WO1997027726A1 - Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen - Google Patents

Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen Download PDF

Info

Publication number
WO1997027726A1
WO1997027726A1 PCT/EP1997/000184 EP9700184W WO9727726A1 WO 1997027726 A1 WO1997027726 A1 WO 1997027726A1 EP 9700184 W EP9700184 W EP 9700184W WO 9727726 A1 WO9727726 A1 WO 9727726A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
current
lamp current
gas discharge
active component
Prior art date
Application number
PCT/EP1997/000184
Other languages
English (en)
French (fr)
Inventor
Norbert Primisser
Siegfried Luger
Original Assignee
Tridonic Bauelemente Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19613257A external-priority patent/DE19613257A1/de
Application filed by Tridonic Bauelemente Gmbh filed Critical Tridonic Bauelemente Gmbh
Priority to EP97901047A priority Critical patent/EP0876742B1/de
Priority to AT97901047T priority patent/ATE216829T1/de
Priority to US09/101,682 priority patent/US6060843A/en
Priority to AU14430/97A priority patent/AU697750C/en
Priority to DE59707104T priority patent/DE59707104D1/de
Priority to NZ326348A priority patent/NZ326348A/xx
Publication of WO1997027726A1 publication Critical patent/WO1997027726A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a method and an electronic control circuit, e.g. an electronic ballast for regulating the operating behavior, in particular the brightness of gas discharge lamps.
  • an electronic control circuit e.g. an electronic ballast for regulating the operating behavior, in particular the brightness of gas discharge lamps.
  • FIG. 5 shows an example of the construction of a known electronic ballast for controlling a gas discharge lamp 3, as is known from EP-A1-0 490 329.
  • An electronic ballast similar to the circuit arrangement shown in FIG. 1 is known from EP-A1-0 338 109, but instead of heating transformers T1 and T2 shown in FIG. 1, an ignition or heating capacitor connected in parallel with the lamp filaments is used.
  • a rectifier 1 with diodes D1-D4 connected to form a bridge circuit is connected to an AC voltage source u E via capacitors C1 and C2.
  • the capacitors C1 and C2 are part of a radio interference suppression arrangement.
  • the input AC voltage u E rectified by the rectifier 1 is fed to an inverter 2, which as a rule has two semiconductor switches that switch alternately.
  • the inverter 2 converts the intermediate circuit voltage rectified by the rectifier 1 into an output AC voltage.
  • the output frequency and / or the pulse duty factor between the switch-on times of the semiconductor switches of the inverter 2 can be changed.
  • the output voltage of the inverter is fed to a load circuit which comprises a series resonant circuit consisting of a coil LI and a capacitor C8, a coupling capacitor C4, heating transformers T1 and T2 for the lamp filaments and the gas discharge lamp 3.
  • the gas discharge lamp 3 is connected to the heating transformers T1 and T2 via wire lines.
  • the lamp current i L flowing across the gas discharge path of the gas discharge lamp 3 is tapped off at a shunt resistor Rl and is usually used as a control variable for the brightness of the gas discharge lamp 3, ie the frequency and / or the duty cycle of the inverter 2 is dependent on the actual value of the Lamp current i L regulated to dim the brightness of the gas discharge lamp 3.
  • the gas discharge lamp 3 is dimmed by increasing the output frequency f of the inverter 2.
  • the initial ignition of the gas discharge lamp 3 takes place in that the output frequency of the inverter 2 is tuned to the resonance frequency of the series resonance circuit with the coil LI and the capacitor C8.
  • the lamp current i L is used as a controlled variable, malfunctions can be the result of too long connecting lines between the connections of the electronic ballast and the gas discharge lamp. This is particularly noticeable when there is strong dimming, ie when the gas discharge lamp is low in brightness.
  • These malfunctions are caused by capacitive influences of the wiring, since parasitic capacitances C5 and C6 occur between the lines and ground and a parasitic capacitance C7 occurs between the lines. From Fig.
  • the capacitive current caused by the parasitic capacitance C7 between the lines overlaps the lamp current i,... Detected by the shunt resistor R1.
  • the simplified resistor equivalent circuit diagram of the lines with the gas discharge lamp 3 and the parasitic capacitance C7 shown in FIG. 6 shows that the measuring resistor Rl via line 2 of the lamp current i L flowing via the lamp resistor R lamp and the capacitive flowing via the parasitic capacitance C7 Current i C7 is supplied.
  • no purely ohmic current flows through the shunt resistor Rl, but rather a current i L -ri C7 which is phase-shifted as a function of the parasitic capacitance C7 with respect to the lamp voltage.
  • the current flowing through the resistor R1 is used to regulate the brightness of the gas discharge lamp 3.
  • the peak value of this current is detected, this peak value being compared with a predetermined target value, which can be changed by the dimming setting, and then the output frequency f or the pulse duty factor d of the switch of the inverter of the electronic ballast is possibly changed. If an excessively high lamp current is detected via the resistor R1, the inverter frequency f is increased so that the voltage across the heating capacitor C8 of the series resonant circuit drops. In this case, the gas discharge lamp 3 connected in parallel with the capacitor C8 is at a lower voltage and thus emits less light.
  • the proportion of the capacitive current i C7 increases in relation to the proportion of the purely ohmic lamp current i L within the current detected at the resistor R1. This means that with strong dimming, the electronic ballast detects an excessively high current via the resistor R1 and incorrectly interprets this excessive current as the actual value of the lamp current i L.
  • FIG. 8 shows this process, FIGS. 8a to 8c representing different courses of the lamp voltage u L and the current i R detected at the resistor R1 for different values of the line capacitance C7.
  • 8a shows the ideal case when the parasitic line capacitance C7 is very small, so that the proportion of the capacitive current i C7 in the current detected via the resistor Rl is negligibly small and this current detected via the resistor Rl essentially corresponds to the lamp current i L corresponds. Since this is an essentially purely ohmic current, the current is not out of phase with the lamp voltage u L. As already described, the peak value of the current sensed at the resistor R1 is usually measured.
  • This peak value is compared as the actual value I actual with a predetermined target value I soM .
  • the detected peak value I ⁇ s corresponds to the target value I so h that it is not necessary to regulate the brightness of the gas discharge lamp 3.
  • Fig. 8b shows this process when an average line capacitance C7 occurs between the lines. From Fig. 8b it can be seen that not only is the current i RI out of phase with the lamp voltage u L due to the capacitive current i r7 flowing through the line capacitance C7, but the detected peak value I ⁇ sl is significantly increased compared to the case shown in Fig. 8a is. The electronic ballast would therefore recognize from the signal curve shown in FIG.
  • the electronic ballast would therefore try to reduce this increased current again by increasing the frequency at the inverter 2, but this intention is counteracted by the decreasing capacitive resistance of the parasitic capacitance C7 due to the increasing frequency, as a result of which the capacitive component i C7 in the measured via the measuring resistor R1 Current i R1 is increased.
  • This circuit finally leads to the extinction of the lamp, but the extinction of the gas discharge lamp 3 by the electronic ballast by detecting the current i R flowing through the resistor R1 cannot be determined, since even when the lamp goes out via the parasitic capacitance C7, a capacitive Current i c7 flows.
  • FIG. 8c shows corresponding signal profiles for the A high line capacitance value occurs between the lines that . connect the gas discharge lamp 3 to the electronic ballast.
  • the signal curves shown in FIG. 8c owing to the significantly increased proportion of the capacitive current i C7 compared to the lamp current i L, the resulting total current i R! again significantly increased.
