WO1998045681A1 - Densitometre a gaz de type a vibration - Google Patents

Densitometre a gaz de type a vibration Download PDF

Info

Publication number
WO1998045681A1
WO1998045681A1 PCT/JP1998/001404 JP9801404W WO9845681A1 WO 1998045681 A1 WO1998045681 A1 WO 1998045681A1 JP 9801404 W JP9801404 W JP 9801404W WO 9845681 A1 WO9845681 A1 WO 9845681A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
case
cylindrical body
gas density
density meter
Prior art date
Application number
PCT/JP1998/001404
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nishino
Junichi Suzuki
Shigeo Yasuda
Mitsuhiko Sasaki
Ryuichi Kawamura
Original Assignee
Yokogawa Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08623897A external-priority patent/JP3384532B2/ja
Priority claimed from JP08624197A external-priority patent/JP3144340B2/ja
Priority claimed from JP08623797A external-priority patent/JP3384531B2/ja
Priority claimed from JP08624097A external-priority patent/JP3384533B2/ja
Application filed by Yokogawa Electric Corporation filed Critical Yokogawa Electric Corporation
Priority to US09/194,708 priority Critical patent/US6029501A/en
Priority to EP98911066A priority patent/EP0909943A4/en
Publication of WO1998045681A1 publication Critical patent/WO1998045681A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/006Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork

Definitions

  • the present invention relates to a vibratory gas density meter that has improved vibration resistance, does not require any additional measures against vibration, and can easily adopt an intrinsically safe explosion-proof structure.
  • the present invention relates to a vibratory gas density meter which has improved temperature characteristics, does not require a separate heat insulation measure, and can easily adopt an intrinsically safe explosion-proof structure.
  • the present invention relates to a vibrating gas density meter with improved ambient temperature characteristics.
  • the present invention relates to a vibratory gas density meter with improved sensitivity and low pressure loss.
  • Fig. 1 is a diagram illustrating the configuration of a conventional example that has been generally used.
  • the name of a power tag page 4 of “DG8 bipro gas analyzer”, date of issue: July 19, 1990 Date, issuer; Yokogawa Electric Corporation.
  • FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIGS. 3 and 4 are explanatory diagrams of the operation of FIG.
  • 1 is the central block. It is provided so that the flow rate of the measurement fluid can be small.
  • Reference numeral 3 denotes an inner cylinder in which the resistance temperature detectors 2 are concentrically housed.
  • Reference numeral 4 denotes an outer cylinder in which the inner cylinder 3 is built concentrically.
  • Reference numeral 5 denotes a thin cylindrical vibrator provided concentrically between the inner cylinder 3 and the outer cylinder 4.
  • Reference numeral 6 denotes an excitation element that excites the cylindrical oscillator 5.
  • a piezoelectric element is used.
  • Reference numeral 7 denotes a case in which the outer cylinder 4 is built.
  • Reference numeral 8 denotes a sleeve for fixing one end of the outer cylinder 4 to the case 7.
  • hard Quality Teflon is used.
  • Reference numeral 9 denotes a first ring that seals the inner cylinder 3 and the sleeve 8.
  • Reference numeral 1 denotes a second ring that seals the sleeve 8 and the outer cylinder 4.
  • Reference numeral 13 denotes a ring-shaped inner peripheral surface supply passage that is provided at the bottom part 14 of the outer cylinder 4 and supplies a measurement fluid to the inner peripheral surface of the cylindrical vibrator 5.
  • the reference numeral 15 is provided at the bottom 14 of the outer cylinder 4, is arranged on the outer circumference of the inner peripheral surface supply path 13, avoiding the excitation element 6, and supplies the measurement fluid to the outer peripheral surface of the cylindrical vibrator 5. This is the outer peripheral surface supply hole. In this case, four are provided.
  • the measurement gas enters the inner cylinder 3 and
  • the outer cylinder 4 is supported by the case 7 by the sleeve 8 and the vibration isolating rubber 12.
  • the outer cylinder 4 is provided with a certain anti-vibration measure for the case 7.
  • vibration is transmitted from Case 7 or the gas piping for introducing the measurement fluid.
  • the outer cylinder 4 is electrically insulated from the case 7, an intrinsically safe explosion-proof structure can be adopted, but the structure is complicated and the manufacturing cost is increased.
  • the outer cylinder 4 is supported on the case 7 by the sleeve 8 and the vibration isolating rubber 12. Therefore, the outer cylinder 4 is provided with a measure of thermal insulation for the case 7. However, a heat insulation structure sufficient for high sensitivity is not considered, and heat is transferred from Case 7 or the gas piping side for introducing the measurement fluid.
  • the temperature measuring element 2 for temperature compensation is embedded in the central block 1.
  • the measurement fluid passes through the gap between the center block 1 and the inner cylinder 3 and then reaches the inner and outer peripheral surfaces of the cylindrical vibrator 5.
  • the center block 1 Since the center block 1 is made of metal, it has a large heat capacity, and the temperature of the center block 1 itself is less affected by transient changes due to changes in the outside air temperature.
  • the measurement fluid since the measurement fluid has a small heat capacity, heat exchange occurs when passing through the center block 1 1, and when reaching the cylindrical vibrator 5, the temperature of the measurement fluid becomes almost the temperature of the center block 1. I have.
  • the temperature measuring element 2 measures the temperature of the center block 1
  • the temperature of the measuring fluid is compensated because the temperature of the measuring fluid is equivalent.
  • the temperature measuring element 2 is arranged in the center block 1, the large heat capacity of the center block 1 makes it impossible to detect the temperature change of the cylindrical oscillator 5 and the measuring fluid due to heat inflow from outside. . As described above, more accurate temperature compensation cannot be performed in the density measurement of the measurement fluid.
  • the measurement fluid used for density measurement is disposed of, for example, being discharged into the atmosphere as exhaust gas due to the pressure drop, which is contrary to recent trends in global environmental protection.
  • the flow path of the measurement fluid is made longer corresponding to the length of the resistance temperature detector 2, but this length is also equal to the pressure. It may cause loss.
  • a cylindrical vibrator, and one end of the cylindrical vibrator is cantilevered to the bottom on one end side, and the cylindrical vibrator is built in concentrically so that the other end of the cylindrical vibrator is an open end.
  • First and second seals are provided between both end surfaces of the cylindrical body and the case to seal the space between the cylindrical body and the case and support the cylindrical body from the case in the axial direction of the cylindrical body.
  • a second elastic body provided between the peripheral surface on both end surfaces of the cylindrical body and the case, respectively, for sealing between the cylindrical body and the case, and separating the cylindrical body from the case;
  • a vibratory gas density meter comprising a third elastic body and a fourth elastic body for supporting a main body in a cylindrical diameter direction.
  • the vibration type gas density meter according to (1) further comprising: an introduction pipe configured to prevent heat from being transmitted to the apparatus.
  • the vibratory gas density meter according to any one of (2) to (4), further comprising a heat insulator made of a heat material.
  • the vibratory gas density meter according to (7) further including a temperature measuring element main body disposed near a downstream of the opening end face of the cylindrical vibrator.
  • an outer peripheral surface supply hole provided at the bottom of the cylindrical body and provided with a predetermined number so that a stagnant portion of the measurement fluid does not occur when the measurement fluid is supplied to the outer peripheral surface of the cylindrical vibrator;
  • One end is provided in the case on the bottom side of the cylindrical body, and the other end is communicated with the inner peripheral surface supply passage and the predetermined number of outer peripheral surface supply holes, and a measurement fluid introduction passage through which a measurement fluid is introduced;
  • One end is provided in the case on the other end side of the cylindrical body, and the other end communicates with the other end side of the cylindrical body, and a measurement fluid discharge path for discharging a measurement fluid is provided.
  • the measurement gas enters the cylindrical body and passes through the inner and outer peripheral surfaces of the cylindrical vibrator and exits from the case.
  • the resonance frequency of a cylindrical vibrator changes with the gas density around the cylinder
  • the resonance frequency of the cylindrical vibrator can be measured to measure the density of the measurement gas fluid.
  • the cylindrical body is supported from the case via first, second, third, and fourth elastic bodies.
  • the cylinder body is supported from the case via the first, second, third, and fourth elastic bodies and is completely floated from the case, so that the vibration resistance is improved and the A vibrating gas density meter with improved noise resistance over the wave number range is obtained.
  • vibration-proof rubber when the disturbance vibration is large, there is no need to take any additional measures against vibrations.
  • vibration-proof structure selection of installation location, restrictions, plastic piping work, etc.
  • a vibration type gas density meter that can reduce the installation cost of the apparatus can be obtained.
  • the cylindrical body is supported from the case via the first, second, third and fourth elastic bodies and is completely floated from the case. No! If an electrically insulating material is used for the elastic body, an electrical insulation from the ground is easy, and a vibration-type gas density meter that is easy to use with an intrinsically safe explosion-proof structure can be obtained.
  • the cylinder body can be insulated from the case, and a vibrating gas density meter with good temperature characteristics can be obtained.
  • the cylindrical body is supported from the case via the first, second, third, and fourth elastic bodies.
  • the introduction pipe prevents the transfer of heat from the case on the measurement fluid introduction side to the cylindrical body.
  • the heat insulation prevents heat transfer from the case on the fluid introduction side to the cylinder body.
  • the cylinder body is supported from the case via the first, second, third and fourth elastic bodies, is completely floated from the case, and is introduced from the case on the measurement fluid introduction side by the introduction pipe. Since the transfer of heat to the cylinder body is prevented, the cylinder body is thermally insulated from the case, and a vibratory gas density meter with improved temperature characteristics can be obtained.
  • a drastic improvement in the transient characteristics at the time of sudden temperature change can be obtained, and a vibratory gas density meter that can greatly contribute to the improvement of control characteristics in various applications, especially in the control of calorific value of city gas, can be obtained .
  • the cylindrical body is supported from the case via the first, second, third and fourth elastic bodies and is completely floated from the case. If an electrically insulating material is used for the fourth elastic body, it is easy to electrically insulate it from the ground, and a vibration-type gas density meter that is easy to adopt an intrinsically safe explosion-proof structure is obtained.
  • the cylinder body can be insulated from the case, and a vibrating gas density meter with good temperature characteristics can be obtained.
  • a vibrating gas density meter can be obtained that can have a simple configuration and reduce manufacturing costs.
  • the measurement fluid since the measurement fluid has a small heat capacity, heat exchange is performed when passing through the inner and outer peripheral surfaces of the cylindrical vibrator, and the measurement fluid is measured at the open end of the cylindrical vibrator. The temperature of the fluid becomes equal to the temperature of the cylindrical vibrator.
  • the temperature sensor element main body can also detect the temperature change of the cylindrical vibrator due to the heat inflow from the outside.
