WO1998044182A1 - Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite - Google Patents

Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite Download PDF

Info

Publication number
WO1998044182A1
WO1998044182A1 PCT/FR1998/000598 FR9800598W WO9844182A1 WO 1998044182 A1 WO1998044182 A1 WO 1998044182A1 FR 9800598 W FR9800598 W FR 9800598W WO 9844182 A1 WO9844182 A1 WO 9844182A1
Authority
WO
WIPO (PCT)
Prior art keywords
texture
strip
plies
deformable
fibrous
Prior art date
Application number
PCT/FR1998/000598
Other languages
English (en)
Inventor
Pierre Olry
Dominique Coupe
Bernard Lecerf
Jean-Michel Guirman
Original Assignee
Societe Nationale D'etude Et De Construction De Moteurs D'aviation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale D'etude Et De Construction De Moteurs D'aviation filed Critical Societe Nationale D'etude Et De Construction De Moteurs D'aviation
Priority to DE69802508T priority Critical patent/DE69802508T2/de
Priority to EP98917227A priority patent/EP0970271B1/fr
Priority to UA99105812A priority patent/UA54502C2/uk
Priority to JP54122398A priority patent/JP4083815B2/ja
Priority to KR10-1999-7008866A priority patent/KR100501632B1/ko
Priority to CA002285375A priority patent/CA2285375C/fr
Priority to US09/381,943 priority patent/US6319348B1/en
Publication of WO1998044182A1 publication Critical patent/WO1998044182A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • D04H3/045Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles for net manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/228Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being stacked in parallel layers with fibres of adjacent layers crossing at substantial angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/543Fixing the position or configuration of fibrous reinforcements before or during moulding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/115Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by applying or inserting filamentary binding elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • Y10T428/213Frictional
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel

Definitions

  • the present invention relates to a method for producing annular fibrous structures, in particular preforms intended for the manufacture of annular parts made of composite material.
  • a particular, but not exclusive, field of application of the invention is the production of annular preforms for the manufacture of brake or clutch discs in composite material, in particular in carbon-carbon composite material (C / C).
  • Annular parts of composite material consist of a fibrous reinforcing structure, or preform, densified by a matrix.
  • the preform is made of carbon fibers or fibers of a carbon precursor which is transformed into carbon by heat treatment after production of the preform.
  • a carbon precursor available in the form of fibers is in particular the preoxidized polyacrylonitrile (PAN).
  • PAN preoxidized polyacrylonitrile
  • Densification of the preform can be carried out by liquid-impregnation with a liquid carbon precursor, for example a resin, and transformation of the precursor by heat treatment - or by chemical vapor infiltration, or even by caulking.
  • the preform is immersed in a liquid precursor of the matrix and the preform is heated for example by contact with an armature or by direct coupling with an inductor, so that the precursor is vaporized in contact with the preform and can infiltrate to form the matrix by deposition within the porosity of the preform.
  • a well-known method for producing fibrous preforms of parts made of composite material consists in superimposing and needlening layers or layers of a two-dimensional fibrous texture.
  • the fibrous texture is for example a fabric.
  • the fabric is optionally covered with a veil of fibers which provides the fibers capable of being displaced by the needles through the superimposed strata; this is particularly the case when the fabric is made of fibers which are difficult to needleave without being broken, in particular carbon fibers.
  • Such a method is described in particular in documents FR-A-2584 106 and FR-A-2584 109 respectively for the production of flat preforms and for the production of preforms of revolution.
  • An annular preform for a disc can be cut from a thick plate formed by layers superimposed flat and needled.
  • the loss of material is close to 50% which, in the case of preforms made of carbon fibers or of carbon precursor fibers, represents a very significant cost. In order to reduce this loss, it has been proposed in the document
  • EP-A-0232059 to produce the preform by superimposing and needling annular layers each formed from several assembled sectors.
  • the sectors are cut out in a two-dimensional texture.
  • the loss of material is less than in the case of cutting whole rings, but remains significant.
  • the process is rather delicate to implement and to automate, in particular because of the need to correctly position the sectors while shifting them from one layer to another so as not to superimpose the lines of separation between sectors .
  • Another known technique for producing fibrous preforms for annular parts made of composite material consists in using a textile product in a spiral or helical strip which is wound flat in superimposed turns.
  • the textile product can be a fabric formed of helical warp threads and radial weft threads.
  • the spiral or helical shape is given to the fabric by calling by means of a tapered roller warp threads unwound from individual spools mounted on a cantre.
  • the spacing between the radial weft threads increases over the width of the helical fabric between the inside diameter and the outside diameter.
  • fibrous preforms for annular parts of composite material are produced by helical winding of flattened tubular braids.
  • the tubular braids can be straight, as described in document EP-A-0528336.
  • the braids are then deformed to be wound in a helix.
  • Longitudinal wires can be added during the manufacture of the braid in order to improve the dimensional stability of the preform, and to compensate for the variation in surface density between the internal diameter and the external diameter of the flattened braid wound. It has also been proposed to use helical tubular braids in document EP-A-0 683 261.
  • an object of the present invention is to provide a method which makes it possible to produce annular preforms for parts made of composite material without causing substantial drops of material and while maintaining a substantially constant surface density between the inside diameter and the outside diameter of the structures.
  • Another object of the present invention is to provide such a method, the cost of implementation of which is substantially lower than that of the methods of the state of the art capable of providing similar results.
  • a method of producing an annular fibrous structure is proposed by flat helical winding of a fibrous texture in the form of a deformable strip, the method comprising the steps which consist in:
  • the directions of the two plies make with the longitudinal direction of the strip angles of absolute value preferably between 30 ° and 60 °, in order to provide a capacity for deformation of the elementary meshes in longitudinal direction and in transverse direction.
  • these angles are equal to + 45 ° and -45 °.
  • the connection of the sheets between them is carried out while preserving the possibility of deformation of the elementary meshes at their tops, for example by sewing or by knitting by means of threads passing from one face to the other of the texture, or even by pre- needling or localized needling.
  • Such a texture is particularly advantageous by its deformation capacity allowing it to be wound in a flat helix without forming any surface thicknesses or undulations and with a substantially uniform distribution of the fibrous elements of the plies giving the helix a surface density whose variation between its inside and outside diameters can remain within acceptable limits, without it being necessary to compensate for it.
  • the turns superimposed flat formed by winding the helical texture are linked together.
  • the connection between the turns is for example carried out by needling. Needling can be done after winding and possibly compression of the annular structure, or during winding.
  • the stripe-like texture can be deformed by passing between two rotating discs, maintaining the texture between the discs, for example by clamping, along its longitudinal edges, or by calling on at least one frustoconical roller.
  • FIG. 1 is a very schematic view of an installation allowing the realization of 'A fibrous texture in the form of a deformable strip usable for the implementation of a method according to the invention
  • FIGS. 2, 3A, 3B and 3C are views illustrating the production of a knitting connection of a fibrous texture usable for the implementation of a method according to the invention
  • 5A, 5B and 5C are views illustrating the production of another knitting connection of a fibrous texture usable for the implementation of a method according to the invention
  • FIG. 6 is a schematic detail view which shows how a fibrous texture, such as that produced by means of the installation of Figure 1, deforms when it is wound flat helically;
  • FIG. 7A and 7B are schematic views illustrating a helical winding device of a fibrous texture for the implementation of a method according to the invention
  • FIG. 8A and 8B are schematic views illustrating two other helical winding devices of a fibrous texture for the implementation of a method according to the invention
  • FIG. 9 is a schematic view illustrating an embodiment of a method for producing an annular fibrous structure in accordance with the invention: and - Figure 10 is a schematic view illustrating another embodiment of a method for producing an annular fibrous structure according to the invention.
  • the fibrous texture used in a process according to the invention is formed by superposition and bonding of two unidirectional sheets made up of fibrous elements parallel to each other.
  • a unidirectional ply can be obtained by spreading-lapping a cable or, as envisaged in the detailed description below, by placing in parallel wires from different coils. It will be noted that a process for producing a multi-axial fibrous texture from unidirectional plies obtained by spreading cables is described in the French patent application filed on March 28, 1997 under No. 97 03 832 and entitled “Process and machine for producing multiaxial fibrous webs ", the content of which is incorporated herein by reference. FIG.
  • the constituent fibers of the unidirectional sheets 10, 12 are made of a material chosen according to the use envisaged for the strip-like texture. They may be organic or mineral fibers, for example carbon or ceramic fibers, or carbon or ceramic precursor. It will be noted that the constituent fibers of the two layers may be of different natures. It is even possible to use fibers of different natures in each tablecloth.
  • the strip is formed by bringing successive segments of the ply 10 making an angle of + 45 ° relative to the longitudinal direction of the strip to be produced, and by juxtaposing these segments in this direction. Each segment is brought over a length such that it extends from one longitudinal edge of the strip to the other longitudinal edge. Similarly, successive segments of the ply 12 are brought at an angle of -45 ° relative to the longitudinal direction of the strip to be produced and are juxtaposed, the ply segments 12 being arranged above the ply segments 10.
  • the wires 11, 13 constituting each ply 10, 12 are stretched between two endless chains with pins 20, 22 moved in synchronism.
  • the ends of the plies 10, 12 are guided by carriages, respectively 14, 16 receiving the wires 11, 13 from respective coils (not shown) and driven back and forth between the longitudinal edges of the strip to be produced.
  • the plies are turned around around pins of the corresponding pin chain.
  • the advance of the studded chains 20, 22 is controlled continuously or discontinuously, in relation to the supply of the plies 10, 12, so as to juxtapose the successive ply segments.
  • An installation of this type is known, for example from document US-A-4 677 831, so that a more detailed description is not necessary.
  • the strip formed by superposition of the plies 10, 12 is removed from the chains with pins 20, 22 at the downstream end of their upper strand to be admitted into a binding device 30.
  • the binding is carried out by needling by means of a needle board 32 which extends over the entire length of the strip in formation, the latter passing over a perforated plate 34, the perforations of which are located to the right of the needles of the board 32.
  • the distribution of the needles on the needle board 32 is determined to perform a localized needling so that the binding of the two plies defines elementary deformable stitches for example in the manner of parallelograms.
  • the bonding between the layers gives the fibrous texture in the form of a strip 50 obtained sufficient cohesion to be stored on a roller 38 driven by a motor 40 in synchronism with the pin chains 20, 22. Between the binding device 30 and the roller 38, the edges of the strip 50 are cut by means of rotary knobs 36a, 36b_.
  • FIGS. 2, 3A and 3B illustrate a preferred variant embodiment of the binding of the sheets.
  • the binding is carried out not by needling but by knitting.
