WO1991010816A1 - Valve driving device - Google Patents

Valve driving device Download PDF

Info

Publication number
WO1991010816A1
WO1991010816A1 PCT/JP1991/000053 JP9100053W WO9110816A1 WO 1991010816 A1 WO1991010816 A1 WO 1991010816A1 JP 9100053 W JP9100053 W JP 9100053W WO 9110816 A1 WO9110816 A1 WO 9110816A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
arm
low
mouth
shaft
Prior art date
Application number
PCT/JP1991/000053
Other languages
English (en)
French (fr)
Inventor
Shinichi Murata
Noboru Nakamura
Michiyasu Yoshida
Hideki Miyamoto
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009425A external-priority patent/JP2595737B2/ja
Priority claimed from JP1990033578U external-priority patent/JPH03127007U/ja
Priority claimed from JP1990033579U external-priority patent/JPH03127008U/ja
Priority claimed from JP1990033577U external-priority patent/JPH03127006U/ja
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to DE4190087A priority Critical patent/DE4190087C2/de
Priority to US08/389,315 priority patent/USRE35662E/en
Publication of WO1991010816A1 publication Critical patent/WO1991010816A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/267Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves

Definitions

  • the present invention selectively transmits the rotation of the high speed cam and the low speed cam of the engine to the supply / exhaust valve, and allows the opening / closing timing and the lift amount of the supply / exhaust valve to be selectively switched.
  • valve trains capable of exhibiting good output characteristics in the low-speed operation range and high-speed operation range, respectively, in particular, the rocking arm and rocker shaft between the high-low speed cam and the supply / exhaust valve, and their engagement or disengagement The present invention relates to a valve train provided with engaging means for performing the following. Background art
  • a supply / exhaust valve such as an automotive OHC (over-bed camshaft) engine is driven to open and close by receiving rotation of a crankshaft through a valve train.
  • OHC over-bed camshaft
  • valve gear is not limited to simply opening and closing the supply / exhaust valve with a predetermined lift amount at a predetermined opening / closing timing, but also allows the opening / closing timing / lift amount to be variable so that each value can be selected. Something has been done.
  • the valve train with the valve drive mode selection mechanism added can control the overlap of the supply and exhaust valves to an optimal state according to the operating conditions, and can always obtain an accurate output.
  • a low-speed cam having a cam profile in the low-speed rotation range and a high-speed cam having a cam profile in the high-speed rotation range are mounted on the cam shaft.
  • a type in which the opening and closing timing of a valve is controlled by a high-speed cam is known.
  • FIGS. 38 to 40 show a mechanism for selecting such a high-speed cam and a low-speed cam.
  • cams 102, 102, and 103 are formed as low-speed cams, and cam 103 is formed as 10 high-speed cams, and logic arm 104, 104 is driven by cams 102, 102, respectively.
  • the logic cards 105 are each configured as a high-speed opening member driven by a cam 103.
  • rocker arms 104, 105, and 104 ′ are pivotally supported by rocker shafts 100: ′ 6, and the rocker shafts 110, 106, and 102 are lifted by cam lifts of the cams 102, 103, and 102. Rocking around the center.
  • the low-speed rocker arms 104 and 104 and the high-speed rocker arm 105 are configured to be engaged or disengaged by the pistons 107 and 108 and the stopper 109, respectively.
  • the pistons 107, 108 and the stoppers 109 are connected in series in this order, and the mouth arms 104, 105 , 104, are accommodated in cylinders 104a, 105a, 104, a formed so as to be coaxial with. Then, oil is supplied from the oil passages 106a, 104, b formed in the rocker shaft 106 and the logic arm 104 'to the space at the end of the cylinder 104a. By doing so, the pistons 107 and 108 and the stiffener 109 are moved forward, and the low-speed mouth arm 104 and 104 and the high-speed rocker arm 105 are connected, and the oil is discharged to return. The pistons 107 and 108 and the stoppers 109 are retracted by the action of the springs 110 to release the connection between the low-speed rocker arms 104 and 104 'and the high-speed opening cocker arms 105. Has become.
  • Reference numeral 111 denotes a return spring as a means for urging the rocker arm 105 upward.
  • the low-speed cams 102, 102 are idled and operated by the high-speed cam 103. .
  • the first problem to be solved by the present invention is as follows.
  • the above-mentioned connecting mechanism is provided on the swinging end side, so that the valve operating system and the weight are increased, and it is impossible to use roller bearings.
  • the low-speed rocker arm An opening and closing mechanism is provided between the rocker shaft and one of the high-speed mouth lock or the low-speed rocker arm juxtaposed to the low-speed rocker arm, and an engagement means for smoothly switching between the engagement and disengagement between the two. It is assumed that the configuration is adopted. In this case, the low-speed and high-speed cams are in sliding contact with the respective sliding portions of the low-speed and high-speed cocker arms, and the frictional resistance here is relatively high. Was made up. Moreover, pitching wear may occur between the high-speed cam and the sliding portion of the high-speed rocker arm during idling operation, and it is necessary to use expensive tip material for the sliding portion of the mouth arm. Was made up.
  • an object of the present invention is, firstly, to provide a valve train in which the switching between the engagement and disengagement between one of the high-speed logica arm or the low-speed mouth hooker and the mouth hook is smoothly performed.
  • the purpose of the present invention is to provide a valve operating device in which the switching of the above is performed more accurately. Disclosure of the invention
  • a first valve gear includes a cam shaft on which a low speed cam and a high speed cam are mounted, a rocker shaft connected to the cam shaft, and a low speed porter fixed to a rocker shaft to drive a valve.
  • a high-speed logica arm which is juxtaposed with the low-speed rocker arm and rotatably supported by the ⁇ -locker shaft; an engaging means for engaging or disengaging the rocker shaft with the high-speed rocker; And driving means that operates according to the operating state.
  • the second valve train is composed of a force shaft equipped with a low speed cam and a high speed cam, a logica shaft adjacent to the cam shaft, and a high speed logicab fixed to the mouth shaft and rotating around the center of the mouth shaft. And an engaging means for juxtaposing the high-speed rocker arm, rotatably supported by the rocker shaft, and engaging or disengaging with the low-speed mouth arm that opens the valve. It is composed of a driving means to be operated.
  • the engagement means in the first and second valve trains includes an engagement hole formed in the rotating surface of the high-speed or low-speed mouth arm, and a through hole formed in the rocker shaft in a direction perpendicular to the axial direction thereof. It may be configured to include a plunger housed in the through hole, and an oil chamber provided between the rear end of the plunger and the rotating surface of the high-speed or low-speed mouth arm.
  • the driving means for the first and second valve trains is formed in a rocker shaft. It may be configured to include an oil passage formed and hydraulic means for supplying hydraulic pressure to the engagement means from the oil passage to engage or disengage the logic shaft and the high-speed or low-speed rocker arm. .
  • the engagement or disengagement between the rocker shaft and the high-speed ⁇ or low-speed kerm is performed by the engagement means, so that the engagement or disengagement becomes smooth.
  • each of the engagement means in the first and second valve gears includes:-a plunger having a ⁇ portion formed at one end portion, and a plunger interposed between the flange portion and the logica shaft to be biased toward the storage position side. And an urging member that performs the operation.
  • each engagement means includes a through hole provided with a large diameter portion larger than the engagement six, a plunger having a flange formed at one end, and a spring for urging the plunger to the accommodation position.
  • the flange portion of the plunger may be slidable along the large-diameter portion, and a projection may be formed on the large-diameter portion side end surface.
  • the structure on the rocker side can be simplified, and in particular, the large-diameter portion can be prevented from entering the engagement hole, and the protruding portion on the large-diameter portion side can smoothly slide on the rotating surface of the mouth arm.
  • Each rocker arm may be configured to include a rolling roller that contacts each cam. In this case, the frictional resistance between each cam and each rocker arm can be reduced, and output loss can be suppressed.
  • the high-speed opener arm in the first and second valve devices may be provided with a rolling roller in contact with the high-speed cam
  • the low-speed rocker arm may be provided with a sliding contact portion in contact with the low-speed motor.
  • FIG. 1 is a cross-sectional view of a main part of a valve train as a first embodiment of the present invention (a cross-sectional view taken along the line II of FIG. 2).
  • FIG. 2 is a sectional view of the valve device of FIG.
  • FIG. 3 is a cross-sectional view of FIG.
  • FIG. 4 (a) is a longitudinal sectional view of an essential part showing an unfixed state of the engagement means.
  • FIG. 4 (b) is a cross-sectional view of FIG. 4 (a) taken along the line Wb-IVb.
  • FIG. 5 (a) is a longitudinal sectional view of an essential part showing a fixed state of the engaging means.
  • FIG. 5 (b) is a plan view of FIG. 5 (a) Vb—Vb.