  • the temperature measuring element is mounted on the peripheral surface of the cylinder body, and the temperature measuring element body is located near the opening end of the cylindrical vibrator, so that changes in the ambient temperature can be detected and the ambient temperature can be adjusted appropriately. Thus, a vibrating gas density meter that can be compensated for is obtained.
  • the temperature measuring element body is arranged near the downstream of the opening end face of the cylindrical vibrator. If the ambient temperature change can be detected, the temperature is measured at the position where the temperature of the cylindrical vibrator and the temperature of the fluid to be measured are exactly balanced, so that the change in the ambient temperature can be detected, and the ambient temperature can be detected more accurately. Can be appropriately compensated for. Therefore, according to the present invention, a vibrating gas density meter with improved ambient temperature characteristics can be realized.
  • the measurement fluid enters the cylinder main body from the measurement fluid introduction passage, branches into the inner peripheral surface supply passage and the eight outer peripheral surface supply holes, and flows into and out of the cylindrical vibrator. Through the peripheral surface, it comes out of the measurement fluid discharge path.
  • An outer peripheral surface supply hole is provided at the bottom of the cylindrical body, and a predetermined number is provided so that a stagnant portion of the measured fluid does not occur when the measuring fluid is supplied to the outer peripheral surface of the cylindrical vibrator. Therefore, contamination of the measurement fluid can be eliminated, the response characteristics can be improved, and a highly sensitive vibratory gas density meter can be obtained.
  • a vibrating gas density meter suitable for measuring dangerous measuring fluids such as measuring the hydrogen concentration in a hydrogen-cooled generator can be obtained.
  • a vibratory gas density meter suitable for, for example, returning the measured LNG to the sampling source line in the LNG calorific value adjustment line in the city gas industry can be obtained. Therefore, according to the present invention, it is possible to realize a vibration type gas density meter with improved sensitivity and reduced pressure loss.
  • FIG. 1 is an explanatory diagram of a configuration of a conventional example generally used in the related art.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is an explanatory diagram of the operation of FIG.
  • FIG. 4 is a diagram for explaining the operation principle of FIG.
  • FIG. 5 is a configuration explanatory diagram of one embodiment of the present invention.
  • FIG. 6 is a detailed view of a main part of FIG.
  • FIG. 7 is a sectional view taken along line BB of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 5 is an explanatory view of a main part configuration of an embodiment of the present invention
  • FIG. 6 is a detailed explanatory view of a main part of FIG. 5
  • FIG. 7 is a sectional view taken along line BB of FIG.
  • Reference numeral 21 denotes a cylindrical main body in which one end of the cylindrical vibrator 5 is fixed to the bottom 41 side on one end side, and the cylindrical vibrator 5 is built in concentrically.
  • Reference numeral 22 denotes a case in which both ends of the cylindrical body 21 are supported and are built in concentrically.
  • the first, second, third, and fourth elastic bodies 23, 24, 25, and 26 use 0 rings.
  • the cylindrical body 21 is provided in the first and second recesses 27 and 28 provided in the case 22 with the first, second, third and fourth elastic bodies 23, 24 and 25. , 26 are supported.
  • the measurement gas enters the cylindrical main body 21 and passes through the inner and outer peripheral surfaces of the cylindrical vibrator 5 and exits from the case 22.
  • the resonance frequency of the cylindrical vibrator 5 can be measured to measure the density of the measurement gas fluid.
  • the cylindrical body 21 is supported from the case 22 via first, second, third, and fourth elastic members 23, 24, 25, and 26.
  • the first, second, third and fourth elastic bodies 23, 24, 25 and 26 are electrically insulated because they are supported through 24, 25 and 26 and completely floated from the case 22.
  • the cylindrical body 21 is inserted into the first and second concave portions 27 and 28 provided in the case 22. If supported by the first, second, third, and fourth elastic members 23, 24, 25, 26, a vibrating gas density meter that can reliably support the cylindrical body 21 by the case 22 can be obtained.
  • the cylinder body 21 can be insulated from the case 22 and vibration with good temperature characteristics can be obtained.
  • An equation gas density meter is obtained.
  • 31 has one end connected to the measurement fluid introduction side of the cylinder main body 21 and the other end connected to the case 22, and introduces the measurement fluid into the cylinder main body 21 and has a predetermined length.
  • This is an introduction pipe for preventing the transfer of heat from the case 22 to the cylindrical body 21.
  • Reference numeral 32 denotes a heat insulator made of a heat insulating material provided around the introduction pipe 31.
  • the cylindrical body 21 is supported from the case 22 via the first, second, third, and fourth elastic bodies 23, 24, 25, 26.
  • the introduction pipe 31 prevents the transfer of heat from the case 22 on the measurement fluid introduction side to the cylindrical body 21.
  • the heat insulator 32 prevents the transfer of heat from the case 22 on the measurement fluid introduction side to the cylindrical body 21.
  • the cylindrical body 21 is supported from the case 22 via the first, second, third, and fourth elastic bodies 23, 24, 25, and 26, while being completely floated from the case 22. Since the transfer of heat from the case 22 on the measurement fluid introduction side to the cylinder body 21 is prevented by the introduction pipe 31, the cylinder body 21 is thermally insulated from the case 22 and the temperature characteristics are improved. An oscillating gas density meter is obtained.
  • a drastic improvement in the transient characteristics at the time of a sudden change in temperature can be obtained, and a vibrating gas density meter that can greatly contribute to the improvement of control characteristics in various applications, especially in the control of calorific value of city gas, can be obtained.
  • the first, second, third, and fourth elastic bodies 23, 24, 25, and 26 should be electrically insulated.
  • the vibration-type gas density meter that is easily electrically insulated from the ground and easy to adopt an intrinsically safe explosion-proof structure.
  • the cylindrical body 21 can be insulated from the case 22 and the temperature characteristics are good. An oscillating gas density meter is obtained.
  • Second, 42 is a temperature measuring element main body arranged near the open end 51 of the cylindrical vibrator 5.
  • the temperature measuring element main body 42 is arranged near the downstream of the open end face 511 of the cylindrical vibrator 5.
  • the measured fluid since the measured fluid has a small heat capacity, heat exchange is performed when passing through the inner and outer peripheral surfaces of the cylindrical vibrator 5, and at the open end 51 of the cylindrical vibrator 5, The temperature of the measurement fluid becomes equal to the temperature of the cylindrical oscillator 5.
  • the temperature measuring element main body 42 can also detect a temperature change of the cylindrical vibrator 5 due to heat inflow from the outside.
  • the change in ambient temperature can be reduced. Can be detected, and a vibrating gas density meter that can appropriately compensate for the ambient temperature can be obtained.
  • the temperature measuring element main body 42 is arranged near the downstream of the opening end face 5 11 of the cylindrical vibrator 5, a change in the ambient temperature can be detected, and furthermore, measurement with the cylindrical vibrator 5 is performed. Since the temperature is measured at a position where the temperature of the fluid is just balanced, a change in the ambient temperature can be detected, and a vibrating gas density meter that can accurately and properly compensate for the ambient temperature can be obtained.
  • 61 is provided on the bottom 41 of the cylindrical body, and a predetermined number is provided so that a stagnation portion of the measurement fluid does not occur when the measurement fluid is supplied to the outer peripheral surface of the cylindrical vibrator 5. It is an outer peripheral surface supply hole provided.
  • one end is provided in the case 7 on the bottom 41 side of the cylindrical body 21, and the other end is communicated with the inner peripheral surface supply path 13 and a predetermined number of outer peripheral surface supply holes 6 1, and the measurement fluid is provided.
  • the measurement fluid introduction path to be introduced.
  • Reference numeral 63 denotes a measurement fluid discharge passage that has one end provided on the case 22 on the other end side of the cylindrical body 21 and the other end communicating with the other end of the cylindrical body 21 to discharge the measurement fluid. is there.
  • the measurement fluid enters the cylinder main body 21 from the measurement fluid introduction passage 62, and enters the inner peripheral surface supply passage 13 and the eight outer peripheral surface supply holes 61. It branches, passes through the inner and outer peripheral surfaces of the cylindrical vibrator 5, and exits from the measurement fluid discharge path 63.
  • An outer peripheral surface supply hole 61 is provided at the bottom 41 of the cylindrical body 21 to prevent a stagnation portion of the measured fluid from being generated when the measuring fluid is supplied to the outer peripheral surface of the cylindrical vibrator 5. Predetermined Since the number is provided, contamination of the measurement fluid can be eliminated, response characteristics can be improved, and a highly sensitive vibratory gas density meter can be obtained.
  • the measurement gas inlet and outlet are not provided close to each other so that they can be inserted directly into the measurement pipe, and the measurement fluid introduction path 62 is provided at one end of the cylindrical body 21. Since the measurement fluid discharge path 63 is provided at the end side, and the flow path of the measurement fluid is not folded, the flow path resistance is reduced and the pressure loss is reduced.
  • a vibrating gas density meter suitable for measuring dangerous measuring fluids such as measuring the hydrogen concentration in a hydrogen-cooled generator can be obtained.
  • the fluid to be measured at the output part of the vibrating gas density meter can be reduced to low pressure. Since it is not necessary to perform the measurement, it is easy to return the measured fluid to a reusable part, and it is not necessary to discharge it to the atmosphere as exhaust gas. Thus, a vibrating gas densitometer that can reduce the use cost can be obtained.
  • a vibratory gas density meter suitable for, for example, returning the measured LNG to the sampling source line in the LNG calorific value adjustment line in the city gas industry can be obtained. Therefore, according to the present invention, it is possible to realize a vibration type gas density meter with improved sensitivity and reduced pressure loss.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Volume Flow (AREA)

