WO1996030259A1 - Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe - Google Patents

Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe Download PDF

Info

Publication number
WO1996030259A1
WO1996030259A1 PCT/FR1996/000454 FR9600454W WO9630259A1 WO 1996030259 A1 WO1996030259 A1 WO 1996030259A1 FR 9600454 W FR9600454 W FR 9600454W WO 9630259 A1 WO9630259 A1 WO 9630259A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
drive mechanism
rays
machine
temperature
Prior art date
Application number
PCT/FR1996/000454
Other languages
English (en)
Inventor
Thibery Cussac
Original Assignee
Centre National D'etudes Spatiales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National D'etudes Spatiales filed Critical Centre National D'etudes Spatiales
Priority to US08/930,253 priority Critical patent/US6062511A/en
Priority to EP96909205A priority patent/EP0817744B1/fr
Priority to DE69604165T priority patent/DE69604165T2/de
Publication of WO1996030259A1 publication Critical patent/WO1996030259A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/222Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/222Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
    • B64G1/2229Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state characterised by the deployment actuating mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/292Space - satellite

Definitions

  • the present invention relates to the space sector and more particularly to a device for orienting a solar panel fitted to a spacecraft, such as a satellite.
  • the electric power delivered by a solar panel depends in particular on its surface and the angle of incidence of the sun's rays on the panel.
  • the surface efficiency of a solar panel is defined as the electric power produced per unit area of the panel.
  • thermosensitive device capable of causing a torque as a function of exposure to the sun's rays and designed to avoid oscillation phenomena
  • thermosensitive device actuated by the sun's rays and capable of causing a torque to control the orientation of solar panels (US-A-3,635,015).
  • the present invention relates to a device for orienting a solar panel fitted to a spacecraft such as a satellite, the panel being connected in an articulated manner to the body of the spacecraft, the device comprising a heat-sensitive drive mechanism.
  • this device being characterized in that said drive mechanism is designed to take on its own under the effect of its temperature one or the other of two states which differ from each other by a rotation of a determined angle, the first state being taken for the temperatures lower than a first value and the second state being taken for temperatures above a second value, and said drive mechanism being connected to the panel so that said rotation is transmitted to the panel, and said mechanism the drive being designed so that a predetermined change in the direction of incidence of the sun's rays on the object is accompanied by a change in the temperature of the drive mechanism causing this temperature to be lowered at said first value at a temperature above said second value or vice versa.
  • said drive mechanism is arranged on the machine so that a predetermined change in the direction of incidence of the sun's rays on the machine is accompanied by a variation in the temperature of the drive mechanism and causes a modification of the state of the latter and of the orientation of the panel, tending to decrease the angle of incidence of the sun's rays on the panel.
  • the drive mechanism is made of a double-effect shape memory alloy.
  • the panel is pivotally mounted on the body of the machine around an axis of rotation, and said drive mechanism is a torsion bar elongated along this axis of rotation, this bar being connected at one axial end to the body of the machine and at the other axial end to the panel, the change of state of the bar being accompanied by a change of shape causing a relative rotation of its ends and the tilting of the sign.
  • the device comprises a cover arranged around the drive mechanism so as to mask the incident solar rays for a given set of directions of incidence of the solar rays on the machine.
  • the cover is capable of transmitting, by radiative coupling, to the drive mechanism a large part of the solar energy which it receives, and this for a given set of directions of incidence of the solar rays on the machine.
  • FIG. 1 shows schematically different orientations of the satellite vis-à-vis the incident solar rays, during a revolution.
  • FIG. 2 shows, for comparison, the electric power delivered by a couple of fixed solar panels on the body of a satellite and that delivered by a couple of solar panels mounted in displacement on the body of the satellite and driven in displacement by mechanisms drive according to the invention, the power (in Watts) being indicated on the ordinate and the time (in minutes) on the abscissa.
  • FIG. 3 and 4 are two perspective views partially showing a solar panel and the body of the satellite on which it is articulated, in two positions corresponding respectively to two states of the drive mechanism