  • FIG. 6 is a schematic configuration diagram of driving means used in the valve train of FIG. 1.
  • FIG. 7 is an enlarged sectional view of a switching valve used in the driving means of FIG.
  • FIG. 8 is a flowchart of a control program of a driving means used in the valve device of FIG.
  • FIG. 9 is an engine operating range calculation map used by the driving means in the valve train shown in FIG.
  • FIG. 10 is a characteristic diagram showing the cam profile.
  • FIGS. 11 to 14 are schematic plan views in which a part of a valve gear as another embodiment of the present invention, which is different from the first embodiment, is partially cut away.
  • FIG. 15 is a schematic configuration diagram of a main part of a valve train as another embodiment of the present invention.
  • FIG. 16 is a longitudinal sectional view showing a state in which the low-speed and high-speed cocker arms of the valve train of FIG. 15 are mounted.
  • FIG. 17 is a sectional view taken along line AA of FIG.
  • Fig. 18 is a cut-away view of line B-B in Fig. 16.
  • FIG. 19 is a sectional view taken along the line C-C of FIG.
  • FIG. 20 is a perspective view of a connecting pin.
  • FIG. 21 is a longitudinal sectional view of a main part of the state in which the high-speed opening hook arm shown in FIG. 19 is rotated with respect to the rocker shaft.
  • FIG. 22 is a longitudinal sectional view showing a connection state between the high-speed rocker arm and the rocker shaft.
  • FIG. 23 is a cross-sectional view showing a connection state between the high-speed logica arm and the mouthshaft.
  • Fig. 24 is a characteristic diagram showing the relationship between the valve operating torque and the engine speed.
  • Fig. 25 is a characteristic diagram showing the relationship between engine pre- cision and engine speed.
  • Fig. 26 is a characteristic diagram showing the relationship between the engine full-open torque and the engine speed.
  • FIG. 27 is a characteristic diagram showing operating characteristics during valve lift operation.
  • FIG. 28 is a schematic configuration diagram showing a manufacturing state of a concave curved surface portion of the cam.
  • FIG. 29 is a longitudinal sectional view showing a mounted state of a connecting pin of a valve train as another embodiment of the present invention.
  • FIG. 30 is a sectional view taken along line DD of FIG. 29.
  • FIG. 31 is a partially cutaway plan view of FIG. 30 viewed from the direction of arrow E.
  • FIG. 32 is a longitudinal sectional view showing a connection state between a high-speed opening arm and a logica shaft of a valve train as another embodiment of the present invention.
  • FIG. 33 is a sectional view taken along line FF of FIG.
  • FIG. 34 is a cutaway plan view of a main part of a valve train as another embodiment of the present invention.
  • FIG. 35 is a longitudinal sectional view of a high-speed opening cam of a valve train as another embodiment of the present invention.
  • FIG. 36 is a plan view showing a state where the high-speed and low-speed mouth cock arms of the valve train of FIG. 35 are mounted.
  • FIG. 37 is a side view showing a state where the high-speed and low-speed rocker arms of the valve train of FIG. 35 are mounted.
  • FIG. 38 is a schematic perspective view showing a schematic configuration of a conventional valve train.
  • 39 and 40 are schematic diagrams showing the operation of the conventional valve train shown in FIG.
  • FIG. 41 is an explanatory view of the operation of the conventional engaging means.
  • FIG. 42 is a longitudinal sectional view of a main part of the engaging means proposed prior to the engaging means of FIGS. 29 to 31.
  • FIG. 43 is a sectional view taken along line GG of FIG.
  • FIG. 44 is a front view of the flange portion of the connecting pin in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • valve train as a first embodiment of the present invention will be described with reference to FIG. 1 to FIG.
  • This valve train is provided to open and close a supply / exhaust valve of an OHC (overhead camshaft) type engine for an automobile.
  • the engine here is a two-valve type in which an intake valve and an exhaust valve are respectively arranged in a plurality of cylinders (not shown).
  • a camshaft (not shown) that rotates in conjunction with the crankshaft of the engine includes a low-speed cam 20 having a cam profile for low-speed operation and a low-speed cam 20 for high-speed operation. And a high-speed cam 21 having the same cam profile.
  • a low-speed rocker arm 13 driven by the low-speed cam 20 and a high-speed mouth arm 14 driven by the high-speed cam 21 are connected in parallel. It is arranged.
  • the low-speed mouth arm 13 is pivotally attached to the rocker shaft 11 so that it can rotate freely, but can also be rotated integrally with the mouth arm 11 by the engagement means R. I have.
  • the low-speed rocker arm 13 is provided with a shaft 19 on which a roller bearing 17 is mounted.
  • the upper portion of the roller bearing 17 is engaged with the low-speed cam 20.
  • the low-speed rocker arm 13 receives a driving force from the low-speed cam 20 via the roller bearing 17 and the shaft 19.
  • an adjusting screw 7 that is appropriately adjusted and fixed by a nut 8 is mounted, and the lower end surface of the adjusting screw 7 has an intake or exhaust valve.
  • the upper end of the valve stem at 16a (16b) is engaged.
  • the upper end of the valve 5 is biased obliquely upward in FIG.
  • a shaft 54 equipped with a roller bearing 53 is provided on the arm portion of the high-speed mouth feed arm 14, and an upper portion of the mouth-bearing 53 is engaged with the high-speed cam 21. . That is, the high-speed logic arm 14 receives the driving force from the high-speed cam 21 via the roller bearing 53 and the shaft 54.
  • the high-speed mouth car arm 14 is also pivotally supported by the logica shaft 11, but the half-moon key 52 interposed between the rainy people ensures that the high-speed mouth car 14 always rotates together with the logica shaft 11. Fixed.
  • the lower end surface of the high-speed rocker arm 14 on the swinging end side (that is, the roller bearing 53) is supported by the cylinder head 71 via a piston 55 having a support spring 56 as a first urging means.
  • the biasing force of the spring 56 acts as a return force when the high-speed logic arm 14 swings. Therefore, when the high-speed cam 21 rotates, the rocker shaft 11 repeatedly rotates at the same time as the low-speed logic arm 14 swings.
  • the above-mentioned engaging means R is configured as follows. 5 As shown in Figs. 4 (a) and (b) and Figs. 5 (a) and (b), the low-speed mouth locker arm 13 of the rocker shaft 11 is pivotally connected to the pivot of the lower shaft 11 in the radial direction of the shaft 11. An extended through hole 32 is formed, and a connecting pin 31 as a plunger is loosely inserted into the through hole 32.
  • the connecting pin 31 can be protruded outward from the rocker shaft 11 by the hydraulic means P in the direction of K, and the rotating surface 13 c on the inner periphery of the pivotal support portion of the rocker arm 13 to the rocker shaft 11 1
  • An engagement hole 42 into which the pin 31 can be fitted when the connecting pin 31 projects is formed.
  • an oil groove 57 is formed on the outer periphery of the center of the connecting pin 31, and an oil passage 41 communicating from the oil groove 57 to the rear end of the connecting pin 31 is formed from the outer peripheral surface of the connecting pin 3 1 1. It is provided at the shaft center, and is supplied to the rear end side of the connecting pin 31 via the oil groove 57 and the oil passage 41.
  • a flange 38 is formed on the outer periphery of the rear end of the connecting pin 31, and a large diameter portion 34 on which the flange 38 slides and a top of the connecting pin 31 slide in the winning hole 32.
  • a moving small-diameter portion 35 is formed.
  • a spring 43 as an urging member is interposed between the stepped portion from the small diameter portion 35 of the through hole 32 to the large diameter portion 34 and the flange portion 38 of the connecting pin 31. And urges the connecting pin 31 to the rear end side, which is the storage position side.
  • the driving means D of the valve train shown in FIG. 1 is as shown in FIG.
  • an oil passage 33 extending along the axis of the rocker shaft 11, and a hydraulic pressure is supplied to the engagement means R via the oil passage 33, thereby operating the engagement means R.
  • the locker shaft 11 and the hydraulic means P for engaging or disengaging the low-speed mouth arm 13 are provided.
  • the hydraulic means ⁇ is an oil passage 41 communicating the oil passage r 3 with the oil chamber r on the rear end side of the connecting pin 3 1, a supply oil passage 59 communicating with the oil passage 33, and a supply oil.
  • the supply between the hydraulic control mechanism 60 and the hydraulic pump 58 is provided in the oil passage 59, and the supply in the oil passage 59 between the oil control mechanism 60 and the hydraulic pump 58 is higher than the predetermined oil pressure.
  • the relief valve 61 releases the hydraulic pressure when it is released.
  • the hydraulic control mechanism 60 shuts off the first position where the high-pressure oil from the hydraulic pump 58 is supplied to the oil passage 33, the hydraulic pump 58 and the oil passage 33, and the '-oil passage 33 is set at a low pressure.