  • the measurement error that occurs due to the superimposition with the capacitive current i C7 is greatest in the case shown in FIG. 8c.
  • FIG. 7 shows the value of the parasitic line capacitance C7 occurring between the lines for different types of cable and for different cable lengths 1 and for different operating frequencies f. From Fig.
  • the invention is therefore based on the object of specifying a method and a control circuit, in particular for carrying out the method, for regulating and / or detecting the operating state of gas discharge lamps, precise regulation and / or recording of the operating state being possible and no consideration of the wiring length must be taken between the gas discharge lamp and an upstream electronic ballast.
  • the connected lamp can be dimmed precisely over large dimming ranges.
  • FIG. 1 shows current and voltage profiles of a first embodiment according to the invention, for example,
  • FIG. 3 shows a schematic illustration of an electronic ballast according to the invention
  • 4a and 4b are diagrams for comparing the method according to the invention with the known control method
  • FIG. 6 shows a simplified resistance equivalent circuit diagram of the lines shown in FIG. 5, the lamp and the parasitic line capacitance
  • Fig. 8 current and signal run to explain the known control method.
  • FIG. 1 shows, for different values of the line capacitance C7 shown in FIG. 5, profiles of the current i R1 detected via the resistor R1 and the lamp voltage u L.
  • Fig. La shows the signal curves for a very low line capacitance value C7, so that the capacitive current i C7 superimposed on the actual lamp current i L and flowing through the line capacitance C7 is negligibly low. In this case, occurs between the current i R detected via the resistor Rl and the lamp voltage u L have no phase shift and the current detected via the resistor Rl ideally corresponds to the lamp current i L actually to be measured.
  • the signal curves shown in FIG. La do not differ from the signal curves shown in FIG. 8a.
  • Fig. Lb shows signal curves in the event that an average line capacitance C7 is formed between the lines shown in Fig. 5, so that the over
  • Resistance Rl detected current is out of phase with the lamp voltage u L and rushes ahead of the lamp voltage u L. According to the invention it is proposed that the
  • corresponds to the peak value of the current detected across the resistor R1.
  • the undistorted actual value I 1SI at the point in time when the lamp voltage u L reaches its positive peak value can thus be calculated by detecting the phase difference between the current i R1 and the lamp voltage u L has reached.
  • 1c shows corresponding curves for a very large value of the line capacitance C7, so that the current i R1 measured via the resistor R1 is significantly increased and is significantly out of phase with the lamp voltage u L.
  • the method according to the invention always measures the actual value I, st corresponding to the actual lamp current i L , so that precise regulation of the lamp brightness is possible even with strong dimming.
  • the method shown in FIG. 1 determines the actual value I, sl without errors only for purely sinusoidal current profiles. However, this method can also be used for other periodic curve profiles, but a constant error always occurs.
  • FIG. 2 shows the corresponding current and voltage profiles to explain the second exemplary embodiment according to the invention.
  • FIG. 2a again shows the profiles for a negligible capacitive current over the line capacitance C7
  • FIGS. 2b and 2c show the signal profiles for a medium line capacitance and a very high line capacitance.
  • FIGS. 1 and 2 have in common that only the actual active component of the lamp current is evaluated. In the case of a complex lamp current, this means that only the real part of the lamp current is used for controlling the operating state.
  • FIG. 3 shows a simplified block diagram of an electronic ballast according to the invention, which is used in particular to carry out the method according to the invention.
  • a device 4 for detecting the lamp voltage u and the current i RI flowing through the resistor R1 is also provided.
  • a measured variable proportional to the lamp voltage u L is tapped between the resistors R4 and R5 and fed to the device 4.
  • a measured variable proportional to the lamp current i L is tapped via the shunt resistor R 1 and fed to the device 4.
  • the device 4 determines the actual active component of the lamp current on the basis of the supplied signal curves, ie the device 4 determines the actual value I, sl of the lamp current I L corrected with respect to the capacitive component i C7 , according to the exemplary embodiments of the method according to the invention described above.
  • This actual value lst I is supplied to a device 5 for subjecting the actual value determined I ⁇ sl a target actual comparison with a desired value, that is a predetermined set value I soil.
  • the frequency f or the pulse duty factor d of the inverter 2 is changed in order to regulate the brightness of the gas discharge lamp 3.
  • the actual value I is determined by the device 4 is fed directly to the inverter 2.
  • u L and i L can also be detected by a device separate from device 4.
  • one or more other reference variables can be used instead of u L.
  • the triggering point (s) of the switches of the inverter 2 could also be used as a reference variable, since the current and voltage curve can be predicted for a given circuit arrangement. It can thus be determined, for example, that the current is measured after a certain period of time after switching on the one inverter switch. If the time period is selected so that the current measurement takes place at the time of the maximum voltage, the measured current corresponds to the actual one Active component of the lamp current. It is also possible to form the mean value of the measured current between the switching on and off of a switch of the inverter 2.
  • 4a and 4b show diagrams for comparing the known control method with the control method according to the invention.
  • 4a shows the lamp power as a function of the value of the parasitic line capacitance. It can be seen that.
  • the course denoted by c and corresponding to the known control method is strongly dependent on the line capacity, while the courses denoted by a and b according to the first and second exemplary embodiments of the method according to the invention are almost independent of the line capacity.
  • Fig. 4b shows that the working frequency in the known control method is significantly influenced by the line capacity (see curve c), while the method according to the invention enables operation which is almost independent of the line capacity (see curves a and b ).
  • control methods according to the invention are also advantageous if rapid ignition detection is to be implemented.
  • a rapid ignition detection is particularly advantageous if the brightness of the gas discharge lamp is to be dimmed as quickly as possible after it has been ignited.
  • the capacitive current component i C7 caused by the parasitic line capacitance C7 is problematic because, in order to be able to increase the output frequency of the inverter for dimming the gas discharge lamp immediately after the gas discharge lamp has been ignited, after detection of an over the measuring resistor R1 flowing current is inferred about the successful ignition of the gas discharge lamp.
  • the method according to the invention and the control circuit according to the invention can also be applied to the electronic ballast described in the aforementioned EP-A1-0 338 109, which has an ignition or heating capacitor arranged parallel to the gas discharge path of the lamp. Despite the heating capacitor connected in parallel, the actual lamp current can be detected according to the invention. This has the consequence that in the non-dimmable arrangement described in EP-A1-0 338 109, component tolerances and environmental influences (such as, for example, the ambient temperature) on the lamp, which in themselves would influence the control accuracy, are eliminated by applying the invention.
  • the invention with its advantages explained in detail above can be applied both to dimmable and non-dimmable devices.
  • the invention can also be applied to electronic ballasts which have externally managed inverters and therefore have to be regulated.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