  • FIG. 5 is a side view of the panel and of the body of the satellite according to the arrow N in FIG. 3.
  • FIG. 1 a satellite 1 orbiting the earth T at six different times during a revolution. In the example described, this is a satellite placed on a slightly inclined geocentric orbit.
  • the arrow L indicates the direction of the sun's rays.
  • the satellite 1 comprises in the example described a body 3 and two solar panels 4, 5 respectively connected in an articulated manner to two opposite faces of the body 3.
  • the panels 4 and 5 are pivotally mounted around parallel axes of rotation (only the axis of rotation R of the panel 4 is shown in the figures).
  • Each panel 4.5 can pivot around its axis of rotation between a position where it is deployed and a position where it is folded, the passage from one position to the other being effected by a rotation of 90 °. as shown in Figures 3 and 4.
  • Each panel 4, 5 has on a face 4a, 5a, called active, solar cells capable of generating electricity when lit by the sun. These cells are arranged on the face of the panel which faces outward when the panel is folded against the body of the satellite.
  • the tilting of a panel 4, 5 from one position to the other is controlled by a drive mechanism 2. comprising in the example described a torsion bar 6 made of an elongated double-effect memory alloy, along the pivot axis of the panel.
  • the torsion bar 6 serves as both a motor and a pivot. It is produced in a manner known per se from a titanium-nickel alloy or from any other double-effect shape memory alloy known to those skilled in the art, for example a copper-based alloy.
  • the torsion bar 6 takes two states. More specifically, when the temperature is lower than a first transition temperature Ti (which can typically be of the order of 0 ° C.). the torsion bar 6.
  • the torsion bar 6 has a shape corresponding to a first state, and when the temperature of the torsion bar 6 is higher than a second temperature of transition T 2 (which can typically be of the order of 60 ° C), the torsion bar 6 has a shape corresponding to a second state, which differs from the first shape by a relative rotation of 90 ° from the ends of the bar of torsion 6 around its longitudinal axis.
  • a second temperature of transition T 2 which can typically be of the order of 60 ° C
  • the torsion bar 6 has a shape corresponding to a second state, which differs from the first shape by a relative rotation of 90 ° from the ends of the bar of torsion 6 around its longitudinal axis.
  • the torsion bar 6 rises, from a starting temperature lower than the first transition temperature Ti.
  • the torsion bar 6 keeps its first state until the temperature exceeds the second transition temperature T 2 .
  • Q ua r ⁇ d the temperature goes down from a starting temperature higher than the second
  • the torsion bar 6 retains its second state as long as the temperature remains above the first transition temperature Ti.
  • the change in temperature of the torsion bar 6 is caused in the example described by the change in the direction L of the solar rays relative to a reference frame linked to the satellite.
  • this direction L is identified by the angle of incidence ⁇ .
  • the angle ⁇ is between ⁇ m _ n and ⁇ ma ⁇ in Figure 5, that is to say when the solar rays arrive in the dihedral D, edge the axis of rotation of the panel and delimited by the plane P i of the active face of the panel in the unfolded position and the plane P '. bisector of the plane P i and of the plane P 2 of the active face of the panel when it is folded, the torsion bar 6 is lit and its temperature is higher than the second transition temperature T 2 .
  • the torsion bar 6 is arranged so as to be in a state corresponding to the deployment of the panel when its temperature is higher than the second transition temperature T 2 .
  • a cover 8 is arranged around the torsion bar 6 to screen the incident solar rays when the angle ⁇ is greater than ⁇ max . that is to say when the direction L of the solar rays crosses the plane P '(in the direction of folding of the panel) and no longer arrives on the torsion bar 6 by the dihedron D. Then, the torsion bar 6 is no longer lit and its temperature drops below the first transition temperature T i, which causes a change of state of the torsion bar 6 and the folding of the panel (according to arrow B in FIG. 5 ). It will be noted that when the panel is folded back, after the direction L of the solar rays has crossed the plane P '. the angle of incidence of the sun's rays on the panel is less than if the panel had remained deployed, so that the surface yield which is obtained after pivoting of the panel is better than if no rotation of the panel had occurred.
  • the cover 8 is in the example described in the form of a cylindrical wall of generator parallel to the pivot axis R of the panel.
  • the length of the cover 8, measured along this axis, is at least equal to the length of the torsion bar 6.
  • the cover 8 is fixed by a longitudinal edge 9 on the face of the body 3 against which the panel folds down.
  • the panel 4 is cut into a slot on its edge 10 articulated on the body 3 for the passage of the cover 8.