  • Switching valve 6 3 for switching to the second position communicating with the oil tank 62 of the solenoid, solenoid 64 for driving the switching valve 63 to selectively switch between the two positions, and solenoid 64 for engine rotation and load
  • a computer 65 that operates in accordance with the engine speed, an engine rotation sensor 66 that outputs engine speed information to the computer 65, and a load sensor 67 that outputs engine load information to the computer 65.
  • the switching valve 63 and the solenoid 64 are configured as shown in FIG.
  • a solenoid 64 is accommodated in the upper part of the casing 68, and a valve body 70 urged downward by the spring 69 is located in the lower part.
  • a tank port t P is an operation port c P are oppositely arranged.
  • the switching valve 6 3 off it communicates the operation port one preparative cp and the tank port t P, at the time of ON, operation port cp and the pump port pp communicates.
  • the computer 65 has, in its write-only memory, a switching valve control program as shown in FIG. 8 and an operating range determination map as shown in FIG.
  • the computer 65 When the computer 65 reaches the switching valve control processing routine, it takes in the current engine speed and engine load. Then, determine the current operating range. In this case, it is determined whether the low-speed cam operation range e1 where the engine speed is low and the load is high, or the high-speed cam operation range e2 where the engine speed is high and the load is high. Judgment is made by using the operation range judgment map of, and the steps of s3 and s4 are selectively executed, and the routine returns. That is, when the process proceeds to step s3, the solenoid 64 is turned off, the connecting pin 31 is held in the storage position shown in FIGS. 4 (a) and 4 (b), and the supply / exhaust valve is set to the low speed cam 20. Drive with.
  • the protruding surface of the rear end of the flange 38 is joined to or extremely close to the rotation surface 13c of the rocker shaft of the low-speed rocker arm 13 through the through hole.
  • the connecting pin 31 is in a state where its tip is drawn inward from the outer peripheral surface of the rocking shaft 11, and the low-speed rocker arm 13 is not fixed to the logic shaft 11.
  • the solenoid 64 is turned on, and the connecting pin 31 is held at the protruding position shown in FIGS. 5 (a) and 5 (b). Operate the exhaust valve with the high-speed cam 21.
  • the position of the low-speed mouth arm 13 in the axial direction of the logica shaft 11 is precisely regulated by a pair of snap rings 50a and 50b and a thrust spring 51.
  • the first snap ring 50a is engaged with one side surface of the low-speed rocker arm 13 and is locked on the outer peripheral surface of the logicica shaft 11, so that the second snap ring 50a 0 b is arranged with a gap between the other side surface of the low-speed rocker arm 13 and a thrust spring 51 in a compressed state is engaged with the gap.
  • the low-speed logic arm 13 becomes free with respect to the rocker shaft 11, and the movement of the rocker shaft 11 is not transmitted to the low-speed mouth cam.
  • the low-speed rocker arm 13 is transmitted to the low-speed rocker arm 13 via the shaft 17 and the shaft 19, and the low-speed rocker arm 13 swings according to the cam profile of the low-speed cam 20.
  • the valve 16a (16b) is driven by the swing of the low-speed logic arm 13 so that the valve reciprocates according to the cam profile of the low-speed cam 20 as shown in FIG. .
  • the rocker shaft 11 and the low-speed rocker arm 13 are fixed so that they rotate.
  • the logica shaft 11 is driven by the high-speed cam 21 via the high-speed opening C-force arm 14 (cam lift). G), and driven by this driving force, the low-speed rocker arm 13 is also driven by the cam lift of the high-speed cam 21.
  • the high speed cam 21 swings the low speed mouth arm 14, and this swing is transmitted as the swing of the low speed mouth arm 13 via the rotation swing of the mouth shaft 11. It is.
  • FIG. 11 to 14 show a modification of the structure of the embodiment of FIG. 1.
  • the modification shown in FIG. 11 is a modification of the low-speed rocker arm 13 having a bifurcated shape.
  • the two intake valves 16a at the same time It can be opened and closed.
  • the engaging means R is provided on the pivot portion of the high-speed mouth car arm 14 to the logica shaft 11 instead of the low-speed mouth arm 13. It has been changed as follows. When the engaging means R is released, the movement of the high-speed opener arm 14 is not transmitted to the low-speed rocker arm 13 and the low-speed opener arm 13 operates according to the low-speed force 20 to fix the engaging means R. Sometimes, the mouth lock shaft 11 transmits the movement of the high speed mouth arm 14 to the low speed rocker arm 13, and the low speed rocker arm 13 operates according to the high speed cam 21. As a result, it operates in substantially the same manner as the structure shown in FIG.
  • each of the two intake valves 16 a is provided with a rocker arm, and both are fixed to the logicica shaft 11.
  • An engaging means R is provided between the hook arm 14 and the mouth hook 11, and the low-speed logic arm 13 operates as shown in FIG. Valve 16a is simultaneously opened and closed.
  • each of the two intake valves 16a is provided with a logic arm 13 and each of them is provided with an engagement means R, and the operation timing is set for each rocker arm 13. Can be set.
  • each valve train shown in FIG. 1 or FIGS. 11 to 14 can smoothly move between the rocker shaft 11 and the high-speed or low-speed rocker arms 13 and 14 by the engagement means R. Can be disengaged or disengaged, improving the reliability of switching operation and increasing the weight of the valve train. And a sharp response can be maintained. Further, the hydraulic means P in the driving means D can control the switching of the connecting pin 31 between the housing position and the projecting position accurately in accordance with the engine speed and load.
  • FIG. 15 shows a valve train as another embodiment of the present invention.
  • the valve train here is mounted on a four-valve engine in which a pair of intake valves 16a are arranged in a plurality of cylinders.
  • the rocker shaft 11 in FIGS. 15 and 16 is rotatably supported by a rocker shaft journal 72 of a cylinder head.
  • This rocker shaft 11 also has a low-speed logica arm 13 and a high-speed rocker 14.
  • the arm has a first arm supporting portion 11a for rotatably supporting the high-speed logic machine 14 and a male screw-shaped second arm supporting portion for supporting the low-speed cocker arm 13 in a fixed state. lib is provided.
  • the high-speed opening hook arm 14 is rotatably attached to the first arm support section 11 a of the rocker shaft 11.
  • the low-speed rocker arm 13 is attached to the logica shaft 1.
  • the tip of the low-speed logic arm 13 is branched into a forked shape.
  • a pair of valves (an intake valve, an air valve, and the like) disposed in the same cylinder are provided at a pair of distal end branch portions 13 a and 13 b of the low-speed rocker arm 13. Or the exhaust valve)
  • the stem ends of 16a and 16b are applied respectively.
  • a shim 16c for adjusting the valve clearance is attached to the joint between the low-speed rocker arm 13 and the stem end of each of the valves 16a and 16b.
  • the main body of the low-speed rocker arm 13 has an opening 18 for mounting the rolling roller 17.
  • a rolling roller 17 is rotatably attached to the opening 18 via a shaft 19.
  • a low-speed cam 20 is provided on the low-speed logic arm 13 as shown in FIG. The low-speed cam 20 is driven by the high-speed force shown in FIG.
  • the low-speed cam 20 drives the low-speed mouth arm 13 to swing around the rocker shaft 11.
  • the high-speed mouth arm 14 has projecting parts 14 a and 14 b centered on the rocker shaft 11. As shown in FIG. 19, instead of a valve, a spring as a first urging means for supporting the high-speed mouth arm 14 is provided on one protruding portion 14a of the high-speed mouth arm 14. A lift mechanism 23 is applied.
  • the lift mechanism 23 is provided with a bottomed cylindrical fixed cylinder 26 inserted into a mounting hole 24 of the cam journal 25 of the cylinder head.
  • a movable cylindrical body 27 having a bottomed cylindrical shape is mounted in the cylindrical body 26 so as to be able to protrude and retract.
  • a coil spring 28 that urges the movable cylinder 27 in a direction to protrude to the outside of the fixed cylinder 26 is housed.
  • the urging force of the coil spring 28 causes the protruding end 27 a of the movable cylindrical body 27 to move in It is applied to one projecting portion 14 a of the arm 14.
  • the other protruding portion 14 b of the high-speed rocker arm 14 is provided with a sliding contact portion 29 that comes into sliding contact with the high-speed cam 21.
  • the high-speed rocker 5 arm 14 is swung about the rocker shaft 11 by the high-speed cam 21.
  • the rocker shaft 11 is also provided with a high-speed logic arm 14 that is detachably engaged with the mouth lock shaft 11 so that the low-speed rocker arm 13 and the high-speed rocker arm 14 are engaged or disengaged.
  • An engagement means R for performing a replacement operation C ' is provided.
