WO1997042279A1 - High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine - Google Patents

High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine Download PDF

Info

Publication number
WO1997042279A1
WO1997042279A1 PCT/EP1997/002239 EP9702239W WO9742279A1 WO 1997042279 A1 WO1997042279 A1 WO 1997042279A1 EP 9702239 W EP9702239 W EP 9702239W WO 9742279 A1 WO9742279 A1 WO 9742279A1
Authority
WO
WIPO (PCT)
Prior art keywords
quaternary ammonium
ammonium salt
fatty acid
composition
mixtures
Prior art date
Application number
PCT/EP1997/002239
Other languages
French (fr)
Inventor
Paul Albert Iacobucci
Ralph Franklin
Phuong Nga
Original Assignee
Akzo Nobel N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24579871&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997042279(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Akzo Nobel N.V. filed Critical Akzo Nobel N.V.
Priority to CA002253536A priority Critical patent/CA2253536A1/en
Priority to DK97922934T priority patent/DK0900260T3/en
Priority to JP53951597A priority patent/JP4420359B2/en
Priority to AT97922934T priority patent/ATE207950T1/en
Priority to DE69707864T priority patent/DE69707864T2/en
Priority to BR9708898A priority patent/BR9708898A/en
Priority to EP97922934A priority patent/EP0900260B1/en
Publication of WO1997042279A1 publication Critical patent/WO1997042279A1/en
Priority to HK99104999A priority patent/HK1019892A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/06Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions

Definitions

  • the present invention generally relates to an improved softening composition containing quaternary ammonium compounds having high diester and low triester content and to a process for preparing same.
  • the present invention relates to a quaternized ester- based softener composition containing high diester content and low triester content.
  • Compositions of this type have demonstrated unexpectedly superior softening performance and stability compared to compositions of the prior art.
  • Fabric softening compositions suitable for providing fabric softening and static control benefits during laundering are well known in the art.
  • Such compositions generally contain, as the softening component, a substantially water insoluble quaternary ammonium compounds having two long alkyl chains.
  • WO/93/21291 to Henkel ci aims textile treatment agents containing as a softener, quaternary ammonium compunds with 1 , 2 or 3 acyloxyalkyl groups bound to the nitrogen atom.
  • the compounds allegedly have a low viscosity if all or some of the acyl groups are derived from unsaturated fatty acids with a least 30% in the cis form.
  • U.S. patent No. 5,023,003 to KAO discloses a softener composition which comprises at least one quaternary ammonium salt of the following formulae:
  • R 1 and R 2 each represent a hydrocarbon radical having 12-22 carbon atoms, preferably 16-22 carbon atoms and one unsaturated bond;
  • R 3 and R 4 represent a methyl, ethyl or
  • n is a integer from 1 to 5, and Y is H or methyl;
  • R 5 and R 6 each represent a hydrocarbon radical having 11-21 carbon atoms and one unsaturated bond;
  • X represents halogen, CH 3 S0 4> C 2 H 5 S0 4 ; wherein the stereoisomeric structure if the above said salt includes both the cis-isomer and the trans-isomer with the cis-isomer and the trans-isomer ratio being in the range of from 25/75 to 90/10.
  • R T is (CH 2 ) n -Q-T 2 or T 3 ;
  • R 2 is (CH 2 ) n -Q-T 4 or T 5 or R 3 ;
  • R 3 is C T - C 4 alkyl;
  • a - ⁇ 2 . T 3 - T 4 . T 5 are (the same or different) C 12 -C 22 alkyl or alkenyl; n is an integer from 1 to 4; and X ' is a softener-compatible anion, the composition having a pH, at 20°C, of from 2.5 to 4.2 upon dilution, in de ⁇ ionized water, to a concentration of 0.5% to 1% of said rapidly biodegradable quaternary ammonium compound.
  • WO 94/20597 to Procter & Gamble relates to softening compounds containing diester quaternary ammonium compounds wherein the fatty acyl groups have an Iodine Value of from greater than about 5 to less than about 100, a cis-trans isomer weight ratio of greater than about 30/70 when the Iodine Value is less than about 25, the level of unsaturation being less than about 65% by weight, wherein said compounds are capable of forming concentrated aqueous compositions with concentrations greater than about 13% by weight at an Iodine Value of greater than about 10 without viscosity modifiers other than normal polar organic solvents present in the raw material of the compound or added electrolyte.
  • EP 0 550 361 to Stepan discloses cationic fabric treating compositions which comprises quaternary ammonium compounds which are the reaction product of a long chain fatty acid and a tertiary amine wherein the ratio of fatty acid to amine is between 1.85 and 1.4.
  • WO 91/01295 to Henkel discloses quaternary ammonium compounds useful as textile treatment agents which are prepared by reaction of fatty acids with alkanolamine and thereafter alkylating same to give the quaternary compounds. The esterification reaction is carried out in the presence of an acid catalyst such as hypophosphorous acid.
  • the final product allegedly comprises mono-, di- and triester components in a ratio of 10:62:28%.
  • WO 94/14935 discloses concentrated textile softener dispersions containing quaternary ammonium compounds derived from triethanolamine and containing one, two or three fatty acyloxyethyl groups.
  • these compounds allegedly have a particularly low viscosity.
  • no process to achieve this level of diester was disclosed in this document, and there is no indication of the triester content of the final product.
  • the present invention generally relates to a textile softening composition which comprises, as the softening agent, a quaternary ammonium salt which comprises a mixture of mono-, di- and tri-ester components, wherein the amount of diester quaternary is greater than about 55% by weight, and the amount of t ⁇ ester quaternary is less than about 20% by weight based on the total amount of quaternary ammonium salt
  • a quaternary ammonium salt which comprises a mixture of mono-, di- and tri-ester components, wherein the amount of diester quaternary is greater than about 55% by weight, and the amount of t ⁇ ester quaternary is less than about 20% by weight based on the total amount of quaternary ammonium salt
  • the invention also relates to a method for preparing said softening agent
  • the present invention generally relates to a textile softening composition which comprises a quaternary ammonium based softening agent which is high in diester and low in triester content and to a process for the preparation of same Quaternary ammonium compounds having particularly good performance and stability profiles are obtained by reaction of C 12 - C 22 fatty acids or the hydrogenation products thereof, or a mixture of such acids, with an alkanolamine in the presence of an acid catalyst, wherein the ratio of fatty acid to alkanolamine is from about 1.60 - 1.80.
  • the resultant esteramine reaction products are subsequently quaternized to obtain the quaternary ammonium salts of the present invention.
  • the fatty acid is a C 16 - C 22 acid containing a degree of unsaturation such that the iodine value ("IV") is in the range of from about
  • Preferred fatty acids include but are not limited to oleic, palmitic, erucidic, eicosanic and mixtures thereof. Soy, tallow, palm, palm kernel, rape seed, lard, mixtures thereof and the like are typical sources for fatty acid which can be employed in the present invention.
  • Partial hydrogenation can be employed, if required, to minimize the poiyunsaturate levels in order to improve the stability of the final product. It is also preferred that the fatty, acid(s) employed in the present process have a cis to trans isomer ratio of from about 80:20 to about 95:5. More preferably, the trans isomer content of said fatty acid(s) is less than about
  • trans-isomer content is between about 0.5 - 9.9%.
  • the most preferred fatty acid is a mixture of tallow/distilled tallow having a cis:trans isomer ratio of greater than 9:1.
  • alkanolamines employable in the present invention generally correspond to the formula:
  • R - N - R T wherein R, R ⁇ and R 2 are independently selected from C 2 - C 4 hydroxyalkyl groups.
  • Preferred alkanolamines include but are not limited to triethanolamine, propanol diethanolamine, ethanol diisopropanolamine, triisopropanol amine and mixtures thereof. Triethanolamine is the most preferred alkanolamine.
  • the molar ratio of fatty acid to alkanol amine is generally in the range of from about 1.60 - 1.80, and more preferably, in the range of from about 1.65-1.75. Best results are usually obtained when the molar ratio is about 1.70.
  • the acid catalyst employable in the present process includes but is not limited to sulphonic acid, phosphorous acid, p-toluene sulphonic acid, methane sulphonic acid, oxalic acid, hypophosphorous acid or an acceptable Lewis acid.
  • a preferred acid catalyst is hypophosphorous acid.
  • the esterification of fatty acids with alkanolamines is carried out at a temperature of from about 175° - 210°C until the reaction product has an acid value of below 5. Further, triester formation in the final product can be minimized by controlling the heat up rate for forming the esteramine mixture. Typically, a heat up rate of 0.8° - 3°C/ minute, preferably 1.25° to 3°C, from a temperature of about 70°C to a temperature in a range of from between 170°C to 210°C is effective in minimizing triester formation.
  • the crude product is reacted with alkylating agents in order to obtain the quaternary ammonium product.
  • Preferred alkylating agents include C, - C 3 straight or branched chain alkyl halides, phosphates, carbonates, or sulfates, C 7 - C 10 aralkyl halides, phosphates or sulfates, and mixtures thereof.
  • Examples of preferred alkylating agents include but are not limited to methyl chloride, benzyl chloride, diethyl sulfate, dimethyl carbonate, trimethyl phosphate, dimethyl sulfate or mixtures thereof. Choosing the type and amount of alkylating agent employed is well within the skill of one in the art. Typically, when dimethyl sulfate is the alkylating agent, 0.7 to 1.0 mol dimethyl sulfate per mole of ester is satisfactory in yielding the quaternized product.
  • the quatemization may be carried out in bulk or in solvent, at temperatures ranging from 60° - 120°C. If a solvent is employed, then the starting materials and/or product must be soluble in the solvent to the extent necessary for the reaction. Solvents of this type are generally known in the art. Suitable examples include polar solvents such as, for example, lower alcohols, i.e., C 1 - C 6 alcohols. Other solvents which can be employed include, but are not limited to mono-, di-, and tri-glycerides, fatty acid, glycol and mixtures thereof.
  • a resultant quaternary ammonium salt comprises a mixture mono - (I), di - (II) and tri-ester (III) components of the following formulae:
  • R represents a hydrocarbon radical having 12-22 carbon atoms, preferably 16-22 carbon atoms, having a total IV in the range of 20-90, preferably, 40-60, and more preferably, 45-55
  • X " represents a softener compatible anion including but not limited to halogen, CH 3 S0 4 or C 2 H 5 S0 4
  • the reaction products may also contain minor amounts of methyl trialkanolamine quaternary and other impurities.
  • the amount of diester in the final product is generally greater than about 55% by weight and the amount of triester is generally less than about 25%, preferably le' nan 20% by weight based on the total amount of quaternary ammon* salt product.
  • Typical product composition contain 60 - 65 wt% diester and less than about 18 wt% triester, more preferably, less than about 15 wt% triester Further, the ratio of cis to trans double bonds of the above salts is preferably in the range of from about 80:20 to about 95:5. In a most preferred embodiment, the amount of trans isomer is less than about 10%, and ideally in the range of from 5 to 9.5%.
  • the preferred method is to produce the quaternary ammonium salt from a cis-isome ⁇ c and trans-isomeric fatty acids after adjusting said acids to the desired ratio.
  • Another method is to produce the quaternary ammonium salt from the mixture after adjusting the ratio thereof by isomerizing a portion of the cts- isomeric fatty acid or ester thereof into the trans-isomer, in the presense of a metallic catalyst.
  • Other methods are readily apparent to and well within the skill of one of ordinary skill in the art.
  • the textile softening composition of the present invention having high diester content and low triester content demonstrates superior performance compared to typical esteramine quaternary compounds, and the excellent color and odor stability allows the formulator greater latitude in preparing high quality softening products.
  • the compositions can be aqueous liquids, preferably concentrated, containing from about 4 - 50%, preferably from about 10 to 45 % and still more preferably from about 15-40 % by weight of the quaternary ammonium compounds of the present invention.
  • the compositions of the present invention can be further concentrated to particulate solids containing from about 50-95%, preferably 60-90 % quaternary ammonium softening compound, if desired.
  • Water can be added to the particulate solid compositions to form either dilute or concentrated liquid textile softening compositions according to the invention.
  • the solid particulate composition can also be directly added to the rinse bath in order to provide an adequate usage concentration, which is typically in the range of from about 10-1000 ppm, more preferably, in a range of from about 50-500 ppm.
  • the quaternary ammonium compounds according to the present invention can generally be prepared by reacting at least one C 12 -C 22 fatty acid having a IV of from 20-90 with an alkanol amine in the presence of an acid catalyst.
  • the ratio of acid to amine is preferably in the range of 1.6 to 1.8, and the reaction is carried out at a temperature of from about 175°C to about 210°C until the reaction product has an acid value of below about 5.
  • a heat up rate of 0.8°C to 3.0°C per minute is employed in order to minimize triester formation.
  • the esterification products are subsequently alkylated in order to obtain the quaternary ammonium product.
  • a standard rinse-cycle softening composition in accordance with the present invention can be prepared by preheating water to a temperature of from about 45°-60°C in a suitable vessel and acidifying same to a pH of from about 2.7-3.2.
  • the warmed quaternary ammonium salt is thereafter added to the acidified water with agitation while the temperature is maintained at 45°C - 60°C.
  • Fragrance and other optional ingredients can then be solubilized into the softener dispersion, and the weight is thereafter adjusted with deionized water.
  • Dispersions such as this are typically storage stable within a temperature range of from about 4°C to about 50°C.
  • the quaternary ammonium salts of the present invention may also be utilized in products other than fabric softening compositions These products may include hair care formulations, skin care formulations, and the like, for the softening, lubrication, emolliency and condition of said hair and/or skin when applied in effective amounts These and other uses will be readily apparent to one of ordinary skill in the art
  • the stability of the textile softening compositions of the present invention is such that stabilizing cosurfactants are not required, they may nevertheless be included along with a wide variety of other optional ingredients
  • a brief non-limiting description of some of the optional ingredients which may be employed in the textile softening compositions of the present invention is provided below.
  • compositions of the quaternary esters of the present invention can be prepared that are stable, without the addition of concentration aids.
  • the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients
  • concentration aids which are typically viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels in relation to IV are present.
  • Preferred mono-long chain alkyl or ester based water-soluble cationic surfactants generally fall within the scope of the following general formula:
  • R 2 group is C 8 -C 22 hydrocarbon group, preferably C 12 - C 18 alkyl group or the corresponding ester linkage interrupted group with a short chain alkylene (C, -C 4 ) group between the ester linkage and the N, and having a similar hydrocarbon group.
  • Each R is a C, -C 6 unsubstituted or substituted alkyl (e.g., by hydroxy) or hydrogen, preferably methyl, and the counterion X- is a softener compatible anion such as, for example, chloride, bromide, methyl sulfate, etc.
  • the cationic surfactants are usually added to solid compositions at a level of from 0% to about 15%, preferably from about 3% to about 15%, more preferably from about 5% to about 15%. In liquid compositions they are usually employed at level of from 0% to about 15%, preferably from about 0.5% to about 10% In general, the total amount single-long-chain cationic surfactant is added in an amount effective to obtain a stable composition.
  • the foregoing levels represent the amount of the single-long-chain- alkyl cationic surfactant which is added to the composition of the present invention.
  • the ranges do not include the amount of monoester which is already present in the diester quaternary ammonium compound.
  • the long chain group R 2 of the single-long-chain-alkyl cationic surfactant generally contains an alkylene group having from about 10 to about 22 carbon atoms, preferably from about 12 to about 16 carbon atoms for solid compositions, and preferably from about 12 to about 18 carbon atoms for liquid compositions.
  • This R 2 group can be attached to the cationic nitrogen atom through a group containing one, or more, ester, amide, ether, amine, etc., preferably ester, linking groups which can be desirable for increased hydrophilicity, biodegradability, etc.
  • Such linking groups are preferably within about three carbon atoms of the nitrogen atom.
  • Suitable biodegradable single-long-chain alkyl cationic surfactants containing an ester linkage in the long chain are described in U.S. Pat. No. 4,840,738 which is incorporated herein by reference. If the corresponding, non- quaternary amines are used, any acid (preferable a mineral or polycarboxylic acid) which is added to keep the ester groups stable will also keep the amine protonated in the compositions and preferably during the rinse so that the amine has a cationic group.
  • the composition is buffered (pH from about 2 to about 5, preferably from about 2 to about 4) to maintain an appropriate, effective charge density in the aqueous liquid concentrate product and upon further dilution e.g., to form a less concentrated product and/or upon addition to the rinse cycle of a laundry process.
  • the main function of the water-soluble cationic surfactant is to lower the viscosity and/or increase the dispersibility of the diester softener and it is not, therefore, essential that the cationic surfactant itself have substantial softening properties, although this may be the case.
  • surfactants having only a single long alkyl chain can protect the diester softener from interacting with anionic surfactants and/or detergent builders that are carried over into the rinse.
  • Other cationic materials with ring structures such as alkyl imidazoline, imidazolimium, pyridine, and pyridinium salts having a single C 12 -C 30 alkyl chain can also be used. Very low pH is required to stabilize, e.g., imidazoline ring structures.
  • Y 2 is -C(0)-0-, -0-(0)C-, -C(0)-N(R 5 ), or -N(R 5 )-C(0)- in which R 5 is hydrogen or a C r C 4 alkyl radical; R is a C ⁇ -C 4 alkyl radical; R and R are each independently selected from R and R 2 as defined hereinbefore for the single-long-chain cationic surfactant with only one being R .
  • R 2 and X " are as defined above.
  • a typical material of this type is cetyl pyridinium chloride.
  • Nonionic surfactants suitable as viscosity/dispersibility modifiers include the addition products of ethylene and/or propylene oxide with fatty alcohols, fatty acids, fatty amines, etc. Any of the alkoxylated materials hereinafter described can be used as the nonionic surfactant.
  • the nonionics herein can be employed in solid compositions at a level of from about 5% to about 20%, preferably from about 8% to about 15%, and in liquid compositions at a level of from 0% to about 5%, preferably from about 0.1 % to about 5%, more preferably from about 0.2% to about 3%.
  • Suitable water-soluble nonionic surfactants generally fall within the scope of the following general formula:
  • R 2 for both solid and liquid compositions is selected from the group consisting of primary, secondary and branched chain alkenyl hydrocarbyl groups; and p ⁇ mary, secondary and branched chain alkyl- and alkenyl- substttuted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of from about 8 to about 20, preferably from about 10 to about 18 carbon atoms. More preferably the hydrocarbyl chain length for liquid compositions is from about 16 to about 18 carbon atoms and for solid compositions form about 10 to about 14 carbon atoms.
  • Y is typically -0-, - C(O)-, -C(0)N(R)-, or -C(0)N(R)R-, wherein R, when present, has the meanings given hereinbefore, and/or R can be hydrogen, and z is at least about 8, preferably at least about 10-11. Performance, and usually stability of the softener composition decrease when fewer ethoxylate groups are present.
  • the nonionic surfactants herein are characterized by an HLB (hydrophihc-lipophilic balance) of from about 7 to about 20, preferably from about 8 to about 15
  • HLB hydrophilic balance
  • Nonionic surfactants employable in the present invention include but are not limited to the following examples In the examples, the number of ethoxyl groups in the molecule (EO) is defined by an integer
  • (i) Straight-Chain, Primary Alcohol Alkoxylates The deca-, undeca-, dodeca-, tetradeca-, and pentadeca-ethoxylates of n-hexadecanol, and n-octadecanol having an HLB within the preferred range are useful as viscosity/dispersibility modifiers of the context of this invention
  • Preferred examples of ethoxylated primary alcohols useful herein as the viscosity/dispersibility modifiers of the compositions include but are not limited to n-C 18 EO(10), and n-C 10 EO(11).
  • the ethoxylates of mixed natural or synthetic alcohols in the "tallow" chain length range are also useful herein Specific examples of such materials include tallow alcohol-EO(11), tallow alcohol-EO(18), and tallow alcohol-EO(25).
  • (ii) Straight-Chain, Secondary Alcohol Alkoxylates The deca-, undeca-, dodeca-, tetradeca-, pentadeca-, octadeca-, and nonadeca-ethoxylates of 3-hexadecanol, 2-octadecanol, 4-e ⁇ cosanoi, and 5- eicosanol having an HLB within the preferred range are useful viscosity/dispersibility modifiers in the context of the present invention
  • Examples of ethoxylated secondary alcohols useful herein as the viscosity/dispersibility modifiers of the compositions include but are not limited to. 2-C 16 EO(11 ), 2-C 20 EO(11); and 2-C 16
  • (iii) Alkyl Phenol Alkoxylates As is the case of the alcohol alkoxylates, the hexa- through ⁇ ctadeca- ethoxylates of alkylated phenols, particularly monohydric alkylphenols, having an HLB within the preferred range are useful as the viscosity/dispersibility modifiers.
  • the hexa- through octadeca-ethoxylates of p-t ⁇ decylphenol, m- pentadecylphenol, and the like, are useful herein.
  • ethoxylated alkylphenols useful as the viscosity/dispersibility modifiers include but are not limited to p-t ⁇ decylphenol EO(11 ) and p- pentadecylphenol EO(18)