  • This cover 8 is concave towards the dihedral D. Its thermal properties, like those of the torsion bar 6, must be adapted by any means known to those skilled in the art so as to obtain the temperature variations necessary for the change of state of the shape memory alloy as a function of the position of the sun.
  • the exchanges by radiation and by conduction are limited with the external environment (by means for example of an insulation of the external part of the cover) and with the satellite (by the use of insulating materials in the rooms fixing the bar and the cover on the satellite) and we seek to obtain a maximum radiative coupling of the cover 8 to the torsion bar 6 using paints or suitable surface treatments.
  • FIG. 2 shows the evolution of the electric power delivered by a solar generator according to the prior art (dotted curve), of the type comprising two panels fixed to the body of a satellite (assumed to be parallelipipedic) and by a solar generator according to the invention (solid line curve), comprising two panels articulated on the body of the satellite and able to tilt 90 ° when changing d state of a double-effect shape memory alloy, as described above.
  • the panels have a surface of 1 m 2 each and the orbit is perigee 400 km, apogee 1000 km and inclination 7 ° on the equatorial plane.
  • the power gain provided by the invention makes it possible to reduce the surface area of the panels compared to known generators with fixed panels.
  • the surface of the solar panels can be reduced by a factor of two for a given electrical power to be supplied, compared a generator conforming to the state of the art, with fixed panels.
  • the power delivered by panels oriented in accordance with the invention is zero only during eclipse passages, unlike a generator with fixed panels, for which the power delivered is canceled out at half the interval of time separating two consecutive eclipses.
  • the invention advantageously makes it possible to reduce the number of discharge cycles of the battery supplied by the solar panels, therefore to increase its lifespan and that of the satellite.
  • the orientation device according to the invention which has just been described is entirely autonomous, particularly robust and reliable.
  • the invention is not limited to this exemplary embodiment. It is possible in particular to equip, with an orientation device according to the invention, a spacecraft other than a satellite, whether the orbit is a terrestrial orbit or an orbit around another star or around the sun.
  • the angular tilting of the panels can be different from 90 e . and one can equip the vehicle with fixed panels and movable panels according to the invention.
  • the drive mechanism comprises a torsion bar made of a double-effect shape memory alloy.
  • the torsion bar can be replaced by tension springs or bending blades made of a double-effect shape memory alloy, or alternatively use, in place of a double-effect shape memory material, an assembly of several elements made of materials having different coefficients of thermal expansion , this assembly being produced so as to transform a variation in temperature of the assembly into a displacement of its constituent elements capable of causing the tilting of a panel.
  • the rise in temperature of the drive mechanism is caused by its heating under the direct action of the incident solar rays.
  • the incident solar rays As a variant, or additionally.
  • heat can be supplied by means of a thermal conductor connecting the torsion bar to an element placed at a distance therefrom on the body of the satellite, the temperature of this element depending on the orientation of the satellite with respect to from the sun.
  • the heating of the torsion bar can be done by means of a heating resistor thermally coupled to the bar and supplied with electrical energy by solar cells arranged and masked in accordance with the invention on the body of the satellite . It is also possible to move a panel by means of several elementary drive mechanisms which can each take two states depending on their temperature, these elementary drive mechanisms being arranged in cascade so as to combine their effects, this by view of having several degrees of tilting of the panel making it possible to further improve the surface yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un dispositif (2) pour l'orientation d'un panneau solaire (4) équipant un engin spatial, tel qu'un satellite (1), relié de façon articulée au corps (3) de l'engin. Ce dispositif (2) comporte un mécanisme d'entraînement (6) propre à entraîner en déplacement le panneau relativement au corps de l'engin de façon autonome en fonction de la direction d'incidence des rayons solaires. Ce mécanisme d'entraînement (6) est propre à prendre deux états en fonction de sa température et il est agencé sur l'engin de manière à ce qu'un changement de la direction d'incidence des rayons solaires sur l'engin s'accompagne d'une variation de la température du mécanisme d'entraînement, provoque un changement d'état de ce dernier et une modification de l'orientation du panneau tendant à diminuer l'angle d'incidence des rayons solaires sur le panneau.