Verfahren und elektronische Steuerschaltung zum Regeln des Betriebsverhaltens, insbesondere der Helligkeit, einer Gasentladungslampe, wobei als Regelgröße der Wirkanteil des Lampenstroms (iL) verwendet wird.

Description

Verfahren und elektronische Steuerschaltung zum Regeln des Betriebsverhaltens von Gasentladungslampen
Die vorliegende Erfindung betrifft ein Verfahren und eine elektronische Steuerschaltung, wie z.B. ein elektronisches Vorschaltgerät, zum Regeln des Betriebsverhaltens insbesondere der Helligkeit von Gasentladungslampen.
Fig. 5 zeigt beispielhaft den Aufbau eines bekannten elektronischen Vorschaltgerätes zur Ansteuerung einer Gasentladungslampe 3, wie es aus der EP-A1-0 490 329 bekannt ist. Aus der EP-A1-0 338 109 ist ein zu der in Fig. 1 gezeigten Schaltungsanordnung ähnliches elektronisches Vorschaltgerät bekannt, wobei jedoch anstelle von in Fig. 1 dargestellten Heiztransformatoren Tl und T2 ein parallel zu den Lampenwendeln geschalteter Zünd¬ oder Heizkondensator verwendet wird.
Gemäß Fig. 1 ist ein Gleichrichter 1 mit zu einer Brückenschaltung verschalteten Dioden D1-D4 über Kondensatoren Cl und C2 an eine Wechselspannungsquelle uE angeschlossen. Die Kondensatoren Cl und C2 sind Teil einer Funkentstöranordnung. Die von dem Gleichrichter 1 gleichgerichtete Eingangs-Wechelspannung uE wird einem Wechselrichter 2 zugeführt, der in der Regel zwei abwechselnd schaltende Halbleiterschalter aufweist. Der Wechselrichter 2 wandelt die von dem Gleichrichter 1 gleichgerichtete Zwischenkreisspannung in eine Ausgangs-Wechselspannung um. Dabei ist die Ausgangsfrequenz und/oder das Tastverhältnis zwischen den Einschaltzeiten der Halbleiterschalter des Wechselrichters 2 veränderbar. Die Ausgangsspannung des Wechselrichters wird einem Lastkreis zugeführt, der einen aus einer Spule LI und einem Kondensator C8 bestehenden Serien-Resonanzkreis, einem Koppelkondensator C4, Heiztransformatoren Tl und T2 für die Lampenwendeln und die Gasentladungslampe 3 umfaßt. Die Gasentladungslampe 3 ist über Drahtleitungen mit den Heiztransformatoren Tl und T2 verbunden. An einem Shunt-Widerstand Rl wird der über die Gasentladungsstrecke der Gasentladungslampe 3 fließende Lampenstrom iL abgegriffen, der gewöhnlich als Regelgröße für die Helligkeit der Gasentladungslampe 3 verwendet wird, d.h. die Frequenz und/oder das Tastverhältnis des Wechselrichters 2 wird abhängig von dem Istwert des Lampenstromes iL geregelt, um die Helligkeit der Gasentladungslampe 3 zu dimmen. Die Gasentladungslampe 3 wird gedimmt, indem die Ausgangsfrequenz f des Wechselrichters 2 erhöht wird. Das anfängliche Zünden der Gasentladungslampe 3 erfolgt dadurch, daß die Ausgangsfrequenz des Wechselrichters 2 auf die Resonanzfrequenz des Serien-Resonanzkreises mit der Spule LI und dem Kondensator C8 abgestimmt wird. Wird jedoch der Lampenstrom iL als Regelgröße verwendet, können Betriebsstörungen die Folge von zu langen Anschlußleitungen zwischen den Anschlüssen des elektronischen Vorschaltgerätes und der Gasentladungslampe sein. Dies macht sich insbesondere bei starker Dimmung, d.h. bei geringer Helligkeit der Gasentladungslampe bemerkbar. Diese Betriebsstörungen werden durch kapazitive Einflüsse der Verdrahtung verursacht, da zwischen den Leitungen und Erde parasitäre Kapazitäten C5 und C6 und zwischen den Leitungen eine parasitäre Kapazität C7 auftritt. Aus Fig. 5 ist ersichtlich, daß die Kapazitäten C5 und C6 zwischen den Leitungen und Erde den über den Widerstand Rl erfaßten Lampenstrom iL wenig beeinflussen, da die über diese Kapazitäten C5 und C6 fließenden kapazitiven Ströme an dem Widerstand Rl vorbeigeleitet werden bzw. die Kapazität C6 der Leitung 2 gegen Erde durch den Dimmkondensator C3 bezüglich Rl ausgeglichen wird.
Dagegen überlagert der durch die parasitäre Kapazität C7 zwischen den Leitungen hervorgerufene kapazitive Strom den über den Shunt- Widerstand Rl erfaßte Lampenstrom i, . Das in Fig. 6 dargestellte vereinfachte Widerstand-Ersatzschaltbild der Leitungen mit der Gasentladungslampe 3 und der parasitären Kapazität C7 zeigt, daß dem Meßwiderstand Rl über die Leitung 2 der über den Lampenwiderstand RLampe fließenden Lampenstrom iL und dem über die parasitäre Kapazität C7 fließenden kapazitiven Strom iC7 zugeführt wird. Über den Shunt-Widerstand Rl fließt somit kein rein ohmscher Strom, sondern ein in Abhängigkeit von der parasitären Kapazität C7 gegenüber der Lampenspannung phasenverschobener Strom iL-r-iC7.
Wie bereits erwähnt, wird der über den Widerstand Rl fließende Strom zur Regelung der Helligkeit der Gasentladungslampe 3 eingesetzt. Insbesondere wird dabei der Spitzenwert dieses Stromes erfaßt, wobei dieser Spitzenwert mit einem vorgegebenen Sollwert, der durch die Dimmeinstellung veränderbar ist, verglichen wird und anschließend wird ggf. die Ausgangsfrequenz f oder das Tastverhältnis d der Schalter des Wechselrichters des elektronischen Vorschaltgerätes verändert. Wird ein zu hoher Lampenstrom über den Widerstand Rl erfaßt, wird die Wechselrichterfrequenz f erhöht, so daß die Spannung an dem Heizkondensator C8 des Serienschwingkreises sinkt. Die zu dem Kondensator C8 parallel geschaltete Gasentladungslampe 3 liegt in diesem Fall an einer geringeren Spannung und gibt somit weniger Licht ab.
Bei der in Fig. 5 gezeigten bekannten Schaltungsanordnung ist jedoch eine genaue Regelung des Betriebsverhaltens der Gasentladungslampe abhängig von dem über den Widerstand Rl erfaßten Lampenstrom nicht möglich, da tatsächlich über den Widerstand Rl der Spitzenwert des Summenstromes iL(t) + ic 7(t) (vergl. Fig. 6) erfaßt wird. d.h. die Summe aus dem über die Wendelwiderstände RWend.| , und RWeικJd 2 ur>d den Lampenwiderstand Ru^ der Gasentladungslampe 3 fließenden Lampenstrom iL und dem über die parasitäre Kapazität C7 fließenden kapazitiven Strom iC7. Da mit zunehmender Frequenz, d.h. stärkerer Dimmung, der kapazitive Widerstand der parasitären Kapazität C7 sinkt und der Lampenwiderstand R,^.«. konstant bleibt, erhöht sich innerhalb des an dem Widerstand Rl erfaßten Stromes der Anteil des kapazitiven Stromes iC7 gegenüber dem Anteil des rein ohmschen Lampenstromes iL. Dies bedeutet, daß bei starker Dimmung das elektronische Vorschaltgerät über den Widerstand Rl einen zu hohen Strom erfaßt und fälschlicherweise diesen überhöhten Strom als Istwert des Lampenstroms iL interpretiert.