  • a phenylene group in the nonionic formula is the equivalent of an alkylene group containing from 2 to 4 carbon atoms
  • nonionic surfactants containing a phenylene group are considered to contain an equivalent number of carbon atoms calculated as the sum of the carbon atoms in the alkyl group plus about 3.3 carbon atoms for each phenylene group.
  • alkenyl alcohols both primary and secondary, and alkenyl phenols corresponding to those disclosed hereinabove can be ethoxylated to an HLB within the range recited herein and used as the viscosity/dispersibility modifiers in the compositions of the present invention
  • ethoxylated nonionic surfactants summarized hereinabove can be usefully employed in the present compositions either alone or in specific mixtures.
  • Suitable amine oxides include but are not limited to those with one alkyl or hydroxyalkyl moiety of about 8 to about 28 carbon atoms, preferably from about 8 to about 16 carbon atoms, and two alkyl moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups with about 1 to about 3 carbon atoms
  • Amineoxides if employed, are generally present in solid compositions at a level of from 0% to about 15%, preferably from about 3% to about 15%; and in liquid compositions at a level of from 0% to about 5%, preferably from about 0.25% to about 2%.
  • the total amount amine oxide is generally present in an amount effective to provide a stable composition.
  • Preferred examples of amine oxides employable in the present invention inctude are not limited to dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyl dodecylamineoxide, dipropyltetradecylamine oxide, methylethylhexade- cylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.
  • Suitable fatty acids include those containing from about 12 to about 25, preferably from about 13 to 22, more preferably from about 16 to about 20, total carbon atoms, with the fatty moiety containing from about 10 to about 22, preferably from about 10 to about 18, more preferably from about 10 to about 14 carbon atoms.
  • the shorter moiety contains from about 1 to about 4, preferably from about 1 to about 2 carbon atoms.
  • Fatty acids are typically present at approximately the levels outlined above for amine oxides. Fatty acids are preferred concentration aids for those compositions which require a concentration aid and contain perfume.
  • Electrolyte Concentration Aids Inorganic viscosity control agents which can also act like or augment the effect of the surfactant concentration aids include water-soluble, ionizable salts. Such salts can also optionally be incorporated into the compositions of the present invention. A wide variety of ionizable salts can be used. Examples of suitable salts include but are not limited to the halides of the Group IA and IIA metals of the Periodic Table of Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride. The ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11 ,000 ppm, by weight of the composition
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water- soluble, ionizable salts described above. Additionally, these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash to the rinse and may improve softening performance These agents may stabilize the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
  • Specific examples of alkylene polyammonium salts include but are not limited to 1-lys ⁇ ne monohydrochloride and 1 ,5-d ⁇ ammon ⁇ um-2- methylpentane dihydrochlo ⁇ de
  • Stabilizers may also be optionally employed in the compositions of the present invention
  • antioxidants which can be employed in the compositions of the present invention include but are not limited to a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1 ; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone available from Eastman Chemical
  • Tenox® TBHQ natural tocopherols available from Eastman Chemical Products, Inc. under the mark Tenox® GT-1/GT-2; and butylated hydroxyanisole available from Eastman Chemical Products, Inc., as BHA; long chain esters (C 8 -C 22 ) of gallic acid such as dodecyl gallate; Irganox® 1010; Irganox® 1035; Irganox® B 1171 ; Irganox® 1425; Irganox® 3114; Irganox ® 3125; and mixtures thereof; preferably Irganox® 3125, Irganox® 1425, Irganox® 3114, and mixtures thereof; and more preferably Irganox® 3125 alone or in combination with citric acid and/or other chelators such as isopropyl citrate, Dequest® 2010 available from Monsanto under the name 1-hydroxyethyiidene-1 , 1-diphosphonic acid
  • Irganox® 1010 6683-19-8 Tetrakis [methylene(3,5-di-tert-butyl-4 hydroxyhydrocinnamate)] methane
  • Irganox® 1035 41484-35-9 Thiodiethylene bis (3,5 - di - tert - butyl - 4 - hydroxyhydrocinnamate
  • Irganox® 3125 34137-09-2 3,5-Di-tert-butyl-4-hydroxy-hydrocinnamic acid triester with 1 ,3,5-tris (2-hydroxye- thyl)-S-triazine-2,4,6-(1 H,3H,5H)-trione
  • Irgafos® 168 31570-04-4 Tris(2,4-di-tert-butyl-phenyl)phosphite
  • reductive agents include but are not limited to sodium borohydride, sodium bisulfide, hypophosphorous acid, and mixtures thereof.
  • the stability of the compounds and compositions herein can be improved by use of stabilizers, but in addition, the preparation of compounds used herein and the source of hydrophobic groups can be important.
  • some highly desirable, readily available sources of hydrophobic groups such as f atty acids from, e.g., tallow, possess odors that remain with the compound despite the chemical and mechanical processing steps which convert the raw tallow to finished product.
  • sources must be deodorized, e.g., by absorption, distillation, stripping, etc., as is well known in the art.
  • contact of the resulting fatty acyl groups to oxygen and/or bacteria must be minimized by adding antioxidants, antibacterial agents, etc.
  • composition of the present invention may optionally contain from 0.1% to 10%, preferably from 0.2% to 5%, of a soil release agent.
  • the soil release agent is a polymeric soil release agent such as one which contains copolymeric blocks of terephthalate and polyethylene oxide or polypropylene oxide, cationic guar gums, and the like.
  • U.S. Patent No. 4,956,447 which is incorporated herein by reference, discloses some preferred soil release agents comprising cationic functionalities.
  • a preferred soil release agent is copolymer having blocks of terephthalate and polyethylene oxide which are comprised of repeating units of ethylene terephthalate and polyethylene oxide terephthalate at a molar ratio of ethylene terephthalate units to polyethylene oxide terephthalate units of from about 25.75 to about 35:65, said polyethylene oxide terephthalate containing polyethylene oxide blocks having molecular weights of from about 300 to about 2,000.
  • the molecular weight of this polymeric soil release agent is in the range of from about 5,000 to about 55,000.
  • Another preferred polymeric soil release agent is a crystallizable polyester with repeat units of ethylene terephthalate units containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene glycol of average molucular weight of from about 300 to about 6,000, wherein the molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the crystallizable polymeric compound is between 2:1 and 6:1.
  • this polymer include but are not limited to Zelcon® 4780 available from DuPont and Milease® T available from ICI.
  • Highly preferred soil release agents are polymers of the generic formula (I):
  • X can be any suitable capping group, wherein each X is selected from the group consisting of H, and alkyl or acyl groups containing from about 1 to about 4 carbon atoms, wherein methyl is preferred, n is selected for water solubility and is generally from about 6 to about 113, preferably from about 20 to about 50.
  • u is critical to liquid formulations having a relatively high ionic strength. The amount of material wherein u is greater than 10 should be minimized, while there should be at least 20%, preferably at least 40%, of material in which u ranges from about 3 to about 5.
  • the R 1 moieties are essentially 1 ,4-phenylene moieties.
  • the term "the R 1 moieties are essentially- 1 ,4-phenylene moieties” refers to compounds where the R 1 moieties consist entirely of 1 ,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof.
  • Arylene and alkarylene moieties which can be partially substituted for 1 ,4- phenylene include 1 ,3-phenylene, 1 ,2-phenylene, 1 ,8-naphtylene, 1 ,4- naphthylene, 2,2-biphenylene, 4,4-biphenylene and mixtures thereof.
  • Alkylene and alkenylene moieties which can be partially substituted include ethylene, 1 ,2-propylene, 1 ,4-butylene, 1 ,5-pentylene, 1 ,6-hexamethylene, 1 ,7-heptamethylene, 1 ,8-octamethylene, 1 ,4-cyclohexylene, and mixtures thereof.
  • the degree of partial substitution with moieties other than 1 ,4-phenylene should be such that the soil release properties of the compound are not adversely affected to a significant degree.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, with longer backbones generally having greater partial substitution for 1 ,4-pheneylene moieties.
  • compounds where the R 1 comprise from about 50% to about 100% 1 ,4-phenylene moieties (from 0 to about 50% moieties other than 1 ,4-phenylene) have adequate soil release activity.
  • polyesters with a 40:60 mole ratio of isophthalic (1 ,3-phenylene) to terephthalic (1 ,4-phenylene) acid have adequate soil release activity.
  • the R 1 moieties consist entirely of (i e , comprise 100%) 1 4- phenylene moieties, i e , each R 1 moiety is 1 ,4-pheneylene
  • suitable ethylene or substituted ethylene moieties include but are not limited to ethylene, 1 ,2-propylene, 1 ,2-butylene, 1,2- hexylene, 3-methoxy-1 ,2-propylene and mixtures thereof
  • the R 2 moieties are essentially ethylene moieties, 1 ,2-propylene moieties or mixtures thereof Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of compounds Inclusion of a greater percentage of 1 ,2-propylene moieties tends to improve the water solubility of the compounds.
  • n is at least about 6, and preferably is at least about 10
  • n usually ranges from about 12 to about 113
  • each n is in the range of from about 12 to about 43
  • Cellulosic derivatives are also functional as soil release agents
  • such agents include but are not limited to hydroxyethers of cellulose such as Methocel ® available from Dow Chemical; and certain cationic cellulose ether derivatives such as Polymer JU-125®, JR-400®, and JR-30M® available from Union Carbide
  • Additional examples of cellulosic polymeric soil release agents include methyl cellulose, hydroxypropyl methylcellulose, hydroxybutyl methylcellulose, or mixtures thereof wherein said cellulosic polymer has a viscosity in a 2% aqueous solution at 20°C of 15 to 75,000 centiposie.
  • Typical levels of bacteriocides used in the present compositions are about 1 ppm to about 2,000 ppm by weight of the composition, depending on the type of bacteriocide selected.
  • Methyl paraben is especially effective for mold growth in aqueous fabric softening compositions with under 10% by weight of the diester component.
  • Dimethylpolysiloxane (silicone) or modified silicone can be added to the composition of this present invention, in order to enhance the softening property and water-absorbency of the unsaturated quaternary ammonium salt of formula (l)-(lll).
  • Modified silicones useful in the present invention include, for example, polyoxethylene modified silicone and amino-modified silicone, wherein the amount of the modification is preferably less than 10%
  • dimethylpolysiloxane or modified silicones are emulsified with a polyoxyethylene-type nonionic surfactant or a monoalkyicationic-type or dialkylcationic-type cationic surfactant prior to their use.
  • the present invention can include other optional components conventionally used in textile treatment compositions, for example, colorants, preservatives, optical brighteners, opacifiers, fabric conditioning agents, surfactants, stabilizers such as guar gum, anti-shrinkage agents, anti-wrinkle agents, fabric crisping agents, anti-spotting agents, fungicides, anti-corrosion agents, antifoam agents, and the like.
  • colorants for example, colorants, preservatives, optical brighteners, opacifiers, fabric conditioning agents, surfactants, stabilizers such as guar gum, anti-shrinkage agents, anti-wrinkle agents, fabric crisping agents, anti-spotting agents, fungicides, anti-corrosion agents, antifoam agents, and the like.
  • An optional additional softening agent of the present invention is a nonionic fabric softener mate ⁇ al.
  • nonionic fabric softener materials typically have an HLB of from about 2 to about 9, more typically from about 3 to about 7.
  • Such nonionic fab ⁇ c softener materials tend to be readily dispersed either by themselves, or when combined with other materials such as single-long-chain alkyl cationic surfactant, mixture with other materials as set forth hereinafter, use of hotter water, and/or more agitation
  • the materials selected should be relatively crystalline, higher melting, (e g , 50°C or greater) and relatively water-insoluble
  • the level of optional nonionic softener in the solid composition is typically from about 10% to about 40%, preferably from about 15% to about
  • TEQ TEQ of the present invention is from about 1 6 to about 1 2, preferably from about 1 4 to about 1 2
  • the level of optional nomonic softener in the liquid composition is typically from about 0 5% to about 10%, preferably from about 1% to about 5%
  • Preferred nomonic softeners are fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol, or anhydride, contains from 2 to about 18, preferably from 2 to about 8, carbon atoms, and each fatt acid moiety contains from about 12 to about 30, preferably from about 16 to about 20, carbon atoms
  • such softener contain from about one to about 3, preferably about 2 fatty acid groups per molecule
  • the polyhydric alcohol portion of the ester can be ethylene glycol, glycerol, poly (e.g., di-, tn-, tetra, penta-, and/or hexa-) glycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan Sorbitan esters and polyglycerol monostearate are particularly preferred.
  • the fatty acid portion of the ester is normally derived from fatty acids having from about 12 to about 30, preferably from about 16 to about 20, carbon atoms, typical examples of said fatty acids being lauric acid, my ⁇ stic acid, palmitic acid, stearic acid and behenic acid
  • Highly preferred optional nonionic softening agents employable in the present invention include but are not limited to the sorbitan esters, which are esterified dehydration products of sorbitol, and the glycerol esters.
  • Sorbitol which is typically prepared by the catalytic hydrogenation of glucose, can be dehydrated in well known fashion to form mixtures of 1 ,4- and 1 ,5-sorbitol anhydrides and small amounts of isosorbides.
  • An exemplary process is described in U.S. Patent No. 2,322,821which is incorporated herein by reference.
  • the foregoing types of complex mixtures of anhydrides of sorbitol are collectively referred to herein as "sorbitan”. Further, one of ordinary skill in the art will recognize that this "sorbitan" mixture will aiso contain some free, uncyclized sorbitol.
  • Preferred sorbitan softening agents can be prepared by esterifying the "sorbitan" mixture with a fatty acyl group in standard fashion, e.g., by reaction with a fatty acid halide or fatty acid.
  • the esterification reaction can occur at any of the available hydroxyl groups, and various mono-, di-, etc., esters can be prepared. Mixtures of mono-, di-, tri-, etc., esters almost always result from such reactions, and the stoichiometric ratios of the reactants can be simply adjusted to favor the desired reaction product.
  • etherification and esterification are generally accomplished in the same processing step by reacting sorbitol directly with fatty acids.
  • Such a method is described more fully in MacDonald; "Emulsifiers:” Processing and Quality Control:, Journal of the American Oil Chemists' Society ,Vol.45, October 1968. Details, including formulas of the preferred sorbitan esters, can be found in U.S. Pat. No. 4,128,484, which is incorporated herein by reference.
  • sorbitan esters herein, especially the "lower” ethoxylates thereof (i.e., mono-, di-, and tri-esters) wherein one or more of the unesterified -OH groups contain one to about twenty oxyethylene moieties [Tweens®] are also useful in the composition of the present invention. Therefore, for purposes of the present invention, the term "sorbitan ester" includes such derivatives.
  • sorbitan esters are employed, that a significant amount of di- and tri- sorbitan esters are present in the ester mixture. Ester mixtures having from 20-50% di-ester and 10-35% of tri- and tetra-esters are preferred.
  • Commercially available material such as sorbitan mono-ester (e.g., monostearate), contains significant amounts of di- and tri-esters and a typical analysis of sorbitan monostearate indicates that it comprises about 27% mono-, 32% di- and 30% tri- and tetra-esters.
  • Commercial sorbitan monostearate therefore is a preferred material.
  • alkyl sorbitan esters for use in the softening compositions herein include sorbitan monolaurate, sorbitan monimyristate, sorbitan monopalmitate, sorbitan monobehenate, sorbitan monooleate, sorbitan dilaurate, sorbitan dimyristate, sorbitan dipalmitate, sorbitan distearate, sorbittan dibehenate, sorbitan dioleate, and mixtures thereof, and mixed tallowalkyl sorbitan mono- and di-esters.
  • Such mixtures are readily prepared by reacting the foregoing hydroxy-substituted sorbitans, particularly the 1 ,4- and 1 ,5-sorbitans, with the corresponding acid or acid chloride in a simple esterification reaction. It is to be recognized, of course, that commercial materials prepared in this manner will comprise mixtures usually containing minor proportions of uncyclized sorbitol, fatty acids, polymers, isosorbide structures, and the like In the present invention, it is preferred that such impurities are present at as low a level as possible.
  • the preferred sorbitan esters can contain up to about 15% by weight of esters of the C 20 - C 26 and higher, fatty acids, as well as minor amounts of C 8 , and lower, fatty esters.
  • Glycerol and polyglycerol esters especially glycerol, diglycerol , t ⁇ glycerol, and polyglycerol mono- and/or di-esters, preferably mono-, are preferred herein.
  • Glycerol esters can be prepared from naturally occurring triglycerides by normal extraction, purification and/or intereste ⁇ fication processes or by esterification processes of the type set forth hereinbefore for sorbitan esters. Partial esters of glycerin can also be ethoxylated to form usable derivatives that are included within the term "glycerol esters.”
  • Useful glycerol and polyglycerol esters include mono-esters with stearic, oleic, palmitic, lauric, isostea ⁇ c, my ⁇ stic, and/or behenic acids and the diesters of stearic, oleic, palmitic, lauric, isostea ⁇ c, behenic, and/or my ⁇ stic acids.
  • Typical mono-ester contains some di- and t ⁇ -ester, etc.
  • the "glycerol esters” also include the polyglycerol, e.g., diglycerol through octaglycerol esters.
  • the polyglycerol polyols are formed by condensing glycerin or epichlorohyd ⁇ n together to link the glycerol moieties via ether linkages.
  • the mono- and/or diesters of the polyglycerol polyols are preferred, the fatty acyl groups typically being those described hereinbefore for the sorbitan and glycerol esters.
  • Triethanolamine (TEA) 231.8g
  • TEEA (a fatty acid ester amine of TEA) was prepared in a 2L-resin kettle connected to an overhead stirrer, three-ball Snyder column, addition funnel, distillation setup, nitrogen sparge and temperature control. The system was vacuum-leak tested before starting the experiment.
  • TEEA was charged into the reactor and heated to 80°C under nitrogen, and dried for approximately 30 minutes. The dried TEEA was then cooled to 60°C after which the isopropanol was added (5% batch weight). The heat mantle was then removed and the DMS was added dropwise over a time period of about 20 minutes. The reaction temperature increased from about 50°C to 85°C because of the exotherm. The contents of the reactor were then allowed to digest at 85-90°C for approximately two hours. EDTA and BHT were then added, and the remaining isopropanol (5%) was added to the mixture.
  • Quaternary salt of the present invention 8.40% Dl-water 91.60%
  • Anti-microbial q.s. Preheat water to between 45 and 60°C. Add the heated water to a suitable vessel and acidify to a pH of 2.7 - 3.2 with 1 N HCI. Add the warmed quaternary salt' to the acidified water while agitating and maintaining a temperature of 45 - 60°C. Cool the dispersion while agitating. Solubilize fragrance into the softener dispersion at 40°C. Add dye and preservative as desired. Adjust weight with Dl-water. Dispersion is storage stable within a temperature range of 4 to 50°C.
  • Quaternary salt of the present invention 26.80%
  • Quaternary salt of the present invention 156g Dl-water 315g 1 N HCI pH 2 7 - 3 2
  • the Dl-water is preheated to 50-60°C and charged to the mixing vessel and acidified to a pH of 2 7-3 2 with 1 N HCI
  • the molten quaternary salt is then slowly added to the mixing vessel with mixing while the temperature is maintained at about 60°C
  • the mixture is then cooled to 40°C with agitation wherein the fragrance solubilized into the softener dispersion
  • the viscosity is then adjusted to the desired levei with addition of CaCI 2 solution, and color and preservatives added Lastly, the weight is adjusted with Dl-water
  • the dispersion is storage stable within a temperature range of 4 - 50°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention generally relates to a textile softening composition which comprises, as the softening agent, a quaternary ammonium salt which comprises a mixture of mono-, di- and tri-ester components, wherein the amount of diester quaternary is greater than about 55 % by weight, and the amount of triester quaternary is less than about 25 % by weight based on the total amount of quaternary ammonium salt. The invention also relates to a process for preparing said softening agent.