Description

DISPOSITIF POUR L'ORIENTATION D'UN PANNEAU SOLAIRE D'ENGIN SPATIAL ET ENGIN AINSI EQUIPE
La présente invention concerne le domaine spatial et plus particulièrement un dispositif pour l'orientation d'un panneau solaire équipant un engin spatial, tel qu'un satellite.
La puissance électrique délivrée par un panneau solaire dépend notamment de sa surface et de l'angle d'incidence des rayons solaires sur le panneau. On définit le rendement surfacique d'un panneau solaire comme étant la puissance électrique produite par unité de surface du panneau. Lorsqu'un panneau solaire est fixé sur le corps d'un satellite sans possibilité de modifier l'orientation relative du panneau par rapport au corps du satellite, le rendement surfacique dépend directement de l'orientation du satellite vis-à-vis du soleil. Compte tenu du fait que l'orientation du satellite change quand ce dernier parcourt son orbite, le rendement surfacique moyenne sur la durée d'une révolution est finalement assez faible.
On a proposé, pour augmenter le rendement surfacique moyen, de monter le panneau solaire de façon articulée sur le corps du satellite et d'orienter le panneau, au mieux, par rapport au flux solaire incident, au moyen d'un ou de plusieurs moteurs électriques et de leurs électroniques de commande pilotées par une centrale de traitement à bord du satellite (qui gère l'ensemble des équipements du satellite). Le bon fonctionnement du dispositif d'orientation dépend ainsi de celui des électroniques de commande et de la centrale de traitement à bord du satellite ; cela présente un inconvénient daris la mesure où une défaillance de l'un de ces éléments peut causer une baisse de la production d'énergie électrique et l'arrêt à terme de tous les équipements électriques du satellite. Un autre inconvénient réside dans la complexité du dispositif d'orientation et le risque de pannes associé.
On a également proposé d'équiper un véhicule spatial d'un dispositif thermosensible apte à provoquer un couple en fonction de l'exposition aux rayons solaires et conçu afin d'éviter des phénomènes d'oscillation (US-A-3 31 1 322).
On a aussi proposé un dispositif thermosensible actionné par les rayons solaires et apte à provoquer un couple pour commander l'orientation de panneaux solaires (US-A-3 635 015). La présente invention a pour objet un dispositif pour l'orientation d'un panneau solaire équipant un engin spatial tel qu'un satellite, le panneau étant relié de façon articulée au corps de l'engin, le dispositif comportant un mécanisme d'entraînement thermosensible propre à provoquer un déplacement du panneau relativement au corps de l'engin en fonction de la direction d'incidence des rayons solaires sur l'engin, ce dispositif étant caractérisé en ce que ledit mécanisme d'entraînement est conçu pour prendre de lui-même sous l'effet de sa température l'un ou l'autre de deux états qui diffèrent l'un de l'autre par une rotation d'un angle déterminé, le premier état étant pris pour les températures inférieures à une première valeur et le deuxième état étant pris pour les températures supérieures à une deuxième valeur, et ledit mécanisme d'entraînement étant relié au panneau en sorte que ladite rotation soit transmise au panneau, et ledit mécanisme d'entraînement étant conçu de manière à ce qu'un changement prédéterminé de la direction d'incidence des rayons solaires sur l'engin s'accompagne d'une modification de la température du mécanisme d'entraînement faisant passer cette température d'une valeur inférieure à ladite première valeur à une température supérieure à ladite deuxième valeur ou vice-versa.
Dans une réalisation préférée de l'invention, ledit mécanisme d'entraînement est disposé sur l'engin de manière à ce qu'un changement prédéterminé de la direction d'incidence des rayons solaires sur l'engin s'accompagne d'une variation de la température du mécanisme d'entraînement et provoque une modification de l'état de ce dernier et de l'orientation du panneau, tendant à diminuer l'angle d'incidence des rayons solaires sur le panneau.
Dans une réalisation préférée de l'invention, le mécanisme d'entraînement est constitué en un alliage à mémoire de forme à double effet. Dans une réalisation préférée de l'invention, le panneau est monté à pivotement sur le corps de l'engin autour d'un axe de rotation, et ledit mécanisme d'entraînement est une barre de torsion allongée suivant cet axe de rotation, cette barre étant reliée à une extrémité axiale au corps de l'engin et à l'autre extrémité axiale au panneau, le changement d'état de la barre s'accompagnant d'un changement de forme entraînant une rotation relative de ses extrémités et le basculement du panneau.
Dans une réalisation préférée de l'invention, le dispositif comporte un cache disposé autour du mécanisme d'entraînement de manière à masquer les rayons solaires incidents pour un ensemble donné de directions d'incidence des rayons solaires sur l'engin.
Dans une réalisation préférée de l'invention, le cache est propre à transmettre par couplage radiatif, vers le mécanisme d'entraînement une part importante de l'énergie solaire qu'il reçoit, et ceci pour un ensemble donné de directions d'incidence des rayons solaires sur l'engin.