  • the superimposed layers taken from the spiked chains 20, 22 are received by a knitting device 42 which produces a knitting, that is to say a two-dimensional structure, by means of a thread passing from one face to the other.
  • texture 50 ( Figure 2).
  • FIG. 3A shows in detail the knitting stitch used 44, while FIGS. 3B and 3C show the right and wrong sides of the texture 50 bonded by knitting.
  • the knitting stitch forms intertwined loops 44a, elongated in the longitudinal direction of texture 50 by forming several parallel rows, and V or zig-zag paths 4412 which connect the loops between neighboring rows .
  • the texture 50 is located between the paths 44b_ located on the right side ( Figure 3B) and the loops 44a located on the reverse side ( Figure 3C), giving the knitted fabric the appearance of a zigzag stitch on one side and d 'a chain stitch on the other side.
  • the knitting stitch includes several threads of each tablecloth, depending on the gauge chosen.
  • connection points between the paths 44b_ in a zigzag and the loops 44a such as the points A, B, C, D of FIGS. 3B and 3C, define summits of elementary deformable meshes. That is to say, in this case, that are deformable both the meshes defined by the knitting stitch, and meshes defined by crossing points between son of the plies and forming deformable parallelograms.
  • FIG. 4 illustrates another variant according to which the connection between the plies is also carried out by knitting.
  • the overlapped plies taken from the spike chains 20, 22 are received by a knitting device 46 which links the plies along several lines parallel to the longitudinal edges of the texture 50.
  • the knitting stitch 48 is a stitch chain with loops 48a linked by rectilinear segments 48b_, the texture 50 is located between the segments 48b_, visible on the right side of the texture
  • the knitting yarn for the embodiments of FIGS. 2 and 4 can be made of a fugitive material, that is to say a material capable of being removed later without damaging the fibers making up the plies.
  • a fugitive material that is to say a material capable of being removed later without damaging the fibers making up the plies.
  • son of a material capable of being removed by heat without leaving a residue or son of a material capable of being removed by a solvent, for example son of polyvinyl alcohol soluble in water .
  • a knitting yarn made of a material compatible with the subsequent use envisaged for the texture may be used.
  • the knitting or sewing thread may be made of a material compatible with the material of the matrix of the composite material, that is to say preferably say of the same nature or miscible in the matrix without reacting chemically with it.
  • Other modes of connection by knitting or also by sewing can be chosen.
  • the strip-like texture obtained is particularly advantageous because of its deformation capacity allowing it to be wound in a flat helix without causing surface deformation (slippage or undulations), this because the elementary meshes 52 of the texture 50 behave like deformable parallelograms whose deformation is not hampered by the mode chosen binding mode, the knitting mode illustrated by Figures 2, 3A, 3B and 3C being preferred in this regard.
  • the elementary meshes 52 ′ located in the vicinity of the internal diameter of the propeller being formed are deformed by elongation in the radial direction and narrowing in the longitudinal direction, while the elementary meshes 52 "located in the vicinity of the outer diameter of the propeller are deformed by narrowing in the radial direction and elongation in the longitudinal direction.
  • the surface density of fibers remains substantially constant or slightly variable between the inner diameter and the outer diameter, which is particularly advantageous for developing homogeneous preforms intended for the manufacture of parts made of composite material
  • the dashed line 54 shows the deformation of one of the initial directions of the strip 50.
  • the deformation of the elementary stitches formed by the threads of the texture is accompanied by a deformation of the knitting or sewing points.
  • the deformation results in an elongation or a shortening of the parts of the thread forming the loops of the chains and by an opening or a closing of the angles which the zigzag paths form.
  • Winding with deformation of the texture 50 in a flat helix can be achieved by passing the texture between two discs or annular flanges 60, 62 while maintaining the texture between the discs along its longitudinal edges (FIG. 7A).
  • the texture is maintained for example by clamping its edges between circular ribs 64, 66 formed on the internal faces of the disks 60, 62, or at least on the internal face of one of the disks (FIG. 7B).
  • the winding with deformation of the texture is produced by passing the latter over at least one frustoconical roller.
  • the number of rollers and their apex angles are chosen according to the degree of deformation desired.
  • two identical tapered rollers 70, 72 are used which are rotated by respective motors (not shown).
  • the texture is forced to follow a part of the periphery of at least one of the rollers.
  • the texture is forced to pass between a first rotary tapered roller 74 and a smooth support plate 75 and between a second rotary tapered roller 76 and a smooth support plate 77.
  • the rollers driven in rotation by respective motors (not shown) deform the texture by friction.
  • An annular fibrous structure can be produced by superimposing flat the turns formed by the helical winding of the texture 50 and bonding the turns together by needling as the winding takes place (FIG. 9).
  • the texture 50 deformed, for example by passing between two discs, as in the case of FIG. 5, is wound in turns superimposed flat on a rotating plate 80.
  • the plate 80 is mounted on a vertical axis 82 secured to a support 84.
  • the support 84 further carries a motor 86 which drives the plate 80 in rotation about its vertical axis 90 (arrow f 1), by means of a belt 88.
  • the assembly comprising the support 84 and the plate 80 is movable vertically along a fixed central guide tube 92 of axis 90. At its upper end, the tube 92 supports the device for deformation of the helical strip.
  • the support 84 rests on vertical telescopic rods 94, the vertical movement of the support 84 being controlled by one or more jacks 96.
  • the band 50 is needled by means of a board 100 carrying needles
  • the movement of the needle board is controlled by a motor 104, via a connecting rod-crank type transmission.
  • the motor 104 is carried by the support 84.
  • the needling of the strip 50 is carried out with a substantially constant surface density and depth.
  • the needle board 100 has a sector shape, corresponding to a sector of an annular layer of fabric, sector on which the needles are distributed uniformly, while the plate 80 supporting the structure 110 being developed is rotated at constant speed.
  • the needling depth that is to say the distance over which the needles 102 penetrate each time into the structure 110, is kept substantially constant, and equal for example to the thickness formed by a few overlapping layers of fabric.
  • the strip 50 is wound on the plate 80, the latter is moved vertically downwards by the desired distance so that the relative position between the surface of the preform and the needle board, at one end of its vertical stroke, remains unchanged.
  • several needling passes are carried out while continuing to rotate the plate 80 so that the volume density of needling in the layers of surface tissue is substantially the same as in the rest of the preform.
  • a progressive lowering of the plate 80 can be controlled, as in the previous phases.
  • This principle of needling at constant depth by progressive lowering of the support of the preform and with final needling passes is known and described in particular in the document FR-A-2 584 106 already cited.
  • the plate 80 is coated with a protective layer 106 in which the needles can penetrate without being damaged during the needling of the first turns of tape 50.
  • the protective layer 106 can be formed of a felt of base, for example a polypropylene felt, covered with a sheet of plastic material, for example polyvinyl chloride which avoids, when the needles rise, entraining in the preform 110, fibers taken from the base felt .
  • the turns formed by helically winding the deformed texture are applied against each other and the fibrous structure is compressed by means of a tool comprising a base plate 130 and a upper plate 132 (FIG. 10).
  • the compression is carried out so as to obtain a desired volume ratio of fibers.
  • the turns can then be linked together by needling by means of a needle board 134, the needles 136 of which pass through perforations in the upper plate 132 and penetrate the entire thickness of the structure 110. Perforations can be formed also in the base plate 130 to the right of the hands.
  • annular fibrous structure obtained as described above can be used as a preform for the manufacture of an annular piece of composite material, for example a brake disc.
  • the elimination of the wire is carried out by dissolution or heat treatment before densification of the preform.
  • the material constituting the fibers of the fibrous structure obtained is a precursor to that of the fibrous reinforcement of the composite material
  • the transformation of the precursor is carried out before densification of the preform, or during the rise in temperature preceding densification.
  • the densification of the preform is carried out in a known manner by the liquid route or by chemical vapor infiltration in order to form within the accessible porosity of the preform a deposit of the material constituting the desired material.
  • deformable fibrous texture consisting of two linked unidirectional sheets forming angles of + 45 ° and -45 ° relative to the longitudinal direction of the strip
  • the method according to the The invention can be implemented with deformable bands in which the two unidirectional plies make angles of opposite signs, the absolute values of which may be different from 45 ° and possibly different from each other.
  • these angles Preferably, however, in order to maintain a sufficient capacity for deformation of the elementary meshes, these angles have an absolute value of between 30 ° and 60 ° and preferably also, these angles have the same absolute value in order to maintain a character of symmetry to the strip. deformable.
  • the flat helical winding of the fibrous strip as obtained at the outlet of the lapping installation of FIG. 1.
  • the fibrous strip obtained at the outlet of the coating installation is divided into several deformable strips having or not the same width, by cutting parallel to the longitudinal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Woven Fabrics (AREA)
  • Wire Processing (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Pour élaborer une structure fibreuse annulaire on utilise une texture en forme de bande (50) formée de deux nappes unidirectionnelles superposées dont les directions font des angles opposés par rapport à la direction longitudinale de la bande, les deux nappes étant liées entre elles de manière à former des mailles élémentaires déformables, on enroule la texture en la déformant pour la transformer en hélice à plat, les mailles élémentaires se déformant de sorte que la variation de masse surfacique entre les diamètres intérieur et extérieur des spires reste limitée, et on applique les spires à plat les unes contre les autres.