Description

High Difalkyl fatty ester) Quaternary Ammonium Compound From Triethanol Amine
Field Of The Invention
The present invention generally relates to an improved softening composition containing quaternary ammonium compounds having high diester and low triester content and to a process for preparing same.
Background Of The Invention
The present invention relates to a quaternized ester- based softener composition containing high diester content and low triester content. Compositions of this type have demonstrated unexpectedly superior softening performance and stability compared to compositions of the prior art.
Fabric softening compositions suitable for providing fabric softening and static control benefits during laundering are well known in the art. Such compositions generally contain, as the softening component, a substantially water insoluble quaternary ammonium compounds having two long alkyl chains.
Further, the use of various quaternized esteramines as fabric softening agents is also known in the art. U.S. Patent No. 4,339,391 to Hoffmann, et al. for example, discloses a series of quaternized ester-amines which have utility as fabric softeners. U. S. Patent No. 5,296, 622 discloses quaternized ester amines having fabric-softening and hydrophilicizing properties which are obtained by reaction of unsaturated fatty acids containing at least 40 mol-% trans- configured double bonds or esters thereof with alkanolamines and ubsequent quaternization of the reaction products with alkylating agents.
WO/93/21291 to Henkel ciaims textile treatment agents containing as a softener, quaternary ammonium compunds with 1 , 2 or 3 acyloxyalkyl groups bound to the nitrogen atom. The compounds allegedly have a low viscosity if all or some of the acyl groups are derived from unsaturated fatty acids with a least 30% in the cis form.
U.S. patent No. 5,023,003 to KAO discloses a softener composition which comprises at least one quaternary ammonium salt of the following formulae:
Figure imgf000004_0001
Figure imgf000004_0002
Figure imgf000005_0001
wherein R1 and R2 each represent a hydrocarbon radical having 12-22 carbon atoms, preferably 16-22 carbon atoms and one unsaturated bond; R3 and R4 represent a methyl, ethyl or
(CH2-CHO)nNH
Y wherein n is a integer from 1 to 5, and Y is H or methyl; R5 and R6 each represent a hydrocarbon radical having 11-21 carbon atoms and one unsaturated bond; X represents halogen, CH3S04> C2H5S04; wherein the stereoisomeric structure if the above said salt includes both the cis-isomer and the trans-isomer with the cis-isomer and the trans-isomer ratio being in the range of from 25/75 to 90/10.
U S Patent No. 4,767,547 discloses fabric softening compositions containing a rapidly biodegradable quaternary ammonium softening agent of the formula:
Figure imgf000005_0002
wherein:
Figure imgf000006_0001
RT is (CH2)n-Q-T2 or T3; R2 is (CH2)n-Q-T4 or T5 or R3; R3 is CT - C4 alkyl;
A - τ 2 . T 3- T4. T5 are (the same or different) C12-C22 alkyl or alkenyl; n is an integer from 1 to 4; and X' is a softener-compatible anion, the composition having a pH, at 20°C, of from 2.5 to 4.2 upon dilution, in de¬ ionized water, to a concentration of 0.5% to 1% of said rapidly biodegradable quaternary ammonium compound.
WO 94/20597 to Procter & Gamble relates to softening compounds containing diester quaternary ammonium compounds wherein the fatty acyl groups have an Iodine Value of from greater than about 5 to less than about 100, a cis-trans isomer weight ratio of greater than about 30/70 when the Iodine Value is less than about 25, the level of unsaturation being less than about 65% by weight, wherein said compounds are capable of forming concentrated aqueous compositions with concentrations greater than about 13% by weight at an Iodine Value of greater than about 10 without viscosity modifiers other than normal polar organic solvents present in the raw material of the compound or added electrolyte.
EP 0 550 361 to Stepan discloses cationic fabric treating compositions which comprises quaternary ammonium compounds which are the reaction product of a long chain fatty acid and a tertiary amine wherein the ratio of fatty acid to amine is between 1.85 and 1.4. WO 91/01295 to Henkel discloses quaternary ammonium compounds useful as textile treatment agents which are prepared by reaction of fatty acids with alkanolamine and thereafter alkylating same to give the quaternary compounds. The esterification reaction is carried out in the presence of an acid catalyst such as hypophosphorous acid. The final product allegedly comprises mono-, di- and triester components in a ratio of 10:62:28%. There is no disclosure, however, of a process for the preparation of a final product having high diester content, i.e., greater than about 55% by weight, and low triester content, i.e., lower than about 20% by weight.
Finally, WO 94/14935 to Henkel discloses concentrated textile softener dispersions containing quaternary ammonium compounds derived from triethanolamine and containing one, two or three fatty acyloxyethyl groups. When the proportion of compounds having two fatty acyloxyethyl groups is larger than 50% by moles, these compounds allegedly have a particularly low viscosity. However, no process to achieve this level of diester was disclosed in this document, and there is no indication of the triester content of the final product.
Therefore, it is clear that the prior art discussed hereinabove does not contemplate or suggest the quaternized diester based softener composition containing high diester content and low triester content. A process for the preparation of such products is also not contemplated. Accordingly, it is an object of the present invention to provide quaternized diester product having high diester content and low tπester content It is a further object of the present invention to provide a textile softening composition which comprises as a major ingredient the quaternary diester compound of the present invention Another object of the present invention is to provide a textile softening composition which is non-yellowing and has improved softening performance and desirable textile softening properties such as improved softener biodegradability, viscosity, water absorbency, stability and the like These and other objects are readily apparent from the following disclosure
Summary of The Invention
The present invention generally relates to a textile softening composition which comprises, as the softening agent, a quaternary ammonium salt which comprises a mixture of mono-, di- and tri-ester components, wherein the amount of diester quaternary is greater than about 55% by weight, and the amount of tπester quaternary is less than about 20% by weight based on the total amount of quaternary ammonium salt The invention also relates to a method for preparing said softening agent
Detailed Description Of The Invention
The present invention generally relates to a textile softening composition which comprises a quaternary ammonium based softening agent which is high in diester and low in triester content and to a process for the preparation of same Quaternary ammonium compounds having particularly good performance and stability profiles are obtained by reaction of C12 - C22 fatty acids or the hydrogenation products thereof, or a mixture of such acids, with an alkanolamine in the presence of an acid catalyst, wherein the ratio of fatty acid to alkanolamine is from about 1.60 - 1.80. The resultant esteramine reaction products are subsequently quaternized to obtain the quaternary ammonium salts of the present invention.
Preferably, the fatty acid is a C16 - C22 acid containing a degree of unsaturation such that the iodine value ("IV") is in the range of from about
20-90, more preferably, from about 40-60, and still more preferably, in a range of from about 45-55. Preferred fatty acids include but are not limited to oleic, palmitic, erucidic, eicosanic and mixtures thereof. Soy, tallow, palm, palm kernel, rape seed, lard, mixtures thereof and the like are typical sources for fatty acid which can be employed in the present invention.
Partial hydrogenation can be employed, if required, to minimize the poiyunsaturate levels in order to improve the stability of the final product. It is also preferred that the fatty, acid(s) employed in the present process have a cis to trans isomer ratio of from about 80:20 to about 95:5. More preferably, the trans isomer content of said fatty acid(s) is less than about
10%. An optimum trans-isomer content is between about 0.5 - 9.9%. The most preferred fatty acid is a mixture of tallow/distilled tallow having a cis:trans isomer ratio of greater than 9:1.
The alkanolamines employable in the present invention generally correspond to the formula:
R - N - RT wherein R, R^ and R2 are independently selected from C2 - C4 hydroxyalkyl groups. Preferred alkanolamines include but are not limited to triethanolamine, propanol diethanolamine, ethanol diisopropanolamine, triisopropanol amine and mixtures thereof. Triethanolamine is the most preferred alkanolamine.
The molar ratio of fatty acid to alkanol amine is generally in the range of from about 1.60 - 1.80, and more preferably, in the range of from about 1.65-1.75. Best results are usually obtained when the molar ratio is about 1.70.
The acid catalyst employable in the present process includes but is not limited to sulphonic acid, phosphorous acid, p-toluene sulphonic acid, methane sulphonic acid, oxalic acid, hypophosphorous acid or an acceptable Lewis acid. A preferred acid catalyst is hypophosphorous acid. Typically, 0.02 - 0.2 % by weight, and more preferably 0.1 to 0.15 % by weight of acid catalyst, based on the weight of fatty acid, in employed in the present process.
The esterification of fatty acids with alkanolamines is carried out at a temperature of from about 175° - 210°C until the reaction product has an acid value of below 5. Further, triester formation in the final product can be minimized by controlling the heat up rate for forming the esteramine mixture. Typically, a heat up rate of 0.8° - 3°C/ minute, preferably 1.25° to 3°C, from a temperature of about 70°C to a temperature in a range of from between 170°C to 210°C is effective in minimizing triester formation. After the esterification, the crude product is reacted with alkylating agents in order to obtain the quaternary ammonium product. Preferred alkylating agents include C, - C3 straight or branched chain alkyl halides, phosphates, carbonates, or sulfates, C7 - C10 aralkyl halides, phosphates or sulfates, and mixtures thereof. Examples of preferred alkylating agents include but are not limited to methyl chloride, benzyl chloride, diethyl sulfate, dimethyl carbonate, trimethyl phosphate, dimethyl sulfate or mixtures thereof. Choosing the type and amount of alkylating agent employed is well within the skill of one in the art. Typically, when dimethyl sulfate is the alkylating agent, 0.7 to 1.0 mol dimethyl sulfate per mole of ester is satisfactory in yielding the quaternized product.
The quatemization may be carried out in bulk or in solvent, at temperatures ranging from 60° - 120°C. If a solvent is employed, then the starting materials and/or product must be soluble in the solvent to the extent necessary for the reaction. Solvents of this type are generally known in the art. Suitable examples include polar solvents such as, for example, lower alcohols, i.e., C1 - C6 alcohols. Other solvents which can be employed include, but are not limited to mono-, di-, and tri-glycerides, fatty acid, glycol and mixtures thereof.
A resultant quaternary ammonium salt comprises a mixture mono - (I), di - (II) and tri-ester (III) components of the following formulae:
I) R-C-0-H2C-H2C
H O -H2C-H2C
Figure imgf000011_0001
ill)
Figure imgf000012_0001
wherein R represents a hydrocarbon radical having 12-22 carbon atoms, preferably 16-22 carbon atoms, having a total IV in the range of 20-90, preferably, 40-60, and more preferably, 45-55, and X" represents a softener compatible anion including but not limited to halogen, CH3S04 or C2H5S04. The reaction products may also contain minor amounts of methyl trialkanolamine quaternary and other impurities. Further, the amount of diester in the final product is generally greater than about 55% by weight and the amount of triester is generally less than about 25%, preferably le' nan 20% by weight based on the total amount of quaternary ammon* salt product. Typical product composition contain 60 - 65 wt% diester and less than about 18 wt% triester, more preferably, less than about 15 wt% triester Further, the ratio of cis to trans double bonds of the above salts is preferably in the range of from about 80:20 to about 95:5. In a most preferred embodiment, the amount of trans isomer is less than about 10%, and ideally in the range of from 5 to 9.5%.
There are several convenient methods for obtaining the desired cιs:trans ratio of the quaternary ammonium salt product. The preferred method is to produce the quaternary ammonium salt from a cis-isomeπc and trans-isomeric fatty acids after adjusting said acids to the desired ratio.
Another method is to produce the quaternary ammonium salt from the mixture after adjusting the ratio thereof by isomerizing a portion of the cts- isomeric fatty acid or ester thereof into the trans-isomer, in the presense of a metallic catalyst. Other methods are readily apparent to and well within the skill of one of ordinary skill in the art.
The textile softening composition of the present invention having high diester content and low triester content demonstrates superior performance compared to typical esteramine quaternary compounds, and the excellent color and odor stability allows the formulator greater latitude in preparing high quality softening products. The compositions can be aqueous liquids, preferably concentrated, containing from about 4 - 50%, preferably from about 10 to 45 % and still more preferably from about 15-40 % by weight of the quaternary ammonium compounds of the present invention. The compositions of the present invention can be further concentrated to particulate solids containing from about 50-95%, preferably 60-90 % quaternary ammonium softening compound, if desired. Water can be added to the particulate solid compositions to form either dilute or concentrated liquid textile softening compositions according to the invention. The solid particulate composition can also be directly added to the rinse bath in order to provide an adequate usage concentration, which is typically in the range of from about 10-1000 ppm, more preferably, in a range of from about 50-500 ppm.
The quaternary ammonium compounds according to the present invention can generally be prepared by reacting at least one C12-C22 fatty acid having a IV of from 20-90 with an alkanol amine in the presence of an acid catalyst. The ratio of acid to amine is preferably in the range of 1.6 to 1.8, and the reaction is carried out at a temperature of from about 175°C to about 210°C until the reaction product has an acid value of below about 5. A heat up rate of 0.8°C to 3.0°C per minute is employed in order to minimize triester formation. The esterification products are subsequently alkylated in order to obtain the quaternary ammonium product.
A standard rinse-cycle softening composition in accordance with the present invention can be prepared by preheating water to a temperature of from about 45°-60°C in a suitable vessel and acidifying same to a pH of from about 2.7-3.2. The warmed quaternary ammonium salt is thereafter added to the acidified water with agitation while the temperature is maintained at 45°C - 60°C. Fragrance and other optional ingredients can then be solubilized into the softener dispersion, and the weight is thereafter adjusted with deionized water. Dispersions such as this are typically storage stable within a temperature range of from about 4°C to about 50°C. The quaternary ammonium salts of the present invention may also be utilized in products other than fabric softening compositions These products may include hair care formulations, skin care formulations, and the like, for the softening, lubrication, emolliency and condition of said hair and/or skin when applied in effective amounts These and other uses will be readily apparent to one of ordinary skill in the art
Although the stability of the textile softening compositions of the present invention is such that stabilizing cosurfactants are not required, they may nevertheless be included along with a wide variety of other optional ingredients A brief non-limiting description of some of the optional ingredients which may be employed in the textile softening compositions of the present invention is provided below.
I ) Viscositv/Dispersibilitv Aids
As previously mentioned, relatively concentrated compositions of the quaternary esters of the present invention can be prepared that are stable, without the addition of concentration aids. However, the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients These concentration aids which are typically viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels in relation to IV are present. Surfactant Concentration Aids
Surfactant concentration aids typically fall into four categories-
(1) mono long chain alkyl cationic surfactants,
(2) nonionic surfactants;
(3) amine oxides; and
(4) fatty acids.
Mixtures of the aforementioned surfactant concentration aids can, of course, also be employed
(1) Mono-Long Chain Alkyl Cationic Surfactants
Preferred mono-long chain alkyl or ester based water-soluble cationic surfactants generally fall within the scope of the following general formula:
[R2 N+ (R)3 ] X- wherein the R2 group is C8-C22 hydrocarbon group, preferably C12 - C18 alkyl group or the corresponding ester linkage interrupted group with a short chain alkylene (C, -C4) group between the ester linkage and the N, and having a similar hydrocarbon group.
Each R is a C, -C6 unsubstituted or substituted alkyl (e.g., by hydroxy) or hydrogen, preferably methyl, and the counterion X- is a softener compatible anion such as, for example, chloride, bromide, methyl sulfate, etc.
The cationic surfactants, if present, are usually added to solid compositions at a level of from 0% to about 15%, preferably from about 3% to about 15%, more preferably from about 5% to about 15%. In liquid compositions they are usually employed at level of from 0% to about 15%, preferably from about 0.5% to about 10% In general, the total amount single-long-chain cationic surfactant is added in an amount effective to obtain a stable composition.
The foregoing levels represent the amount of the single-long-chain- alkyl cationic surfactant which is added to the composition of the present invention. The ranges do not include the amount of monoester which is already present in the diester quaternary ammonium compound.
The long chain group R2, of the single-long-chain-alkyl cationic surfactant generally contains an alkylene group having from about 10 to about 22 carbon atoms, preferably from about 12 to about 16 carbon atoms for solid compositions, and preferably from about 12 to about 18 carbon atoms for liquid compositions. This R2 group can be attached to the cationic nitrogen atom through a group containing one, or more, ester, amide, ether, amine, etc., preferably ester, linking groups which can be desirable for increased hydrophilicity, biodegradability, etc. Such linking groups are preferably within about three carbon atoms of the nitrogen atom. Suitable biodegradable single-long-chain alkyl cationic surfactants containing an ester linkage in the long chain are described in U.S. Pat. No. 4,840,738 which is incorporated herein by reference. If the corresponding, non- quaternary amines are used, any acid (preferable a mineral or polycarboxylic acid) which is added to keep the ester groups stable will also keep the amine protonated in the compositions and preferably during the rinse so that the amine has a cationic group. The composition is buffered (pH from about 2 to about 5, preferably from about 2 to about 4) to maintain an appropriate, effective charge density in the aqueous liquid concentrate product and upon further dilution e.g., to form a less concentrated product and/or upon addition to the rinse cycle of a laundry process. The main function of the water-soluble cationic surfactant is to lower the viscosity and/or increase the dispersibility of the diester softener and it is not, therefore, essential that the cationic surfactant itself have substantial softening properties, although this may be the case. Also, surfactants having only a single long alkyl chain, presumably because they have greater solubility in water, can protect the diester softener from interacting with anionic surfactants and/or detergent builders that are carried over into the rinse. Other cationic materials with ring structures such as alkyl imidazoline, imidazolimium, pyridine, and pyridinium salts having a single C12 -C30 alkyl chain can also be used. Very low pH is required to stabilize, e.g., imidazoline ring structures. Some alkyl imidazolinium salts useful in the present invention have the general formula:
Figure imgf000018_0001
wherein Y2 is -C(0)-0-, -0-(0)C-, -C(0)-N(R5), or -N(R5)-C(0)- in which R5 is hydrogen or a CrC4 alkyl radical; R is a C^ -C4 alkyl radical; R and R are each independently selected from R and R2 as defined hereinbefore for the single-long-chain cationic surfactant with only one being R . Some alkyl pyridinium salts useful in the present invention have the general formula:
RA X-
wherein R2 and X" are as defined above. A typical material of this type is cetyl pyridinium chloride. (2) Nonionic surfactants - alkoxylated materials.
Nonionic surfactants suitable as viscosity/dispersibility modifiers include the addition products of ethylene and/or propylene oxide with fatty alcohols, fatty acids, fatty amines, etc. Any of the alkoxylated materials hereinafter described can be used as the nonionic surfactant. In general terms, the nonionics herein can be employed in solid compositions at a level of from about 5% to about 20%, preferably from about 8% to about 15%, and in liquid compositions at a level of from 0% to about 5%, preferably from about 0.1 % to about 5%, more preferably from about 0.2% to about 3%.
Suitable water-soluble nonionic surfactants generally fall within the scope of the following general formula:
R2 - Y - (C2H40)2 - C2H4OH
wherein R2 for both solid and liquid compositions is selected from the group consisting of primary, secondary and branched chain alkenyl hydrocarbyl groups; and pπmary, secondary and branched chain alkyl- and alkenyl- substttuted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of from about 8 to about 20, preferably from about 10 to about 18 carbon atoms. More preferably the hydrocarbyl chain length for liquid compositions is from about 16 to about 18 carbon atoms and for solid compositions form about 10 to about 14 carbon atoms. In the general formula for the ethoxylated nonionic surfactants herein, Y is typically -0-, - C(O)-, -C(0)N(R)-, or -C(0)N(R)R-, wherein R, when present, has the meanings given hereinbefore, and/or R can be hydrogen, and z is at least about 8, preferably at least about 10-11. Performance, and usually stability of the softener composition decrease when fewer ethoxylate groups are present. The nonionic surfactants herein are characterized by an HLB (hydrophihc-lipophilic balance) of from about 7 to about 20, preferably from about 8 to about 15 By defining R2 and the number of ethoxylate groups, the HLB of the surfactant is, for the most part, determined However, it is preferred that for concentrated liquid compositions, the nonionic surfactants contain relatively long chain R2 groups and are relatively highly ethoxylated While shorter alkyl chain surfactants having short ethoxyiated groups may possess the requisite HLB, they are not as effective Nonionic surfactants as the viscosity/dispersibility modifiers are preferred over the other modifiers disclosed herein for compositions with higher levels of perfume
Nonionic surfactants employable in the present invention include but are not limited to the following examples In the examples, the number of ethoxyl groups in the molecule (EO) is defined by an integer
(i) Straight-Chain, Primary Alcohol Alkoxylates The deca-, undeca-, dodeca-, tetradeca-, and pentadeca-ethoxylates of n-hexadecanol, and n-octadecanol having an HLB within the preferred range are useful as viscosity/dispersibility modifiers of the context of this invention Preferred examples of ethoxylated primary alcohols useful herein as the viscosity/dispersibility modifiers of the compositions include but are not limited to n-C18EO(10), and n-C10EO(11). The ethoxylates of mixed natural or synthetic alcohols in the "tallow" chain length range are also useful herein Specific examples of such materials include tallow alcohol-EO(11), tallow alcohol-EO(18), and tallow alcohol-EO(25). (ii) Straight-Chain, Secondary Alcohol Alkoxylates The deca-, undeca-, dodeca-, tetradeca-, pentadeca-, octadeca-, and nonadeca-ethoxylates of 3-hexadecanol, 2-octadecanol, 4-eιcosanoi, and 5- eicosanol having an HLB within the preferred range are useful viscosity/dispersibility modifiers in the context of the present invention Examples of ethoxylated secondary alcohols useful herein as the viscosity/dispersibility modifiers of the compositions include but are not limited to. 2-C16EO(11 ), 2-C20EO(11); and 2-C16EO(14)
(iii) Alkyl Phenol Alkoxylates As is the case of the alcohol alkoxylates, the hexa- through σctadeca- ethoxylates of alkylated phenols, particularly monohydric alkylphenols, having an HLB within the preferred range are useful as the viscosity/dispersibility modifiers. The hexa- through octadeca-ethoxylates of p-tπdecylphenol, m- pentadecylphenol, and the like, are useful herein. Preferred examples of ethoxylated alkylphenols useful as the viscosity/dispersibility modifiers include but are not limited to p-tπdecylphenol EO(11 ) and p- pentadecylphenol EO(18)
It would be generally recognized by one of ordinary skill in the art that a phenylene group in the nonionic formula is the equivalent of an alkylene group containing from 2 to 4 carbon atoms For present purposes, nonionic surfactants containing a phenylene group are considered to contain an equivalent number of carbon atoms calculated as the sum of the carbon atoms in the alkyl group plus about 3.3 carbon atoms for each phenylene group. (iv) Olefinic Alkoxylates The alkenyl alcohols, both primary and secondary, and alkenyl phenols corresponding to those disclosed hereinabove can be ethoxylated to an HLB within the range recited herein and used as the viscosity/dispersibility modifiers in the compositions of the present invention
(v) Branched Chain Alkoxylates Branched chain primary and secondary alcohols which are available from the well-known "OXO" process can be ethoxylated and employed as the viscosity/dispersibility modifiers in the present compositions.
The ethoxylated nonionic surfactants summarized hereinabove can be usefully employed in the present compositions either alone or in specific mixtures.
(3) Amine Oxides