Fig. 8 zeigt diesen Vorgang, wobei die Figuren 8a bis 8c unterschiedliche Verläufe der Lampenspannung uL und des an dem Widerstand Rl erfaßten Stromes iR, für unterschiedliche Werte der Leitungskapazität C7 darstellen. Fig. 8a zeigt den Idealfall, wenn die parasitäre Leitungskapaziät C7 sehr klein ist, so daß der Anteil des kapazitiven Stromes iC7 an dem über den Widerstand Rl erfaßten Strom vernachläßigbar gering ist und dieser über den Widerstand Rl erfaßte Strom im wesentlichen dem Lampenstrom iL entspricht. Da es sich in diesem Fall um einen im wesentlichen rein ohmschen Strom handelt, ist der Strom gegenüber der Lampenspannung uL nicht phasenverschoben. Wie bereits beschrieben, wird gewöhnlich der Spitzenwert des an dem Widerstand Rl erfaßten Stromes gemessen. Dieser Spitzenwert wird als Istwert Ilst mit einem vorgegebenen Sollwert IsoM verglichen. Bei dem in Fig. 8a dargestellten Fall entspricht der erfaßte Spitzenwert Iιs, dem Sollwert Iso,h so daß eine Regelung der Helligkeit der Gasentladungslampe 3 nicht erforderlich ist. Fig. 8b zeigt diesen Vorgang, wenn zwischen den Leitungen eine mittlere Leitungskapazität C7 auftritt. Aus Fig. 8b ist ersichtlich, daß aufgrund des über die Leitungskapazität C7 fließenden kapazitiven Stromes ir7 nicht nur der Strom iRI auch gegenüber der Lampenspannung uL phasenverschoben ist, sondern der erfaßte Spitzenwert Iιsl gegenüber dem in Fig. 8a dargestellten Fall deutlich erhöht ist. Das elektronische Vorschaltgerät würde daher bei dem in Fig. 8b gezeigten Signalverlauf erkennen, daß der erfaßte Spitzenwert Iia größer als der erfaßte Sollwert Ison ist. Das elektronische Vorschaltgerät würde daher versuchen, diesen erhöhten Strom durch Frequenzerhöhung am Wechselrichter 2 wieder zu verringern, wobei jedoch dieser Absicht der durch die steigende Frequenz sinkende kapazitive Widerstand der parasitären Kapazität C7 entgegenwirkt, wodurch der kapazitive Anteil iC7 an dem über den Meßwiderstand Rl erfaßten Strom iR1 erhöht wird. Dieser Kreislauf führt schließlich zum Erlöschen der Lampe, wobei jedoch das Erlöschen der Gasentladungslampe 3 durch das elektronische Vorschaltgerät durch Erfassen des über den Widerstand Rl fließenden Stroms iR, nicht festgestellt werden kann, da auch bei Erlöschen der Lampe über die parasitäre Kapazität C7 ein kapazitiver Strom ic7 fließt. Fig. 8c zeigt entsprechende Signalverläufe für das Auftreten eines hohen Leitungskapazitätswerts zwischen den Leitungen, die. die Gasentladungslampe 3 mit dem elektronischen Vorschaltgerät verbinden. Bei den in Fig. 8c dargestellten Signalverläufen ist aufgrund des deutlich erhöhten Anteiles des kapazitiven Stromes iC7 gegenüber dem Lampenstrom iL der daraus resultierende Summenstrom iR! nochmals deutlich erhöht. Der durch die Überlagerung mit dem kapazitiven Strom iC7 auftretende Meßfehler ist bei dem in Fig. 8c dargestellten Fall am größten.
Aufgrund der vorhergehenden Beschreibung wird deutlich, daß durch die kapazitiven Einflüsse der Verdrahtung ein korrekter Dimmbetrieb der Gasentladungslampe nicht möglich ist, da insbesondere bei starker Dimmung der Gasentladungslampe der über die Leitungskapazität C7 fließende kapazitive Strom iC7 deutlich den eigentlich zu erfassenden Lampenstrom iL überlagert. Die bisher verwendete Meßmethode, bei der der Scheitelwert des über den Widerstand Rl fließenden Stromes iR1 erfaßt wird, ist daher bei elektronischen Vorschaltgeräten, die große Dimmbereiche (zwischen 100% und 1 % Helligkeit) abdecken, zu ungenau. Fig. 7 zeigt für verschiedene Kabelarten sowie für verschiedene Kabellängen 1 und für verschiedene Betriebsfrequenzen f den zwischen den Leitungen auftretenden Wert der parasitären Leitungskapazität C7. Aus Fig. 7 ist ersichtlich, daß einerseits die parasitäre Kapazität C7 mit größer werdender Kabellänge 1 ansteigt und andererseits eine größere Leitungskapazität bei geringerer Betriebsfrequenz f auftritt. Die in Fig. 7 gezeigten Meßergebnisse zeigen, daß Leuchtenhersteller für einen geringen Einfluß der Leitungskapazität Rücksicht auf eine bestimmte maximal zulässige Länge der Verdrahtung nehmen müßten. Das Vorgeben einer maximal zulässigen Verdrahtungslänge ist jedoch unerwünscht.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Steuerschaltung, insbesondere zur Durchführung des Verfahrens, zum Regeln und/oder Erfassen des Betriebszustandes von Gasentladungslampen anzugeben, wobei ein genaues Regeln und/oder Erfassen des Betriebszustandes möglich ist und keine Rücksicht auf die Verdrahtungslänge zwischen der Gasentladungslampe und einem vorgeschalteten elektronischen Vorschaltgerät genommen werden muß.
Diese Aufgabe wird bezüglich des Verfahrens durch die Merkmale der Patentansprüche 1 und 2 und bezüglich der elektronischen Steuerschaltung durch die Merkmale des Patentanspruches 12 gelöst.
Erfindungsgemäß wird vorgeschlagen, nur den Wirkanteil des Lampenstroms auszuwerten. Auf diese Weise wird der Einfluß des über die parasitäre Leitungskapazität fließenden kapazitiven Stromes eliminiert und es ist eine genaue Regelung bzw. Erfassung des Betriebszustandes möglich, ohne daß Rücksicht auf die Leitungslänge genommen werden muß. Insbesondere kann die angeschlossene Lampe genau über große Dimmbereiche gedimmt werden.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:
• Fig. 1 Strom- und Spannungsverläufe eines ersten erfindungsgemäßen Ausführung sbe isp iels ,
• Fig. 2 Strom- und Spannungsverläufe zur Erläuterung eines zweiten erfindungsgemäßen Ausführungsbeispiels,
• Fig. 3 eine schematische Darstellung eines erfindungsgemäßen elektronischen Vorschaltgerätes,