L'invention a ainsi pour objet un engin spatial équipé d'un dispositif d'orientation tel que précité. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, d'un exemple de réalisation non limitatif de l'invention, et à l'examen du dessin annexé sur lequel : la figure 1 montre de façon schématique différentes orientations du satellite vis-à-vis des rayons solaires incidents, lors d'une révolution. la figure 2 montre, pour comparaison, la puissance électrique délivrée par un couple de panneaux solaires fixes sur le corps d'un satellite et celle délivrée par un couple de panneaux solaires montés à déplacement sur le corps du satellite et entraînés en déplacement par des mécanismes d'entraînement conformément à l'invention, la puissance (en Watts) étant indiquée en ordonnées et le temps (en minutes) en abscisses. les figures 3 et 4 sont deux vues en perspective montrant partiellement un panneau solaire et le corps du satellite sur lequel il est articulé, dans deux positions correspondant respectivement à deux états du mécanisme d'entraînement, et la figure 5 est une vue de profil du panneau et du corps du satellite selon la flèche N de la figure 3. On a représenté sur la figure 1 un satellite 1 en orbite autour de la terre T à six instants différents au cours d'une révolution. Il s'agit dans l'exemple décrit d'un satellite placé sur une orbite géocentrique faiblement inclinée. La flèche L indique la direction des rayons solaires. Le satellite 1 comporte dans l'exemple décrit un corps 3 et deux panneaux solaires 4, 5 respectivement reliés de façon articulée à deux faces opposées du corps 3. Les panneaux 4 et 5 sont montés à pivotement autour d'axes de rotation parallèles (seul l'axe de rotation R du panneau 4 est représenté sur les figures). Chaque panneau 4. 5 peut pivoter autour de son axe de rotation entre une position où il est déployé et une position où il est replié, le passage d'une position à l'autre s'effectuant par une rotation de 90°. comme représenté sur les figures 3 et 4. Chaque panneau 4, 5 présente sur une face 4a, 5a, dite active, des cellules solaires propres à générer de l'électricité lorsqu'éclairées par le soleil. Ces cellules sont disposées sur la face du panneau qui est tournée vers l'extérieur lorsque le panneau est replié contre le corps du satellite.
Le basculement d'un panneau 4, 5 d'une position vers l'autre est commandé par un mécanisme d'entraînement 2. comprenant dans l'exemple décrit une barre de torsion 6 en un alliage à mémoire de forme à double effet, allongée suivant l'axe de pivotement du panneau. La barre de torsion 6 sert à la fois de moteur et de pivot. Elle est réalisée de façon connue en soi à partir d'un alliage titane - nickel ou à partir de tout autre alliage à mémoire de forme à double effet, connu de l'homme du métier, par exemple un alliage à base de cuivre. Selon sa température, la barre de torsion 6 prend deux états. Plus précisément, lorsque la température est inférieure à une première température de transition Ti (qui peut être typiquement de l'ordre de 0°C). la barre de torsion 6 . présente une forme correspondant à un premier état, et lorsque la température de la barre de torsion 6 est supérieure à une deuxième température de transition T2 (qui peut être typiquement de l'ordre de 60°C), la barre de torsion 6 présente une forme correspondant à un deuxième état, qui diffère de la première forme par une rotation relative de 90° des extrémités de la barre de torsion 6 autour de son axe longitudinal. Lorsque la température de la barre de torsion 6 s'élève, à partir d'une température de départ inférieure à la première température de transition Ti. la barre de torsion 6 garde son premier état jusqu'à ce que la température dépasse la deuxième température de transition T2. Quarιd la température redescend à partir d'une température de départ supérieure à la deuxième température de transition T2. la barre de torsion 6 conserve son deuxième état tant que la température reste supérieure à la première température de transition Ti . En reliant la barre de torsion 6 à une extrémité axiale à un support fixe 7 solidaire du corps 3 du satellite et à l'autre extrémité axiale au panneau associé, le changement d'état de la barre de torsion 6 entraîne en basculement le panneau.
Le changement de température de la barre de torsion 6 est provoqué dans l'exemple décrit par le changement de la direction L des rayons solaires relativement à un repère lié au satellite. Sur la figure 5, cette direction L est repérée par l'angle d'incidence α. Lorsque l'angle α est compris entre αm_n et αmaχ sur la figure 5, c'est- à-dire lorsque les rayons solaires arrivent dans le dièdre D, d'arête l'axe de rotation du panneau et délimité par le plan P i de la face active du panneau en position déplié et le plan P'. bissecteur du plan P i et du plan P2 de la face active du panneau lorsqu'il est replié, la barre de torsion 6 est éclairée et sa température est supérieure à la deuxième température de transition T2. On remarquera que lorsque les rayons solaires arrivent dans le dièdre D, le rendement surfacique du panneau est plus élevé lorsque ce dernier est déployé que lorsqu'il est replié. La barre de torsion 6 est disposée de manière à être dans un état correspondant au déploiement du panneau lorsque sa température est supérieure à la deuxième température de transition T2. Dans l'exemple décrit. αmιn = - 90° et αmaχ = 45°.
Un cache 8 est agencé autour de la barre de torsion 6 pour faire écran aux rayons solaires incidents lorsque l'angle α est supérieur à αmax. c'est-à-dire lorsque la direction L des rayons solaires franchit le plan P' (dans le sens de repliement du panneau) et n'arrive plus sur la barre de torsion 6 par le dièdre D. Alors, la barre de torsion 6 n'est plus éclairée et sa température chute au- dessous de la première température de transition T i , ce qui provoque un changement d'état de la barre de torsion 6 et le repliement du panneau (selon la flèche B de la figure 5). On notera que lorsque le panneau est replié, après que la direction L des rayons solaires ait franchi le plan P'. l'angle d'incidence des rayons solaires sur le panneau est moindre que si le panneau était resté déployé, de sorte que le rendement surfacique que l'on obtient après pivotemen t du panneau est meilleur que si aucune rotation du panneau n était intervenue.