Suitable amine oxides include but are not limited to those with one alkyl or hydroxyalkyl moiety of about 8 to about 28 carbon atoms, preferably from about 8 to about 16 carbon atoms, and two alkyl moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups with about 1 to about 3 carbon atoms Amineoxides, if employed, are generally present in solid compositions at a level of from 0% to about 15%, preferably from about 3% to about 15%; and in liquid compositions at a level of from 0% to about 5%, preferably from about 0.25% to about 2%. The total amount amine oxide is generally present in an amount effective to provide a stable composition. Preferred examples of amine oxides employable in the present invention inctude but are not limited to dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyl dodecylamineoxide, dipropyltetradecylamine oxide, methylethylhexade- cylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.
(4) Fatty Acids
Suitable fatty acids include those containing from about 12 to about 25, preferably from about 13 to 22, more preferably from about 16 to about 20, total carbon atoms, with the fatty moiety containing from about 10 to about 22, preferably from about 10 to about 18, more preferably from about 10 to about 14 carbon atoms. The shorter moiety contains from about 1 to about 4, preferably from about 1 to about 2 carbon atoms. Fatty acids are typically present at approximately the levels outlined above for amine oxides. Fatty acids are preferred concentration aids for those compositions which require a concentration aid and contain perfume.
Electrolyte Concentration Aids Inorganic viscosity control agents which can also act like or augment the effect of the surfactant concentration aids include water-soluble, ionizable salts. Such salts can also optionally be incorporated into the compositions of the present invention. A wide variety of ionizable salts can be used. Examples of suitable salts include but are not limited to the halides of the Group IA and IIA metals of the Periodic Table of Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride. The ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and to obtain the desired viscosity. The amount of ionizable salts used depends on the amount of active ingredients used in the compositions Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11 ,000 ppm, by weight of the composition
Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water- soluble, ionizable salts described above. Additionally, these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash to the rinse and may improve softening performance These agents may stabilize the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes. Specific examples of alkylene polyammonium salts include but are not limited to 1-lysιne monohydrochloride and 1 ,5-dιammonιum-2- methylpentane dihydrochloπde
ll) Stabilizers
Stabilizers may also be optionally employed in the compositions of the present invention The term "stabilizer." as used herein, includes antioxidants and reductive agents. These agents are typically present at levels of from 0% to about 2%, preferably from about 0 01% to about 0.2%, more preferably from about 0 05% to about 0.1% for antioxidants and more preferably from about 0.01% to about 0.2% for reductive agents. Stabilizer use assures good odor stability under long term storage conditions. Further, use of antioxidants and reductive agent stabilizers is especially critical for unscented or low scent products. Examples of antioxidants which can be employed in the compositions of the present invention include but are not limited to a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1 ; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone available from Eastman Chemical
Products, Inc. under the mark Tenox® TBHQ; natural tocopherols available from Eastman Chemical Products, Inc. under the mark Tenox® GT-1/GT-2; and butylated hydroxyanisole available from Eastman Chemical Products, Inc., as BHA; long chain esters (C8-C22) of gallic acid such as dodecyl gallate; Irganox® 1010; Irganox® 1035; Irganox® B 1171 ; Irganox® 1425; Irganox® 3114; Irganox ® 3125; and mixtures thereof; preferably Irganox® 3125, Irganox® 1425, Irganox® 3114, and mixtures thereof; and more preferably Irganox® 3125 alone or in combination with citric acid and/or other chelators such as isopropyl citrate, Dequest® 2010 available from Monsanto under the name 1-hydroxyethyiidene-1 , 1-diphosphonic acid (etidronic acid), Tiron®, available from Kodak with a chemical name of 4,5- dihydroxy-m-benzene-sulfonic acid/sodium salt, and DTPA® (diethylenetriaminepentaacetic acid), available from Aldrich. The chemical names and CAS numbers for some of the above stabilizers are tabulated below. Chemical Name used in Code of Federal
Antioxidant CAS No. Regulations
Irganox® 1010 6683-19-8 Tetrakis [methylene(3,5-di-tert-butyl-4 hydroxyhydrocinnamate)] methane
Irganox® 1035 41484-35-9 Thiodiethylene bis (3,5 - di - tert - butyl - 4 - hydroxyhydrocinnamate
Irganox® 1098 23128-74-7 N,N'-hexamethylene bis(3,5-di-tert-butyl- 4-hydroxy hydrocinnammamide
Irganox® B 1171 31570-04-4 1 :1 Blend of Irganox® 1098 23128-74-7 and Irgafos® 168
Irganox® 1425 65140-91-2 Calcium bis[monoethyl(3,5-di-tert-butyl- 4-hydroxybenzyl)phosphonate]
Irganox® 3114 27676-62-6 1 ,3,5-Tris(3,5-di-tert-butyl-4-hydroxyben- zyl) -s-triazine-2,4.6-(1 H, 3H, 5H)trione
Irganox® 3125 34137-09-2 3,5-Di-tert-butyl-4-hydroxy-hydrocinnamic acid triester with 1 ,3,5-tris (2-hydroxye- thyl)-S-triazine-2,4,6-(1 H,3H,5H)-trione
Irgafos® 168 31570-04-4 Tris(2,4-di-tert-butyl-phenyl)phosphite Examples of reductive agents include but are not limited to sodium borohydride, sodium bisulfide, hypophosphorous acid, and mixtures thereof.
The stability of the compounds and compositions herein can be improved by use of stabilizers, but in addition, the preparation of compounds used herein and the source of hydrophobic groups can be important. Surprisingly, some highly desirable, readily available sources of hydrophobic groups such as f atty acids from, e.g., tallow, possess odors that remain with the compound despite the chemical and mechanical processing steps which convert the raw tallow to finished product. Such sources must be deodorized, e.g., by absorption, distillation, stripping, etc., as is well known in the art. In addition, contact of the resulting fatty acyl groups to oxygen and/or bacteria must be minimized by adding antioxidants, antibacterial agents, etc.
ADDITIONAL OPTIONAL INGREDIENTS Soil Release Agent
The composition of the present invention may optionally contain from 0.1% to 10%, preferably from 0.2% to 5%, of a soil release agent. Preferably, the soil release agent is a polymeric soil release agent such as one which contains copolymeric blocks of terephthalate and polyethylene oxide or polypropylene oxide, cationic guar gums, and the like. U.S. Patent No. 4,956,447, which is incorporated herein by reference, discloses some preferred soil release agents comprising cationic functionalities.
A preferred soil release agent is copolymer having blocks of terephthalate and polyethylene oxide which are comprised of repeating units of ethylene terephthalate and polyethylene oxide terephthalate at a molar ratio of ethylene terephthalate units to polyethylene oxide terephthalate units of from about 25.75 to about 35:65, said polyethylene oxide terephthalate containing polyethylene oxide blocks having molecular weights of from about 300 to about 2,000. The molecular weight of this polymeric soil release agent is in the range of from about 5,000 to about 55,000.
Another preferred polymeric soil release agent is a crystallizable polyester with repeat units of ethylene terephthalate units containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene glycol of average molucular weight of from about 300 to about 6,000, wherein the molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the crystallizable polymeric compound is between 2:1 and 6:1. Examples of this polymer include but are not limited to Zelcon® 4780 available from DuPont and Milease® T available from ICI. Highly preferred soil release agents are polymers of the generic formula (I):
Figure imgf000028_0001
(I)
in which X can be any suitable capping group, wherein each X is selected from the group consisting of H, and alkyl or acyl groups containing from about 1 to about 4 carbon atoms, wherein methyl is preferred, n is selected for water solubility and is generally from about 6 to about 113, preferably from about 20 to about 50. u is critical to liquid formulations having a relatively high ionic strength. The amount of material wherein u is greater than 10 should be minimized, while there should be at least 20%, preferably at least 40%, of material in which u ranges from about 3 to about 5. The R1 moieties are essentially 1 ,4-phenylene moieties. As used herein, the term "the R1 moieties are essentially- 1 ,4-phenylene moieties" refers to compounds where the R1 moieties consist entirely of 1 ,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof. Arylene and alkarylene moieties which can be partially substituted for 1 ,4- phenylene include 1 ,3-phenylene, 1 ,2-phenylene, 1 ,8-naphtylene, 1 ,4- naphthylene, 2,2-biphenylene, 4,4-biphenylene and mixtures thereof. Alkylene and alkenylene moieties which can be partially substituted include ethylene, 1 ,2-propylene, 1 ,4-butylene, 1 ,5-pentylene, 1 ,6-hexamethylene, 1 ,7-heptamethylene, 1 ,8-octamethylene, 1 ,4-cyclohexylene, and mixtures thereof.
For the R1 moieties, the degree of partial substitution with moieties other than 1 ,4-phenylene should be such that the soil release properties of the compound are not adversely affected to a significant degree. Generally, the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, with longer backbones generally having greater partial substitution for 1 ,4-pheneylene moieties. Usually, compounds where the R1 comprise from about 50% to about 100% 1 ,4-phenylene moieties (from 0 to about 50% moieties other than 1 ,4-phenylene) have adequate soil release activity. For example, polyesters with a 40:60 mole ratio of isophthalic (1 ,3-phenylene) to terephthalic (1 ,4-phenylene) acid have adequate soil release activity. However, because most polyesters used in fiber making comprise ethylene terephthalate units, it is usually desirable to minimize the degree of partial substitution with moieties other than 1 ,4- phenylene for best soil release activity. Preferably, the R1 moieties consist entirely of (i e , comprise 100%) 1 4- phenylene moieties, i e , each R1 moiety is 1 ,4-pheneylene
For the R2 moieties, suitable ethylene or substituted ethylene moieties include but are not limited to ethylene, 1 ,2-propylene, 1 ,2-butylene, 1,2- hexylene, 3-methoxy-1 ,2-propylene and mixtures thereof Preferably, the R2 moieties are essentially ethylene moieties, 1 ,2-propylene moieties or mixtures thereof Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of compounds Inclusion of a greater percentage of 1 ,2-propylene moieties tends to improve the water solubility of the compounds.
The use of 1 ,2-propylene moieties or a simular branched equivalent is desirable for incorporation of any substantial part of the soil release component in the liquid fabric softener compositions Preferably, from about 75% to about 100%, more preferably from about 90% to about 100%, of the R2 moieties are 1 ,2-propylene moieties The value for each n is at least about 6, and preferably is at least about 10
The value for each n usually ranges from about 12 to about 113
Typically, the value for each n is in the range of from about 12 to about 43
Cellulosic derivatives are also functional as soil release agents Examples of such agents include but are not limited to hydroxyethers of cellulose such as Methocel ® available from Dow Chemical; and certain cationic cellulose ether derivatives such as Polymer JU-125®, JR-400®, and JR-30M® available from Union Carbide Additional examples of cellulosic polymeric soil release agents include methyl cellulose, hydroxypropyl methylcellulose, hydroxybutyl methylcellulose, or mixtures thereof wherein said cellulosic polymer has a viscosity in a 2% aqueous solution at 20°C of 15 to 75,000 centiposie. Other effective soil release agents are cationic guar gums such as Jaguar Plus® available from Stein Hall and Gendrive 458® available from General Mills. A more complete disclosure of highly preferred soil release agents is contained in European Patent Application No. 185,427 to Gosselink which was published June 25, 1986, and U.S. Patent No. 5,207,933 to Trinh et al. which issued May 4, 1993, both of which are incorporated herein by reference.
Bacteriocides
Examples of bacteriocides which can be employed in the compositions of the present invention include but are not limited to parabens such as methyl, glutaraldehyde, formaldehyde, 2-bromo-2-nitropropane-1 , 3-diol sold by Inolex Chemicals under the trade name Bronopol®, and a mixture of 5- chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Hass Company under the trade name Kathon® CG/ICP. Typical levels of bacteriocides used in the present compositions are about 1 ppm to about 2,000 ppm by weight of the composition, depending on the type of bacteriocide selected. Methyl paraben is especially effective for mold growth in aqueous fabric softening compositions with under 10% by weight of the diester component.
Silicones
Dimethylpolysiloxane (silicone) or modified silicone can be added to the composition of this present invention, in order to enhance the softening property and water-absorbency of the unsaturated quaternary ammonium salt of formula (l)-(lll).
Dimethypolysiloxane or a modified silicone, having a viscosity of 20-10000 cps at 25°C, is preferred.
Modified silicones useful in the present invention include, for example, polyoxethylene modified silicone and amino-modified silicone, wherein the amount of the modification is preferably less than 10%
It is preferable that dimethylpolysiloxane or modified silicones are emulsified with a polyoxyethylene-type nonionic surfactant or a monoalkyicationic-type or dialkylcationic-type cationic surfactant prior to their use.
Other Optional Components
The present invention can include other optional components conventionally used in textile treatment compositions, for example, colorants, preservatives, optical brighteners, opacifiers, fabric conditioning agents, surfactants, stabilizers such as guar gum, anti-shrinkage agents, anti-wrinkle agents, fabric crisping agents, anti-spotting agents, fungicides, anti-corrosion agents, antifoam agents, and the like.
An optional additional softening agent of the present invention is a nonionic fabric softener mateπal. Typically, such nonionic fabric softener materials have an HLB of from about 2 to about 9, more typically from about 3 to about 7. Such nonionic fabπc softener materials tend to be readily dispersed either by themselves, or when combined with other materials such as single-long-chain alkyl cationic surfactant, mixture with other materials as set forth hereinafter, use of hotter water, and/or more agitation In general, the materials selected should be relatively crystalline, higher melting, (e g , 50°C or greater) and relatively water-insoluble
The level of optional nonionic softener in the solid composition is typically from about 10% to about 40%, preferably from about 15% to about
30%, and the ratio of the optional nomonic softener to the ester quaternary
(TEQ) of the present invention is from about 1 6 to about 1 2, preferably from about 1 4 to about 1 2 The level of optional nomonic softener in the liquid composition is typically from about 0 5% to about 10%, preferably from about 1% to about 5% Preferred nomonic softeners are fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol, or anhydride, contains from 2 to about 18, preferably from 2 to about 8, carbon atoms, and each fatt acid moiety contains from about 12 to about 30, preferably from about 16 to about 20, carbon atoms Typically, such softener contain from about one to about 3, preferably about 2 fatty acid groups per molecule
The polyhydric alcohol portion of the ester can be ethylene glycol, glycerol, poly (e.g., di-, tn-, tetra, penta-, and/or hexa-) glycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan Sorbitan esters and polyglycerol monostearate are particularly preferred The fatty acid portion of the ester is normally derived from fatty acids having from about 12 to about 30, preferably from about 16 to about 20, carbon atoms, typical examples of said fatty acids being lauric acid, myπstic acid, palmitic acid, stearic acid and behenic acid Highly preferred optional nonionic softening agents employable in the present invention include but are not limited to the sorbitan esters, which are esterified dehydration products of sorbitol, and the glycerol esters. Sorbitol, which is typically prepared by the catalytic hydrogenation of glucose, can be dehydrated in well known fashion to form mixtures of 1 ,4- and 1 ,5-sorbitol anhydrides and small amounts of isosorbides. An exemplary process is described in U.S. Patent No. 2,322,821which is incorporated herein by reference. The foregoing types of complex mixtures of anhydrides of sorbitol are collectively referred to herein as "sorbitan". Further, one of ordinary skill in the art will recognize that this "sorbitan" mixture will aiso contain some free, uncyclized sorbitol.
Preferred sorbitan softening agents can be prepared by esterifying the "sorbitan" mixture with a fatty acyl group in standard fashion, e.g., by reaction with a fatty acid halide or fatty acid. The esterification reaction can occur at any of the available hydroxyl groups, and various mono-, di-, etc., esters can be prepared. Mixtures of mono-, di-, tri-, etc., esters almost always result from such reactions, and the stoichiometric ratios of the reactants can be simply adjusted to favor the desired reaction product.
For commercial production of the sorbitan ester materials, etherification and esterification are generally accomplished in the same processing step by reacting sorbitol directly with fatty acids. Such a method is described more fully in MacDonald; "Emulsifiers:" Processing and Quality Control:, Journal of the American Oil Chemists' Society ,Vol.45, October 1968. Details, including formulas of the preferred sorbitan esters, can be found in U.S. Pat. No. 4,128,484, which is incorporated herein by reference. Certain derivatives of the preferred sorbitan esters herein, especially the "lower" ethoxylates thereof (i.e., mono-, di-, and tri-esters) wherein one or more of the unesterified -OH groups contain one to about twenty oxyethylene moieties [Tweens®] are also useful in the composition of the present invention. Therefore, for purposes of the present invention, the term "sorbitan ester" includes such derivatives.
For the purposes of the present invention, it is preferred that if sorbitan esters are employed, that a significant amount of di- and tri- sorbitan esters are present in the ester mixture. Ester mixtures having from 20-50% di-ester and 10-35% of tri- and tetra-esters are preferred. Commercially available material, such as sorbitan mono-ester (e.g., monostearate), contains significant amounts of di- and tri-esters and a typical analysis of sorbitan monostearate indicates that it comprises about 27% mono-, 32% di- and 30% tri- and tetra-esters. Commercial sorbitan monostearate therefore is a preferred material. Mixtures of sorbitan stearate and sorbitan palmitate having stearate/palmitate weight ratios varying between 10:1 and 1 :10, and 1 ,5-sorbitan esters are useful. Both the 1 ,4- and 1 ,5-sorbitan esters are also useful herein.
Other useful alkyl sorbitan esters for use in the softening compositions herein include sorbitan monolaurate, sorbitan monimyristate, sorbitan monopalmitate, sorbitan monobehenate, sorbitan monooleate, sorbitan dilaurate, sorbitan dimyristate, sorbitan dipalmitate, sorbitan distearate, sorbittan dibehenate, sorbitan dioleate, and mixtures thereof, and mixed tallowalkyl sorbitan mono- and di-esters. Such mixtures are readily prepared by reacting the foregoing hydroxy-substituted sorbitans, particularly the 1 ,4- and 1 ,5-sorbitans, with the corresponding acid or acid chloride in a simple esterification reaction. It is to be recognized, of course, that commercial materials prepared in this manner will comprise mixtures usually containing minor proportions of uncyclized sorbitol, fatty acids, polymers, isosorbide structures, and the like In the present invention, it is preferred that such impurities are present at as low a level as possible.
The preferred sorbitan esters can contain up to about 15% by weight of esters of the C20 - C26 and higher, fatty acids, as well as minor amounts of C8, and lower, fatty esters. Glycerol and polyglycerol esters, especially glycerol, diglycerol , tπglycerol, and polyglycerol mono- and/or di-esters, preferably mono-, are preferred herein. Glycerol esters can be prepared from naturally occurring triglycerides by normal extraction, purification and/or interesteπfication processes or by esterification processes of the type set forth hereinbefore for sorbitan esters. Partial esters of glycerin can also be ethoxylated to form usable derivatives that are included within the term "glycerol esters."
Useful glycerol and polyglycerol esters include mono-esters with stearic, oleic, palmitic, lauric, isosteaπc, myπstic, and/or behenic acids and the diesters of stearic, oleic, palmitic, lauric, isosteaπc, behenic, and/or myπstic acids. Typical mono-ester contains some di- and tπ-ester, etc.
The "glycerol esters" also include the polyglycerol, e.g., diglycerol through octaglycerol esters. The polyglycerol polyols are formed by condensing glycerin or epichlorohydπn together to link the glycerol moieties via ether linkages. The mono- and/or diesters of the polyglycerol polyols are preferred, the fatty acyl groups typically being those described hereinbefore for the sorbitan and glycerol esters. The present invention will now be illustrated by the following nonlimiting examples.
Example 1 Process for Preparing 90% Active Softening Composition
Balance of materials - TEEA
BHT = 1.42 g
Hypophosphorous acid (50% solution) = 1.24g Distilled Tallow or C16-C18 with = 710g C18 Unsaturated Fatty Acid
Triethanolamine (TEA) = 231.8g
TEEA (a fatty acid ester amine of TEA) was prepared in a 2L-resin kettle connected to an overhead stirrer, three-ball Snyder column, addition funnel, distillation setup, nitrogen sparge and temperature control. The system was vacuum-leak tested before starting the experiment.
Molten fatty acid, antioxidants and hypophosphorous acid were charged to the reaction flask and kept at 65-75°C under nitrogen. The reaction apparatus was then purged by pulling vacuum to 29" Hg and breaking vacuum with nitrogen three times in order to remove any air in the system. TEA was then added and after addition, the reaction mixture was heated up with a ramp rate of 1.75°C per minute. As the reaction temperature reached 105°C, vacuum was pulled to 26" Hg and the reaction was continued heating up to 195-200°C. At this temperature and pressure, the reaction was held for approximately 20 minutes. Free fatty acid was approximately 0.07 meq/g. Moisture level should be <0.1 % or drying may be required prior to quaternization. Balance of materials - Ester guat (TEQ) of the present invention TEEA = 306.3g
Isopropanol = 41.3g
DMS = 62.1g
EDTA (40% solution) = 0.26g
BHT = 0.21g
TEEA was charged into the reactor and heated to 80°C under nitrogen, and dried for approximately 30 minutes. The dried TEEA was then cooled to 60°C after which the isopropanol was added (5% batch weight). The heat mantle was then removed and the DMS was added dropwise over a time period of about 20 minutes. The reaction temperature increased from about 50°C to 85°C because of the exotherm. The contents of the reactor were then allowed to digest at 85-90°C for approximately two hours. EDTA and BHT were then added, and the remaining isopropanol (5%) was added to the mixture.
The resultant product had the following characteristics:
Appearance: viscous liquid at room temperature
Solvent: isopropanol (IPA)
Activity: 90% active
Color (Gardener scale): 2 pH (1% in 50/50 IPA:water): 3-4
Specific Gravity: 0.978g/cc
Cloud Point: 38-39°C
Pour Point: 19-21°C
Water: 0.5% or less
Ester distribution (Wt%) mono: di:tri is 26.5 : 59.5 : 10.5 Viscosity as a function of temperature of the product:
Viscosnty vs Temperature Profile TEQ
Figure imgf000039_0001
Temperature (°C) TEQ
BROOKFIELD LVT DV-II-CP, RPM 0.3-1 SPINDLE # 41
Example 2 - "Standard" Rinse Cycle Softener Formulation (7.5% Active): Raw Materials:
Quaternary salt of the present invention 8.40% Dl-water 91.60%
1 N HCI pH 2.7 - 3.2
Fragrance q.s. Dye/colorant q.s.
Anti-microbial q.s. Preheat water to between 45 and 60°C. Add the heated water to a suitable vessel and acidify to a pH of 2.7 - 3.2 with 1 N HCI. Add the warmed quaternary salt' to the acidified water while agitating and maintaining a temperature of 45 - 60°C. Cool the dispersion while agitating. Solubilize fragrance into the softener dispersion at 40°C. Add dye and preservative as desired. Adjust weight with Dl-water. Dispersion is storage stable within a temperature range of 4 to 50°C.
Example 3 - "Ultra" Rinse Cycle Softener Formulation (24% Active): Raw Materials:
Quaternary salt of the present invention 26.80%
Dl-water 73.20%
1 N HCI pH 2.7 - 3.2
10% aqueous Calcium Chloride (CaCI2) solution Fragrance q.s.
Dye/Colorant q.s.
Anti-microbial q.s.
Preheat Dl-water to 50-60°C. Charge Dl-water to mixing vessel and acidify water to a pH of 2.7 - 3.2 with 1 N HCI. Add the warmed quaternary salt to the acidified water with agitation while maintaining a temperature of 50 - 60°C. After addition of 73% of active, add CaCI2 solution to the stirring dispersion. Make a second salt addition after 84% of active is added, and a third minor salt addition at completion of actives addition. Continue agitation to insure a smooth, homogeneous dispersion. Cool to 40°C with agitation. Solublize fragrance into the softener dispersion. Adjust viscosity to the desired level with addition of CaCI2 solution. Add color and preservative. Adjust weight with Dl-water Dispersion is storage stable within a temperature range of 4 - 50°C For an even higher level of softening, dispersions containing 28-40% actives can be easily formulated employing techniques similar to those shown above
Example 4 Ultra Rinse Cycle Softener Formulation (28% Active) Raw Materials
Quaternary salt of the present invention 156g Dl-water 315g 1 N HCI pH 2 7 - 3 2
10% aqueous Calcium Chloride (CaCI2) solution Fragrance q s
Dye/Colorant q s
Anti-microbial q.s
The Dl-water is preheated to 50-60°C and charged to the mixing vessel and acidified to a pH of 2 7-3 2 with 1 N HCI The molten quaternary salt is then slowly added to the mixing vessel with mixing while the temperature is maintained at about 60°C The mixture is then cooled to 40°C with agitation wherein the fragrance solubilized into the softener dispersion The viscosity is then adjusted to the desired levei with addition of CaCI2 solution, and color and preservatives added Lastly, the weight is adjusted with Dl-water The dispersion is storage stable within a temperature range of 4 - 50°C. VISCOSITY PROFILE AS A FUNCTION OF TIME AT DIFFERENT TEMPERATURES
VISCOSITY AS A FUNCTION OF TIME AT DIFFERENT
TEMPERATURES FOR A 28% DISPERSION OF
ARMOSOFT TEQ
Figure imgf000042_0001
DAYS IN STORAGE
Figure imgf000042_0002
BROOKFIELD LVT DV-ll VISCOMETER. SPINDLE #2 @ 60 RPM