  • This engaging means R is provided with a connecting pin 31 shown in FIG.
  • the connecting pin 31 is attached to a through hole 32 formed in the rocker shaft 11 along a direction perpendicular to the axis of the rocker shaft 11.
  • the through hole 3 ′′ 2 is formed in a state perpendicular to the oil passage 33.
  • a large-diameter portion 34 is formed at one open end and a small-diameter portion 35 is formed at the other open end, and a stepped portion 36 is formed in the middle. I have.
  • the connecting pin 31 is formed with a large-diameter flange 38 at one end of a substantially round rod-shaped shaft 37.
  • the shaft portion 37 of the connecting pin 31 is slidably inserted into the small diameter portion 35 of the through hole 32, and the flange portion 38 is connected to the large diameter portion 3 of the through hole 32. It is slidably inserted into 4.
  • the other end of the shaft portion 37 of the connecting pin 31 is rounded to a diameter substantially equal to the radius of the outer peripheral surface of the mouth shaft.
  • a projecting spherical surface (projecting surface) 37a is formed.
  • a protruding spherical surface (a protruding surface) 38 a having substantially the same diameter as the sliding surface of the high-speed mouth arm 14, which is in contact with the rocker shaft 11, is formed on the end surface of the flange portion 38.
  • the connecting pin 31 has an opening 39 formed at the tip of the protruding spherical surface 38 a of the flange 38 and a pair of openings 40 a formed on the outer peripheral surface of the shaft 37.
  • 40b are formed to have a substantially T-shaped oil passage 41 communicating with the oil passage 41b.
  • the large-diameter portion 3 4 of the through hole 3 2 is communicated with the oil passage 33, and the hydraulic oil in the oil passage 33 is filled with the openings 40 a, 40 of the connecting pin 31. From b, it passes through the oil passage 41 and is supplied to the oil chamber r facing the protruding spherical surface 38a of the flange 38.
  • the sliding surface (rotation surface) of the high-speed pressing force arm 14 with the mouth shaft 11 is located at a position corresponding to the small-diameter portion 35 of the through hole 32 and the shaft portion 3 of the connecting pin 31.
  • An engagement hole 42 into which the tip portion of 7 is removably inserted is formed.
  • a coil spring disposed between the step portion 36 of the through hole 32 and the flange portion 38 of the connecting pin 31 is formed in the large diameter portion 34 of the through hole 32.
  • Return spring 43 is inserted.
  • the connecting pin 31 is held in a state where the projecting spherical surface 38 a of the flange portion 38 is pressed against the rotating surface of the high-speed rocker arm 14 by the spring force of the return spring 43.
  • the oil passage 33 communicates with a hydraulic means P similar to that shown in FIG.
  • the supply hydraulic pressure is controlled by the computer 65 of the same means. Therefore, a duplicate description thereof is omitted here.
  • the computer 65 turns off the switching valve 63 in the low-speed fifth speed range where the engine operation range is relatively low. For this reason, as shown in FIGS. 17 and 19, the tip of the shaft 37 of the connecting pin 31 is inserted into the through hole 32 by the spring force of the return spring 43 of the engagement means R. It is kept in the state of being rushed. Moreover, when the high-speed cam arm 14 is oscillated around the rocker shaft 11 by the high-speed cam 21, the high-speed mouth arm 14 operates independently of the rocker shaft 11.
  • the computer 65 turns on the switching valve 63 to supply high-pressure oil to the oil chamber r through the oil passages 33 and 41. I do.
  • the engaging means R stakes the spring force of the return spring 43 to move the connecting pin 31 to the projecting position. That is, as shown in FIGS. 21 and 22, when the small diameter portion 35 of the through hole 32 of the rocker shaft and the engagement 0 hole 42 of the high speed The connecting pin 31 is piled on the spring force of the return spring 43, and the tip of the shaft 37 of the connecting pin 31 is inserted into the engaging hole 42.
  • the low-speed logica arm 14 is engaged with the rocker shaft 11, and the low-speed and high-speed mouth arm 14, 13 are substantially integrated and driven by the high-speed cam 21.
  • the operation of the high-speed mouth arm 14 is transmitted to the valves 16 a and 16 b via the low-speed C 1 arm 13, and the high-speed cam 21 opens and closes the valves 16 a and 16 b.
  • a through-hole 32 is formed in the logical unit shaft 11 in a direction orthogonal to the axial direction, and the connecting pin 31 of the engagement means R, the return spring 43 and the oil
  • the chamber r formed between the rotating surface of the large diameter portion 34 of the through hole 32, the protruding spherical surface 38a of the connecting pin 31 and the rotating surface 14c of the high-speed ⁇ lock arm 14 is arranged.
  • the configuration of the high-speed logic arm 14 can be simplified.
  • the tip of the shaft portion 37 of the connecting pin 31 is mounted on the sliding contact surface (rotation surface) of the high-speed opening arm 14 with the rocker shaft 11 in the high-speed opening arm 14. Since it is only necessary to form the engagement hole 42 that is removably inserted, the manufacture thereof can be facilitated. Further, the engagement hole 42 is formed at the tip of the shaft 37 of the connecting pin 31. Since it is only necessary that the material can be inserted so that it can be removed, it is not necessary to particularly increase the accuracy, and it can be easily processed.
  • the accommodating portion is formed by the through hole 3 2 of the mouth shaft 11 1
  • the manufacturing of the mouth shaft 11 can be facilitated compared to the case where a stop hole is formed in the rocker shaft 11. it can.
  • the sliding portion between the through hole 32 of the log shaft 11 and the connecting pin 31 can be relatively easily polished, the production accuracy can be improved. it can.
  • the tip of the shaft portion 37 of the connecting pin 31 is inserted into the engagement 6 4 2 of the high-speed opener arm 14, and with the high-speed opener arm 14 engaged with the rocker shaft 11, There is no need to specially form (hollow) a hydraulic passage or the like in the shaft portion 537 of the connecting pin 31 on which the shearing force acts, so that the strength can be increased.
  • the length of the small-diameter portion 35 of the through hole 6 32 becomes the length of the pin guide that holds the connecting pin 31 as it is. Since this pin guide length can be relatively large, rattling is reduced. As a result, sufficient support strength can be obtained.
  • the low-speed rocker arm 13 is provided with a rolling roller 17 that comes into contact with the low-speed cam 20, and the low-speed opening arm 14 is provided with a sliding contact portion 29 that comes into contact with the high-speed cam 21 in sliding contact.
  • the low-speed rotation range of ' controls the opening and closing timing of valves 16a and 16b as the rolling roller 17 of the low-speed mouth arm 13 rolls along the cam surface of the low-speed cam 20. Friction resistance between the low-speed mouth cocker arm 13 and the cam surface of the low-speed cam 20 in the low-speed rotation range of the engine, compared to the case where a slipper-type ⁇ hook arm is used for the low-speed rocker arm 13.
  • FIG. 24 shows how the valve train driving torque varies according to the engine speed.
  • the solid characteristic curve A is the fluctuation characteristic when a low-speed rocker arm 13 equipped with five rolling rollers 17 is used
  • the one-point ⁇ line characteristic curve B is the slipper-type opener arm. It shows the fluctuation characteristics when used.
  • FIG. 25 shows the fluctuation state of the engine friction according to the engine speed
  • FIG. 26 shows the fluctuation state of the engine fully open torque 1 & torque according to the engine speed
  • the solid line characteristic curve A is the fluctuation characteristic when the low-speed rocker arm 13 equipped with the rolling roller 17 is used
  • the one-dot chain line characteristic curve B is the slipper-type mouth arm. 6 shows the variation characteristics in each case.
  • the frictional resistance of the entire engine can be reduced by about 10% in the low-speed rotation range, as shown in Fig. 25.
  • the full-open torque of about 450 rpm or less can be improved by about 1-2%.
  • the sliding motion of the sliding contact 20 part 29 of the low-speed mouth arm 14 along the cam surface of the high-speed cam 21 causes the movement of the valves 16a and 16b.
  • the opening / closing timing is controlled, so even in the high-speed rotation area, the time area when the valves 16a and 16b are opened in the high-speed rotation area such as when using a mouth arm with rolling rollers 17 Can be prevented, and the torque can be improved. That is, it is assumed that the rocker arm (low-speed logic arm 13) having the rolling roller 17 is brought into contact with the high-speed cam 21.
  • the radius of the contact part (rolling roller 17) with the force 21 is smaller than the radius of the contact part (sliding contact part) of the slipper-type mouth arm 14 with the cam 21 (5).
  • the cam 21 rotates from the base circle portion to the chevron-shaped lift portion and the lift operation of the valves 16a and 16b is started, as shown in FIG.
  • the lift operation speed of a and 16b becomes slow.