Description

Procédé de réalisation de structures fibreuses annulaires, notamment pour la fabrication de pièces en matériau composite
La présente invention concerne un procédé pour la réalisation de structures fibreuses annulaires, en particulier des préformes destinées à la fabrication de pièces annulaires en matériau composite.
Un domaine particulier, mais non exclusif, d'application de l'invention est la réalisation de préformes annulaires pour la fabrication de disques de frein ou d'embrayage en matériau composite, notamment en matériau composite carbone- carbone (C/C).
Des pièces annulaires en matériau composite, telles que des disques de frein ou d'embrayage, sont constituées d'une structure fibreuse de renfort, ou préforme, densifiée par une matrice. Pour des disques en composite C/C, la préforme est en fibres de carbone ou en fibres d'un précurseur de carbone qui est transformé en carbone par traitement thermique après réalisation de la préforme. Un précurseur de carbone disponible sous forme de fibres est notamment le polyacrylonitrile (PAN) préoxydé. La densification de la préforme peut être réalisée par voie liquide-imprégnation par un précurseur liquide de carbone, par exemple une résine, et transformation du précurseur par traitement thermique - ou par infiltration chimique en phase vapeur, ou encore par caléfaction. Dans ce dernier cas, la préforme est immergée dans un liquide précurseur de la matrice et la préforme est chauffée par exemple par contact avec un induit ou par couplage direct avec un inducteur, de sorte que le précurseur est vaporisé au contact de la préforme et peut s'infiltrer pour former la matrice par dépôt au sein de la porosité de la préforme.
Un procédé bien connu pour réaliser des préformes fibreuses de pièces en matériau composite consiste à superposer et à aiguilleter des couches ou strates d'une texture fibreuse bidimensionnelle. La texture fibreuse est par exemple un tissu. Le tissu est éventuellement recouvert d'un voile de fibres qui procure les fibres susceptibles d'être déplacées par les aiguilles à travers les strates superposées ; il en est ainsi en particulier lorsque le tissu est en fibres difficilement aiguilletables sans être cassées, notamment en fibres de carbone. Un tel procédé est décrit notamment dans les documents FR-A-2584 106 et FR-A-2584 109 respectivement pour la réalisation de préformes planes et pour la réalisation de préformes de révolution. Une préforme annulaire pour un disque peut être découpée dans une plaque épaisse formée de couches superposées à plat et aiguilletées. La perte de matière est de près de 50 % ce qui, dans le cas de préformes en fibres de carbone ou en fibres de précurseur de carbone, représente un coût très important. Afin de réduire cette perte, il a été proposé dans le document
EP-A-0232059 de réaliser la préforme en superposant et en aiguilletant des couches annulaires formées chacune de plusieurs secteurs assemblés. Les secteurs sont découpés dans une texture bidimensionnelle. La perte de matière est moindre que dans le cas de la découpe d'anneaux entiers, mais reste non négligeable. En outre, le procédé est assez délicat à mettre en oeuvre et à automatiser, notamment en raison de la nécessité de positionner correctement les secteurs tout en les décalant d'une couche à l'autre afin de ne pas superposer les lignes de séparation entre secteurs.
Il pourrait être envisagé de découper des préformes annulaires dans des manchons réalisés par enroulement dans un mandrin et aiguilletage simultané d'une bande de tissu, comme décrit dans le document précité FR-A-2584 107. Le procédé est relativement aisé à mettre en oeuvre, sans perte substantielle de matière fibreuse. Toutefois, dans l'application aux disques de friction, et contrairement aux autres modes de réalisation décrits plus haut, les strates de la préforme sont alors disposées perpendiculairement aux faces frottantes, ce qui n'est pas une configuration optimale dans certains cas.
Une autre technique connue pour la réalisation de préformes fibreuses pour des pièces annulaires en matériau composite consiste à utiliser un produit textile en bande de forme spirale ou hélicoïdale qui est enroulée à plat en spires superposées. Le produit textile peut être un tissu formé de fils de chaîne hélicoïdaux et de fils de trame radiaux.
Comme décrit dans les documents FR-A-2 490 687 et FR-A-2 643 656, la forme spirale ou hélicoïdale est donnée au tissu en appelant au moyen d'un rouleau tronconique des fils de chaîne dévidés de bobines individuelles montées sur un cantre. Dans un tissu ainsi réalisé, l'écartement entre les fils de trame radiaux croît sur la largeur du tissu hélicoïdal entre le diamètre intérieur et le diamètre extérieur.
Afin de conserver un caractère sensiblement homogène au tissu sur toute sa largeur, il est proposé dans les deux documents précités d'introduire des fils de trame supplémentaires qui s'étendent seulement sur une partie de la largeur du tissu, depuis le diamètre extérieur de celui-ci. Cette solution entraîne un surcoût important pour la fabrication du tissu et est source de défauts non négligeables. Une autre solution, décrite dans la demande de brevet FR 95 14 000, consiste à augmenter la masse surfacique de la chaîne du tissu hélicoïdal entre le diamètre intérieur et le diamètre extérieur afin de compenser approximativement, pour la densité volumique de la préforme, la diminution de la densité de trame. Bien que moins coûteuse que l'augmentation de la densité des fils de trame en direction du diamètre extérieur, cette solution reste assez complexe car elle nécessite l'utilisation de fils de chaîne de titre variable et/ou de masse surfacique variable entre le diamètre intérieur et le diamètre extérieur du tissu. Selon encore une autre technique connue, des préformes fibreuses pour des pièces annulaires en matériau composite, en particulier pour des disques de frein, sont réalisées par enroulement en hélice de tresses tubulaires aplaties. Les tresses tubulaires peuvent être droites, comme décrit dans le document EP-A-0528336. Les tresses sont alors déformées pour être enroulées en hélice. Des fils longitudinaux peuvent être ajoutés au moment de la fabrication de la tresse afin d'améliorer la stabilité dimensionnelle de la préforme, et de compenser la variation de densité surfacique entre le diamètre interne et le diamètre externe de la tresse aplatie enroulée. Il a aussi été proposé d'utiliser des tresses tubulaires hélicoïdales dans le document EP-A-0 683 261. Cela permet de s'affranchir des limites de déformabilité des tresses tubulaires droites lorsqu'elles sont enroulées en hélice. Toutefois, la variation de densité surfacique doit toujours être compensée en ajoutant des fils longitudinaux ou en juxtaposant plusieurs tresses aplaties de petites largeurs entre le diamètre interne et le diamètre externe. Ces solutions rendent la fabrication des préformes relativement complexe, donc coûteuse, sans résoudre le problème de la variation de densité surfacique de façon complètement satisfaisante.
Aussi, un objet de la présente invention est de fournir un procédé qui permette de réaliser des préformes annulaires pour des pièces en matériau composite sans entraîner de chutes substantielles de matière et en conservant une densité surfacique sensiblement constante entre le diamètre intérieur et le diamètre extérieur des structures.
Un autre objet de la présente invention est de fournir un tel procédé dont le coût de mise en oeuvre soit sensiblement inférieur à celui des procédés de l'état de la technique capables de procurer des résultats similaires. A cet effet, il est proposé un procédé d'élaboration d'une structure fibreuse annulaire par bobinage en hélice à plat d'une texture fibreuse en forme de bande déformable, le procédé comprenant les étapes qui consistent à :
- fournir une texture fibreuse en forme de bande déformable formée de deux nappes unidirectionnelles superposées, chacune constituée d'éléments fibreux parallèles les uns aux autres, les directions des deux nappes faisant des angles de signes opposés avec la direction longitudinale de la bande, et les deux nappes étant liées entre elles de manière à former des mailles élémentaires déformables,
- enrouler la texture en forme de bande en la déformant par modification de la géométrie des mailles élémentaires, pour la transformer en hélice à plat, les mailles élémentaires se déformant avec variation de leur dimension radiale de façon croissante en direction du diamètre intérieur des spires, de sorte que la variation de masse surfacique entre les diamètres intérieur et extérieur des spires peut être minimisée, et - appliquer les unes contre les autres les spires à plat déformées par l'enroulement de la texture en hélice, de manière à obtenir une structure fibreuse annulaire.
Avantageusement, les directions des deux nappes font avec la direction longitudinale de la bande des angles de valeur absolue comprise de préférence entre 30° et 60°, afin de ménager une capacité de déformation des mailles élémentaires en direction longitudinale et en direction transversale. Selon un mode de réalisation préféré, ces angles sont égaux à +45° et -45°. La liaison des nappes entre elles est réalisée en préservant la possibilité de déformation des mailles élémentaires à leurs sommets, par exemple par couture ou par tricotage au moyen de fils passant d'une face à l'autre de la texture, ou encore par pré-aiguilletage ou aiguilletage localisé.
Une telle texture est particulièrement avantageuse par sa capacité de déformation lui permettant d'être enroulée en hélice à plat sans former de surépaisseurs ou ondulations de surface et avec une répartition sensiblement uniforme des éléments fibreux des nappes conférant à l'hélice une densité surfacique dont la variation entre ses diamètres intérieur et extérieur peut rester dans des limites acceptables, sans qu'il soit nécessaire de la compenser.