Claims

We claim •
1. A textile softening composition with improved stability and softening performance which comprises a fabric softening effective amount of a quaternary ammonium salt having mono-, di-, and tri-ester components of the following formulae (I) - (III):
(I)
(ID
(III)
Figure imgf000043_0001
wherein each R can be the same or different and is represented by a substituted or unsubstituted hydrocarbon radical having from 12-22 carbon atoms and an Iodine Value of from about 20 to about 90, wherein said diester component (II) comprises greater than about 55 wt% and the triester 5 component (III) comprises less than about 25 wt% based on the total amount of the quaternary ammonium salt.
2. The softener composition of claim 1 wherein the cis/trans isomer ratio of said quaternary ammonium salt is the range of from about 80/20 to 95/5. 0
3. The softener composition of claim 1 wherein the cis/trans ratio is greater than 90/10.
4. The softener composition of claim 1 wherein said quaternary 5 ammonium salt comprises 3 -50% by weight based on the total weight of the composition.
5. The composition of claim 1 wherein said quaternary ammonium salt comprises greater than about 55 wt% diester component (II) and less than 0 about 20 wt% triester (III) component.
6. The composition of claim 1 wherein said quaternary ammonium salt comprises greater than about 60 wt% diester component (II) and less than about 15 wt% triester (111) component. D
7. The composition of claim 1 wherein said R groups represent a hydrocarbon radical having from 16 to 22 carbon atoms and an Iodine value from about 30 to about 60.
8. The composition of claim 1 wherein said R groups represent a hydrocarbon radical having from 16 to 22 carbon atoms and an Iodine value from about 45 to about 55.
5 9. A process for the preparation of a quaternary ammonium salt which comprises reacting, at a temperature of from about 170°C to 210°C:
I) a C12 - C22 substituted or unsubstituted fatty acid or mixture of fatty acids having an Iodine Value of from about 20 to about 90, and having less than about 20% trans double bonds, with I O II) an alkanolamine of the formula:
R - N - R,
R,
wherein R, R, and R2 are independently selected from C2 - C4 hydroxyalkyl groups, wherein the molar ratio of said fatty acid to alkanol amine is from about 1.6 - 1.8, and wherein said reaction temperature is increased from about 70°C to a range of from about 170° to 210°C, wherein the rate of 0 temperature increase is maintained within a range of from about 0.8°C to 3°C per minute in order to obtain an ester composition with greater than about 55 wt% diester component and less than about 25 wt% triester component, and quatemizing same in order to obtain to quaternary ammonium salt. 5
10. The process of Claim 9 wherein the temperature of the reaction is increased at a rate of 1.25° - 3°C per minute from a starting temperature of 70°C up a temperature of from about 170°C to 210°C.
11 The process of claim 9 wherein said fatty acid is a substituted or unsubstituted C16 - C22 fatty acid having an Iodine value of from about 30 to 60.
12. The process of claim 9 wherein said fatty acid is a substituted or unsubstituted C16 - C22 fatty acid having an Iodine value of from about 45 to 55
13. The process of claim 11 wherein said fatty acid is derived from tallow, soy, palm, palm kernel, rape seed, lard or mixtures thereof
14. The process of claim 11 wherein said fatty acid is derived from partially hydrogenated tallow, soy, palm, palm kernel, rape seed, lard or mixtures thereof.
15. The process of claim 9 wherein said alkanolamine is selected from the group consisting of triethanolamine, propanol diethanolamine, ethanol diisopropanolamine, trnsopropanol amine and mixtures thereof.
16 The process of claim 9 wherein the molar ratio of fatty acid to alkanol amine is about 1.7.
17. The process of claim 9 wherein said fatty acid has less than about 10% trans isomer.
18. The process of claim 9 wherein the alkylating agent is selected from the group consisting of methyl chloride, benzyl chloride, diethyl sulfate, dimethyl carbonate, trimethyl phosphate, dimethyl sulfate or mixtures thereof.
19 The process of claim 9 wherein a solvent is not employed
20 The process of claim 9 wherein a solvent is employed
21 The process of claim 20 wherein said solvent is selected from the group consisting of Cy - C6 alcohols, glycol fatty acid, mono-, di-, or tri¬ glycerides, and mixtures thereof
22 A quaternary ammonium salt which comprises mono-, di-, and tri¬ ester components wherein said quaternary ammonium salt comprises greater than about 55% diester component and less than about 25% triester component, and wherein said quaternary ammonium salt is the reaction product of
A) an ester which is the reaction product of a substituted or unsubsituted C16 - C22 fatty acid having an Iodine value of from about 40 to about 60 and having less than about 20% trans isomer and a trialkanolamine wherein said molar ratio of fatty acid trialkanolamine is from about 1 6 - 1 8 with
B) an alkylating agent
23 The quaternary ammonium salt of claim 22 wherein said fatty acid is derived from tallow, soy, palm, palm kernel, rape seed, lard and mixtures thereof.
24 The quaternary ammonium salt of claim 23 wherein said fatty acid is derived from partially hardened tallow, soy, palm, palm kernel, rape seed, lard and mixtures thereof
25 The quaternary ammonium salt of claim 22 wherein said alkanolamine is selected from the group consisting of triethanolamine, propanol diethanolamine, ethanol diisopropanolamme, trnsopropanol amine and mixtures thereof
26 The quaternary ammonium salt of claim 22 wherein said alkylating agent is selected from the group consisting of methyl chloπde, diethyl sulfate, benzyl chloride, trimethyl phosphate, dimethyl carbonate, dimethyl sulfate or mixtures thereof
27 The quaternary ammonium salt of claim 22 wherein the molar ratio of said fatty acid and said alkanolamine is from about 1 7.
28 The quaternary ammonium salt of claim 22 which comprises greater than about 60 wt% diester component and less than about 15 wt% triester component
29 A quaternary ammonium salt derived from reaction of a fatty acid and an alkanolamine which comprises mono-, di-, and tπ-ester components of the following for
R-
Figure imgf000048_0002
Figure imgf000048_0001
(ID
Figure imgf000049_0001
o
(III) I CH,-0-C-R
Figure imgf000049_0002
O
wherein R represents a hydrocarbon radical having from 12-22 carbon atoms and an Iodine value of between about 20 and about 90, and wherein said diester component (II) comprises greater than about 60 wt% and the triester component (III) comprises less than about 20 wt% based on the total amount of the quaternary ammonium salt.
30. A method for softening textiles which comprises applying thereto a softening effective amount of the composition of claim 1.
31 A method for the softening, conditioning and/or lubricating hair or skin which comprises applying to said hair or skin a softening, conditioning and lubricating effective amount of the quaternary ammonium salt of Claim 22
32. The process of claim 9 wherein the reaction temperature is maintained within a range of from about 170° to 210°C until the reaction product has an acid value of below 5
33. The process of claim 9 wherein the reaction temperature is maintained withinthe range of from about 170° to 210°C for approximately 20 minutes
PCT/EP1997/002239 1996-05-03 1997-04-25 High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine WO1997042279A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002253536A CA2253536A1 (en) 1996-05-03 1997-04-25 High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine
DK97922934T DK0900260T3 (en) 1996-05-03 1997-04-25 Quaternary ammonium compound with high content of dialkyl fatty acid ester of trialkanolamine
JP53951597A JP4420359B2 (en) 1996-05-03 1997-04-25 Quaternary ammonium compounds with high diester content from triethanolamine (alkyl fatty acid esters)
AT97922934T ATE207950T1 (en) 1996-05-03 1997-04-25 LONG CHAIN QUATERNARY AMMONIUM DIALKYL FATTY ACID ESTERS FROM TRIALKANOLAMINE
DE69707864T DE69707864T2 (en) 1996-05-03 1997-04-25 LONG-CHAIN QUATERNARY AMMONIUM DIALKYL FATTIC ACID ESTER MADE OF TRIALCANOLAMINE
BR9708898A BR9708898A (en) 1996-05-03 1997-04-25 Composition of textile softening process for the preparation of a quaternary ammonium salt and process for textile softening
EP97922934A EP0900260B1 (en) 1996-05-03 1997-04-25 High di(alkyl fatty ester) quaternary ammonium compound from trialkanol amine
HK99104999A HK1019892A1 (en) 1996-05-03 1999-11-03 High di(alkyl fatty ester) quarternary ammonium compound from triethanol amine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/643,218 US5916863A (en) 1996-05-03 1996-05-03 High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine
US08/643,218 1996-05-03