  • Fig. 27 shows the lift operation characteristics of valves 16a and 16b when using a logic arm with rolling rollers 17 (indicated by the dotted line 1: characteristic curve C in the figure).
  • the concave curved surface portion 21c is polished by a grindstone when the cam 21 is manufactured, the concave curved surface portion 21c is limited by the radius concave R of the grindstone 44.
  • the radius concave R of the grindstone 44 cannot be reduced by a predetermined value or more, so that the same lift curve (characteristic curve) as the slipper type moutharm 14 is used.
  • the positive acceleration section (characteristic curve D) at the beginning and end of the lift operation of the valves 16a and 16b is lower than that of the slipper type rocker arm 14 (characteristic curve F). It will be longer. Therefore, in the high-speed rotation range, the use of the slipper-type logica arm 14 can improve the engine performance as compared with the case where the mouth-cutter arm provided with the rolling roller 17 is used.
  • the limit rotation speed ⁇ ⁇ ⁇ of the engine which causes the rocker arm to move away from the force surface and causes bouncing, is expressed as w of the valve system inertial weight (converted to the valve side), w g, if the valve spring load is P,
  • valve gear shown in FIG. 15 is provided with a rolling roller for contacting the low-speed cam 20 on the low-speed rocker arm 13 and a sliding contact portion 29 for slidingly contacting the high-speed cam 21 on the high-speed rocker arm 14. Because of this, the frictional resistance between the low-speed cam and the mouth arm in the low-speed rotation range of the engine can be reduced, preventing a reduction in the valve opening time area in the high-speed rotation range and preventing output loss.
  • the low-speed logica arm 13 is integrally connected to the rocker shaft 11
  • the high-speed mouth picker arm 14 is rotatably supported by the rocker shaft 11
  • the locking device R is Shaft 1 1
  • the high-speed logica arm 14 can be recalled in the joined or disengaged state.
  • FIGS. 29 to 34 other embodiments of the engaging means R will be described with reference to FIGS. 29 to 34.
  • the engaging means R in FIGS. 29 to 31 is mounted on the same one as the high-speed cocker arm 14 of the valve train shown in FIG. 15, and the duplicated description is omitted here.
  • the engaging means R here also includes a connecting pin 31.
  • the connecting pin 31 is controlled to rotate by the driving means D shown in FIG. 6, whereby the rocking shaft 11 and the high-speed logic arm 14 are connected. Are configured to be switchable to the joined or detached state.
  • the connecting pin 31 is mounted in a through hole 32 formed in the logic lock shaft 11 along a direction perpendicular to the axis of the rocker shaft 11.
  • the through hole 32 is formed in a state perpendicular to the oil passage 33.
  • the through hole 32 has a large-diameter portion 34 on one open end side and a small-diameter portion 35 on the other open end side, and a step portion 36 is formed in the middle. ing.
  • the large diameter portion 3 4 of the through hole 32 communicates with the oil passage 33.
  • the connecting pin 31 is formed with a large-diameter flange 38 at one end of a substantially round rod-shaped shaft 37.
  • the shaft portion 37 of the connecting pin 31 is slidably inserted into the small diameter portion 35 of the through hole 32, and the flange portion 38 is formed of the large diameter portion 3 of the through hole 32. It is slidably inserted in 4.
  • a rounded protruding surface (a protruding surface) 37 a is formed at the other end of the shaft portion 37 of the connecting pin 31.
  • a protruding spherical surface 38a having substantially the same shape as the sliding contact surface of the high speed mouth arm 14 with the mouth shaft 11 is formed.
  • the rotating surface 14 c of the high-speed mouth arm 14, which is in sliding contact with the rocker shaft 11, has a shaft portion 37 of the connecting pin 31 at a position corresponding to the small diameter portion 35 of the through hole 32.
  • Engagement 62 into which the tip is removably inserted is formed.
  • the large diameter portion 34 of the through hole 32 is formed by a coil spring disposed between the step portion 36 of the through hole 32 and the flange portion 38 of the connecting pin 31.
  • Return spring (biasing member) 403 is inserted. Normally, the connecting pin 31 is held by the spring force of the return spring 43 so that the protruding spherical surface 38 a of the flange 38 is pressed against the rotating surface 14 c of the high-speed logic arm 14.
  • the pressure oil of the oil passage 33 is connected to a pair of connecting portions of the logica shaft 11 and the poor passage 6 and the oil passage 33 as shown in FIGS. 3 1 projectingly bent surface 3 8 oil passage 4 4 leading to a side, C 4 5 are formed.
  • Each of these oil passages 44 and 45 is formed by a circular hole having a diameter D substantially parallel to the connecting pin 31.
  • the oil passage 33 communicates with a supply oil passage 59 of a hydraulic means P similar to that shown in FIG.
  • the switching valve 63 is kept closed.
  • the protruding spherical surface 38 a of the flange 38 of the connecting pin 31 is reduced in speed. It is pressed against the rotating surface 14 c of the mouth arm 514, and the tip of the shaft 37 of the connecting pin 31 is held in a state of being immersed in the small diameter portion 35 of the through hole 32. Therefore, in this state, the high-speed mouth hooker arm 14 is held in a disconnected state with respect to the logic lock shaft 11, and the high-speed cam 21 swings the high-speed mouth hooker arm 14 around the logica shaft 11. Driven
  • the high-speed logic arm 14 operates independently of the rocker shaft 11, and the low-speed mouth arm 13 and the high-speed mouth arm 14 operate independently. Therefore, in this case, the operation of the high-speed rocker arm 14 is not transmitted to the valves 16a and 16b, and the valve 16 is operated according to the operation of the low-speed rocker arm 13 driven by the low-speed cam 20.
  • the switching valve 63 is switched to the open state.
  • pressurized oil is supplied into oil passage 33 of logicka shaft 11. This pressurized oil flows from the oil passage 33 to the large diameter portion 34 of the through hole 32.
  • the oil After being guided to 20 , the oil passes through the oil passages 44, 45 and is supplied to the protruding spherical surface 38a of the flange 38.
  • the pressure oil acts in the direction of pressing the connection pin 31 upward in FIGS. 29 and 30 due to the difference in the pressure receiving area on the front and back surfaces of the flange portion 38 of the connection pin 31. .
  • the small diameter section 3 5 of the through hole 6 3 2 At the point when the engagement 6 4 2 of 14 is matched, the connecting pin 3 1 stakes in the spring force of the return spring 4 3 and moves upward in Figs. 29 and 30. As shown in FIGS.
  • the high-speed rocker arm 14 is held in a state of being engaged with the rocking shaft 11, and in this case, the low-speed logic arm 13 and the high-speed mouth arm 14 are integrated.
  • the operation of the high-speed logic arm 14 driven by the high-speed cam 21 is transmitted to the valves 16a and 16b via the low-speed mouth arm 13 so that the valves 16a and 16b are operated. It is opened and closed. That is, the valves 16a and 16b are opened and closed by the rotation of the high speed cam 21.
  • a pair of connecting portions with the oil passage 33 of the through hole 32 of the logic shaft 11 is formed substantially parallel to the connecting pin 31 so that the pressure oil in the oil passage 33 can be protruded by the connecting pin 31. Since the oil passages 44 and 45 for guiding smoothly to the curved surface 38a side are provided, around the shaft portion 37 of the connecting pin 31 FIG. 41 (a), (b) and FIG. It is not necessary to form a ring-shaped oil groove 57 as shown in FIGS.) And (b), and it is not necessary to form a notch p in the flange 38 as shown in FIGS. The connecting pin 31 shown in FIGS.
  • the notch P was able to secure a relatively large oil passage between the oil passage 33 and the oil chamber r.
  • the notch P is easily narrowed by the spring 43, and a sufficient oil passage cross-sectional area cannot be secured. Had not been.
  • the engagement means R shown in FIGS. 29 to 31 has a greater connection than the case where a ring-shaped oil groove 57 is formed around the shaft portion 37 of the connection pin 31. The strength of the pin 31 can be increased.
  • a protruding spherical surface 38a having the same diameter as the sliding contact surface (rotation surface 14c) of the high-speed rocker arm 14 with the mouth cap shaft 11 is formed on the end surface of the flange portion 38 of the connecting pin 31. Therefore, as shown in FIG. 30, a wedge-shaped oil is provided between the end face (projecting spherical surface 38 a) of the flange portion 38 of the connecting pin 31 and the rotating surface 14 c of the high-speed logica arm 14.
  • a chamber r can be formed.
  • the switching valve S3 is switched from the closed state to the open state with an increase in the engine speed,
  • the oil chamber r between the end surface (projecting spherical surface 38a) of the flange 38 of the connecting pin 31 and the rotating surface of the high-speed cocker arm 14 is formed.