Description

明 細 書
振動式ガス密度計 技術分野
第 1に、 本発明は、 耐振動特性が向上され、 別に振動対策が不要で、 本質安全 防爆構造が採用容易な振動式ガス密度計に関するものである。
第 2に、 本発明は、 温度特性が向上され、 別に断熱対策が不要で、 本質安全防 爆構造が採用容易な振動式ガス密度計に関するものである。
第 3に、 本発明は、 周囲温度特性が向上された振動式ガス密度計に関するもの である。
第 4に、 本発明は、 感度が向上され、 圧損が少ない振動式ガス密度計に関する ものである。 背景技術
図 1は、 従来より一般に使用されている従来例の構成説明図で、 例えば、 力 タログ名 ; 「D G 8形 バイプロ ガス分析計」 の 4頁、 発行日 ; 1 9 9 0年 7 月 1 5日、 発行所;横河電機株式会社に示されている。
図 2は図 1の A— A断面図、 図 3, 図 4は図 1の動作説明図である。
図 1、 図 2において、 1は、 中心ブ πックである。 測定流体の流量が少なくて 済むように設けられたものである。
2は、 中心プロック 1に内埋された測温抵抗体である。
3は、 測温抵抗体 2を同心円状に内蔵する内筒である。
4は、 内筒 3を同心円状に内蔵する外筒である。
5は、 内筒 3と外筒 4との間に、 同心円状に設けられた薄肉の円筒振動子であ る。
6は、 円筒振動子 5を励振する励振素子である。 この場合は、 圧電素子が使用 されている。
7は、 外筒 4を内蔵するケースである。
8は、 外筒 4の一端とケース 7とを固定するスリーブである。 この場合は、 硬 質のテフロンが使用されている。
9は、 内筒 3とスリーブ 8とをシ一ルする第 1の〇リングである。
1 1は、 スリーブ 8と外筒 4とをシールする第 2の〇リングである。
1 2は、 外筒 4の他端とケース?とを固定する防振ゴムである。
1 3は、 外筒 4の底部 1 4に設けられ、 円筒振動子 5の内周面へ測定流体を供 給するリング状の内周面供給路である。
1 5は、 外筒 4の底部 1 4に設けられ、 内周面供給路 1 3の外側の円周上に、 励振素子 6を避けて配置され、 円筒振動子 5の外周面へ測定流体を供給する外周 面供給孔である。 この場合は、 4個設けられている。
以上の構成において、 図 3, 図 4に示す如く、 測定ガスは内筒 3に入り、 内筒
3の下部で折り返して、 外筒 4の底部 1 4に入り、 内周面供給路 1 3と外周面供 給孔 1 5とに、 分流する。 円筒振動子 5の内外周面を通って外筒 4より抜ける。 しかして、 円筒振動子 5の共振周波数が、 円筒周囲のガス密度によって変化す ることを利用して、 円筒振動子 5の共振周波数を測定して測定ガス流体の密度を 測定する。
しかしながら、 この様な装置においては、
( 1 ) 外筒 4は、 ケース 7に、 スリーブ 8と防振ゴム 1 2とにより支持されてい る。
したがって、 外筒 4はケース 7に対して、 一応の防振対策は、 ほどこされてい る。 しかし十分な防振構造は考慮されてはいないので、 ケース 7或いは、 測定流 体の導入のためのガス配管から振動が伝わる。
このため、 外乱振動の大きな場合には、 別に、 防振対策が必要であった。 また、 特に、 配管振動が大きな場合には、 配管には金属パイプは使用する事が 出来ず、 ポリエチレン材等のパイプを使用しなければならず、 測定可能の測定流 体にも制限を受ける等の問題が生ずる。
また、 外筒 4はケース 7から電気的に絶縁されているので、 本質安全防爆構造 を取る事は出来るが、 構造が複雑であり、 製造コストが髙くなる。
( 2 ) 外筒 4は、 ケース 7に、 スリーブ 8と防振ゴム 1 2とにより支持されてい る。 したがって、 外筒 4はケース 7に対して一応の断熱対策は施されている。 しか し高感度にするのに十分な断熱構造は、 考慮されてはいないので、 ケース 7或い は、 測定流体の導入のためのガス配管側から熱が伝わる。
このため、 周囲温度変化が激しい場合、 特に、 温度急変時の過渡特性を良好に したい場合等には、 別に、 断熱対策が必要であった。
また、 特に、 周囲温度変化が激しい等の場合には、 恒温槽内に収納する、 又は 不凍液中に設置する或いは空調室に設置する等の断熱耐策が必要等の問題が生ず る。
また、 外筒 4はケース 7から電気的に絶縁されているので、 本質安全防爆構造 を取る事は出来る力 構造が複雑であり、 製造コストが高くなる。
( 3 ) ところで、 温度補償用の測温体 2は、 中心ブロック 1に内埋されている。 測定流体は中心ブ πック 1と内筒 3の隙間を経由した後、 円筒振動子 5の内外 周面へ至る。
中心プロック 1は金属よりなるため、 熱容量が大きく、 中心プロック 1自体の 温度は、 外気温の変化などによる過渡変化の影響は少ない。
一方、 測定流体は熱容量が小さいため、 中心プロック 1の橫を通過する時に熱 交換が行われ、 円筒振動子 5に至るときには、 測定流体の温度は、 ほぼ中心プロ ック 1の温度になっている。
したがって、 測温体 2は、 中心ブロック 1の温度を測定しているが、 測定流体 の温度も等価であるという事で、 測定流体の温度補償を行つている。
しかしながら、 この様な装置においては、 より高感度な振動式ガス密度計を開 発しようとすると、 温度特性も、 より高い安定性が求められるようになり、 上記 のような構造では適切でなくなった。
①すなわち、 ケース 7から外筒 4を通ってくる熱の流入により、 円筒振動子 5 及び測定流体の温度と、 中心ブロック 1内の測温体 2で測定された温度との間に 差が発生する。
②また、 測温体 2は、 中心プロック 1内に配置されているので、 中心プロック 1の大きな熱容量のため、 外部からの熱流入に対する、 円筒振動子 5及び測定流 体の温度変化を検出できない。 以上により、 測定流体の密度測定において、 より正確な温度補償ができない。
( 4 )
①外周面供給孔 1 5は、 内周面供給路 1 3の外側の円周上に、 4個設けられて いる。
し力、し、 より高感度な振動式ガス密度計を開発しょうとすると、 4個の外周面 供給孔 1 5の各々の間に生ずる測定流体の滞留部分が、 円筒振動子 5の応答特性 に悪影響を及ぼす事が判明してきた。
②測定管路に直接に挿入する場合を想定して、 測定ガスの入口と出口とを近接 して設ける様にしたが、 測定流体の流路が折り返す事になり、 圧力損失が大きく なる。
圧力損失が大きくなると、 密度測定に使用された測定流体は、 圧力低下により、 排ガスとして大気中に放出される等の処分がなされ、 近年の地球環境の保護の動 向に反する。
また、 測温抵抗体 2の温度検出により、 有効な温度補償を得るために、 測定流 体の流路が測温抵抗体 2の長さに対応して長くされているが、 この長さも圧力損 失の原因になる。
③中心ブロック 1、 内筒 3、 円筒振動子 5と外筒 4とが、 同心円状に組み立て られており、 構造が複雑であり、 加工、 組み立てコス トが高価となる。 本発明の目的は、
( 1 ) 第 1に、 耐振動特性が向上され、 別に振動対策が不要で、 本質安全防爆構 造が採用容易な振動式ガス密度計を提供するにある。
( 2 ) 第 2に、 温度特性が向上され、 別に断熱対策が不要で、 本質安全防爆構造 が採用容易な振動式ガス密度計を提供するにある。
( 3 ) 第 3に、 周囲温度特性が向上された振動式ガス密度計を提供するにある。
( 4 ) 第 4に、 感度が向上され、 圧損が少ない振動式ガス密度計を提供するにあ る。 発明の開示 上記の目的を達成するために本願発明は、