Le cache 8 se présente dans l'exemple décrit sous la forme d'une paroi cylindrique de génératrice parallèle à l'axe de pivotement R du panneau. La longueur du cache 8, mesurée selon cet axe, est au moins égale à la longueur de la barre de torsion 6. Le cache 8 est fixé par un bord longitudinal 9 sur la face du corps 3 contre laquelle se rabat le panneau. Le panneau 4 est découpé en créneau sur son bord 10 articulé sur le corps 3 pour le passage du cache 8. Ce cache 8 est concave vers le dièdre D. Ses propriétés thermiques, tout comme celles de la barre de torsion 6, doivent être adaptées par tous moyens connus de l'homme du métier de façon à obtenir les variations de température nécessaires au changement d'état de l'alliage à mémoire de forme en fonction de la position du soleil. Dans l'exemple décrit, on limite les échanges par rayonnement et par conduction avec le milieu extérieur (au moyen par exemple d'une isolation de la partie externe du cache) et avec le satellite (par l'utilisation de matériaux isolants dans les pièces de fixation de la barre et du cache sur le satellite) et l'on cherche à obtenir un couplage radiatif maximum du cache 8 vers la barre de torsion 6 à l'aide de peintures ou de traitements de surface adéquats.
A titre indicatif, on a représenté sur la figure 2 l'évolution de la puissance électrique délivrée par un générateur solaire conforme à l'art antérieur (courbe en pointillés), du type comprenant deux panneaux fixés sur le corps d'un satellite (supposé parallélipipédique) et par un générateur solaire conforme à l'invention (courbe en trait plein), comprenant deux panneaux articulés sur le corps du satellite et propres à basculer de 90° lors du changement d'état d'un alliage à mémoire de forme à double effet, conformément à ce qui a été décrit précédemment. Les panneaux présentent une surface de 1 m2 chacun et l'orbite est de périgée 400 km, d'apogée 1 000 km et d'inclinaison 7° sur le plan équatorial. Le gain de puissance apporté par l'invention permet de réduire la surface des panneaux par rapport aux générateurs connus à panneaux fixes. L'homme du métier notera, à l'examen comparé des courbes représentées sur la figure 2 que, grâce à l'invention, on peut diminuer d'un facteur deux la surface des panneaux solaires pour une puissance électrique à fournir donnée, par rapport à un générateur conforme à l'état de la technique, à panneaux fixes. La puissance délivrée par des panneaux orientés conformément à l'invention n'est nulle que lors des passages en éclipse, à la différence d'un générateur à panneaux fixes, pour lequel la puissance délivrée s'annule à la moitié de l'intervalle de temps séparant deux éclipses consécutives. L'invention permet avantageusement de réduire le nombre de cycles de décharge de la batterie alimentée par les panneaux solaires, donc d'augmenter sa durée de vie et celle du satellite.
Le dispositif d'orientation selon l'invention qui vient d'être décrit est entièrement autonome, particulièrement robuste et fiable.
Bien entendu, l'invention n'est pas limitée à cet exemple de réalisation. On peut notamment équiper, avec un dispositif d'orientation conforme à l'invention, un engin spatial autre qu'un satellite, que l'orbite soit une orbite terrestre ou une orbite autour d'un autre astre ou autour du soleil. Le basculement angulaire des panneaux peut être différent de 90e. et l'on peut équiper l'engin de panneaux fixes et de panneaux mobiles suivant l'invention. Dans l'exemple décrit, le mécanisme d'entraînement comporte une barre de torsion en alliage à mémoire de forme à double effet. On peut, sans sortir du cadre de l'invention, remplacer la barre de torsion par des ressorts de traction ou des lames de flexion en alliage à mémoire de forme à double effet, ou encore utiliser à la place d'un matériau à mémoire de forme à double effet un assemblage de plusieurs éléments constitués de matériaux présentant des coefficients de dilatation thermique différents, cet assemblage étant réalisé de manière à transformer une variation de température de l'assemblage en un déplacement de ses éléments constitutifs capable de provoquer le basculement d'un panneau. Dans l'exemple décrit, l'élévation de la température du mécanisme d'entraînement est provoquée par son réchauffement sous l'action directe des rayons solaires incidents. En variante, ou additionnellement. la chaleur peut être apportée au moyen d'un conducteur thermique reliant la barre de torsion à un élément placé à distance de celle-ci sur le corps du satellite, la température de cet élément dépendant de l'orientation du satellite vis- à-vis du soleil. Dans une autre variante encore, le réchauffement de la barre de torsion peut se faire au moyen d'une résistance chauffante couplée thermiquement à la barre et alimentée en énergie électrique par des cellules solaires disposées et masquées conformément à l'invention sur le corps du satellite. On peut également effectuer le déplacement d'un panneau au moyen de plusieurs mécanismes d'entraînement élémentaires susceptibles de prendre chacun deux états en fonction de leur température, ces mécanismes d'entraînement élémentaires étant agencés en cascade de manière à cumuler leurs effets, ceci en vue de disposer de plusieurs degrés de basculement du panneau permettant d'améliorer encore davantage le rendement surfacique.