  • This hydraulic pressure can be applied quickly. Therefore, the response of the hydraulic pressure is improved, and the switching operation of switching between the low-speed mouth arm 13 and the high-speed rocker arm 14 between the connected state and the disconnected state is to be facilitated. Can be.
  • the flange 38 of the connecting pin 31 is formed to have a larger diameter than the engaging portion 42 of the high-speed picker arm 14, the high-speed logica arm is connected to the rocker shaft 11 in the low-speed rotation range of the engine. Even when the flange 38 of the connecting pin 31 reaches the position of the engagement hole 42 of the high-speed opening hook arm 14 when the arm operates independently, the flange 38 is still in contact with the high-speed opening hook arm. There is an advantage that it does not enter the engagement hole 42 of 14.
  • the short surface of the flange 38 is formed by a protruding spherical surface 38a having substantially the same diameter as the sliding contact surface (rotation surface 14a) of the high-speed mouth arm 14 with the rocker shaft 11.
  • a pair of oil passages 44a, 44b, 45a, 5b may be provided to increase the oil passage area by adding the number of oil passages 44 and 45.
  • the present invention may be applied to a two-valve engine in which a pair of intake valves and an exhaust valve are disposed in the same cylinder.
  • valve train shown in FIGS. 18 and 19 is configured based on such preconditions.
  • the second urging means 5 see reference numeral 75 in FIG. 36
  • the clearance Cr is provided between the low-speed cam 20 and the low-speed mouth arm 13. Is secured.
  • the other high-speed logic arm 14 is pressed and urged toward the rear speed 21 by a spring-type lift mechanism 23 as first urging means.
  • the clearance Cr between the high-speed cam 21 and the high-speed cam 21 has been eliminated.
  • the clearance Cr between the low speed cam 20 and the low speed arm 13 can absorb the thermal expansion of the intake and exhaust valves 16a and 16b.
  • the intake and exhaust valves 1 6 a in a state where l S b is in contact with the low-speed rocker arm 1 3 by its own weight, engaging means R is engaged i: mouth in place Setsuri the case, the low-speed port Kkaamu 1 3 side If the lock shaft 11 and the high-speed rocker arm 14 are set to be fixed, the following problems will occur.
  • a coil spring 75 as a second urging means is mounted on the low-speed mouth picker arm 13. Therefore, the low-speed rocker arm 13 The air intake / exhaust valves 16a and 16b are opposed to each other via the clearance Cr by the bus 75.
  • the engagement means R is switched to the engaged state in this state, and the rocker shaft 11 on the low-speed mouth arm 13 and the high-speed mouth arm 14 are fixed. Even when the means R is switched to the engaged state, the thermal expansion of the valve can be absorbed, and furthermore, the center deviation between the later-described engaging hole and the through hole can be prevented.
  • the first urging means S 1 here is fixedly attached to the cylinder head 7 1 side, and is mounted so as to be able to protrude and retract inside the fixed cylinder 26.
  • a movable cylindrical body 27 that abuts against the cylinder body;
  • a compression spring 73 as a second urging member having a relatively large panel constant interposed between the two cylindrical bodies 26 and 27;
  • a rocker shaft as a first urging member having a relatively weak panel constant, which is interposed between the high-speed cam 14 and the low-speed arm 21 abuts against the high-speed cam 21. It consists of four.
  • One end of the resilient spring 74 is locked to the rocker shaft 11, and the other end is engaged with the low-speed porter arm 14, and is formed in a coil shape. For this reason, when the compression spring 73 reaches the free length, the high speed mouth armer 14 can be further rotated toward the high speed cam 21 by the clearance Cr 1.
  • the panel constant of the second stage of the first biasing means S1 is set relatively small. Therefore, even if the rain center line between the connecting pin 31 and the engaging hole 42 is shifted, even if the squirrel is gripped by the high-speed mouth picker arm 14, the high-speed mouth picker arm 14: Only a relatively weak rotational moment due to the thrust spring 74 works. As a result, the connecting pin 31 receiving the propulsion force by the hydraulic pressure can relatively smoothly correct the interference between the connecting pin 31 and a part of the engaging hole 42 and rush into the engaging pin 42, and The reliability of joint operation is improved.
  • the valve train shown in FIGS. 35 to 37 described above is particularly designed so that the high-speed mouth picker arm 14 and the rocker shaft 11 are engaged or disengaged by the engagement means R.