( 1 ) 円筒振動子と、 該円筒振動子の一端が一端側の底部に片持ち状に固定され 該円筒振動子の他端は開口端となるように該円筒振動子が同心円状に内蔵された 筒体本体と、 前記筒体本体の底部に設けられ前記円筒振動子を励振する励振素子 と、 前記筒体本体の底部に設けられ前記円筒振動子の内周面へ測定流体を供給す るリング状の内周面供給路と、 前記筒体本体の底部に設けられ該内周面供給路の 外側の円周上に前記励振素子を避けて配置され前記円筒振動子の外周面へ測定流 体を供給する外周面供給孔と、 前記筒体本体の両端が支持され該筒体本体が同心 円状に内蔵されるケースとを具備する振動式ガス密度計において、
前記筒体本体の両端面と前記ケースとの間にそれぞれ設けられ該筒体本体と該 ケースとの間をシールすると共に該ケースから該筒体本体を筒体軸方向に支持す る第 1 , 第 2弾性体と、 前記筒体本体の両端面側の周面と前記ケースとの間にそ れぞれ設けられ該筒体本体と該ケースとの間をシールすると共に該ケースから該 筒体本体を筒体直径方向に支持する第 3, 第 4弾性体とを具備したことを特徴と する振動式ガス密度計。
( 2 ) 前記筒体本体の測定流体導入側に一端が接続され他端が前記ケースに接続 され測定流体を該筒体本体に導入すると共に所定長さを有して該ケースから該筒 体本体への熱の伝達を防止する導入管とを具備したことを特徴とする ( 1 ) 記載 の振動式ガス密度計。
( 3 ) 前記ケースの両端面にそれぞれ設けられた第 1 , 第 2凹部と、 該第 1, 第 2凹部と前記筒体本体との間にそれぞれ設けられ該第 1 , 第 2凹部と該筒体本体 との間をシールすると共に前記ケースから該筒体本体を筒体軸方向に支持する第 1, 第 2弾性体と、 前記筒体本体の両端面側の周面と前記第 1 , 第 2凹部との間 にそれぞれ設けられ該筒体本体と該第 1 , 第 2囬部との間をシールすると共に該 ケースから該筒体本体を筒体直径方向に支持する第 3 , 第 4弾性体とを具備した ことを特徴とする (1 ) 又は (2 ) 記載の振動式ガス密度計。
( 4 ) 前記第 1, 第 2、 第 3 , 第 4弾性体として 0リングが使用されたことを特 徴とする (1 ) 乃至 (3 ) の何れかに記載の振動式ガス密度計。
( 5 ) 前記筒体本体と前記ケースとの間の隙間の全部或いは一部に設けられた断 熱材よりなる断熱体を具備したことを特徴とする (2 ) 乃至 (4 ) の何れかに記 載の振動式ガス密度計。
( 6 ) 前記導入管の周囲に設けられた断熱材よりなる断熱体を具備したことを特 徴とする (2 ) 乃至 (5 ) の何れかに記載の振動式ガス密度計。
( 7 ) 前記筒体本体の周面に取付られ測温体素子本体が前記円筒振動子の前記開 口端近傍に配置された測温体を具備したことを特徴とする (1 ) 記載の振動式ガ ス密度計。
( 8 ) 前記円筒振動子の前記開口端面の下流近傍に配置された測温体素子本体を 具備したことを特徴とする (7 ) 記載の振動式ガス密度計。
( 9 ) 前記筒体本体の底部に設けられ円筒振動子の外周面への測定流体の供給の 際に測定流体の滞留部が発生しないような所定数が設けられた外周面供給孔と、 前記筒体本体の底部側の前記ケ一スに一端が設けられ他端が前記内周面供給路と 前記所定数の外周面供給孔に連通され測定流体が導入される測定流体導入路と、 前記筒体本体の他端側の前記ケースに一端が設けられ他端が前記筒体本体の他端 側に連通し測定流体が排出される測定流体排出路とを具備したことを特徴とする
( 1 ) 記載の振動式ガス密度計。
以上の構成において、 測定ガスは筒体本体に入り、 円筒振動子の内外周面を通 つてケースより抜ける。
しかして、 円筒振動子の共振周波数が、 円筒周囲のガス密度によって変化する ことを利用して、 円筒振動子の共振周波数を測定して測定ガス流体の密度を測定 する事が出来る。
そして、 筒体本体は、 ケースから、 第 1 , 第 2, 第 3 , 第 4弾性体を介して支 持されている。
この結果、
( 1 ) 筒体本体は、 ケースから、 第 1 , 第 2 , 第 3 , 第 4弾性体を介して支持さ れ、 ケースから完全にフロートされているので、 耐振動特性が向上され、 広い周 波数範囲に亘つての耐ノィズ特性が向上された振動式ガス密度計が得られる。
( 2 ) したがって、 外乱振動の大きな場合に、 別に、 防振対策をする必要もなく、 例えば、 防振ゴム、 防振構造、 設置場所の選定、 制限、 プラスチック配管工事等 の設置コストを低減出来る振動式ガス密度計が得られる。
(3) 筒体本体は、 ケースから、 第 1, 第 2, 第 3, 第 4弾性体を介して支持さ れ、 ケースから完全にフロートされているので、 第 1, 第 2, 第 3, 第!弾性体 に電気的絶縁材を採用すれば、 グランドからの電気的絶縁が容易であり、 本質安 全防爆構造を採用するのにも容易な振動式ガス密度計が得られる。
(4) 筒体本体が、 ケースに設けられた第 1, 第 2凹部に、 第 1, 第 2, 第 3, 第 4弾性体を介して支持されれば、 筒体本体のケ一スによる支持が確実な振動式 ガス密度計が得られる。
(5) 第 1, 第 2, 第 3, 第 4弾性体に〇リングが使用されれば、 ケースから筒 体本体を断熱出来、 温度特性が良好な振動式ガス密度計が得られる。
(6) 第 1, 第 2, 第 3, 第 4弾性体に、 0リングが使用されれば、 構成が簡単 に出来、 製造コストを低減出来る振動式ガス密度計が得られる。
従って、 本発明によれば、 耐振動特性が向上され、 別に振動対策が不要で、 本 質安全防爆構造が採用容易な振動式ガス密度計を実現することが出来る。
次に、 発明 (2) によれば、 筒体本体は、 ケースから、 第 1, 第 2, 第 3, 第 4弾性体を介して支持されている。
また、 導入管により、 測定流体導入側のケースから筒体本体への熱の伝達が防 止される。
更に、 断熱体により、 測定流体導入側のケースから筒体本体への熱の伝達が防 止される。
この結果、 .
(1) 筒体本体は、 ケースから第 1, 第 2, 第 3, 第 4弾性体を介して支持され、 ケースから完全にフロートされていると共に、 導入管により、 測定流体導入側の ケースから筒体本体への熱の伝達が防止されているので、 筒体本体はケースから 熱的に絶縁され、 温度特性が向上された振動式ガス密度計が得られる。
特に、 温度急変時の過渡特性の大幅な特性向上が得られ、 各種アプリケ—ショ ン、 特に、 都市ガスの熱量制御における制御特性向上に大きく寄与することが出 来る振動式ガス密度計が得られる。
(2) したがって、 周囲温度変化が大きな場合に、 別に、 断熱対策をする必要も なく、 例えば、 恒温槽内に収納する、 又は不凍液中に設置する或いは空調室に設 置する等の断熱耐策が不要となり、 設置コストを低減出来る振動式ガス密度計が 得られる。
(3) 筒体本体は、 ケースから、 第 1, 第 2, 第 3, 第 4弾性体を介して支持さ れ、 ケースから完全にフロートされているので、 第 1, 第 2, 第 3, 第 4弾性体 に電気的絶縁材を採用すれば、 グランドからの電気的絶縁が容易であり、 本質安 全防爆構造を採用するのにも容易な振動式ガス密度計が得られる。
(4) 筒体本体が、 ケースに設けられた第 1, 第 2凹部に、 第 1, 第 2, 第 3, 第 4弾性体を介して支持されれば、 筒体本体のケースによる支持が確実な振動式 ガス密度計が得られる。
(5 ) 第 1 , 第 2, 第 3, 第 4弾性体に 0リングが使用されれば、 ケースから筒 体本体を断熱出来、 更に、 温度特性が良好な振動式ガス密度計が得られる。
(6 ) 第 1 , 第 2, 第 3, 第 4弾性体に 0リングが使用されれば、 構成が簡単に 出来、 製造コストを低減出来る振動式ガス密度計が得られる。
(7 ) 断熱体が導入管の周囲に設けられれば、 測定流体導入側のケースから筒体 本体への熱の伝達が防止され、 更に、 温度特性が良好な振動式ガス密度計が得ら れる。
従って、 本発明によれば、 温度特性が向上され、 別に断熱対策が不要で、 本質 安全防爆構造が採用容易な振動式ガス密度計を実現することが出来る。