Avantageusement encore, les spires superposées à plat formées par enroulement de la texture en hélice sont liées entre elles. La liaison entre les spires est par exemple effectuée par aiguilletage. L'aiguilletage peut être réalisé après enroulement et éventuellement compression de la structure annulaire, ou au cours de l'enroulement.
La déformation de la texture en forme de bande peut être réalisée par passage entre deux disques rotatifs avec maintien de la texture entre les disques, par exemple par serrage, le long de ses bords longitudinaux, ou par appel sur au moins un rouleau tronconique.
Ainsi, il est possible de former une structure fibreuse annulaire sans chute de matière fibreuse et en conservant une densité fibreuse faiblement variable entre le diamètre intérieur et le diamètre extérieur sans introduction d'éléments supplémentaires comme dans des procédés de l'art antérieur, donc avec une mise en oeuvre très simplifiée.
L'invention sera mieux comprise à la lecture de la description faite ci- après, à titre indicatif mais non limitatif, en référence aux dessins annexés, sur lesquels : - la figure 1 est une vue très schématique d'une installation permettant la réalisation d'une texture fibreuse en forme de bande déformable utilisable pour la mise en oeuvre d'un procédé conforme à l'invention ;
- les figures 2, 3A, 3B et 3C sont des vues illustrant la réalisation d'une liaison par tricotage d'une texture fibreuse utilisable pour la mise en oeuvre d'un procédé conforme à l'invention ;
- les figures 4, 5A, 5B et 5C sont des vues illustrant la réalisation d'une autre liaison par tricotage d'une texture fibreuse utilisable pour la mise en oeuvre d'un procédé conforme à l'invention ;
- la figure 6 est une vue schématique de détail qui montre comment une texture fibreuse, telle que celle réalisée au moyen de l'installation de la figure 1, se déforme lorsqu'elle est enroulée à plat en hélice ;
- les figures 7A et 7B sont des vues schématiques illustrant un dispositif d'enroulement en hélice d'une texture fibreuse pour la mise en oeuvre d'un procédé conforme à l'invention ; - les figures 8A et 8B sont des vues schématiques illustrant deux autres dispositifs d'enroulement en hélice d'une texture fibreuse pour la mise en oeuvre d'un procédé conforme à l'invention ;
- la figure 9 est une vue schématique illustrant un mode de mise en oeuvre d'un procédé de réalisation d'une structure fibreuse annulaire conformément à l'invention : et - la figure 10 est une vue schématique illustrant un autre mode de mise en oeuvre d'un procédé de réalisation d'une structure fibreuse annulaire conformément à l'invention.
La texture fibreuse utilisée dans un procédé conforme à l'invention est formée par superposition et liage de deux nappes unidirectionnelles constituées d'éléments fibreux parallèles les uns aux autres.
De façon bien connue, une nappe unidirectionnelle peut être obtenue par étalement-nappage d'un câble ou, comme envisagé dans la description détaillée ci-après, par mise en parallèle de fils provenant de bobines différentes. On notera qu'un procédé de réalisation d'une texture fibreuse multi- axiale à partir de nappes unidirectionnelles obtenues par étalement de câbles est décrit dans la demande de brevet fiançais déposée le 28 mars 1997 sous le N° 97 03 832 et intitulée "Procédé et machine pour la réalisation de nappes fibreuses multiaxiales", dont le contenu est incorporé ici par référence. La figure 1 montre très schématiquement une installation recevant deux nappes unidirectionnelles 10, 12 formées de fils et produisant une texture en forme de bande par superposition de deux nappes faisant avec la direction longitudinale de la bande des angles de signes opposés, dans l'exemple illustré des angles égaux à +45° et -45°. Les fibres constitutives des nappes unidirectionnelles 10, 12 sont en une matière choisie en fonction de l'utilisation envisagée pour la texture en forme de bande. Il peut s'agir de fibres organiques ou minérales, par exemple des fibres de carbone ou de céramique, ou de précurseur de carbone ou céramique. On notera que les fibres constitutives des deux nappes peuvent être de natures différentes. Il est même possible d'utiliser des fibres de natures différentes dans chaque nappe.
La bande est formée en amenant des segments successifs de la nappe 10 faisant un angle de +45° par rapport à la direction longitudinale de la bande à réaliser, et en juxtaposant ces segments dans cette direction. Chaque segment est amené sur une longueur telle qu'il s'étende d'un bord longitudinal de la bande à l'autre bord longitudinal. De façon similaire, des segments successifs de la nappe 12 sont amenés en faisant un angle de -45° par rapport à la direction longitudinale de la bande à réaliser et sont juxtaposés, les segments de nappe 12 étant disposés au-dessus des segments de nappe 10.
Dans l'exemple illustré, les fils 11, 13 constitutifs de chaque nappe 10, 12, sont tendus entre deux chaînes sans fin à picots 20, 22 mues en synchronisme. Les extrémités des nappes 10, 12 sont guidées par des chariots, respectivement 14, 16 recevant les fils 11, 13 de bobines respectives (non représentées) et animés d'un mouvement de va-et-vient entre les bords longitudinaux de la bande à réaliser. A chaque extrémité de course des chariots, les nappes sont retournées autour de picots de la chaîne à picots correspondante. L'avance des chaînes à picots 20, 22 est commandée de façon continue ou discontinue, en relation avec l'amenée des nappes 10, 12, de manière à juxtaposer les segments de nappes successifs. Une installation de ce type est connue, par exemple du document US-A-4 677 831, de sorte qu'une description plus détaillée n'est pas nécessaire.
La bande formée par superposition des nappes 10, 12 est prélevée des chaînes à picots 20, 22 à l'extrémité aval de leur brin supérieur pour être admise dans un dispositif de liage 30. Dans l'exemple illustré, le liage est réalisé par aiguilletage au moyen d'une planche à aiguilles 32 qui s'étend sur toute la longueur de la bande en formation, celle-ci passant au-dessus d'une plaque perforée 34 dont les perforations sont situées au droit des aiguilles de la planche 32. La répartition des aiguilles sur la planche à aiguilles 32 est déterminée pour effectuer un aiguilletage localisé de sorte que le liage des deux nappes définit des mailles élémentaires déformables par exemple à la manière de parallélogrammes.
Le liage entre les nappes confère à la texture fibreuse en forme de bande 50 obtenue une cohésion suffisante pour être stockée sur un rouleau 38 entraîné par un moteur 40 en synchronisme avec les chaînes à picots 20, 22. Entre le dispositif de liage 30 et le rouleau 38, les bords de la bande 50 sont coupés au moyen de molettes rotatives 36a, 36b_.
Les figures 2, 3A et 3B illustrent une variante préférée de réalisation du liage des nappes. Selon cette variante, le liage est réalisé non pas par aiguilletage mais par tricotage. Les nappes superposées prélevées des chaînes à picots 20, 22 sont reçues par un dispositif de tricotage 42 qui réalise un tricot, c'est-à-dire une structure bidimensionnelle, au moyen d'un fil passant d'une face à l'autre de la texture 50 (figure 2). La figure 3A montre de façon détaillée le point de tricot utilisé 44, tandis que les figures 3B et 3C montrent les faces endroit et envers de la texture 50 liée par tricotage.
Comme le montre la figure 3A, le point de tricot forme des boucles 44a entrelacées, allongées dans la direction longitudinale de la texture 50 en formant plusieurs rangées parallèles, et des trajets en V ou en zig-zag 4412 qui relient les boucles entre rangées voisines. La texture 50 est située entre les trajets 44b_ situés sur la face endroit (figure 3B) et les boucles 44a situées sur la face envers (figure 3C), donnant au tricot l'apparence d'un point zig-zag sur une face et d'un point chaînette sur l'autre face. Le point de tricot englobe plusieurs fils de chaque nappe, selon la jauge choisie.
Les points de liaison entre les trajets 44b_ en zig-zag et les boucles 44a, tels que les points A, B, C, D des figures 3B et 3C, définissent des sommets de mailles élémentaires déformables. C'est-à-dire, dans ce cas, que sont déformables à la fois les mailles définies par le point de tricot, et des mailles définies par des points de croisement entre fils des nappes et formant des parallélogrammes déformables.
La figure 4 illustre une autre variante selon laquelle la liaison entre les nappes est aussi réalisée par tricotage. Les nappes superposées prélevées des chaînes à picots 20, 22 sont reçues par un dispositif de tricotage 46 qui lie les nappes suivant plusieurs lignes parallèles aux bords longitudinaux de la texture 50. Comme le montre la figure 5A, le point de tricot 48 est un point de chaînette avec des boucles 48a liées par des segments rectilignes 48b_, la texture 50 est située entre les segments 48b_, visibles sur la face endroit de la texture
(figure 5B) et les boucles 48a, visibles sur la face envers (figure 5C).
Le fil de tricotage pour les modes de réalisation des figures 2 et 4 peut être en un matériau fugitif, c'est-à-dire un matériau susceptible d'être éliminé ultérieurement sans endommager les fibres constitutives des nappes. On pourra par exemple utiliser des fils en un matériau susceptible d'être éliminé par la chaleur sans laisser de résidu, ou des fils en un matériau susceptible d'être éliminé par un solvant, par exemple des fils en alcool polyvinylique solubles dans l'eau.
Il est également possible d'utiliser un fil de tricotage en un matériau compatible avec l'utilisation ultérieure envisagée pour la texture. Lorsque celle-ci est destinée à l'élaboration de préformes pour la fabrication de pièces en matériau composite, le fil de tricotage ou couture pourra être réalisé en une matière compatible avec la matière de la matrice du matériau composite, c'est-à-dire de préférence de même nature ou miscible dans la matrice sans réagir chimiquement avec celle-ci. D'autres modes de liaison par tricotage ou aussi par couture pourront être choisis.