• Fig. 4a und 4b Diagramme zum Vergleich der erfindungsgemäßen Verfahren mit dem bekannten Regelungsverfahren,
• Fig. 5 die Darstellung eines bekannten elektronischen Vorschaltgerätes,
• Fig. 6 ein vereinfachtes Widerstand-Ersatzschaltbild der in Fig. 5 gezeigten Leitungen, der Lampe und der parasitären Leitungskapazität,
• Fig. 7 beispielshafte Werte der Leitungskapazität für unterschiedliche Kabelarten, Kabellängen und Betriebsfrequenzen, und
Fig. 8 Strom- und Signal verlaufe zur Erläuterung des bekannten Regelungsverfahren.
Fig. 1 zeigt für verschieden große Werte der in Fig. 5 gezeigten Leitungskapazität C7 Verläufe des über den Widerstand Rl erfaßten Stromes iR1 und der Lampenspannung uL. Fig. la zeigt die Signalverläufe für einen sehr geringen Leitungskapazitätswert C7, so daß der den eigentlichen Lampenstrom iL überlagernde und über die Leitungskapazität C7 fließende kapazitive Strom iC7 vernachläßigbar gering ist. In diesem Fall tritt zwischen dem über den Widerstand Rl erfaßten Strom iR, und der Lampenspannung uL keine Phasenverschiebung auf und der über den Widerstand Rl erfaßte Strom entspricht idealerweise dem eigentlich zu messenden Lampenstrom iL. Insoweit unterscheiden sich die in Fig. la dargestellten Signal verlaufe nicht von den in Fig. 8a dargestellten Signalverläufen. Fig. lb zeigt Signal verlaufe für den Fall, daß sich zwischen den in Fig. 5 gezeigten Leitungen eine mittlere Leitungskapazität C7 ausbildet, so daß der über den
Widerstand Rl erfaßte Strom gegenüber der Lampenspannung uL phasenverschoben ist und der Lampenspannung uL voraus eilt. Erfindungsgemäß wird vorgeschlagen, den über den
Widerstand Rl fließenden Strom nur dann zu messen, wenn die Lampenspannung uL ihren Scheitelwert erreicht hat. Für einen rein sinusförmigen verlaufenden Strom iR) gilt somit folgende Formel:
Iisl = ϊ sin (α+ ß) (1).
Dabei entspricht ϊ dem Scheitelwert des über dem Widerstand Rl erfaßten Stromes. Für rein sinusförmige Größen gilt jedoch auch:
α = π/2 (2).
Da gilt:
sin(α+π/2) = cos(α) (3).
Vereinfacht sich Formel (1) zu:
I,sl = ϊ - cos ß (4).
Für die Extremwerte ß = 0°und ß= 90° (π/2) nimmt somit iR, die Werte ϊ und Null an.
Bei Kenntnis des Scheitelwertes ϊ des über den Widerstand Rl erfaßten Stromes iR, kann somit durch Erfassen der Phasendifferenz zwischen dem Strom iR1 und der Lampenspannung uL der unverfälschte Istwert I1SI zu dem Zeitpunkt berechnet werden, wenn die Lampenspannung uL ihren positiven Scheitelwert erreicht hat. Fig. lc zeigt entsprechende Verläufe für einen sehr großen Wert der Leitungskapazität C7, so daß der über den Widerstand Rl gemessene Strom iR1 deutlich erhöht und gegenüber der Lampenspannung uL deutlich phasenverschoben ist. Selbst bei einem derartigen starken Einfluß des über die parasitäre Kapazität C7 fließenden kapazitiven Stromes ic7 wird durch das erfindungsgemäße Verfahren stets der dem eigentlichen Lampenstrom iL entsprechende Istwert I,st gemessen, so daß auch bei starker Dimmung eine genaue Regelung der Lampenhelligkeit möglich ist.
Das in Figur 1 dargestellte Verfahren ermittelt den Istwert I,sl nur für rein sinusförmige Stromverläufe fehlerfrei. Dieses Verfahren ist jedoch auch für andere periodische Kurvenverläufe anwendbar, wobei jedoch stets ein gleichbleibender Fehler auftritt.
Fig. 2 zeigt die entsprechenden Strom- und Spannungsverläufe zur Erläuterung des zweiten erfindungsgemäßen Ausführungsbeispiels. Fig. 2a zeigt wiederum die Verläufe für einen vernachläßigbaren kapazitiven Strom über die Leitungskapazität C7, während Fig. 2b und 2c die Signal verlaufe für eine mittlere Leitungskapazität sowie eine sehr hohe Leitungskapazität darstellen.
Nach dem zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird vorgeschlagen, den über den Widerstand Rl erfaßten Strom iR1 während einer Halbwelle der Lampenspannung uL zu mittein. Es wird somit als Istwert IISI des Lampenstromes iL, welcher als Regelgröße für die Frequenz bzw. das Tastverhältnis des Wechselrichters dient, der arithmetische Mittelwert des Stromes iR, während einer Halbwelle der Lampenspannung uL ermittelt. Aus Fig. 2 ist ersichtlich, daß aufgrund der durch die
Leitungskapazität C7 hervorgerufenen Strom-Spannungsverschiebung der dadurch erfaßten Mittelwert, d.h. IISI, während der positiven Halbwelle der Lampenspannung u, dem Kosinus des in Fig. lb gezeigten Verschiebungswinkels ß folgt. Es gilt somit:
I1S[ - cos ß (5).
Für den Extremwert ß = 0° gilt, daß die gesamte schraffierte Fläche über der Nullinie das Maß für den Istwert I,sl des Lampenstroms iL ist, während für ß=π/2 die Flächen oberhalb und unterhalb der Nullinie gleich groß sind und somit der arithmetische Mittelwert, d.h. I1SP Null ist. Zwischen diesen beiden Extremwerten für I1S1 verbleibt immer ein positiver Flächenanteil und somit ein entsprechender Mittelwert, der als Istwert Iιsl des Lampenstroms IL ausgewertet und als Regelgröße für die Helligkeit der Gasentladungslampe verwendet wird.
Aus Fig. 2 ist ersichtlich, daß aufgrund der arithmetischen Mittelwertbildung der Anteil des durch die parasitäre Leitungskapazität C7 hervorgerufenen kapazitiven Stromes ir7 eliminiert werden kann und somit eine genaue Dimmung der Gasentladungslampe über einen weiten Dimmbereich möglich ist. Insbesondere ist es auch bei dem in Fig. 2 dargestellten zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens möglich, durch Erfassen der Phasenverschiebung zwischen dem Strom iR) und der Lampenspannung uL auf den korrekten Istwert I1S, als Regelgröße für den Wechselrichter zu schließen.
Den in Fig. 1 und 2 dargestellten Verfahren ist gemeinsam, daß stets nur der tatsächliche Wirkanteil des Lampenstroms ausgewertet wird. Bei einem komplexen Lampenstrom bedeutet dies, daß nur der Realteil des Lampenstroms für die Regelung des Betriebszustandes verwendet wird.