  • the first urging means S 1 is provided between the high-speed mouth arm 14 and the mouth shaft 11.
  • valve train according to the present invention can be effectively used for other OHC engines for automobiles, and is particularly used for automobile engines in which the operating conditions such as the engine speed are wide and are constantly changing. In that case, the effect can be fully exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

明 細 書
動弁装置
技術分野
この発明は、 エンジンの髙速カムおよ.び低速カムの回転を選択的 に給排気バルブに伝達し、 給排気バルブの開閉タイミングやリフ ト 量を選択切換えできるようにし、 これにより、 エンジンが低速運転 域および髙速運転域でそれぞれ良好な出力特性を発揮できるように した動弁装置に関し、 特に、 高低速カムと給排気バルブの間にロッ 力アームとロッカシャフトおよびこれらの係合または離脱を行う係 合手段を配設した動弁装置に関する。 背景技術
従来、 自動車用 O H C (オーバ一ベッ ドカムシャフ ト) 式ェンジ ン等の給排気用バルブはクランクシャフ卜の回転を動弁装置を介し て受けることによって開閉駆動されている。
ところで、 動弁装置は、 単に、 給排気用バルブを所定の開閉タイ ミングで所定のリフト量で開閉させるに留まらず、 この開閉タイミ ングゃリフ卜量を可変とし、 各値を選択できるようにしたものがあ る。 このようにバルブ駆動モード選択機構の付加された動弁装置は 給排気弁のオーバ一ラップ等を運転条件に応じて最適な状態に制御 でき、 常に、 的確な出力を得ることができる。
すなわち、 低速回転域のカムプロフィールが形成された低速カム と、 高速回転域のカムプロフィールが形成された高速カムとがカム シャフ ト上に装着され、 エンジンの低速回転域では低速カム、 ェン ジンの高速回転域では高速カムによってバルブの開閉タイミングを それぞれ制御するようにしたものが知られている。
例えば、 第 3 8〜4 0図はかかる高速カムと低速カムとの選択機 構を示すものである。
5 第 3 8図に示すように、 この機構では、 カム 1 0 2, 1 0 3 , 1 0 2, と被駆動体としてのバルブ 1 0 1, 1 0 1との間に、 アーム 部材としてのロッカーアーム 1 04, 1 0 5 , 1 04, が介装され ている。
ここで、 カム 1 0 2, 1 0 2, は低速カムとして、 カム 1 0 3は 10 高速カムとしてそれぞれ形成され、 ロジカアーム 1 04 , 1 04, がカム 1 0 2 , 1 0 2, により駆動される低速ロッカアームとして、 ロジカァ一厶 1 0 5がカム 1 0 3により駆動される髙速口ッカァ一 ムとしてそれぞれ構成されている。
ロッカアーム 1 04, 1 0 5 , 1 04 ' は、 ロッカシャフト 1 0 :' 6に枢支されており、 カム 1 0 2, 1 0 3, 1 0 2, のカムリフト によリロッカシャフト 1 0 6を中心とする揺動を行うようになって いる。
そして、 低速ロッカアーム 1 04 , 1 04, と高速ロッカアーム 1 0 5とが、 ピストン 1 0 7, 1 0 8およびストッパー 1 0 9によ 20 リ、 係合または離脱されるように構成されている。
つまり、 第 3 9國、 第 4 0図に示すように、 ピストン 1 0 7, 1 0 8およぴストッパー 1 0 9は、 この順に直列に接触しながら口ッ 力アーム 1 04, 1 0 5, 1 04, に同軸上に位置するように形成 されたシリンダ 1 04 a, 1 0 5 a , 1 04, a内に収鈉されるよ うになつておリ、 ロッカシャ フ ト 1 0 6およびロジカアーム 1 04 ' 内に形成された油通路 1 0 6 a, 1 04, bからシリンダ 1 04 a, 内の端部の空間に油を供耠することにより、 ピストン 1 0 7, 1 0 8およびストジパー 1 09を前進驄動して、 低速口ッカアーム 1 0 4, 1 04, と高速ロッカアーム 1 05とを結合し、 油を排出する ことによりリターンスプリング 1 1 0の作用でピストン 1 0 7, 1 0 8およびストッパー 1 0 9を後退させて, 低速ロッカアーム 1 0 4, 1 04 ' と髙速口ッカアーム 1 0 5との結合を解除するように なっている。
なお、 符号 1 1 1はロッカアーム 1 05を上方に付勢する手段と してのリターンスプリングである。
このような構成により、 低速運転時には、 第 3 9図に示すように、 シリンダ 1 04, a内の端部の空間から油を排出することで、 ビス トン 1 0 7 , 1 0 8およぴストッパー 1 09がリターンスプリング 1 1 0により図中右方へ駆動され、 ピストン 1 0 7がロッカアーム 1 04, 内に、 ピストン 1 08がロッ力アーム 1 0 3内に、 ス卜ッ パ一 1 0 9がロッカアーム 1 04内にそれぞれ移動した状態になつ て、 髙速口ッカアーム 1 0 5と低速ロッカアーム 1 04, 1 04, とが相互に切り離される。
これにより、 低速カム 1 0 2のカムプロフィルが有効になる。
一方、 高速蓮転時に 、 第 4 0図に示すように、 シリンダ 1 04 a ' 内の端部の空間に油が供飴され、 ピストン 1 0 7, 1 08およ びストッパー 1 0 9が油圧によリ図中左方へ駆動される。
これによりピストン 1 0 7 , 1 0 8が低速ロッカアーム 1 04, 104, と高速ロジカアーム 105とをそれぞれ連結した状態にな る。
そして、 高速カム 103のカムリフ トは低速カム 102, 102, のカムリフトよリ大きいため (第 10図参照) 、 低速カム 102, 102, は空振り状態になって、 髙速カム 103による運転が行わ れる。
さて、 本発明によって解決しょうとする第 1の課題とは以下の如 きものである。
すなわち、 ロッカアーム 104, 104, , 105の連結時には、 ピストン 107がピストン 108を押し、 ピストン 108がストツ パ一 109を押すという 2段階の作動が必要である。 この際、 ビス 卜ン 107の先端の周緣部がロッカアーム 105に衝突したり、 弹 き返されたリ、 ピストン 108の先端周縁部がロジカアーム 104 に弾き返されたりする。
また、 ピストン 108が弾き返されると、 その反動でピストン 1
07も戻され、 もう一度トライすることになる。
これは、 被駆動体に往復動を行わせるアーム部材を相互に連結す るため発生する不具合であり、 ロッカアーム 104, 104, , 1
05の連結がスムーズに行えず、 更に、 ピストン 107, 108の 先端等は摩耗しやすい。
加えて、 上述の連結機構は、 揺動端側に装備されているため、 動 弁系、 重量が大きくなると共に、 ローラベアリングの採用も不可能 であった。
次に、 第 1の課題を解決すべく、 低速ロッカアームによってバル ブを開閉させ、 この低速ロッカアームに並設される高速口ッカァ一 ムあるいは低速ロッカアームの一方とロッカシャフトとの間に、 両 者間を係合または離脱の状態にスムーズに切換える係合手段が設け られるような構成が採られたとする。 この場合において、 低速およ び高速の各カムは低速および高速の各口ッカアームのそれぞれの摺 接部に摺接しており、 ここでの摩擦抵抗が比較的高く、 これが出力 ロスを招き、 問題と成っていた。 しかも、 アイドリング運転状態で 高速カムと高速ロッカアームの摺接部との間でピッチング摩耗が発 生する恐れが有り、 口ッカアームの摺接部に高価なチップ素材を採 用する必要が有り、 問題と成っていた。
更に、 第 1の課題を解決すべく、 上述の係合手段が設けられ、 こ の係合手段が睇動手段によって駆動されるプランジャを備えた構成 を採るものとする。 この場合において、 プランジャ自体の耐久性を 確保すると共にこのプランジャによるロッカシャフトとロッカァ一 ムとの係合または離脱への切換作動が応答性良くスムーズに行われ るような構成を採ることが望まれている。
従って, 本発明の目的は、 第 1に、 高速ロジカアームあるいは低 速口ッカアームの一方と口ッカシャフ卜との間の係合または離脱の 切換が、 スムーズに行われる動弁装置を提供することであり、 第 2 に、 低速および高速の各カムと低速および高速の各ロジカアームの 間での摩擦抵抗による出力ロスを低減できる動弁装置を提供するこ とであり、 第 3に、 係合手段各部の耐久性を向上させることのでき る動弁装置を提供することであり、 第 4に、 係合手段を成すプラン ジャによるロッカシャフトとロッカアームとの間の係合または離脱 の切換がよリ的確に行われる動弁装置を提供することにある。 発明の開示
本発明による第 1の動弁装置は、 低速カムと高速カムが装着され ているカムシャフ トと、 カムシャフ トに瞵接されるロッカシャフ ト と、 ロッカシャフトに固定されてバルブを駆動する低速口ッカァ一 ムと、 低速ロッカアームに並設され、 πッカシャフ トに回転可能に 支持される高速ロジカアームと、 ロッカシャフトと高速ロッカァ一 ムとの係合または雜脱を行う係合手段と、 係合手段をエンジン運転 状態に応じて作動させる駆動手段とで構成されている。
第 2の動弁装置は、 低速カムと髙速カムが装着されている力ムシ ャフトと、 カムシャフ トに隣接されるロジカシャフトと、 口ッカシ ャフトに固定されて口ッカシャフト中心に回勖する高速ロジカァ一 ムと、 高速ロッカアームに並設され、 ロッカシャフ トに回転可能に 支持され、 バルブを藤勖する低速口ッカアームとの係合または離脱 を行う係合手段と、 係合手段をエンジン運転状態に応じて作動させ る踩動手段とで構成されている。
第 1および第 2の動弁装置における係合手段は、 高速あるいは低 速口ッカアームの回転面に形成された係合穴と、 ロッカシャフト内 にその軸方向と垂直方向に形成された貫通六と、 貫通穴内に収容さ れたプランジャと、 プランジャ後端部と高速あるいは低速口ッカァ ームの回転面間に設けられた油室とを備えるように構成されても良 い。
第 1および第 2の動弁装置の駆動手段は、 ロッカシャフ卜内に形 成された油通路と、 油通路より係合手段に油圧を供耠し、 ロジカシ ャフ卜と高速あるいは低速ロッカアームとの係合または離脱を行わ せる油圧手段とを備えるように構成されても良い。