La texture en forme de bande obtenue est particulièrement avantageuse en raison de sa capacité de déformation lui permettant d'être enroulée en hélice à plat sans entraîner de déformation de surface (glissements ou ondulations), ceci du fait que les mailles élémentaires 52 de la texture 50 se comportent comme des parallélogrammes déformables dont la déformation n'est pas entravée par le mode de liage choisi, le mode de liaison par tricotage illustré par les figures 2, 3A, 3B et 3C étant à cet égard préféré.
Lors de l'enroulement (figure 6), les mailles élémentaires 52' situées au voisinage du diamètre intérieur de l'hélice en cours de formation se déforment par allongement en direction radiale et rétrécissement en direction longitudinale, tandis que les mailles élémentaires 52" situées au voisinage du diamètre extérieur de l'hélice se déforment par rétrécissement en direction radiale et allongement en direction longitudinale. Il en résulte que la densité surfacique de fibres reste sensiblement constante ou faiblement variable entre le diamètre intérieur et le diamètre extérieur, ce qui est particulièrement avantageux pour élaborer des préformes homogènes destinées à la fabrication de pièces en matériau composite. Sur la figure 4, le trait mixte 54 montre la déformation de l'une des directions initiales de la bande 50.
Dans le cas du liage par tricotage ou par couture, la déformation des mailles élémentaires formées par les fils de la texture s'accompagne d'une déformation des points de tricot ou de couture. Ainsi, pour le point de tricot des figures 3A à 3C, la déformation se traduit par un allongement ou un raccourcissement des parties du fil formant les boucles des chaînettes et par une ouverture ou une fermeture des angles que forment les trajets en zig-zag. L'enroulement avec déformation de la texture 50 en hélice à plat peut être réalisé en faisant passer la texture entre deux disques ou flasques annulaires 60, 62 tout en maintenant la texture entre les disques le long de ses bords longitudinaux (figure 7A). Le maintien de la texture est par exemple réalisé par serrage de ses bords entre des nervures circulaires 64, 66 formées sur les faces internes des disques 60, 62, ou au moins sur la face interne de l'un des disques (figure 7B).
Selon un autre mode de réalisation, l'enroulement avec déformation de la texture est réalisé en faisant passer celle-ci sur au moins un rouleau tronconique. Le nombre de rouleaux et leurs angles au sommet sont choisis en fonction du degré de déformation souhaité. Dans l'exemple illustré par la figure 8A, on utilise deux rouleaux tronconiques identiques 70, 72 qui sont entraînés en rotation par des moteurs respectifs (non représentés). On oblige la texture à épouser une partie de la périphérie d'au moins l'un des rouleaux.
Dans l'exemple de la figure 8B, on oblige la texture à passer entre un premier rouleau tronconique rotatif 74 et une plaque lisse d'appui 75 et entre un deuxième rouleau tronconique rotatif 76 et une plaque d'appui lisse 77. Les rouleaux, entraînés en rotation par des moteurs respectifs (non représentés) déforment la texture par friction.
On pourrait utiliser un seul rouleau tronconique contre lequel la texture est appliquée. Dans ce cas, le plus petit cercle décrit par un bord de la texture sur le rouleau tronconique définit le diamètre intérieur de l'hélice.
Une structure fibreuse annulaire peut être élaborée par superposition à plat des spires formées par l'enroulement en hélice de la texture 50 et liaison des spires entre elles par aiguilletage au fur et à mesure de l'enroulement (figure 9).
Cela peut être réalisé dans la continuité de la déformation de la texture fibreuse en hélice à plat ou après stockage intermédiaire de celle-ci.
La texture 50 déformée, par exemple par passage entre deux disques, comme dans le cas de la figure 5, est enroulée en spires superposées à plat sur une platine tournante 80. La platine 80 est montée sur un axe vertical 82 solidaire d'un support 84. Le support 84 porte en outre un moteur 86 qui entraîne la platine 80 en rotation autour de son axe vertical 90 (flèche f 1), par l'intermédiaire d'une courroie 88.
L'ensemble comprenant le support 84 et la platine 80 est mobile verticalement le long d'un tube de guidage central fixe 92 d'axe 90. A son extrémité supérieure, le tube 92 supporte le dispositif de déformation de la bande en hélice. Le support 84 repose sur des tiges télescopiques verticales 94, le déplacement vertical du support 84 étant commandé par un ou plusieurs vérins 96.
Au fur et à mesure de son enroulement à plat sur la platine tournante
80, la bande 50 est aiguilletée au moyen d'une planche 100 portant des aiguilles
102 et animée d'un mouvement vertical alternatif. Le mouvement de la planche à aiguilles est commandé par un moteur 104, par l'intermédiaire d'une transmission de type bielle-manivelle. Le moteur 104 est porté par le support 84.
L'aiguilletage de la bande 50 est réalisé avec une densité surfacique et une profondeur sensiblement constantes. Pour obtenir une densité de coups d'aiguilles 102 constante sur toute la surface d'une spire annulaire de bande 50, la planche à aiguilles 100 a une forme de secteur, correspondant à un secteur d'une couche annulaire de tissu, secteur sur lequel les aiguilles sont réparties uniformément, tandis que la platine 80 supportant la structure 110 en cours d'élaboration est entraînée en rotation à vitesse constante.
La profondeur d'aiguilletage, c'est-à-dire la distance sur laquelle les aiguilles 102 pénètrent à chaque fois dans la structure 110, est maintenue sensiblement constante, et égale par exemple à l'épaisseur formée par quelques couches de tissu superposées. A cet effet, au fur et à mesure du bobinage de la bande 50 sur la platine 80, celle-ci est déplacée verticalement vers le bas de la distance voulue pour que la position relative entre la surface de la préforme et la planche à aiguilles, à une extrémité de sa course verticale, reste inchangée. A la fin de la réalisation de la préforme 110, après mise en place de la dernière spire de bande 50, plusieurs passes d'aiguilletage sont réalisées en continuant à faire tourner la platine 80 de manière que la densité volumique d'aiguilletage dans les couches de tissu superficielles soit sensiblement la même que dans le reste de la préforme. Au cours d'une partie au moins de ces passes finales d'aiguilletage, un abaissement progressif de la platine 80 pourra être commandé, comme lors des phases précédentes. Ce principe d'aiguilletage à profondeur constante par abaissement progressif du support de la préforme et avec passes finales d'aiguilletage est connu et décrit notamment dans le document FR-A-2 584 106 déjà cité. En outre, la platine 80 est revêtue d'une couche de protection 106 dans laquelle les aiguilles peuvent pénétrer sans être endommagées lors de l'aiguilletage des premières spires de bande 50. La couche de protection 106 peut être formée d'un feutre d'embase, par exemple un feutre de polypropylène, recouvert d'une feuille de matière plastique, par exemple en polychlorure de vinyle qui évite, à la remontée des aiguilles, d'entraîner dans la préforme 110, des fibres prélevées dans le feutre d'embase.
Dans un autre mode de réalisation de la structure fibreuse 110, les spires formées par enroulement en hélice de la texture déformée sont appliquées les unes contre les autres et la structure fibreuse est comprimée au moyen d'un outillage comprenant une plaque de base 130 et une plaque supérieure 132 (figure 10). La compression est réalisée de manière à obtenir un taux volumique de fibres désiré. Les spires peuvent alors être liées entre elles par aiguilletage au moyen d'une planche à aiguilles 134 dont les aiguilles 136 passent à travers des perforations de la plaque supérieure 132 et pénètrent dans toute l'épaisseur de la structure 110. Des perforations peuvent être formées également dans la plaque de base 130 au droit des aiguilles.
Une structure fibreuse annulaire obtenue comme décrit ci-dessus est utilisable comme préforme pour la fabrication d'une pièce annulaire en matériau composite, par exemple un disque de frein.
Lorsque le liage des nappes unidirectionnelles a été réalisé par un fil en matière fugitive, l'élimination du fil est effectuée par dissolution ou traitement thermique avant densification de la préforme. Lorsque la matière constitutive des fibres de la structure fibreuse obtenue est un précurseur de celle du renfort fibreux du matériau composite, la transformation du précurseur est effectuée avant densification de la préforme, ou au cours de la montée en température précédant la densification. La densification de la préforme est effectuée de façon connue par voie liquide ou par infiltration chimique en phase vapeur afin de former au sein de la porosité accessible de la préforme un dépôt du matériau constitutif de la matière désirée.
Bien que l'on ait envisagé l'utilisation d'une texture fibreuse déformable constituée de deux nappes unidirectionnelles liées formant des angles de +45° et -45° par rapport à la direction longitudinale de la bande, on comprendra que le procédé selon l'invention peut être mis en oeuvre avec des bandes déformables dans lesquelles les deux nappes unidirectionnelles font des angles de signes opposés dont les valeurs absolues peuvent être différentes de 45° et éventuellement différentes l'une de l'autre. De préférence toutefois, afin de conserver une capacité suffisante de déformation des mailles élémentaires, ces angles ont une valeur absolue comprise entre 30° et 60° et de préférence aussi, ces angles ont même valeur absolue afin de conserver un caractère de symétrie à la bande déformable. En outre, il est envisagé dans ce qui précède l'enroulement en hélice à plat de la bande fibreuse telle qu'obtenue en sortie de l'installation de nappage de la figure 1. En variante, et même de façon préférentielle, lorsque la dimension radiale des préformes annulaires à réaliser n'est pas trop importante, la bande fibreuse obtenue en sortie de l'installation de nappage est partagée en plusieurs bandes déformables ayant ou non même largeur, par découpe parallèlement à la direction longitudinale.