次に、 発明 (7 ) によれば、 測定流体は、 熱容量が小さいため、 円筒振動子の 内外周面を通過してくる際に、 熱交換が行われ、 円筒振動子の開口端において、 測定流体の温度は円筒振動子の温度と等しくなる。
しかして、 この間において、 外部からの熱流入による円筒振動子の温度変化を も、 測温体素子本体は検出することができる。
この結果、
( 1 ) 測温体が筒体本体の周面に取付られ、 測温体素子本体が円筒振動子の開口 端近傍に配置されたので、 周囲温度の変化をも検出出来、 周囲温度をも適切に補 償することが出来る振動式ガス密度計が得られる。
(2) また、 測温体素子本体が、 円筒振動子の開口端面の下流近傍に配置されれ ば、 周囲温度の変化をも検出出来、 更に、 円筒振動子と測定流体の温度の丁度バ ランスした位置で、 温度が測定されるので、 周囲温度の変化を検出出来、 更に、 正確に周囲温度をも適切に補償することが出来る振動式ガス密度計が得られる。 従って、 本発明によれば、 周囲温度特性が向上された振動式ガス密度計を実現 することが出来る。
更に、 発明 (9 ) によれば、 測定流体は、 測定流体導入路より、 筒体本体に入 り、 内周面供給路と 8個の外周面供給孔とに分岐し、 円筒振動子の内外周面を通 つて、 測定流体排出路より抜ける。
この結果、
( 1 ) 外周面供給孔が、 筒体本体の底部に設けられ、 円筒振動子の外周面への測 定流体の供給の際に、 測定流体の滞留部が発生しないような所定数が設けられた ので、 測定流体のコンタミネ—ションをなくす事が出来、 応答特性の改善が図れ、 高感度な振動式ガス密度計が得られる。
( 2 ) 測定管路に直接に挿入出来るように、 測定ガスの入口と出口とを近接して 設けることを止め、 筒体本体の一端側に測定流体導入路が設けられ、 他端側に測 定流体排出路が設けられ、 測定流体の流路が折り返す事を廃止したので、 流路抵 杭が少なくなり、 圧力損失が小さくなる。
更に、 測定流体の滞留部が発生しないような所定数の外周面供給孔が設けられ たので、 圧力損失が更に小さくなる。
このため、 振動式ガス密度計の入出力間の差圧が少なくても測定することが出 来、 測定対象の循環系中に振動式ガス密度計を配置することが出来るので、 特別 なサンプリング装置が不要になり、 設置コストが低減し得る振動式ガス密度計が 得られる。
特に、 例えば、 水素冷却発電機内の水素濃度測定等のような危険な測定流体の 測定に好適な振動式ガス密度計が得られる。
( 3 ) さらに、 圧力損失が小さくて、 振動式ガス密度計の入出力間の差圧が少な くても測定することが出来るため、 振動式ガス密度計の出力部分の測定流体を、 低圧にする必要が無くなるので、 測定済みの測定流体を再利用出来る部分に戻す 事が容易に出来、 排ガスとして大気中に放出処分する必要がなく、 近年の地球環 境の保護の趨勢にも合致することとなり、 使用コストを低減出来る振動式ガス密 度計が得られる。
特に、 例えば、 都市ガス工業での L N Gの熱量調整ラインで、 採取元のライン に測定後の L N Gを戻す事もできる等に好適な振動式ガス密度計が得られる。 従って、 本発明によれば、 感度が向上され、 圧損が少ない振動式ガス密度計を 実現することが出来る。 図面の簡単な説明
図 1は、 従来より一般に使用されている従来例の構成説明図である。
図 2は、 図 1の A— A断面図である。
図 3は、 図 1の動作説明図である。
図 4は、 図 1の動作原理説明図である。
図 5は、 本発明の一実施例の構成説明図である。
図 6は、 図 5の要部詳細図である。
図 7は、 図 6の B— B断面図である。 発明を実施するための最良の形態
以下図面を用いて本発明を詳細に説明する。
図 5は本発明の一実施例の要部構成説明図、 図 6は図 5の要部詳細説明図、 図 7は図 6の B— B断面図である。
図において、 図 1と同一記号の構成は同一機能を表わす。
以下、 図 1と相違部分のみ説明する。
2 1は、 円筒振動子 5の一端が一端側の底部 4 1側に固定され、 円筒振動子 5 が同心円状に内蔵された筒体本体である。
2 2は、 筒体本体 2 1の両端が支持され、 同心円状に、 内蔵されるケースであ
2 3 , 2 4は、 筒体本体 2 1の両端面とケース 2 2との間にそれぞれ設けられ、 筒体本体 2 1とケース 2 2との間をシールすると共に、 ケース 2 2から筒体本体 2 1を筒体軸方向に支持する第 1 , 第 2弾性体である。 25、 2 6は、 筒体本体 2 1の両端面側の周面とケース 2 2との間にそれぞれ 設けられ、 筒体本体 2 1とケース 2 2との間をシールすると共に、 ケース 22か ら筒体本体 2 1を筒体直径方向に支持する第 3, 第 4弾性体である。
第 1, 第 2, 第 3, 第 4弾性体 2 3, 24, 2 5, 26は、 この場合は、 0リ ングが使用されている。
また、 この場合は、 筒体本体 2 1は、 ケース 2 2に設けられた第 1, 第 2凹部 27, 28に、 第 1, 第 2, 第 3, 第 4弾性体 2 3, 24, 25, 26を介して 支持されている。
以上の構成において、 図 5に示す如く、 測定ガスは筒体本体 2 1に入り、 円筒 振動子 5の内外周面を通ってケース 22より抜ける。
しかして、 円筒振動子 5の共振周波数が、 円筒周囲のガス密度によって変化す ることを利用して、 円筒振動子 5の共振周波数を測定して測定ガス流体の密度を 測定する事が出来る。
そして、 筒体本体 2 1は、 ケース 2 2から、 第 1, 第 2, 第 3, 第 4弾性体 2 3, 24, 2 5, 26を介して支持されている。
この結果、
(1) 筒体本体 2 1は、 ケース 22から、 第 1, 第 2, 第 3, 第 4弾性体 2 3,
24, 25, 2 6を介して支持され、 ケース 22から完全にフロートされている ので、 耐振動特性が向上され、 広い周波数範囲に亘つての耐ノイズ特性が向上さ れた振動式ガス密度計が得られる。
(2) したがって、 外乱振動の大きな場合に、 別に、 防振対策をする必要もなく、 例えば、 防振ゴム、 防振構造、 設置場所の選定、 制限、 プラスチック配管工事等 の設置コストを低減出来る振動式ガス密度計が得られる。
(3) 筒体本体 2 1は、 ケース 22から、 第 1, 第 2, 第 3, 第 4弾性体 23,
24, 2 5, 2 6を介して支持され、 ケース 22から完全にフロートされている ので、 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 2 5, 26に電気的絶縁材を 採用すれば、 グランドからの電気的絶縁が容易であり、 本質安全防爆構造を採用 するのにも容易な振動式ガス密度計が得られる。
(4) 筒体本体 2 1が、 ケース 22に設けられた第 1, 第 2凹部 27, 28に、 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26を介して支持されれば、 筒体本体 21のケース 22による支持が確実な振動式ガス密度計が得られる。
(5) 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26に 0リ ングが使用 されれば、 ケース 22から筒体本体 21を断熱出来、 温度特性が良好な振動式ガ ス密度計が得られる。
(6) 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26に、 0リ ングが使 用されれば、 構成が簡単に出来、 製造コストを低減出来る振動式ガス密度計が得 られる。
従って、 本発明によれば、 耐振動特性が向上され、 別に振動対策が不要で、 本 質安全防爆構造が採用容易な振動式ガス密度計を実現することが出来る。