Publications (1)

Publication Number Publication Date
WO1997042279A1 true WO1997042279A1 (en) 1997-11-13

Family

ID=24579871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002239 WO1997042279A1 (en) 1996-05-03 1997-04-25 High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine

Country Status (14)

Country Link
US (5) US5916863A (en)
EP (1) EP0900260B1 (en)
JP (1) JP4420359B2 (en)
CN (2) CN1097090C (en)
AR (1) AR006957A1 (en)
AT (1) ATE207950T1 (en)
BR (1) BR9708898A (en)
CA (1) CA2253536A1 (en)
DE (1) DE69707864T2 (en)
DK (1) DK0900260T3 (en)
ES (1) ES2165607T3 (en)
HK (2) HK1019892A1 (en)
TW (1) TW524907B (en)
WO (1) WO1997042279A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924291A1 (en) * 1997-12-18 1999-06-23 Witco Surfactants GmbH Aqueous softener with improved softeness
WO2000006678A1 (en) * 1998-07-30 2000-02-10 The Dow Chemical Company Composition useful for softening, cleaning, and personal care applications
EP1006176A1 (en) * 1998-12-01 2000-06-07 Witco Surfactants GmbH Low-concentration highly viscous aqueous softener compositions
WO2001000168A1 (en) * 1999-06-28 2001-01-04 The Procter & Gamble Company Cosmetic compositions
WO2001028924A1 (en) * 1999-10-21 2001-04-26 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
EP1096055A1 (en) * 1998-06-11 2001-05-02 Kao Corporation Softener composition
WO2001032813A1 (en) * 1999-11-01 2001-05-10 Kao Corporation Quaternary ammonium salt composition
US6534570B2 (en) 1995-11-07 2003-03-18 Southern Clay Products, Inc. Organoclay compositions for gelling unsaturated polyester resin systems
US6855682B2 (en) 2001-03-08 2005-02-15 Kao Corporation Softener composition
US6992059B2 (en) 2001-09-10 2006-01-31 Unilever Home & Personal Care Usa Divisionof Conopco, Inc. Fabric conditioning compositions
WO2007026314A3 (en) * 2005-08-31 2007-08-30 Procter & Gamble Concentrated fabric softener active compositions
CN102162189A (en) * 2011-02-28 2011-08-24 河南省道纯化工技术有限公司 Method for preparing fabric softening agent
CN102336675A (en) * 2010-07-21 2012-02-01 博兴华润油脂化学有限公司 Production method of esterquats
CN102432477A (en) * 2011-11-04 2012-05-02 江南大学 Synthetic process of double-long-chain diester quaternary ammonium salt
WO2013113735A1 (en) 2012-01-30 2013-08-08 Evonik Industries Ag Fabric softener active composition
EP1560905B2 (en) 2002-11-14 2013-09-04 Colgate-Palmolive Company Fabric softening composition containing esterquat with specific ester distribution and sequestrant
WO2014124688A1 (en) 2013-02-15 2014-08-21 Rhodia Operations Fabric softener
US8883712B2 (en) 2010-04-28 2014-11-11 Evonik Degussa Gmbh Fabric softening composition
JP2015010311A (en) * 2013-07-02 2015-01-19 花王株式会社 Liquid softener composition
EP1563043B2 (en) 2002-11-14 2015-06-10 Colgate-Palmolive Company Concentrated fabric softening composition containing esterquat with specific ester distribution and an electrolyte
EP2576743B1 (en) 2010-05-28 2015-11-11 Colgate-Palmolive Company Fatty acid chain saturation in alkanol amine based esterquat
JP2015200047A (en) * 2013-12-24 2015-11-12 花王株式会社 Liquid softening agent composition
JP2015200048A (en) * 2014-04-04 2015-11-12 花王株式会社 Liquid softening agent composition
US9441187B2 (en) 2012-05-07 2016-09-13 Evonik Degussa Gmbh Fabric softener active composition and method for making it
EP2970827A4 (en) * 2013-03-15 2016-12-14 Stepan Co Fabric softener compositions
US9714400B2 (en) 2013-03-25 2017-07-25 Rhodia Operations Fabric softener
US10011806B2 (en) 2013-11-05 2018-07-03 Evonik Degussa Gmbh Method for making a tris-(2-hydroxyethyl)-methylammonium methylsulfate fatty acid ester
US10113137B2 (en) 2014-10-08 2018-10-30 Evonik Degussa Gmbh Fabric softener active composition
US10174273B2 (en) 2013-11-20 2019-01-08 Rhodia Operations Fabric softener composition

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916863A (en) * 1996-05-03 1999-06-29 Akzo Nobel Nv High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine
DE19633104C1 (en) * 1996-08-16 1997-10-16 Henkel Kgaa Use of detergent mixtures of ester-quat(s) and quaternised fatty acid imidazolines
AU734821B2 (en) * 1996-09-19 2001-06-21 Procter & Gamble Company, The Fabric softeners having increased performance
ES2130993B1 (en) * 1997-04-30 2000-03-01 Kao Corp Sa NEW ACTIVE SOFTENING MATTER FOR TEXTILES, PROCEDURE FOR OBTAINING AND SOFTENING COMPOSITIONS FOR TEXTILES THAT CONTAIN IT.
CN1259934A (en) * 1997-05-19 2000-07-12 普罗格特-甘布尔公司 Quaternary fatty acid triethanolamine ester salts and their use as fabrics softeners
US6759383B2 (en) * 1999-12-22 2004-07-06 The Procter & Gamble Company Fabric softening compound
US6271298B1 (en) 1999-04-28 2001-08-07 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
US6437185B1 (en) 1999-06-16 2002-08-20 Finetex, Inc. Quaternary ammonium compounds and process for preparing and using same
US6287547B1 (en) * 1999-10-12 2001-09-11 Sanyo Chemical Industries, Ltd. Hair treatment composition
GB0002877D0 (en) * 2000-02-08 2000-03-29 Unilever Plc Fabric conditioning composition
JP4478370B2 (en) * 2000-04-04 2010-06-09 ライオン株式会社 Liquid finish composition for textile products
GB0014891D0 (en) * 2000-06-16 2000-08-09 Unilever Plc Fabric softening compositions
GB0021765D0 (en) * 2000-09-05 2000-10-18 Unilever Plc A method of preparing fabric conditioning compositions
GB0021766D0 (en) * 2000-09-05 2000-10-18 Unilever Plc Fabric conditioning compositions
GB0025442D0 (en) * 2000-10-17 2000-11-29 Unilever Plc Fabric conditioning compositions
CA2439512A1 (en) * 2001-03-07 2002-09-19 The Procter & Gamble Company Rinse-added fabric conditioning composition for use where residual detergent is present
MXPA04000226A (en) * 2001-07-13 2004-05-21 Procter & Gamble Mousse forming compositions comprising quaternary ammonium agents.
DE10134224B4 (en) 2001-07-13 2012-12-20 Clariant Produkte (Deutschland) Gmbh Additives for inhibiting gas hydrate formation
GB0121807D0 (en) * 2001-09-10 2001-10-31 Unilever Plc Fabric conditioning compositions
GB0121806D0 (en) * 2001-09-10 2001-10-31 Unilever Plc A method of reducing the viscosity of fabric conditioning compositions
GB0121805D0 (en) * 2001-09-10 2001-10-31 Unilever Plc A method for preparing fabric conditioning compositions
GB0121804D0 (en) * 2001-09-10 2001-10-31 Unilever Plc Fabric conditioning compositions
US6984618B2 (en) * 2001-12-05 2006-01-10 The Procter & Gamble Company Softening-through-the wash composition
EP1323818A1 (en) * 2001-12-19 2003-07-02 Unilever Plc Use of fabric conditioning compositions comprising a quaternary ammonium compound
AU2003237507A1 (en) * 2002-06-13 2003-12-31 The Procter & Gamble Company Compositions comprising specific fabric softener actives
AU2003237506A1 (en) * 2002-06-13 2003-12-31 The Procter And Gamble Company Compositions comprising fabric softening active system comprising at least two cationic fabric softening actives
US7135451B2 (en) * 2003-03-25 2006-11-14 The Procter & Gamble Company Fabric care compositions comprising cationic starch
DE602004027363D1 (en) * 2003-04-17 2010-07-08 Croda Inc BODY CARE PRODUCT WITH A DIESTER QUAT
GB0318154D0 (en) * 2003-08-02 2003-09-03 Unilever Plc Fabric conditioning compositions
DE10338070A1 (en) * 2003-08-19 2005-03-17 Henkel Kgaa Agent on substrate surfaces
US20050192356A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and methods of use
US8618316B1 (en) * 2004-03-05 2013-12-31 Stepan Company Low temperature ramp rate ester quat formation process
US20050209116A1 (en) * 2004-03-19 2005-09-22 Edelman Elise T Fabric care article with improved scent identification
GB0420202D0 (en) * 2004-09-11 2004-10-13 Unilever Plc Fabric treatment composition
AU2005286633B2 (en) 2004-09-23 2011-03-10 Monsanto Technology Llc Alkoxylated alkylamine quaternary surfactants for glyphosate
MX2007003478A (en) * 2004-09-23 2007-08-17 Akzo Nobel Nv Alkoxylated alkylamines / alkyl ether amines with peaked distribution.
US7935222B2 (en) * 2005-03-04 2011-05-03 Kemira Chemicals, Inc. Papermaking method using one or more quaternized dialkanolamine fatty acid ester compounds to control opacity and paper product made thereby
US20060210509A1 (en) * 2005-03-21 2006-09-21 Johnson Andress K Hair conditioner
DE102005022782A1 (en) * 2005-05-12 2006-11-16 Tesa Ag Pressure-sensitive adhesives and process for their preparation
GB0602741D0 (en) * 2006-02-10 2006-03-22 Unilever Plc Fabric conditioning compositions
JP2009531329A (en) * 2006-03-23 2009-09-03 アクゾ・ノベル・エヌ・ベー Alkoxylated alkyl amine / alkyl ether amine with peak distribution
ES2318622T3 (en) * 2006-07-06 2009-05-01 Clariant (Brazil) S.A. COMPOSITION ESTERQUAT CONCENTRATED.
ITVA20060043A1 (en) * 2006-07-18 2008-01-19 Lamberti Spa METHOD TO LEARN SOFT FINISHING TO FABRICS
DE102006039873B4 (en) * 2006-08-25 2013-10-31 Henkel Ag & Co. Kgaa Reinforcement of the cleaning performance of detergents by cotton-active soil release cellulose derivative
EP1939273A1 (en) * 2006-12-28 2008-07-02 Kao Corporation, S.A. Non-rinse fabric softener
WO2008152602A1 (en) 2007-06-15 2008-12-18 Ecolab Inc. Liquid fabric conditioner composition and method of use
CN101353862B (en) * 2007-07-23 2012-12-12 五星化学工业株式会社 Method of manufacturing fiber flexibile agent for improving flexibility of fiber
US20090163402A1 (en) * 2007-12-19 2009-06-25 Eastman Chemical Company Fabric softener
US8361953B2 (en) * 2008-02-08 2013-01-29 Evonik Goldschmidt Corporation Rinse aid compositions with improved characteristics
DE102008032570A1 (en) 2008-07-11 2010-01-14 Tesa Se Pressure-sensitive adhesives and process for their preparation
CA2744225C (en) * 2008-11-26 2014-06-10 Colgate-Palmolive Company Fabric softening compositions and methods
JP5281388B2 (en) * 2008-12-25 2013-09-04 花王株式会社 Liquid detergent composition
KR100992595B1 (en) 2010-02-11 2010-11-08 주식회사 에스이비 Method for preparing cationic surfactant
BR112012020383B1 (en) * 2010-02-15 2020-10-06 Stepan Company METHOD TO REDUCE THE REACTION TIME BETWEEN AN ALKANOLAMINE AND A FATTY ACID TO PRODUCE STERAMINES
US8232239B2 (en) * 2010-03-09 2012-07-31 Ecolab Usa Inc. Liquid concentrated fabric softener composition
US8173589B2 (en) * 2010-03-18 2012-05-08 The Procter & Gamble Company Low energy methods of making pearlescent fabric softener compositions
BR112012025002B1 (en) 2010-04-01 2021-02-23 Evonik Operations Gmbh active fabric softener composition, and its preparation processes
CA2795464C (en) 2010-04-01 2014-07-15 Evonik Degussa Gmbh Fabric softener active composition
US8507425B2 (en) 2010-06-29 2013-08-13 Evonik Degussa Gmbh Particulate fabric softener comprising ethylenediamine fatty acid amides and method of making
EA023366B1 (en) 2010-10-25 2016-05-31 Стипэн Компани Esteramines and derivatives from natural oil metathesis
CA2815664C (en) 2010-10-25 2018-04-17 Stepan Company Quaternized fatty amines, amidoamines, and their derivatives from natural oil metathesis
CN103228136B (en) 2010-10-25 2016-11-16 斯特潘公司 From the metathetic fatty acid amide of natural oil and derivant
WO2012061388A1 (en) * 2010-11-01 2012-05-10 Elementis Specialties, Inc. A method to improve skin and hair fragrance retention from personal care compositions
US8673838B2 (en) 2011-06-22 2014-03-18 Ecolab Usa Inc. Solid concentrated fabric softener composition
US9688944B2 (en) 2012-04-24 2017-06-27 Stepan Company Synergistic surfactant blends
US20150141315A1 (en) * 2012-06-15 2015-05-21 Rhodia Operations Method to recover or increase water absorbency of polyester textile
AU2012396826B2 (en) 2012-12-11 2015-10-29 Colgate-Palmolive Company Esterquat composition having high triesterquat content
CN104837975B (en) 2012-12-11 2018-04-27 高露洁-棕榄公司 Ester quat compositions with high three ester quats content
CN103031714B (en) * 2012-12-30 2015-09-30 浙江喜得宝丝绸科技有限公司 The composite softener of silk Final finishing and preparation method
GB2516862A (en) * 2013-08-01 2015-02-11 M I Drilling Fluids Uk Ltd Quaternary ammonium compounds and gas hydrate inhibitor compositions
CN104131461B (en) * 2014-08-04 2016-03-09 广东妮可儿服饰有限公司 A kind of composition and method of making the same for field of textiles and purposes
MX2017004642A (en) * 2014-10-08 2017-07-26 Procter & Gamble Fabric enhancer composition.
JP6482829B2 (en) * 2014-11-18 2019-03-13 花王株式会社 Method for producing cationic surfactant
US9506015B2 (en) 2014-11-21 2016-11-29 Ecolab Usa Inc. Compositions to boost fabric softener performance
US9688945B2 (en) 2014-11-21 2017-06-27 Ecolab Usa Inc. Compositions to boost fabric softener performance
US9725679B2 (en) 2014-11-21 2017-08-08 Ecolab Usa Inc. Compositions to boost fabric softener performance
EP3181667A1 (en) 2015-12-18 2017-06-21 Kao Corporation, S.A. Fabric softener active compositions
CN105463852A (en) * 2016-01-08 2016-04-06 湖州市千金丝织厂 Novel soft finishing agent and preparation method thereof
US11453845B2 (en) 2016-12-29 2022-09-27 Colgate-Palmolive Company Home care compositions
JP6973884B2 (en) * 2017-05-22 2021-12-01 花王株式会社 Softener composition
EP3752628A1 (en) 2018-02-13 2020-12-23 Eastman Chemical Company Enzymatic process for producing intermediates useful as esterquat precursors
WO2020000172A1 (en) * 2018-06-26 2020-01-02 Evonik Operations Gmbh Preparation method for esterquats based on oil
CN108689891B (en) * 2018-06-29 2021-07-30 广州市润研基因科技有限公司 Synthesis method of quaternary ammonium salt
MX2021000271A (en) * 2018-07-12 2021-03-26 Stepan Co Esterquat compositions.
WO2021081969A1 (en) * 2019-11-01 2021-05-06 Rhodia Operations Quaternary ammonium compound mixture and fabric conditioning composition
US20230111600A1 (en) 2019-12-17 2023-04-13 Momentive Performance Materials Gmbh Polymeric fatty acid compounds for the treatment of fibrous amino acid-based substrates, especially hair
EP4076364A2 (en) 2019-12-17 2022-10-26 Momentive Performance Materials GmbH Nonionic polymeric fatty acid compounds for the treatment of fibrous amino acid-based substrates, especially hair
KR102504536B1 (en) * 2020-12-28 2023-02-27 엘지전자 주식회사 Fabric softener composition for liquid carbon dioxide base cleaning
US20230022614A1 (en) 2021-06-16 2023-01-26 Momentive Performance Materials Gmbh Polymeric fatty acid salt compounds for the treatment of fibrous amino acid-based substrates, especially hair
US20230147510A1 (en) 2021-11-05 2023-05-11 Nouryon Chemicals International B.V. Liquid fabric softener compositions comprising hydroxypropyl starch phosphate
EP4360617A1 (en) 2022-10-31 2024-05-01 Evonik Operations GmbH Formulation comprising ester quats based on trialkanolamines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001295A1 (en) * 1989-07-17 1991-02-07 Henkel Kommanditgesellschaft Auf Aktien Process for preparing quaternary ammonium compounds
EP0550361A1 (en) * 1991-12-31 1993-07-07 Stepan Europe Surface active quaternary ammonium compounds, processes for their preparation and softening compositions derived from them
WO1994004641A1 (en) * 1992-08-21 1994-03-03 Colgate-Palmolive Company Fabric conditioning composition
DE4243701A1 (en) * 1992-12-23 1994-06-30 Henkel Kgaa Aqueous textile softener dispersions
WO1994020597A1 (en) * 1993-03-01 1994-09-15 The Procter & Gamble Company Concentrated biodegradable quaternary ammonium fabric softener compositions and compounds containing intermediate iodine value unsaturated fatty acid chains
DE4413431A1 (en) * 1994-04-18 1995-10-19 Henkel Kgaa Prepn. of quaternised aliphatic tri:ethanol:amine ester(s)
EP0718275A1 (en) * 1994-12-23 1996-06-26 Hüls Aktiengesellschaft Quaternary fatty-acid triethanolamine esters