Fig. 3 zeigt ein vereinfachtes Blockschaltbild eines erfindungsgemäßen elektronischen Vorschaltgerätes, welches insbesondere zur Durchführung des erfindungsgemäßen Verfahrens eingesetzt wird. Neben den bereits in Fig. 5 gezeigten Schaltungselementen ist zudem eine Vorrichtung 4 zur Erfassung der Lampenspannung u, und des über den Widerstand Rl fließenden Stroms iRI vorgesehen. Eine der Lampenspannung uL proportionale Meßgröße wird zwischen den Widerständen R4 und R5 abgegriffen und der Vorrichtung 4 zugeführt. Wie bereits anhand Fig. 5 beschrieben, wird über den Shunt- Widerstand Rl eine dem Lampenstrom iL proportionale Meßgröße abgegriffen und der Vorrichtung 4 zugeführt. Die Vorrichtung 4 ermittelt aufgrund der zugeführten Signalverläufe den tatsächlichen Wirkanteil des Lampenstroms, d.h. die Vorrichtung 4 ermittelt nach den zuvor beschriebenen Ausfuhrungsbeispielen des erfindungsgemäßen Verfahrens den bezüglich des kapazitiven Anteils iC7 korrigierten Istwert I,sl des Lampenstroms IL. Dieser Istwert Ilst wird einer Vorrichtung 5 zugeführt, die den ermittelten Istwert Iιsl einem Soll-Ist- Vergleich mit einem Sollwert, d.h. einem vorgegebenen Sollwert Isoil, unterzieht. Abhängig von diesem Soll-Ist-Vergleich wird die Frequenz f bzw. das Tastverhältnis d des Wechselrichters 2 verändert, um die Helligkeit der Gasentladungslampe 3 zu regeln. Alternativ kann jedoch auch vorgesehen sein, den von der Vorrichtung 4 ermittelten Istwert Iist direkt dem Wechselrichter 2 zuzuführen.
Es sei darauf hingewiesen, daß uL und iL auch durch eine von der Vorrichtung 4 getrennte Vorrichtung erfaßt werden können. Ebenso kann anstelle von uL eine oder mehrere andere Bezugsgrößen verwendet werden. Als Bezugsgröße könnte beispielsweise auch der bzw. die Ansteuerzeitpunkte der Schalter des Wechselrichters 2 herangezogen werden, da sich bei einer vorgegebenen Schaltungsanordnung der Strom- und Spannungsverlauf vorhersagen läßt. Somit kann beispielsweise festgelegt werden, daß nach einer bestimmten Zeitspanne nach Einschalten des einen Wechselrichterschalters der Strom gemessen wird. Wird die Zeitspanne so gewählt, daß die Strommessung zum Zeitpunkt des Spannungsmaximums erfolgt, entspricht der gemessene Strom dem tatsächlichen Wirkanteil des Lampenstromes. Ebenfalls ist möglich, zwischen dem Ein- und Ausschalten eines Schalters des Wechselrichters 2 den Mittelwert des gemessenen Stromes zu bilden.
Fig. 4a und 4b zeigen Diagramme zum Vergleich des bekannten Regelungsverfahrens mit dem erfindungsgemäßen Regelungs verfahren. In Fig. 4a ist die Lampenleistung abhängig von dem Wert der parasitären Leitungskapazität dargestellt. Es ist ersichtlich, daß. wie bereits beschrieben, der mit c bezeichnete und dem bekannten Regelungsverfahren entsprechende Verlauf stark abhängig von der Leitungskapazität ist, während die mit a bzw. b bezeichneten Verläufe gemäß dem ersten bzw. zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens nahezu unabhängig von der Leitungskapazität sind. Des weiteren ist aus Fig. 4b ersichtlich, daß die Arbeitsfrequenz bei dem bekannten Regelungsverfahren deutlich durch die Leitungskapazität beeinflußt wird (vgl. Verlauf c), während mit den erfindungsgemäßen Verfahren ein von der Leitungskapazität nahezu unabhängiger Betrieb möglich ist (vgl. Verläufe a und b). Es sei darauf hingewiesen, daß die in Fig. 4a und 4b dargestellten Verläufe für konstante Widerstandswerte der Lampe dargestellt sind. Für größere Lampenwiderstandswerte wurde festgestellt, daß sich die Verläufe a und b gemäß der Erfindung nach unten verschieben, während die Verläufe c für das bekannte Regelungsverfahren im wesentlichen unverändert bleiben.
Abschließend wird darauf hingewiesen, daß die erfindungsgemäßen Regelungsverfahren zudem vorteilhaft sind, wenn eine schnelle Zünderkennung realisiert werden soll. Eine derartige schnelle Zünderkennung ist insbesondere dann vorteilhaft, wenn die Gasentladungslampe nach ihrer Zündung möglichst rasch in ihrer Helligkeit gedimmt werden soll. Insbesondere, wenn eine Lampe mit geringer Helligkeit gestartet werden soll, ist der durch die parasitäre Leitungskapazität C7 verursachte kapazitive Stromanteil iC7 problematisch, da, um unmittelbar nach Zünden der Gasentladungslampe die Ausgangsfrequenz des Wechselrichters zum Dimmen der Gasentladungslampe erhöhen zu können, nach Erfassen eines über den Meßwiderstand Rl fließenden Stroms auf die erfolgreiche Zündung der Gasentladungslampe rückgeschlossen wird. Bei dem bekannten Regelungsverfahren können dadurch Fehler auftreten, daß selbst bei nicht gezündeter Gasentladungslampe über die kapazitive Leitungskapazität C7 der kapazitive Stromanteil iC7 fließt, der fälschlicherweise als der durch die Zündung der Gasentladungslampe hervorgerufene Lampenstrom interpretiert werden konnte. Da jedoch nunmehr durch Verwendung der erfindungsgemäßen Regelungsverfahren der erfaßte Istwert nahezu unabhängig von den Einflüssen der Leitungskapazität C7 ist, kann aufgrund des erfindungsgemäß ermittelten Istwerts des Stromes an dem Widerstand Rl zuverlässig bei Überschreiten einer exakt definierbaren Schwelle auf die erfolgreiche Zündung der Gasentladungslampe geschlossen werden. Das erfindungsgemäße Verfahren und die erfindungsgemäße Steuerschaltung kann auch auf das in der eingangs erwähnten EP-A1-0 338 109 beschriebene elektronische Vorschaltgerät angewendet werden, welches einen parallel zu der Gasentladungsstrecke der Lampe angeordneten Zünd- bzw. Heizkondensator aufweist. Trotz des parallel geschalteten Heizkondensators kann erfindungsgemäß der tatsächliche Lampenstrom erfaßt werden. Dies hat zur Folge, daß bei der in der EP-A1-0 338 109 beschriebenen nicht dimmbaren Anordnung Bauteiltoleranzen und Umgebungseinflüsse (wie z.B. die Umgebungstemperatur) auf die Lampe, die an sich die Regelgenauigkeit beeinflussen würden, durch Anwendung der Erfindung eliminiert werden.
Allgemein kann die Erfindung mit ihren zuvor ausführlich erläuterten Vorteilen sowohl auf dimmbare als auch nicht dimmbare Geräte angewendet werden. Insbesondere ist die Erfindung auch auf elektronische Vorschaltgeräte anwendbar, die fremdgeführten Wechselrichtern aufweisen und somit geregelt werden müssen.