第 2に、 31は、 筒体本体 21の測定流体導入側に一端が接続され、 他端がケ ース 22に接続され、 測定流体を筒体本体 21に導入すると共に、 所定長さを有 してケース 22から筒体本体 21への熱の伝達を防止する導入管である。
32は、 導入管 31の周囲に設けられた断熱材よりなる断熱体である。
以上の構成において、 筒体本体 21は、 ケース 22から、 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26を介して支持されている。
また、 導入管 31により、 測定流体導入側のケース 22から筒体本体 21への 熱の伝達が防止される。
更に、 断熱体 32により、 測定流体導入側のケース 22から筒体本体 21への 熱の伝達が防止される。
この結果、
(1) 筒体本体 21は、 ケース 22から第 1, 第 2, 第 3, 第 4弾性体 23, 2 4, 25, 26を介して支持され、 ケース 22から完全にフロートされていると 共に、 導入管 31により、 測定流体導入側のケース 22から筒体本体 21への熱 の伝達が防止されているので、 筒体本体 21はケース 22から熱的に絶縁され、 温度特性が向上された振動式ガス密度計が得られる。
特に、 温度急変時の過渡特性の大幅な特性向上が得られ、 各種了プリケーショ ン、 特に、 都市ガスの熱量制御における制御特性向上に大きく寄与することが出 来る振動式ガス密度計が得られる。 (2) したがって、 周囲温度変化が大きな場合に、 別に、 断熱対策をする必要も なく、 例えば、 恒温槽内に収納する、 又は不凍液中に設置する或いは空調室に設 置する等の断熱耐策が不要となり、 設置コストを低減出来る振動式ガス密度計が 得られる。
(3) 筒体本体 21は、 ケース 22から、 第 1, 第 2, 第 3, 第 4弾性体 23,
24, 25, 26を介して支持され、 ケース 22から完全にフロートされている ので、 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26に電気的絶縁材を 採用すれば、 グランドからの電気的絶縁が容易であり、 本質安全防爆構造を採用 するのにも容易な振動式ガス密度計が得られる。
(4) 筒体本体 21が、 ケース 22に設けられた第 1, 第 2凹部 27, 28に、 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26を介して支持されれば、 筒体本体 21のケース 22による支持が確実な振動式ガス密度計が得られる。
(5) 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26に 0リングが使用 されれば、 ケース 22から筒体本体 21を断熱出来、 更に、 温度特性が良好な振 動式ガス密度計が得られる。
(6) 第 1, 第 2, 第 3, 第 4弾性体 23, 24, 25, 26に 0リングが使用 されれば、 構成が簡単に出来、 製造コストを低減出来る振動式ガス密度計が得ら れる。
(7) 断熱体 32が導入管 31の周囲に設けられれば、 測定流体導入側のケース 22から筒体本体 21への熱の伝達が防止され、 更に、 温度特性が良好な振動式 ガス密度計が得られる。
従って、 本発明によれば、 温度特性が向上され、 別に断熱対策が不要で、 本質 安全防爆構造が採用容易な振動式ガス密度計を実現することが出来る。
第 3に、 42は、 円筒振動子 5の開口端 51近傍に配置された測温体素子本体 。
この場合は、 測温体素子本体 42は、 円筒振動子 5の開口端面 51 1の下流近 傍に配置されている。
以上の構成において、 測定流体は、 熱容量が小さいため、 円筒振動子 5の内外 周面を通過してくる際に、 熱交換が行われ、 円筒振動子 5の開口端 51において、 測定流体の温度は円筒振動子 5の温度と等しくなる。
しかして、 この間において、 外部からの熱流入による円筒振動子 5の温度変化 をも、 測温体素子本体 4 2は検出することができる。
この結果、
( 1 ) 測温体 2 3が筒体本体 2 1の周面に取付られ、 測温体素子本体 4 2が円筒 振動子 5の開口端 5 1近傍に配置されたので、 周囲温度の変化をも検出出来、 周 囲温度をも適切に補償することが出来る振動式ガス密度計が得られる。
( 2 ) また、 測温体素子本体 4 2が、 円筒振動子 5の開口端面 5 1 1の下流近傍 に配置されれば、 周囲温度の変化をも検出出来、 更に、 円筒振動子 5と測定流体 の温度の丁度バランスした位置で、 温度が測定されるので、 周囲温度の変化を検 出出来、 更に、 正確に周囲温度をも適切に補償することが出来る振動式ガス密度 計が得られる。
従って、 本発明によれば、 周囲温度特性が向上された振動式ガス密度計を実現 することが出来る。
第 4に、 6 1は、 筒体本体の底部 4 1に設けられ、 円筒振動子 5の外周面への 測定流体の供給の際に、 測定流体の滞留部が発生しないような、 所定数が設けら れた外周面供給孔である。
この場合は、 8個の外周面供給孔 6 1が設けられている。
6 2は、 筒体本体 2 1の底部 4 1側のケース 7に一端が設けられ、 他端が前記 内周面供給路 1 3と所定数の外周面供給孔 6 1に連通され測定流体が導入される 測定流体導入路である。
6 3は、 筒体本体 2 1の他端側のケース 2 2に一端が設けられ、 他端が前記筒 体本体 2 1の他端側に連通し測定流体が排出される測定流体排出路である。
以上の構成において、 図 1に示す如く、 測定流体は、 測定流体導入路 6 2より、 筒体本体 2 1に入り、 内周面供給路 1 3と 8個の外周面供給孔 6 1とに分岐し、 円筒振動子 5の内外周面を通って、 測定流体排出路 6 3より抜ける。
この結果、
( 1 ) 外周面供給孔 6 1が、 筒体本体 2 1の底部 4 1に設けられ、 円筒振動子 5 の外周面への測定流体の供給の際に、 測定流体の滞留部が発生しないような所定 数が設けられたので、 測定流体のコンタミネ一ションをなくす事が出来、 応答特 性の改善が図れ、 高感度な振動式ガス密度計が得られる。
( 2 ) 測定管路に直接に挿入出来るように、 測定ガスの入口と出口とを近接して 設けることを止め、 筒体本体 2 1の一端側に測定流体導入路 6 2が設けられ、 他 端側に測定流体排出路 6 3が設けられ、 測定流体の流路が折り返す事を廃止した ので、 流路抵抗が少なくなり、 圧力損失が小さくなる。
更に、 測定流体の滞留部が発生しないような所定数の外周面供給孔 6 1が設け られたので、 圧力損失が更に小さくなる。
このため、 振動式ガス密度計の入出力間の差圧が少なくても測定することが出 来、 測定対象の循環系中に振動式ガス密度計を配置することが出来るので、 特別 なサンプリング装置が不要になり、 設置コストが低減し得る振動式ガス密度計が 得られる。
特に、 例えば、 水素冷却発電機内の水素濃度測定等のような危険な測定流体の 測定に好適な振動式ガス密度計が得られる。
( 3 ) さらに、 圧力損失が小さくて、 振動式ガス密度計の入出力間の差圧が少な くても測定することが出来るため、 振動式ガス密度計の出力部分の測定流体を、 低圧にする必要が無くなるので、 測定済みの測定流体を再利用出来る部分に戻す 事が容易に出来、 排ガスとして大気中に放出処分する必要がなく、 近年の地球環 境の保護の趨勢にも合致することとなり、 使用コストを低減出来る振動式ガス密 度計が得られる。
特に、 例えば、 都市ガス工業での L N Gの熱量調整ラインで、 採取元のライン に測定後の L N Gを戻す事もできる等に好適な振動式ガス密度計が得られる。 従って、 本発明によれば、 感度が向上され、 圧損が少ない振動式ガス密度計を 実現することが出来る。