Claims

REVENDICATIONS
1. Procédé d'élaboration d'une structure fibreuse annulaire par bobinage en hélice à plat d'une texture fibreuse en forme de bande déformable, caractérisé en ce qu'il comprend les étapes consistant à :
- fournir une texture fibreuse en forme de bande déformable formée de deux nappes unidirectionnelles superposées, chacune constituée d'éléments fibreux parallèles les uns aux autres, les directions des deux nappes faisant des angles de signes opposés avec la direction longitudinale de la bande, et les deux nappes étant liées entre elles de manière à former des mailles élémentaires déformables,
- enrouler la texture en forme de bande en la déformant par modification de la géométrie des mailles élémentaires, pour la transformer en hélice à plat, les mailles élémentaires se déformant avec variation de leur dimension radiale de façon croissante en direction du diamètre intérieur des spires, de sorte que la variation de masse surfacique entre les diamètres intérieur et extérieur des spires peut être minimisée, et
- appliquer les unes contre les autres les spires à plat déformées par l'enroulement de la texture en hélice, de manière à obtenir une structure fibreuse annulaire.
2. Procédé selon la revendication 1, caractérisé en ce que l'on fournit une bande déformable dans laquelle les directions des deux nappes font avec la direction longitudinale de la bande des angles de même valeur absolue.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'on fournit une bande déformable dans laquelle les directions des deux nappes font avec la direction longitudinale de la bande des angles de signes opposés et de valeur absolue comprise entre 30° et 60°.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on fournit une bande déformable dans laquelle les directions des deux nappes font avec la direction longitudinale de la bande des angles égaux à +45° et -45°.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on fournit une bande déformable dans laquelle les nappes sont liées entre elles par tricotage.
6. Procédé selon la revendication 5, caractérisé en ce que l'on fournit une bande déformable dans laquelle les nappes sont liées entre elles par tricotage avec un point de tricot formant un zig-zag sur une face et une chaînette sur la face opposée.
7. Procédé selon l'une quelconque des revendications 1 et 4, caractérisé en ce que l'on fournit une bande déformable dans laquelle les nappes sont liées entre elles par couture.
8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que les nappes sont liées entre elles par un fil en matière fugitive.
9. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on fournit une bande déformable dans laquelle les nappes sont liées entre elles par aiguilletage.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les spires superposées à plat formées par enroulement de la texture en hélice sont liées les unes aux autres.
11. Procédé selon la revendication 10, caractérisé en ce que la liaison entre les spires superposées est réalisée par aiguilletage.
12. Procédé selon la revendication 11, caractérisé en ce que l'aiguilletage est réalisé au fur et à mesure de l'enroulement de la texture en hélice.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la déformation de la texture en forme de bande est réalisée par passage entre deux disques rotatifs entre lesquels la texture est maintenue le long de ses bords longitudinaux.
14. Procédé selon la revendication 13, caractérisé en ce que la texture est serrée le long de ses bords longitudinaux entre les disques.
15. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la déformation de la texture en forme de bande est réalisée par appel sur au moins un rouleau tronconique.
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la texture en forme de bande déformable est fournie par découpe longitudinale d'une bande de plus grande largeur.
PCT/FR1998/000598 1997-03-28 1998-03-25 Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite WO1998044182A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69802508T DE69802508T2 (de) 1997-03-28 1998-03-25 Verfahren zur herstellung von ringförmigen faserstrukturen, insbesondere für die herstellung von teilen aus faserverbundwerkstoff
EP98917227A EP0970271B1 (fr) 1997-03-28 1998-03-25 Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
UA99105812A UA54502C2 (uk) 1997-03-28 1998-03-25 Спосіб виготовлення кільцевого волокнистого каркаса, зокрема для одержання виробів із композитного матеріалу
JP54122398A JP4083815B2 (ja) 1997-03-28 1998-03-25 複合材料のパーツを形成するリング形状の繊維構造物を製造する方法
KR10-1999-7008866A KR100501632B1 (ko) 1997-03-28 1998-03-25 환형 섬유 구조물을 제조하는 방법
CA002285375A CA2285375C (fr) 1997-03-28 1998-03-25 Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
US09/381,943 US6319348B1 (en) 1997-03-28 1998-03-25 Method for producing ring-shaped fibrous structures, in particular for making parts in composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/03833 1997-03-28
FR9703833A FR2761379B1 (fr) 1997-03-28 1997-03-28 Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite

Publications (1)

Publication Number Publication Date
WO1998044182A1 true WO1998044182A1 (fr) 1998-10-08

Family

ID=9505293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000598 WO1998044182A1 (fr) 1997-03-28 1998-03-25 Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite

Country Status (11)

