997-08-08 2002-08-27 Solvay (Societe Anonyme) Method for preparing of halogenated hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862978A (en) * 1967-08-24 1975-01-28 Dow Chemical Co Catalytic synthesis of organic halogen compounds from an ethylenically unsaturated compound and a halogenated organic compound
WO1997007083A1 (fr) * 1995-08-14 1997-02-27 Alliedsignal Inc. Procede de preparation d'alcanes halogenes
EP0787707A1 (fr) * 1996-02-01 1997-08-06 Elf Atochem S.A. Préparation du 1,1,1,3,3-pentachlorobutane et du 1,1,1,3,3-pentafluorobutane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399839B1 (en) 1997-05-05 2002-06-04 Solvay (Societe Anonyme) Method for preparing halogenated hydrocarbons
US6399840B1 (en) 1997-05-05 2002-06-04 Solvay (Societe Anonyme) Method for the preparation of 1,1,1,3,3-pentachlorobutane
US6441256B1 (en) 1997-08-08 2002-08-27 Solvay (Societe Anonyme) Method for preparing of halogenated hydrocarbons
US6500993B1 (en) 1998-11-05 2002-12-31 Solvay (Societe Anonyme) Process for preparing halogenated hydrocarbons
EP0999196A1 (fr) * 1998-11-05 2000-05-10 SOLVAY (Société Anonyme) Procédé de préparation d'hydrocarbures halogénés
US6369285B1 (en) 1999-10-06 2002-04-09 Solvay (Societe Anonyme) Process for preparing halohydrocarbons
US6452057B1 (en) 1999-10-06 2002-09-17 Solvay (Societe Anonyme) Process for preparing halohydrocarbons in the presence of a co-catalyst
JP2004500339A (ja) * 1999-10-06 2004-01-08 ソルヴェイ ハロゲン化炭化水素の製造方法
US6518467B2 (en) 2000-12-29 2003-02-11 Honeywell International Inc. Method of making hydrofluorocarbons and hydrochlorofluorocarbons
WO2008040803A1 (fr) 2006-10-06 2008-04-10 Solvay (Société Anonyme) Procédé de préparation d'hydrocarbones halogénés possédant au moins trois atomes de carbone en présence de fer et de phosphite
US7947856B2 (en) 2006-10-06 2011-05-24 Solvay (Societe Anonyme) Process for the preparation of halogenated hydrocarbons with at least 3 carbon atoms in the presence of iron and a phosphite
WO2008043720A2 (fr) * 2006-10-09 2008-04-17 Solvay (Société Anonyme) Procédé destiné à la préparation d'hydrocabures halogénés comprenant au moins 3 atomes de carbone
WO2008043720A3 (fr) * 2006-10-09 2008-05-29 Solvay Procédé destiné à la préparation d'hydrocabures halogénés comprenant au moins 3 atomes de carbone

Also Published As

Publication number Publication date
HU227087B1 (en) 2010-06-28
CN1261339A (zh) 2000-07-26
DE69810099D1 (de) 2003-01-23
CA2288939A1 (fr) 1998-11-12
ES2189172T3 (es) 2003-07-01
US6399839B1 (en) 2002-06-04
CN1131849C (zh) 2003-12-24
CZ393699A3 (cs) 2000-04-12
DE69810099T2 (de) 2003-07-10
EP0980345B1 (fr) 2002-12-11
JP4111548B2 (ja) 2008-07-02
BR9808730B1 (pt) 2009-01-13
AU743129B2 (en) 2002-01-17
EP0980345A1 (fr) 2000-02-23
TW467762B (en) 2001-12-11
JP2002505667A (ja) 2002-02-19
HUP0002105A3 (en) 2008-09-29
AR015632A1 (es) 2001-05-16
HUP0002105A2 (hu) 2000-10-28
BR9808730A (pt) 2000-07-11
AU7651998A (en) 1998-11-27
ATE229491T1 (de) 2002-12-15
CZ297256B6 (cs) 2006-10-11

Similar Documents

Publication Publication Date Title
EP0980345B1 (fr) Procede de preparation de 1,1,1,3,3-pentachlorobutane
JP2001213820A (ja) 1,1,1,3,3−ペンタクロロプロパンの製造方法
EP0787707A1 (fr) Préparation du 1,1,1,3,3-pentachlorobutane et du 1,1,1,3,3-pentafluorobutane
EP0297947B1 (fr) Synthèse du chloro-1-difluoro-1,1-éthane
EP0984911B1 (fr) Procede de preparation d'hydrocarbures halogenes
EP1001923B1 (fr) Procede de preparation d'hydrocarbures halogenes
EP0361578B1 (fr) Procédé pour la fabrication d'hydrocarbure fluoré
BE1011758A6 (fr) Proecede de preparation de 1,1,1,3,3-pentachlorobutane.
BE1011142A3 (fr) Procede de preparation de 1,1,1,3,3,-pentachlorobutane.
KR100557782B1 (ko) 1,1,1,3,3-펜타클로로부탄의 제조방법
JP2002532445A (ja) オルガノホスフィン化合物で接触されたアルケン類へのハロアルカン類の付加方法
JP3105313B2 (ja) フッ素化アルコールの製造方法
JPH06107650A (ja) ヘキサフルオロプロペンオキシドの製造方法
RU2199517C2 (ru) Способ получения 1,1,1,3,3-пентахлорбутана
EP0465294B1 (fr) Procédé de fabrication de bromures insaturés
EP0093579B1 (fr) Procédé pour la fluoration de chlorofluorotélomères
BE1011249A3 (fr) Pentachlorobutane, son procede de fabrication et son utilisation, procede de preparation du 1,1-difluoro-2-trifluoromethylpropane et utilisation de ce compose.
EP0884295B1 (fr) Procédé de préparation d'hydrocarbures halogénés
BE1012972A6 (fr) Procede de preparation d'hydrocarbures halogenes.
BE1012076A6 (fr) Procede de preparation d'hydrocarbures halogenes.
FR2822459A1 (fr) Procede de preparation d'une olefine halogenee
MXPA99010167A (es) Metodo de preparacion de 1,1,1,3,3,-pentaclorobutano

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98806631.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2288939

Country of ref document: CA

Ref document number: 2288939

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997010158

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 76519/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/010167

Country of ref document: MX

Ref document number: PV1999-3936

Country of ref document: CZ

Ref document number: 1998924264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09423258

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998924264

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV1999-3936

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997010158

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 76519/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998924264

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997010158

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV1999-3936

Country of ref document: CZ