Claims

請 求 の 範 囲
1 . 円筒振動子と、
該円筒振動子の一端が一端側の底部に片持ち状に固定され該円筒振動子の他端は 開口端となるように該円筒振動子が同心円状に内蔵された筒体本体と、
前記筒体本体の底部に設けられ前記円筒振動子を励振する励振素子と、 前記筒体本体の底部に設けられ前記円筒振動子の内周面へ測定流体を供給する リング状の内周面供給路と、
前記筒体本体の底部に設けられ該内周面供給路の外側の円周上に前記励振素子 を避けて配置され前記円筒振動子の外周面へ測定流体を供給する外周面供給孔と、 前記筒体本体の両端が支持され該筒体本体が同心円状に内蔵されるケースと を具備する振動式ガス密度計において、
前記筒体本体の両端面と前記ケースとの間にそれぞれ設けられ該筒体本体と該 ケースとの間をシールすると共に該ケースから該筒体本体を筒体軸方向に支持す る第 1 , 第 2弾性体と、
前記筒体本体の両端面側の周面と前記ケースとの間にそれぞれ設けられ該筒体 本体と該ケースとの間をシールすると共に該ケースから該筒体本体を筒体直径方 向に支持する第 3 , 第 4弾性体と
を具備したことを特徴とする振動式ガス密度計。
2 . 前記筒体本体の測定流体導入側に一端が接続され他端が前記ケースに接続さ れ測定流体を該筒体本体に導入すると共に所定長さを有して該ケースから該筒体 本体への熱の伝達を防止する導入管と
を具備したことを特徴とする請求の範囲 1 . 記載の振動式ガス密度計。
3 . 前記ケースの両端面にそれぞれ設けられた第 1 , 第 部と、
該第 1 , 第 2凹部と前記筒体本体との間にそれぞれ設けられ該第 1 , 第 2凹部 と該筒体本体との間をシールすると共に前記ケースから該筒体本体を筒体軸方向 に支持する第 1 , 第 2弾性体と、
前記筒体本体の両端面側の周面と前記第 1, 第 2凹部との間にそれぞれ設けら れ該筒体本体と該第 1, 第 2凹部との間をシールすると共に該ケースから該筒体 本体を筒体直径方向に支持する第 3 , 第 4弾性体と を具備したことを特徴とする請求の範囲 1 . 又は請求の範囲 2 . 記載の振動式 ガス密度計。
4 . 前記第 1 , 第 2、 第 3 , 第 4弾性体として 0リングが
使用されたことを特徴とする請求の範囲 1 . 乃至請求の範囲 3 . の何れかに記 載の振動式ガス密度計。
5 . 前記筒体本体と前記ケースとの間の隙間の全部或いは一部に設けられた断熱 材よりなる断熱体
を具備したことを特徴とする請求の範囲 2 . 乃至請求の範囲 4の何れかに記載 の振動式ガス密度計。
6 . 前記導入管の周囲に設けられた断熱材よりなる断熱体
を具備したことを特徴とする請求の範囲 2 . 乃至請求の範囲 5の何れかに記載 の振動式ガス密度計。
7 . 前記筒体本体の周面に取付られ測温体素子本体が前記円筒振動子の前記開口 端近傍に配置された測温体
を具備したことを特徴とする請求の範囲 1 . 記載の振動式ガス密度計。
8 . 前記円筒振動子の前記開口端面の下流近傍に配置された測温体素子本体 を具備したことを特徵とする請求の範囲 7 . 記載の振動式ガス密度計。
9 . 前記筒体本体の底部に設けられ円筒振動子の外周面への測定流体の供給の際 に測定流体の滞留部が発生しないような所定数が設けられた外周面供給孔と、 前記筒体本体の底部側の前記ケースに一端が設けられ他端が前記内周面供給路 と前記所定数の外周面供給孔に連通され測定流体が導入される測定流体導入路と、 前記筒体本体の他端側の前記ケースに一端が設けられ他端が前記筒体本体の他 端側に連通し測定流体が排出される測定流体排出路と
を具備したことを特徴とする請求の範囲 1 . 記載の振動式ガス密度計。
PCT/JP1998/001404 1997-04-04 1998-03-27 Densitometre a gaz de type a vibration WO1998045681A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/194,708 US6029501A (en) 1997-04-04 1998-03-27 Vibration type gas densitometer
EP98911066A EP0909943A4 (en) 1997-04-04 1998-03-27 VIBRATION TYPE GAS DENSITOMETER

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP9/86238 1997-04-04
JP08623897A JP3384532B2 (ja) 1997-04-04 1997-04-04 振動式ガス密度計
JP9/86240 1997-04-04
JP08624197A JP3144340B2 (ja) 1997-04-04 1997-04-04 振動式ガス密度計
JP9/86241 1997-04-04
JP08623797A JP3384531B2 (ja) 1997-04-04 1997-04-04 振動式ガス密度計
JP08624097A JP3384533B2 (ja) 1997-04-04 1997-04-04 振動式ガス密度計
JP9/86237 1997-04-04

Publications (1)

Publication Number Publication Date
WO1998045681A1 true WO1998045681A1 (fr) 1998-10-15

Family

ID=27467240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001404 WO1998045681A1 (fr) 1997-04-04 1998-03-27 Densitometre a gaz de type a vibration

Country Status (3)

Country Link
US (1) US6029501A (ja)
EP (1) EP0909943A4 (ja)
WO (1) WO1998045681A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044929B3 (de) * 2005-09-20 2007-06-21 Seppeler-Stiftung für Flug- und Fahrwesen Dichtemeßvorrichtung
US7871826B2 (en) * 2007-09-26 2011-01-18 Air Products And Chemicals, Inc. Method for determining carbon content of a hydrocarbon-containing mixture
DE102009031471A1 (de) * 2009-07-01 2011-01-05 Mettler-Toledo Ag Messgerät zur Dichtebestimmung
JP6097881B2 (ja) * 2013-04-04 2017-03-15 マイクロ モーション インコーポレイテッド 振動デンシトメータの振動部材
US10012077B2 (en) * 2014-10-30 2018-07-03 Halliburton Energy Services, Inc. Downhole sensor for formation fluid property measurement
US10126266B2 (en) 2014-12-29 2018-11-13 Concentric Meter Corporation Fluid parameter sensor and meter
US9752911B2 (en) 2014-12-29 2017-09-05 Concentric Meter Corporation Fluid parameter sensor and meter
US10107784B2 (en) 2014-12-29 2018-10-23 Concentric Meter Corporation Electromagnetic transducer
US10060841B2 (en) * 2015-08-18 2018-08-28 Joel David Bell Fluid densitometer
US11029284B2 (en) 2018-02-08 2021-06-08 South Dakota Board Of Regents Acoustic resonance chamber
CN109578368B (zh) * 2018-11-27 2020-03-31 江苏大学 一种预紧式压电堆致活塞杆套筒高频扭振的低摩擦气缸

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484132A (en) * 1987-09-28 1989-03-29 Mitaka Instr Co Ltd Cylindrical vibration type densitometer
JPH04296635A (ja) * 1991-03-26 1992-10-21 Yokogawa Electric Corp 振動式ガス密度計の密度センサの温度補正方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385686A (en) * 1971-05-05 1975-02-26 Solartron Electronic Group Transducers
GB2058348B (en) * 1979-06-04 1983-09-07 Agar Instr Apparatus for use in the measurement of a variable
US4429564A (en) * 1981-01-23 1984-02-07 Yokogawa Hokushin Electric Corporation Vibration type density meter
JPS58137726A (ja) * 1982-02-12 1983-08-16 Yokogawa Hokushin Electric Corp 円筒振動式圧力計
CH669671A5 (ja) * 1986-02-24 1989-03-31 Hatschek Rudolf A
JPS6457144A (en) * 1987-08-27 1989-03-03 Mitaka Instr Co Ltd Cylinder vibration type density meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484132A (en) * 1987-09-28 1989-03-29 Mitaka Instr Co Ltd Cylindrical vibration type densitometer
JPH04296635A (ja) * 1991-03-26 1992-10-21 Yokogawa Electric Corp 振動式ガス密度計の密度センサの温度補正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0909943A4 *

Also Published As

Publication number Publication date
EP0909943A1 (en) 1999-04-21
EP0909943A4 (en) 2005-10-05
US6029501A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
CN100510653C (zh) 流量传感器
US3516283A (en) Methods and apparatus for measuring the densities of fluids by vibrating a hollow body surrounded by the fluid
WO1998045681A1 (fr) Densitometre a gaz de type a vibration
US2641742A (en) Pressure pickup
EP1735598B1 (en) Annular capacitive pressure sensor
US3218851A (en) Mass flowmeter systems
US4722231A (en) Electromagnetic flowmeter
JPS6250762B2 (ja)
US6732570B2 (en) Method and apparatus for measuring a fluid characteristic
US3618360A (en) Transducers suitable for use in measuring the density of or the pressure or a pressure difference in fluids
US20030115949A1 (en) Apparatus and method for thermal management of a mass flow controller
US3298221A (en) Densitometer
US20030115951A1 (en) Apparatus and method for thermal isolation of thermal mass flow sensor
JPS59162415A (ja) 熱的質量流量計
US6112581A (en) Vibratory viscometer
US4315432A (en) Enclosure for protecting instruments against adverse environments
US4095474A (en) Monitoring systems and instruments
KR20070008440A (ko) 유체 밀도를 측정하는 장치 및 방법
US20030115950A1 (en) Apparatus and method for thermal dissipation in a thermal mass flow sensor
JP3144340B2 (ja) 振動式ガス密度計
EP0673503B1 (en) Non-interacting enclosure design for coriolis mass flow meters
CA2511748C (en) Flow measuring method and device
US3381520A (en) Sonic analyser
JP3384531B2 (ja) 振動式ガス密度計
JP3384532B2 (ja) 振動式ガス密度計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09194708

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998911066

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998911066

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998911066

Country of ref document: EP