Claims

ANSPRÜCHE
1. Verfahren zum Regeln des Betriebsverhaltens mindestens einer Gasentladungslampe (3), welche insbesondere über ein elektronisches Vorschaltgerät betrieben wird, abhängig von einer Regelgröße (I,sl), dadurch gekennzeichnet, daß die Regelgröße (I1SI) auf dem Wirkanteil des Lampenstroms (iL) bzw. einer dem Wirkanteil entsprechenden Größe beruht.
2. Verfahren zum Erfassen und/oder Bewerten des Betriebszustandes mindestens einer Gasentladungslampe (3), welche insbesondere über ein elektronisches Vorschaltgerät betrieben wird, durch Messung von mindestens einer dem Lampenstrom (iL) entsprechenden Größe, dadurch gekennzeichnet, daß zum Erfassen und/oder Bewerten des Betriebszustandes der Wirkanteil des Lampenstroms (iL) bzw. eine dem Wirkanteil entsprechende Größe bestimmt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wirkanteil des Lampenstroms (iL) der Realteil des Lampenstroms (iL) ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß abhängig von dem Wirkanteil die Frequenz (f) und/oder das Tastverhältnis (d) einer mit der Gasentladungslampe (3) verbundenen Wechselspannungsquelle (2) verändert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Lampenstrom (iL) zu dem Zeitpunkt gemessen wird, wenn die Lampenspannung (u, ) ihren positiven Scheitelwert erreicht hat, und daß der daraus gewonnene Istwert des Lampenstroms (Iisl) als Regelgröße verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß während einer Halbwelle der Lampenspannung (uL) der arithmetische Mittelwert des Lampenstroms (iL) gebildet wird, und daß der Istwert des arithmetischen Mittelwerts des Lampenstroms (iL) als Regelgröße . verwendet wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Lampenstrom (iL) über einen mit der Gasentladungslampe (3) in Serie geschalteten Shunt-Widerstand (Rl) gemessen wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Helligkeit der Gasentladungslampe (3) geregelt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die dem Wirkanteil des Lampenstroms (iL) entsprechende Größe aus der Ansteuerung mindestens eines steuerbaren Schalters eines zum Betreiben der mindestens einen Gasentladungslampe (3) dienenden elektronischen Vorschaltgeräts abgeleitet wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß nach Einschalten des mindestens einen steuerbaren Schalters des elektronischen Vorschaltgeräts der Strom zum Zeitpunkt des Spannungsmaximums gemessen und als die dem Wirkanteil des Lampenstroms (iL) entsprechende Größe verwendet wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß zwischen dem Ein- und Ausschalten des mindestens einen steuerbaren Schalters der Mittelwert des Stromes gebildet und als die dem Wirkanteil des Lampenstroms (iL) entsprechende Größe verwendet wird.
12. Elektronische Steuerschaltung zum Ansteuern mindestens einer Gasentladungslampe (3), insbesondere zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, mit einer in ihrer Ausgangsfrequenz (f) und/oder ihrem Tastverhältnis veränderbaren Spannungsquelle (2), und mit einer Vorrichtung zum Erfassen der Lampenspannung (uL) und das Lampenstroms (iL), dadurch gekennzeichnet, daß eine Vorrichtung (4) zum Bestimmen des Wirkanteils des Lampenstroms (iL) vorhanden ist.
13. Elektronische Steuerschaltung nach Anspruch 12, dadurch gekennzeichnet, daß die Vorrichtung (4) zum Bestimmen des Wirkanteils des Lampenstroms (iL) eine von dem Wirkanteil abhängige Regelgröße für das Betriebsverhalten, insbesondere die Helligkeit, der Gasentladungslampe ermittelt.
14. Elektronische Steuerschaltung nach Anspruch 13, dadurch gekennzeichnet, daß die Regelgröße der Istwert (I,sl) des gemessenen Lampenstroms (iL) zu dem Zeitpunkt ist, wenn die Lampenspannung (uL) ihren positiven Scheitelwert erreicht hat.
15. Elektronische Steuerschaltung nach Anspruch 13, dadurch gekennzeichnet, daß die Regelgröße der Istwert des arithmetischen Mittelwertes des gemessenen Lampenstroms (iL) während einer Halbwelle der Lampenspannung (uL) ist.
16. Elektronische Steuerschaltung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß die veränderbare Spannungsquelle ein Wechselrichter (2) ist, und daß die Regelgröße dem Wechselrichter (2) direkt oder über eine Vorrichtung (5) zum Soll-Ist- Vergleich des Istwertes mit einem Sollwert zuführbar ist.
17. Elektronische Steuerschaltung nach Anspruch 16, dadurch gekennzeichnet, daß die Frequenz (f) und/oder das Tastverhältnis (d) des Wechselrichters (2) abhängig von der Regelgröße veränderbar ist.
18. Elektronische Steuerschaltung nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß die Vorrichtung zum Erfassen des Lampenstroms (iL) ein Shunt-Widerstand (Rl) ist.
PCT/EP1997/000184 1996-01-26 1997-01-16 Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen WO1997027726A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP97901047A EP0876742B1 (de) 1996-01-26 1997-01-16 Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen
AT97901047T ATE216829T1 (de) 1996-01-26 1997-01-16 Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen
US09/101,682 US6060843A (en) 1996-01-26 1997-01-16 Method and control circuit for regulation of the operational characteristics of gas discharge lamps
AU14430/97A AU697750C (en) 1996-01-26 1997-01-16 Method and control circuit for regulation of the operational characte ristics of gas discharge lamps
DE59707104T DE59707104D1 (de) 1996-01-26 1997-01-16 Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen
NZ326348A NZ326348A (en) 1996-01-26 1997-01-16 Method and control circuit for regulation of the operational characteristics especially brightness of gas discharge lamps where lamp current is used as a regulating variable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19602765.9 1996-01-26
DE19602765 1996-01-26
DE19613257.6 1996-04-02
DE19613257A DE19613257A1 (de) 1996-01-26 1996-04-02 Verfahren und elektronische Steuerschaltung zum Regeln des Betriebsverhaltens von Gasentladungslampen

Publications (1)

Publication Number Publication Date
WO1997027726A1 true WO1997027726A1 (de) 1997-07-31

Family

ID=26022381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000184 WO1997027726A1 (de) 1996-01-26 1997-01-16 Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen

Country Status (5)

Country Link
US (1) US6060843A (de)
EP (1) EP0876742B1 (de)
AT (1) ATE216829T1 (de)
NZ (1) NZ326348A (de)
WO (1) WO1997027726A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026926A3 (de) * 2009-09-04 2012-03-08 Tridonic Gmbh & Co Kg Cosinus (phi) - korrektur bei strom- oder leistungsgeregelten betriebsgeräten für leuchtmittel