Claims

REVENDICATIONS
1. Dispositif (2) pour l'orientation d'un panneau solaire (4 ; 5) équipant un engin spatial tel qu'un satellite ( 1 ), le panneau étant relié de façon articulée au corps (3) de l'engin, le dispositif (2) comportant un mécanisme d'entraînement (6) thermosensible propre à provoquer un déplacement du panneau relativement au corps de l'engin en fonction de la direction d'incidence des rayons solaires sur l'engin, caractérisé en ce que ledit mécanisme d'entraînement est conçu pour prendre de lui-même sous l'effet de sa température l'un ou l'autre de deux états qui diffèrent l'un de l'autre par une rotation d'u n angle déterminé , le premier état étant pris pour les températures inférieures à une première valeur (T j ) et le deuxième état étant pris pour les températures supérieures à une deuxième valeur (T2 ). et ledit mécanisme d'entraînement étant relié au panneau en sorte que ladite rotation soit transmise au panneau , et ledit mécanisme d'entraînement étant conçu de manière à ce qu'un changement prédéterminé de la direction d'incidence des rayons solaires sur l'engin s'accompagne d'u ne modification de la température du mécanisme d'entraînement faisant passer cette température d'une valeur inférieure à ladite première valeur à une température supérieure à ladite deuxième valeur ou vice-versa. 2_ Dispositif selon la revendication 1 , caractérisé en ce que ledit mécanisme d'entraînement est propre à prendre deux états en fonction de sa température et en ce qu'il est disposé sur l'engin de manière à ce qu'un changement prédéterminé de la direction d'incidence des rayons solaires sur l'engin s'accompagne d'une variation de la température du mécanisme d'entraînement et provoque une modification de l'état de ce dernier et de l'orientation du panneau tendant à diminuer l'angle d'incidence des rayons solaires sur le panneau.
3^ Dispositif selon la revendication 2. caractérisé en ce que le mécanisme d'entraînement (6) est constitué en un alliage à mémoire de forme à double effet. 4. Dispositif selon la revendication 3, caractérisé en ce que le panneau (4) est monté à pivotement sur le corps (3) de l'engin autour d'un axe de rotation (R) et en ce que ledit mécanisme d'entraînement est une barre de torsion (6) allongée suivant l'axe de rotation (R), cette barre étant reliée à une extrémité axiale au corps de l'engin et à l'autre extrémité axiale au panneau, le changement d'état de la barre s'accompagnant d'un changement de forme entraînant une rotation relative de ses extrémités et le basculement du panneau. 5_ Dispositif selon l'une des revendications 2 à 4, caractérisé en ce que le mécanisme d'entraînement est relié thermiquement a un élément disposé à distance du mécanisme d'entraînement sur le corps de l'engin, et propre à réchauffer, lorsqu' éclairé , ledit mécanisme d'entraînement. 6^ Dispositif selon l'une des revendications 2 à 5. caractérisé en ce que le mécanisme d'entraînement est couplé thermiquement à une résistance chauffante propre à réchauffer le mécanisme d'entraînement lorsqu'alimentée en énergie électrique par des cellules solaires placées sur le corps de l'engin. 7_. Dispositif selon l'une des revendications 1 à 4. caractérisé en ce qu'il comporte u n cache (8 ) disposé autour du mécanisme d'entraînement de manière à masquer les rayons solaires incidents pour un ensemble donné de directions d'incidence des rayons solaires sur l'engin. S_ Dispositif selon la revendication 7, caractérisé en ce que le cache (8) est propre à transmettre, par couplage radiatif, vers le mécanisme d'entraînement une part importante de l'énergie solaire qu'il reçoit, et ceci pour un ensemble donné (D) de directions d'incidence des rayons solaires sur l'engin. 9^ Dispositif selon l'une des revendications 1 à 8. caractérisé en ce que le changement d'état du mécanisme d'entaînement intervient après que la direction des rayons solaires relativement à l'engin ait franchi un plan (P') bissecteur de deux plans (P i . P ) coïncidant respectivement avec les positions que le panneau occupe avant et après basculement. 10. Engin spatial équipé d'un dispositif tel que défini à l'une des revendications précédentes.
PCT/FR1996/000454 1995-03-28 1996-03-27 Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe WO1996030259A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/930,253 US6062511A (en) 1995-03-28 1996-03-27 Device for adjusting a solar panel on a spacecraft, and spacecraft equipped with such a device
EP96909205A EP0817744B1 (fr) 1995-03-28 1996-03-27 Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe
DE69604165T DE69604165T2 (de) 1995-03-28 1996-03-27 Vorrichtung zum ausrichten von einem solarpaneel eines raumfahrzeuges und damit ausgerüstetes raumfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/03610 1995-03-28
FR9503610A FR2732309B1 (fr) 1995-03-28 1995-03-28 Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe

Publications (1)

Publication Number Publication Date
WO1996030259A1 true WO1996030259A1 (fr) 1996-10-03

Family

ID=9477484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/000454 WO1996030259A1 (fr) 1995-03-28 1996-03-27 Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe

Country Status (6)

Country Link
US (1) US6062511A (fr)
EP (1) EP0817744B1 (fr)
DE (1) DE69604165T2 (fr)
ES (1) ES2136397T3 (fr)
FR (1) FR2732309B1 (fr)
WO (1) WO1996030259A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2319360A (en) * 1996-11-12 1998-05-20 Motorola Inc Actively controlled thermal panel on a space vehicle
US20220073217A1 (en) * 2020-09-10 2022-03-10 Brigham Young University (Byu) Dynamic radiative thermal management of spacecraft