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1619058A1 (en) * 1967-12-01 1971-01-28 Hoechst Ag Preparations for treating textiles
DE2926772A1 (en) * 1979-07-03 1981-01-15 Hoechst Ag QUATERNAERE ALKYLAMINO-DI-ALKYLCARBONÄSURE-DI-ESTER, METHOD FOR THE PRODUCTION AND USE THEREOF
DE2928603A1 (en) * 1979-07-14 1981-02-05 Hoechst Ag QUATERNAIRE AMMONIUM COMPOUNDS, THEIR PRODUCTION AND THE USE THEREOF AS SOFT SOFTENER
FR2482636A1 (en) * 1980-05-14 1981-11-20 Lesieur Cotelle Et Associes Sa CONCENTRATED SOFTENING COMPOSITION FOR TEXTILE FIBERS
DE3137043A1 (en) * 1981-09-17 1983-03-24 Bayer Ag, 5090 Leverkusen AMMONIUM COMPOUNDS
GB8414701D0 (en) * 1984-06-08 1984-07-11 Dominion Chemicals Ltd Conditioning preparation
GB2188653A (en) * 1986-04-02 1987-10-07 Procter & Gamble Biodegradable fabric softeners
DE3720331A1 (en) * 1987-06-19 1988-12-29 Huels Chemische Werke Ag CONCENTRATED SOFT SOFTENER
DE3720332A1 (en) * 1987-06-19 1988-12-29 Huels Chemische Werke Ag METHOD FOR PRODUCING TRIALKANOLAMINE DIFETIC ACID ESTERS AND THE USE THEREOF
US4789491A (en) * 1987-08-07 1988-12-06 The Procter & Gamble Company Method for preparing biodegradable fabric softening compositions
US4897492A (en) * 1988-02-09 1990-01-30 Akzo America Inc. Method of preparing low color fatty amides
JPH02139480A (en) * 1988-11-21 1990-05-29 Kao Corp Softening finishing agent
US5066414A (en) * 1989-03-06 1991-11-19 The Procter & Gamble Co. Stable biodegradable fabric softening compositions containing linear alkoxylated alcohols
DE3926740C2 (en) * 1989-08-12 1997-05-15 Witco Surfactants Gmbh Aqueous fabric softener and its use
DE4015849A1 (en) * 1990-05-17 1991-11-21 Henkel Kgaa QUATERNED ESTERS
DE4212156A1 (en) * 1992-04-10 1993-10-14 Henkel Kgaa Aqueous textile treatment agent with low viscosity
DE4242480A1 (en) * 1992-12-16 1994-06-23 Henkel Kgaa Aqueous textile softener dispersions
DE4308792C1 (en) * 1993-03-18 1994-04-21 Henkel Kgaa Stabilised quaternised fatty acid tri:ethanolamine ester salt(s) prodn. - having stable colour and odour characteristics
WO1995004802A1 (en) * 1993-08-06 1995-02-16 The Procter & Gamble Company Dryer-activated fabric conditioning and antistatic compositions containing biodegradable compounds having unsaturation
US5376287A (en) * 1993-08-06 1994-12-27 The Procter & Gamble Company Dryer-activated fabric conditioning compositions containing ethoxylated/propoxylated sugar derivatives
US5399272A (en) * 1993-12-17 1995-03-21 The Procter & Gamble Company Clear or translucent, concentrated biodgradable quaternary ammonium fabric softener compositions
US6123933A (en) * 1995-07-19 2000-09-26 Mitsubishi Chemical Corporation Hair cosmetic compositions
US5916863A (en) * 1996-05-03 1999-06-29 Akzo Nobel Nv High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001295A1 (en) * 1989-07-17 1991-02-07 Henkel Kommanditgesellschaft Auf Aktien Process for preparing quaternary ammonium compounds
EP0550361A1 (en) * 1991-12-31 1993-07-07 Stepan Europe Surface active quaternary ammonium compounds, processes for their preparation and softening compositions derived from them
WO1994004641A1 (en) * 1992-08-21 1994-03-03 Colgate-Palmolive Company Fabric conditioning composition
DE4243701A1 (en) * 1992-12-23 1994-06-30 Henkel Kgaa Aqueous textile softener dispersions
WO1994014935A1 (en) * 1992-12-23 1994-07-07 Henkel Kommanditgesellschaft Auf Aktien Aqueous textile softener dispersions
WO1994020597A1 (en) * 1993-03-01 1994-09-15 The Procter & Gamble Company Concentrated biodegradable quaternary ammonium fabric softener compositions and compounds containing intermediate iodine value unsaturated fatty acid chains
DE4413431A1 (en) * 1994-04-18 1995-10-19 Henkel Kgaa Prepn. of quaternised aliphatic tri:ethanol:amine ester(s)
EP0718275A1 (en) * 1994-12-23 1996-06-26 Hüls Aktiengesellschaft Quaternary fatty-acid triethanolamine esters

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534570B2 (en) 1995-11-07 2003-03-18 Southern Clay Products, Inc. Organoclay compositions for gelling unsaturated polyester resin systems
US6635108B1 (en) 1995-11-07 2003-10-21 Southern Clay Products, Inc. Organoclay compositions for gelling unsaturated polyester resin systems
EP0924291A1 (en) * 1997-12-18 1999-06-23 Witco Surfactants GmbH Aqueous softener with improved softeness
EP1096055B1 (en) * 1998-06-11 2005-08-31 Kao Corporation Softener composition
EP1096055A1 (en) * 1998-06-11 2001-05-02 Kao Corporation Softener composition
WO2000006678A1 (en) * 1998-07-30 2000-02-10 The Dow Chemical Company Composition useful for softening, cleaning, and personal care applications
EP1006176A1 (en) * 1998-12-01 2000-06-07 Witco Surfactants GmbH Low-concentration highly viscous aqueous softener compositions
WO2001000168A1 (en) * 1999-06-28 2001-01-04 The Procter & Gamble Company Cosmetic compositions
WO2001028924A1 (en) * 1999-10-21 2001-04-26 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
GB2371044A (en) * 1999-10-21 2002-07-17 Southern Clay Prod Inc Organoclay compositions prepared from ester quats and composites based on the compositions
GB2371044B (en) * 1999-10-21 2003-09-24 Southern Clay Prod Inc Organoclay compositions prepared from ester quats and composites based on the compositions
WO2001032813A1 (en) * 1999-11-01 2001-05-10 Kao Corporation Quaternary ammonium salt composition
US7214718B1 (en) 1999-11-01 2007-05-08 Kao Corporation Quaternary ammonium salt composition
US7115779B2 (en) 2001-03-08 2006-10-03 Kao Corporation Softener composition
US6855682B2 (en) 2001-03-08 2005-02-15 Kao Corporation Softener composition
US6992059B2 (en) 2001-09-10 2006-01-31 Unilever Home & Personal Care Usa Divisionof Conopco, Inc. Fabric conditioning compositions
EP1563043B2 (en) 2002-11-14 2015-06-10 Colgate-Palmolive Company Concentrated fabric softening composition containing esterquat with specific ester distribution and an electrolyte
EP1560905B2 (en) 2002-11-14 2013-09-04 Colgate-Palmolive Company Fabric softening composition containing esterquat with specific ester distribution and sequestrant
WO2007026314A3 (en) * 2005-08-31 2007-08-30 Procter & Gamble Concentrated fabric softener active compositions
US8883712B2 (en) 2010-04-28 2014-11-11 Evonik Degussa Gmbh Fabric softening composition
EP2576743B1 (en) 2010-05-28 2015-11-11 Colgate-Palmolive Company Fatty acid chain saturation in alkanol amine based esterquat
CN102336675A (en) * 2010-07-21 2012-02-01 博兴华润油脂化学有限公司 Production method of esterquats
CN102162189A (en) * 2011-02-28 2011-08-24 河南省道纯化工技术有限公司 Method for preparing fabric softening agent
CN102432477A (en) * 2011-11-04 2012-05-02 江南大学 Synthetic process of double-long-chain diester quaternary ammonium salt
CN102432477B (en) * 2011-11-04 2014-01-15 江南大学 Synthetic process of double-long-chain diester quaternary ammonium salt
WO2013113735A1 (en) 2012-01-30 2013-08-08 Evonik Industries Ag Fabric softener active composition
WO2013113453A1 (en) 2012-01-30 2013-08-08 Evonik Industries Ag Fabric softener active composition
US8883713B2 (en) 2012-01-30 2014-11-11 Evonik Industries Ag Fabric softener active composition
US9441187B2 (en) 2012-05-07 2016-09-13 Evonik Degussa Gmbh Fabric softener active composition and method for making it
WO2014124688A1 (en) 2013-02-15 2014-08-21 Rhodia Operations Fabric softener
US10017715B2 (en) 2013-02-15 2018-07-10 Rhodia Operations Fabric softener
EP2970827A4 (en) * 2013-03-15 2016-12-14 Stepan Co Fabric softener compositions
US10011807B2 (en) 2013-03-15 2018-07-03 Stepan Company Fabric softener compositions
US9714400B2 (en) 2013-03-25 2017-07-25 Rhodia Operations Fabric softener
JP2015010311A (en) * 2013-07-02 2015-01-19 花王株式会社 Liquid softener composition
US10011806B2 (en) 2013-11-05 2018-07-03 Evonik Degussa Gmbh Method for making a tris-(2-hydroxyethyl)-methylammonium methylsulfate fatty acid ester
US10174273B2 (en) 2013-11-20 2019-01-08 Rhodia Operations Fabric softener composition
JP2015200047A (en) * 2013-12-24 2015-11-12 花王株式会社 Liquid softening agent composition
JP2015200048A (en) * 2014-04-04 2015-11-12 花王株式会社 Liquid softening agent composition
US10113137B2 (en) 2014-10-08 2018-10-30 Evonik Degussa Gmbh Fabric softener active composition

Also Published As

Publication number Publication date
US6323167B1 (en) 2001-11-27
JP4420359B2 (en) 2010-02-24
HK1061413A1 (en) 2004-09-17
AR006957A1 (en) 1999-09-29
DE69707864D1 (en) 2001-12-06
US6004913A (en) 1999-12-21
EP0900260B1 (en) 2001-10-31
BR9708898A (en) 1999-08-03
CN1419006A (en) 2003-05-21
HK1019892A1 (en) 2000-03-03
US6037315A (en) 2000-03-14
JP2000509445A (en) 2000-07-25
ATE207950T1 (en) 2001-11-15
EP0900260A1 (en) 1999-03-10
ES2165607T3 (en) 2002-03-16
CN1221447A (en) 1999-06-30
TW524907B (en) 2003-03-21
CA2253536A1 (en) 1997-11-13
US6770608B2 (en) 2004-08-03
US5916863A (en) 1999-06-29
DK0900260T3 (en) 2002-02-18
CN1176264C (en) 2004-11-17
DE69707864T2 (en) 2002-04-11
US20020025915A1 (en) 2002-02-28
CN1097090C (en) 2002-12-25

Similar Documents

Publication Publication Date Title
EP0900260B1 (en) High di(alkyl fatty ester) quaternary ammonium compound from trialkanol amine
EP0687291B2 (en) Concentrated biodegradable quaternary ammonium fabric softener compositions and compounds containing intermediate iodine value unsaturated fatty acid chains
EP0640121B1 (en) Concentrated liquid fabric softener compositions containing biodegradable fabric softeners
EP0792335B1 (en) Concentrated biodegradable quaternary ammonium fabric softener compositions containing intermediate iodine value fatty acid chains
US5399272A (en) Clear or translucent, concentrated biodgradable quaternary ammonium fabric softener compositions
US6492322B1 (en) Concentrated quaternary ammonium fabric softener compositions containing cationic polymers
US5427697A (en) Clear or translucent, concentrated fabric softener compositions
EP1639067B1 (en) Mdea ester quats with high content of monoester in blends with tea ester quats.
EP1136471A1 (en) Esters derived from alkanolamines, dicarboxylic acids and fatty alcohols and the cationic surfactants obtainable therefrom.
EP0665877A1 (en) Fabric softeners containing dyes for reduced staining
KR100467354B1 (en) High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine
MXPA98009180A (en) Composite of quaternary ammonium with high content of diester alquilico graso from trietanolam
MXPA96004034A (en) Softening compositions of te

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97195218.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP KR MX SG VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997922934

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2253536

Country of ref document: CA

Ref document number: 2253536

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/009180

Country of ref document: MX

Ref document number: 1019980709094

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1199801018

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1997922934

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980709094

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997922934

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980709094

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997922934

Country of ref document: EP