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708783C1 (de) * 1997-03-04 1998-10-08 Tridonic Bauelemente Verfahren und Vorrichtung zum Regeln des Betriebsverhaltens von Gasentladungslampen
DE69916668T2 (de) 1998-05-08 2004-08-19 Denso Corp., Kariya Zündtransformator für Gasentadungslampe
DE19837728A1 (de) * 1998-08-20 2000-02-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb mindestens einer Entladungslampe
US6359394B1 (en) * 1999-12-22 2002-03-19 Phillips Electronics North America Corporation Scheme for sampling lamp conditions during ignition and steady state modes of lamp operation
KR100697726B1 (ko) * 2000-02-10 2007-03-21 페어차일드코리아반도체 주식회사 전자식 안정기를 구비한 램프 시스템
JP4792627B2 (ja) * 2000-09-26 2011-10-12 岩崎電気株式会社 Hidランプの点灯回路
TW478292B (en) * 2001-03-07 2002-03-01 Ambit Microsystems Corp Multi-lamp driving system
JP2003036987A (ja) * 2001-07-24 2003-02-07 Harison Toshiba Lighting Corp 放電ランプ点灯装置、機器および画像形成装置
TW560664U (en) * 2002-11-20 2003-11-01 Gigno Technology Co Ltd Digital controlled multi-light driving apparatus
US7928956B2 (en) * 2002-11-20 2011-04-19 Gigno Technology Co., Ltd. Digital controlled multi-light driving apparatus and driving-control method for driving and controlling lights
US7872431B2 (en) * 2002-11-20 2011-01-18 Gigno Technology Co., Ltd. Digital controlled multi-light driving apparatus
DE102005018764A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Einstellbare digitale Leuchtmittelleistungsregelung
US7274178B2 (en) * 2005-11-04 2007-09-25 Au Optronics Corporation Multi-lamp driver with active current regulator
JP2008159382A (ja) * 2006-12-22 2008-07-10 Koito Mfg Co Ltd 放電灯点灯回路
US8049432B2 (en) * 2008-09-05 2011-11-01 Lutron Electronics Co., Inc. Measurement circuit for an electronic ballast
DE102009055051A1 (de) 2008-12-22 2010-08-26 Tridonic Atco Gmbh & Co. Kg Korrektur von Blindströmen bei Leuchtmitteln
DE102008064399A1 (de) 2008-12-22 2010-06-24 Tridonicatco Gmbh & Co. Kg Verfahren und Betriebsgerät zum Betreiben eines Leuchtmittels mit geregeltem Strom
DE102012006860A1 (de) * 2012-04-03 2013-10-10 Tridonic Gmbh & Co. Kg Verfahren und Vorrichtung zum Regeln einer Beleuchtungsstärke
DE102014005669B4 (de) 2014-04-19 2017-10-26 Iie Gmbh & Co. Kg Vorrichtung und Verfahren zum Betreiben eines Lichterzeugers
CN204929330U (zh) * 2015-07-27 2015-12-30 皇家飞利浦有限公司 应急逆变器以及应急照明***
DE102017221657A1 (de) 2017-12-01 2019-06-06 Continental Automotive Gmbh Verfahren zum Durchführen eines Selbsttests einer elektrischen Wandlerschaltung sowie Wandlerschaltung und Fahrzeugleuchte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826551A1 (de) * 1988-08-04 1990-02-08 Beluk Gmbh Verfahren zur leistungsfaktor- und/oder blindstrommessung
EP0461441A1 (de) * 1990-06-06 1991-12-18 Zumtobel Aktiengesellschaft Verfahren und Schaltungsanordnung zur Regelung der Helligkeit (Dimmen) von Gasentladungslampen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187163B2 (ja) * 1992-04-23 2001-07-11 三菱電機株式会社 放電灯点灯装置
JP2733817B2 (ja) * 1993-08-30 1998-03-30 昌和 牛嶋 放電管用インバーター回路
US5583402A (en) * 1994-01-31 1996-12-10 Magnetek, Inc. Symmetry control circuit and method
EP0677982B1 (de) * 1994-04-15 2000-02-09 Knobel Ag Lichttechnische Komponenten Verfahren zum Betrieb eines Vorschaltgeräts für Entladungslampen
US5600211A (en) * 1994-09-16 1997-02-04 Tridonic Bauelemente Gmbh Electronic ballast for gas discharge lamps
JP2658900B2 (ja) * 1994-09-30 1997-09-30 日本電気株式会社 パルス電源装置
US5717295A (en) * 1996-05-10 1998-02-10 General Electric Company Lamp power supply circuit with feedback circuit for dynamically adjusting lamp current

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826551A1 (de) * 1988-08-04 1990-02-08 Beluk Gmbh Verfahren zur leistungsfaktor- und/oder blindstrommessung
EP0461441A1 (de) * 1990-06-06 1991-12-18 Zumtobel Aktiengesellschaft Verfahren und Schaltungsanordnung zur Regelung der Helligkeit (Dimmen) von Gasentladungslampen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026926A3 (de) * 2009-09-04 2012-03-08 Tridonic Gmbh & Co Kg Cosinus (phi) - korrektur bei strom- oder leistungsgeregelten betriebsgeräten für leuchtmittel

Also Published As

Publication number Publication date
ATE216829T1 (de) 2002-05-15
NZ326348A (en) 1999-03-29
EP0876742A1 (de) 1998-11-11
US6060843A (en) 2000-05-09
AU697750B2 (en) 1998-10-15
EP0876742B1 (de) 2002-04-24
AU1443097A (en) 1997-08-20

Similar Documents

Publication Publication Date Title
EP0876742B1 (de) Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen
DE3903520C2 (de)
EP1519638B1 (de) Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe
EP0422255B1 (de) Elektronisches Vorschaltgerät
EP0965249B1 (de) Vorrichtung zum erfassen des in einer gasentladungslampe auftretenden gleichrichteffekts
DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
DE3407067A1 (de) Steuerschaltung fuer gasentladungslampen
DE69327426T2 (de) Überwachungsgerät für eine Leuchtstoffröhre
DE19708783C1 (de) Verfahren und Vorrichtung zum Regeln des Betriebsverhaltens von Gasentladungslampen
DE60111625T2 (de) Leistungswandler mit einer steuerschaltung
EP1330946A1 (de) Schaltungsanordnung zum betreiben von mehreren gasentladungslampen
EP2377372B1 (de) Verfahren, betriebsgerät und beleuchtungssystem
DE10051139A1 (de) Elektronisches Vorschaltgerät mit Vollbrückenschaltung
DE69616483T2 (de) Schaltungsanordnung
WO2008128575A1 (de) Schaltungsanordnung zum betreiben mindestens einer entladungslampe und verfahren zum erzeugen einer hilfsspannung
DE19916878B4 (de) Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen
EP1492393B1 (de) Verfahren zum Betrieb mindestens einer Niederdruckentladungslampe und Betriebsgerät für mindestens eine Niederdruckentladungslampe
DE19613257A1 (de) Verfahren und elektronische Steuerschaltung zum Regeln des Betriebsverhaltens von Gasentladungslampen
DE19916080C2 (de) Vorschaltgerät mit Fehlererkennung
EP1377135B1 (de) Entladungslampenbetriebsschaltung mit Schaltung zur Detektion der Nähe zu einem kapazitiven Betrieb
EP1189488B1 (de) Elektronisches selbstabgleichendes Vorschaltgerät und Verfahren zum Abgleichen eines Vorschaltgeräts
EP1732365A2 (de) Schaltungsanordnung und Verfahren zum Erfassen eines Crestfaktors eines Lampenstroms oder einer Lampenbrennspannung einer elektrischen Lampe
EP1793655B1 (de) Elektronisches Vorschaltgerät mit Betriebszustandsüberwachung und entsprechendes Verfahren
EP2474206B1 (de) Cosinus (phi) - korrektur bei strom- oder leistungsgeregelten betriebsgeräten für leuchtmittel
EP0922376A1 (de) Elektronisches vorschaltgerät für gasentladungslampen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR NZ SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 326348

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1997901047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09101682

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997901047

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97526491

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1997901047

Country of ref document: EP