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848529B1 (fr) * 2002-12-12 2005-02-25 Astrium Sas Procede de pilotage solaire de vehicule spatial
US7370566B2 (en) * 2003-09-04 2008-05-13 Harris Corporation Complimentary retrograde/prograde satellite constellation
DE102005021459B3 (de) 2005-05-10 2006-07-13 Eads Space Transportation Gmbh Mechanischer Rotationsantrieb
CN108945521B (zh) * 2018-06-15 2020-11-13 上海卫星工程研究所 一种无源空间环境航天器自适应变形机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311322A (en) * 1964-09-17 1967-03-28 Boeing Co Servomechanisms responsive to a heat source
US3635015A (en) * 1967-12-21 1972-01-18 Trw Inc Radiant-energy-driven orientation system
US4561614A (en) * 1982-12-07 1985-12-31 Rca Corporation Deployable folded multi-element satellite subsystems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304028A (en) * 1964-08-11 1967-02-14 Hugh L Dryden Attitude control for spacecraft
US3630020A (en) * 1968-04-18 1971-12-28 Boeing Co Solar orientation device
FR2371343A1 (fr) * 1976-11-17 1978-06-16 Aerospatiale Dispositif pour le deploiement synchronise d'elements articules porteurs de cellules solaires dans un panneau forme d'une succession de tels elements
US4091799A (en) * 1977-03-10 1978-05-30 Emerson Electric Co. Self-tracking radiant energy collector
US4842106A (en) * 1987-10-08 1989-06-27 Hughes Aircraft Company Rate controllable damping mechanism
JPH01237296A (ja) * 1988-03-18 1989-09-21 Mitsubishi Electric Corp 太陽電地パドル装置
US5257759A (en) * 1991-11-27 1993-11-02 Hughes Aircraft Company Method and apparatus for controlling a solar wing of a satellite using a sun sensor
US5310144A (en) * 1992-07-06 1994-05-10 Hughes Aircraft Company Method and apparatus for satellite torque balancing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311322A (en) * 1964-09-17 1967-03-28 Boeing Co Servomechanisms responsive to a heat source
US3635015A (en) * 1967-12-21 1972-01-18 Trw Inc Radiant-energy-driven orientation system
US4561614A (en) * 1982-12-07 1985-12-31 Rca Corporation Deployable folded multi-element satellite subsystems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2319360A (en) * 1996-11-12 1998-05-20 Motorola Inc Actively controlled thermal panel on a space vehicle
US6003817A (en) * 1996-11-12 1999-12-21 Motorola, Inc. Actively controlled thermal panel and method therefor
GB2319360B (en) * 1996-11-12 2000-02-23 Motorola Inc Actively controlled thermal panel and method therefor
US20220073217A1 (en) * 2020-09-10 2022-03-10 Brigham Young University (Byu) Dynamic radiative thermal management of spacecraft

Also Published As

Publication number Publication date
EP0817744B1 (fr) 1999-09-08
FR2732309B1 (fr) 1997-06-20
FR2732309A1 (fr) 1996-10-04
EP0817744A1 (fr) 1998-01-14
DE69604165D1 (de) 1999-10-14
DE69604165T2 (de) 2000-02-10
ES2136397T3 (es) 1999-11-16
US6062511A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
EP3003860B1 (fr) Véhicule spatial comprenant au moins un couple de bras porteurs muni d'un module creux de montage et procédé pour la mise en oeuvre d'un tel véhicule
EP1415909B1 (fr) Ensemble articule de panneaux de générateur solaire et véhicule spatial
EP2740669B1 (fr) Dispositif de déploiement et de reploiement d'une structure flexible, structure déployable flexible et satellite munis d'un tel dispositif
EP2468630B1 (fr) Structure deployable formant une antenne equipee d'un generateur solaire pour un satellite
EP2468629B1 (fr) Grandes structures rigides déployables
FR2749273A1 (fr) Satellite conçu pour eliminer les erreurs d'orientation dues aux effets thermiques des panneaux deployables
EP1068447B1 (fr) Dispositif de commande d'une rotation relative entre deux elements articules et structure deployable, notamment pour vehicule spatial, utilisant au moins un dispositif de ce type
EP2643215B1 (fr) Dispositif de contrôle d'attitude d'un satellite et procédé de commande d'un satellite embarquant ledit dispositif
EP3433173B1 (fr) Engin spatial
EP3218266A1 (fr) Engin spatial
EP0817744B1 (fr) Dispositif pour l'orientation d'un panneau solaire d'engin spatial et engin ainsi equipe
EP0694474A1 (fr) Système pour déployer/replier deux éléments, avec verrouillage par came desdits éléments déployés
WO2018189259A1 (fr) Dispositif de déploiement
FR2789653A1 (fr) Satellite a generateur solaire sur bras depliable et procede de mise a poste d'un tel satellite
EP0032342B1 (fr) Agencement de satellite artificiel pourvu de générateurs solaires et d'antennes déployables
WO2015101531A1 (fr) Radiateur à ensoleillement réduit pour satellite et satellite muni d'un tel radiateur
CA1222236A (fr) Procede de mise en orbite d'un satellite artificiel et agencement de satellite pour sa mise en oeuvre
EP0330550B1 (fr) Système pour l'arrimage d'un ensemble articulé d'éléments sur un engin spatial
FR2505463A1 (fr) Dispositif de poursuite pour l'orientation continue de collecteurs solaires
EP0047212B1 (fr) Dispositif d'éloignement combinant un mouvement de translation et un mouvement de rotation, notamment pour un équipement sur un engin spatial
FR2684638A1 (fr) Procede et dispositif pour le deploiement d'une structure mecanique.
FR2637967A1 (fr) Procede et dispositif autonome de recuperation d'energie solaire a orientation automatique
FR2470727A1 (fr) Dispositif de deploiement des elements d'un bras d'eloignement d'un equipement pour engin spatial
FR3051443A1 (fr) Engin spatial
EP4321702A1 (fr) Installation de protection contre le soleil ou les intempéries

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996909205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08930253

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996909205

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996909205

Country of ref document: EP