Country Link
US (1) US6319348B1 (fr)
EP (1) EP0970271B1 (fr)
JP (1) JP4083815B2 (fr)
KR (1) KR100501632B1 (fr)
CA (1) CA2285375C (fr)
DE (1) DE69802508T2 (fr)
ES (1) ES2167888T3 (fr)
FR (1) FR2761379B1 (fr)
RU (1) RU2176296C2 (fr)
UA (1) UA54502C2 (fr)
WO (1) WO1998044182A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038625A2 (fr) * 1999-11-24 2001-05-31 Snecma Moteurs Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset
FR2812889A1 (fr) * 2000-08-11 2002-02-15 Snecma Moteurs Procede de fabrication d'un bol monobloc en materiau composite thermostructural, notamment pour une installation de production de silicium, et bol tel qu'obtenu par ce procede
FR2818666A1 (fr) * 2000-12-27 2002-06-28 Snecma Moteurs Protection d'un bol en materiau carbone, notamment en composite c/c, destine a recevoir un creuset, tel qu'un creuset en silice pour le tirage de silicium
FR2824084A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Alimentation aiguilleteuse par bande spirale continue
FR2824086A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Machine d'aiguilletage circulaire a table lisse
FR2824085A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Machine d'aiguilletage circulaire munie d'un dispositif d'evacuation automatique de preformes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761380B1 (fr) * 1997-03-28 1999-07-02 Europ Propulsion Procede et machine pour la realisation de nappes fibreuses multiaxiales
US6521152B1 (en) * 2000-03-16 2003-02-18 Honeywell International Inc. Method for forming fiber reinforced composite parts
EP1529865B1 (fr) * 2002-08-12 2009-01-28 Shikibo Ltd. Precurseur de preforme de materiau composite fibreux, preforme de materiau composite fibreux, et procede de fabrication du precurseur et de la preforme
US7384585B2 (en) * 2003-01-14 2008-06-10 Shikibo Ltd. Method for producing dry preform for composite material
US20040231211A1 (en) * 2003-05-02 2004-11-25 Johnson John R. Three-dimensional automobile badge
DE102005034401B4 (de) * 2005-07-22 2008-02-14 Airbus Deutschland Gmbh Verfahren zur Herstellung von ein- oder mehrschichtigen Faservorformlingen
WO2007067949A2 (fr) * 2005-12-08 2007-06-14 E. I. Du Pont De Nemours And Company Tissu multiaxial
US20090139016A1 (en) * 2005-12-16 2009-06-04 E.I. Du Pont De Nemours And Company Thermal Performance Garments Comprising an Outer Shell Fabric of PIPD and Aramid Fibers
FR2909920B1 (fr) * 2006-12-15 2009-03-20 Snecma Propulsion Solide Sa Procede de realisation d'un ensemble carter-divergent
FR2911524B1 (fr) * 2007-01-23 2009-08-21 Snecma Sa Piece tubulaire comportant un insert en matiere composite a matrice metallique.
DE102007025556B4 (de) * 2007-05-31 2010-06-17 Eurocopter Deutschland Gmbh Verfahren zur Herstellung von Bauelementen aus Faser verstärkten Kunststoffen
US9186850B2 (en) * 2009-10-28 2015-11-17 Albany Engineered Composites, Inc. Fiber preform, fiber reinforced composite, and method of making thereof
US20110275266A1 (en) * 2010-05-05 2011-11-10 Goodrich Corporation System and method for textile positioning
US10794012B2 (en) * 2011-09-09 2020-10-06 Nicolon Corporation Multi-axial fabric
JP5847033B2 (ja) * 2012-07-19 2016-01-20 株式会社Shindo 炭素繊維ステッチ基材、およびそれを用いたウエット・プリプレグ
US9045846B2 (en) 2012-12-05 2015-06-02 Goodrich Corporation Spiral textile and system for weaving the same
KR101380045B1 (ko) * 2013-04-04 2014-04-04 김형진 직물원단 가공장치
US9309613B1 (en) * 2014-11-03 2016-04-12 Goodrich Corporation System and method to fabricate helical fabric
US11746059B2 (en) * 2020-02-26 2023-09-05 General Electric Companhy Induction melt infiltration processing of ceramic matrix composite components
CN112481835B (zh) * 2020-11-30 2022-08-23 厦门当盛新材料有限公司 一种聚乙烯膜的生产方法
CN114643725B (zh) * 2020-12-21 2024-04-26 中国航发商用航空发动机有限责任公司 复合机匣的制造方法和复合机匣
CN113086760B (zh) * 2021-03-24 2022-11-01 哈尔滨复合材料设备开发有限公司 一种纤维复合材料环链缠绕设备及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000432A (en) * 1955-07-01 1961-09-19 Neil L Olken Fabric and method of and apparatus for producing the same
FR2490687A1 (fr) * 1980-09-24 1982-03-26 Coisne Lambert Ets Tissu de forme speciale, procede et machine a tisser un tel tissu
US4677831A (en) * 1983-11-26 1987-07-07 Liba Maschinenfabrik Gmbh Apparatus for laying transverse weft threads for a warp knitting machine
FR2643656A1 (fr) * 1989-02-27 1990-08-31 Brochier Sa Structure textile en forme de spirale, procede d'obtention et machine a tisser correspondante
US5173314A (en) * 1989-08-28 1992-12-22 Fuji Jukogyo Kabushiki Kaisha Apparatus for bending and forming a composite material sheet
EP0528336A2 (fr) * 1991-08-15 1993-02-24 The B.F. Goodrich Company Structures de fibre tressées et moulées et procédé de fabrication
GB2268759A (en) * 1992-07-15 1994-01-19 Marcus Bowman Fitzgerald Fibrous web for reinforcing tape
EP0721835A2 (fr) * 1994-12-29 1996-07-17 The B.F. Goodrich Company Structures en forme composées de filaments et procédés pour ses fabrications
WO1997020092A1 (fr) * 1995-11-27 1997-06-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662855A (en) * 1994-05-17 1997-09-02 The B.F. Goodrich Company Method of making near net shaped fibrous structures
US5952075A (en) * 1997-09-08 1999-09-14 Fiberite, Inc. Needled near netshape carbon preforms having polar woven substrates and methods of producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000432A (en) * 1955-07-01 1961-09-19 Neil L Olken Fabric and method of and apparatus for producing the same
FR2490687A1 (fr) * 1980-09-24 1982-03-26 Coisne Lambert Ets Tissu de forme speciale, procede et machine a tisser un tel tissu
US4677831A (en) * 1983-11-26 1987-07-07 Liba Maschinenfabrik Gmbh Apparatus for laying transverse weft threads for a warp knitting machine
FR2643656A1 (fr) * 1989-02-27 1990-08-31 Brochier Sa Structure textile en forme de spirale, procede d'obtention et machine a tisser correspondante
US5173314A (en) * 1989-08-28 1992-12-22 Fuji Jukogyo Kabushiki Kaisha Apparatus for bending and forming a composite material sheet
EP0528336A2 (fr) * 1991-08-15 1993-02-24 The B.F. Goodrich Company Structures de fibre tressées et moulées et procédé de fabrication
GB2268759A (en) * 1992-07-15 1994-01-19 Marcus Bowman Fitzgerald Fibrous web for reinforcing tape
EP0721835A2 (fr) * 1994-12-29 1996-07-17 The B.F. Goodrich Company Structures en forme composées de filaments et procédés pour ses fabrications
WO1997020092A1 (fr) * 1995-11-27 1997-06-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038625A2 (fr) * 1999-11-24 2001-05-31 Snecma Moteurs Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset
WO2001038625A3 (fr) * 1999-11-24 2001-12-20 Snecma Moteurs Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset
US6837952B1 (en) 1999-11-24 2005-01-04 Snecma Moteurs Method for making a bowl in thermostructural composite material
FR2812889A1 (fr) * 2000-08-11 2002-02-15 Snecma Moteurs Procede de fabrication d'un bol monobloc en materiau composite thermostructural, notamment pour une installation de production de silicium, et bol tel qu'obtenu par ce procede
EP1219730A1 (fr) * 2000-12-27 2002-07-03 Snecma Moteurs Procédé pour la protection d'un bol en matériau carboné, notamment en composite C/C, destiné à recevoir un creuset, tel qu'un creuset en silice utilisé pour le tirage de monocristaux de silicium
US6616756B2 (en) 2000-12-27 2003-09-09 Snecma Moteurs Protection for a carbon material, in particular C/C composite, bowl that is to receive a crucible, such as a silica crucible for drawing silicon
FR2818666A1 (fr) * 2000-12-27 2002-06-28 Snecma Moteurs Protection d'un bol en materiau carbone, notamment en composite c/c, destine a recevoir un creuset, tel qu'un creuset en silice pour le tirage de silicium
WO2002088449A1 (fr) * 2001-04-30 2002-11-07 Messier-Bugatti Alimentation aiguilleteuse par bande spirale continue
FR2824084A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Alimentation aiguilleteuse par bande spirale continue
WO2002088450A1 (fr) * 2001-04-30 2002-11-07 Messier-Bugatti Machine d'aiguilletage circulaire munie d'un dispositif d'evacuation automatique de preformes
WO2002088451A1 (fr) * 2001-04-30 2002-11-07 Messier-Bugatti Machine d'aiguilletage circulaire a table lisse
FR2824085A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Machine d'aiguilletage circulaire munie d'un dispositif d'evacuation automatique de preformes
FR2824086A1 (fr) * 2001-04-30 2002-10-31 Messier Bugatti Machine d'aiguilletage circulaire a table lisse
CN1327066C (zh) * 2001-04-30 2007-07-18 马赛尔-布加蒂股份有限公司 带有自动移开预型件的装置的圆形针刺机
CN1327065C (zh) * 2001-04-30 2007-07-18 马赛尔-布加蒂股份有限公司 带有自动送料装置的针刺机
KR100805421B1 (ko) * 2001-04-30 2008-02-20 메씨어-부가띠 매끄러운 테이블을 갖춘 원형 니들링장치와 니들링하는 방법
KR100805420B1 (ko) * 2001-04-30 2008-02-20 메씨어-부가띠 연속적으로 나선형 스트립이 공급되는 니들링장치
KR100835774B1 (ko) * 2001-04-30 2008-06-09 메씨어-부가띠 직포 자동제거장치를 갖춘 원형 니들링기계

Also Published As

Publication number Publication date
JP4083815B2 (ja) 2008-04-30
FR2761379B1 (fr) 1999-07-09
JP2001517272A (ja) 2001-10-02
CA2285375C (fr) 2007-06-19
DE69802508D1 (de) 2001-12-20
CA2285375A1 (fr) 1998-10-08
RU2176296C2 (ru) 2001-11-27
DE69802508T2 (de) 2002-08-22
EP0970271A1 (fr) 2000-01-12
UA54502C2 (uk) 2003-03-17
ES2167888T3 (es) 2002-05-16
FR2761379A1 (fr) 1998-10-02
KR100501632B1 (ko) 2005-07-18
EP0970271B1 (fr) 2001-11-14
US6319348B1 (en) 2001-11-20
KR20010005794A (ko) 2001-01-15

Similar Documents

Publication Publication Date Title
EP0970271B1 (fr) Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
EP0864008B1 (fr) Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite
EP0147297B1 (fr) Procédé et appareillage pour la fabrication de structures tridimensionnelles de révolution
EP1951945B1 (fr) Fabrication de structures annulaires fibreuses tridimensionnelles
EP1743061B1 (fr) Procede de fabrication de nappe fibreuse bidimensionnelle helicoïdale
EP0972102B1 (fr) Procédé pour la réalisation de nappes fibreuses multiaxiales
CA2783509C (fr) Procedes de fabrication d'une piece en materiau composite obtenue par depot de couches de fibres renforcantes plaquees sur un mandrin
CH617973A5 (fr)
FR2584107A1 (fr) Procede de fabrication de structures de revolution tridimensionnelles par aiguilletage de couches de materiau fibreux et materiau utilise pour la mise en oeuvre du procede
EP0098762B1 (fr) Armatures creuses de révolution réalisées par tissage tridimensionnel, procédé et machine de fabrication de telles armatures
FR2595621A1 (fr) Procede de fabrication d'une structure de renfort pour piece en materiau composite
FR2759387A1 (fr) Realisation de preforme fibreuse annulaire par enroulement de ruban
EP0230803B1 (fr) Article textile multicouches pour la réalisation de matériaux stratifiés, procédé et dispositif pour son obtention
BE536720A (fr)
FR2890398A1 (fr) Etoffe complexe pour moulage par infusion
FR2660673A1 (fr) Procede de realisation de preformes au moyen d'une texture tissee et bobinee, pour la fabrication de pieces en materiau composite.
CA1231846A (fr) Procede et machine de fabrication d'une armature creuse de revolution realisee par tissage tridimensionnel
BE662919A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2285375

Country of ref document: CA

Kind code of ref document: A

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1998917227

Country of ref document: EP

Ref document number: 09381943

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1998 541223

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997008866

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998917227

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008866

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998917227

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997008866

Country of ref document: KR