このように本発明による動弁装置は、 ロッカシャフ卜と高速ある δ いは低速口ッカームとの間を係合手段によって係合または離脱させ るので、 係合または離脱がスムーズとなる。
特に、 係合手段がロッカシャフト内に収容されたプランジャを備 え、 これがロッカアームの回転面に設けられた係合穴に係合又は離 脱するという構成を採ると、 係合竽段の耐久性を改善でき、 その係 Η 合または離脱作動がよリスムーズとなる。 他方、 駆動手段が、 油通 路と油圧手段との儺きでロッカシャフ卜とロジカアームとの係合ま たは雜脱を行わせるという構成を採ると、 装置の簡素化を図れる。 更に、 第 1および第 2の動弁装置における各係合手段は、 -一端部 に鍀部が形成されたプランジャと、 鍔部とロジカシャフ ト間に介装 されたプランジャを収容位置側に付勢する付勢部材とを備えるよう に構成されても良い。 あるいは各係合手段は、 係合六より大きな大 径部が設けられた貫通穴と、 一端部に鍔部が形成されたプランジャ と、 プランジャを収容位置に付勢するスプリンとを備え、 特に、 プ ランジャの鍔部が大径部に沿って摺動可能で、 その大径部側端面に 突部が形成されるように構成されても良い。 この場合、 ロッカァ一 ム側の構造を簡素化でき、 特に、 係合穴に大径部が突入することを 防げ、 大径部側端面の突部が口ッカアームの回転面にスムーズに摺 接できる。
あるいは、 第 1および第 2の動弁装置における低速および高速の 各ロッカアームは、 各カムと接する転動ローラを備えるように構成 されても良い。 この場合、 各カムと各ロッカアームの摩擦抵抗を低 減でき、 出力ロスを抑えることができる。
あるいは、 第 1および第 2の勖弁装置における髙速口ッカアーム : は高速カムと接する転動ローラを備え、 低速ロッカアームは低速力 ムと接触する摺接部を備えるように構成しても良い。 この場合、 低 回転域での各カムと各口ッカアームの摩擦抵抗を低減でき、 高回転 域での開弁時間面積の低下を防げ、 出力ロスを抑えることができる。
10 図面の簡単な説明
第 1図は本発明の第 1実施例としての動弁装置の要部断面図 (第 2図の I一 I矢視断面図) 。
第 2図は第 1図の勖弁装置の Π— Π矢視断面図。
第 3図は第 2図の ΠΙ— ΉΙ矢視断面図。
第 4図 (a ) は係合手段の未固定状態を示す要部縦断面図。
第 4図 (b ) は第 4図 (a ) の W b— IV b矢視断面図。
第 5図 (a ) はその係合手段の固定状態を示す要部縦断面図。 第 5図 (b ) は第 5図 (a ) V b— V b矢視靳面図。
第 6図は第 1図の動弁装置で用いられる駆動手段の概略構成図。
20 第 7図は第 6図の驄動手段で用いられる切換弁の拡大断面図。
第 8図は第 1図の勖弁装置で用いられる駆動手段の制御プログラ ムのフローチヤ一卜。
第 9図は第 1図の動弁装置内の駆動手段が用いるエンジン運転域 算出マップ。 第 1 0図はそのカムプロフィルを示す特性線図。
第 1 1図乃至第 1 4図はそれぞれ異なる本発明の他の実施例とし ての動弁装置の一部を破断した模式的平面図。
第 1 5図は本発明の他の実施例としての動弁装置の要部概略構成 図。
第 1 6図は第 1 5図の動弁装置の低速および髙速口ッカアームの 取付状態を示す縦断面図。
第 1 7図は第 1 6図の A— A線断面図。
第 1 8図は第 1 6図の B— B線斬面図。
第 1 9図は第 1 6図の C一 C線断面図。
第 2 0図は連結ピンの斜視図。
第 2 1図は第 1 9図の髙速口ッカアームをロッカシャフ卜に対し て回動させた状態の要部縦断面図。
第 2 2図は高速ロッカアームとロッカシャフ 卜との連結状態を示 す縦断面図。
第 2 3図は高速ロジカアームと口ッカシャフ 卜との連結状態を示 す横断面図。
第 2 4図は動弁系踩動トルクとエンジン回転数との関係を示す特 性図。
第 2 5図はエンジンプリクションとエンジン回転数との関係を示 す特性図。
第 2 6図はエンジン全開トルクとエンジン回転数との関係を示す 特性図。
第 2 7図はバルブリフ卜動作時の動作特性を示す特性図。 第 2 8図はカムの凹み曲面部分の製造状態を示す概略構成図。 第 2 9図は本発明の他の実施例としての動弁装置の連結ピンの装 着状態を示す縦断面図。
第 3 0図は第 2 9図の D— D線断面図。
第 3 1図は第 3 0図の矢視 E方向から見た部分切欠平面図。 第 3 2図は本発明の他の実施例としての動弁装置の髙速口ッカァ ームとロジカシャフ 卜との連結状態を示す縦断面図。
第 3 3図は第 3 2図の F— F線断面図。
第 3 4図は本発明の他の実施例としての動弁装置の要部切欠平面 図。
第 3 5図は本発明の他の実施例としての動弁装置の髙速口ッカァ 一ムの縦断面図。
第 3 6図は第 3 5図の動弁装置の高速および低速口ッカアームの 取付状態を示す平面図。
第 3 7図は第 3 5図の動弁装置の高速および低速ロッカアームの 取付状態を示す側面図。
第 3 8図は従来の動弁装置の概略構成を示す模式的斜視図。 第 3 9図および第 4 0図は何れも第 3 8図の従来の動弁装置の作 動を示す模式図である。
第 4 1図は従来の係合手段の作動説明図。
第 4 2図は第 2 9図乃至第 3 1図の係.合手段に先がけて提案され た係合手段の要部縦断面図。
第 4 3図は第 4 2図の G— G線断面図。
第 4 4図は第 4 2図中の連結ピンの鍔部の正面図。 発明を実施するための最良の形態
以下、 この発明の第 1実施例としての動弁装置を第 1図乃至第 8 図を参照して説明する。
この動弁装置は、 自動車用 O H C (オーバ一ヘッドカムシャフ ト) 式エンジン等の給排気用バルブを開閉すべく設けられている。 ここ でのエンジンは、 図示しない複数の気筒に吸気バルブおよび排気バ ルブがそれぞれ配設された 2弁式である。 このエンジンのクランク シャフトに連動して回転するカムシャフト (図示省略) には、 第 1 図乃至第 3図に示すように、 低速運転用のカムプロフィルを備えた 低速カム 2 0と、 高速運転用のカムプロフィルを備えた髙速カム 2 1とが並列に配設されている。
なお、 低速運転用および高速運転用の各カムプロフィルの特性は、 第 1 0図に曲線 3 a, 3 bで示すようになつている。
一方、 カムシャフト 2 2と並行に配設された口ッカシャフト 1 1 には、 低速カム 2 0に駆動される低速ロッカアーム 1 3と高速カム 2 1に駆動される高速口ッカアーム 1 4とが並列に配設されている。 低速口ッカアーム 1 3は、 ロッカシャフト 1 1に対して自由に回 転し得るように枢着されているが、 係合手段 Rによって口ッカシャ ブ ト 1 1と一体回転し得るようにも成っている。
また、 低速ロッカアーム 1 3のアーム部分には、 ローラべアリン グ 1 7を装着されたシャフ ト 1 9が備えられており、 このローラべ ァリング 1 7の上部が低速カム 2 0に係合している。 つまり、 低速 ロッカアーム 1 3は、 ローラベアリング 1 7およびシャフト 1 9を 介して、 低速カム 2 0から駆動力を受けるようになつている。 低速ロジカアーム 1 3の先端部には、 適当に位置調整されて、 ナ ット 8により固定されたアジャストスクリュー 7が装着されておリ、 このアジャストスクリュー 7の下端面には、 吸気あるいは排気バル ブ 16 a ( 16 b ) のバルブステム上端が係合している。 このバル 5 ブステム上端は、 バルブスプリング 2により第 1図中斜め上方へ付 勢されている。
従って、 低速カム 2 0の回転によって、 低速ロッカアーム 1 3の 先端部が第 1図中の上下方向に揺動され、 アジャストスクリユー 7 を通じて、 バルブ 1 6 a (1 6 b ) が上下に駆動されるようになつ 10 ている。
一方、 髙速口ッカアーム 14のアーム部分には、 ローラべアリン グ 53を装着されたシャフト 54が備えられており、 この口一ラベ ァリング 53の上部が、 高速カム 2 1に係合している。 つまり、 高 速ロジカアーム 14は、 ローラベアリング 5 3およびシャフ ト 54 を介して高速カム 2 1から駆動力を受けるようになつている。
この高速口ッカアーム 14もロジカシャフト 1 1に枢支されてい るが、 雨者間に介装された半月型キー 52によって、 高速口ッカァ —ム 14がロジカシャフ ト 1 1と常に一体回転するように固定され ている。
2C また、 高速ロッカアーム 14の揺動端側下端面 (つまり、 ローラ ベアリング 53) は、 第 1付勢手段としての支持ばね 56付きのピ ストン 55を介しシリンダヘッド 7 1に支承されており、 支持ばね 56の付勢力が高速ロジカアーム 14の揺動時の復帰力として作用 するようになつている。 従って、 高速カム 2 1が回転すると、 髙速ロジカアーム 1 4の揺 動と同時に、 常にロッカシャフ ト 1 1が反復回転するように成って いる。
ところで、 前述の係合手段 Rは次のように構成されている。 5 第 4図 ( a ) , ( b ) および第 5図 ( a ) , ( b ) に示すように、 ロッカシャフ ト 1 1の低速口ッカアーム 1 3の枢支部に、 シャフ ト 1 1の半径方向に延在する貫通穴 3 2が形成されており、 この貫通 穴 3 2にプランジャとしての連結ピン 3 1が遊揷されている。
連結ピン 3 1は、 油圧手段 Pによリ、 ロッカシャフ ト 1 1から外 K 方突出可能になっており、 ロッカアーム 1 3のロッカシャフト 1 1 への枢支部内周の回転面 1 3 cには、 連結ピン 3 1の突出時にこの ピン 3 1が嵌合し得る係合穴 4 2が形成されている。
さらに、 連結ピン 3 1の中央部外周には油溝 5 7が形成され、 油 溝 5 7から連結ピン 3 1の後端へ連通する油路 4 1が連結ピン 3 1 1: の外周面から軸心部に設けられており、 油溝 5 7、 油路 4 1を介し て連結ピン 3 1の後端側へ供給されるように成っている。
また、 連結ピン 3 1の後端部外周には鍔部 3 8が形成され、 賞通 穴 3 2には鍔部 3 8が摺動する大径部 3 4と、 連結ピン 3 1上部が 摺動する小径部 3 5とが形成されている。
そして、 貫通六 3 2の小径部 3 5から大径部 3 4へ至る段部と連 結ピン 3 1の鍔部 3 8との間には、 付勢部材としてのスプリング 4 3が介装されており、 連結ピン 3 1を収容位置側である後端側へ付 勢している。
ところで、 第 1図の動弁装置の駆動手段 Dは、 第 6図に示すよう に、 ロッカシャフト 1 1の中央部にその軸心線に沿い延在する油通 路 3 3と、 その油通路 3 3を介して係合手段 Rに油圧を供給し、 係 合手段 Rを作動させてロッカシャフ 卜 1 1と低速口ッカアーム 1 3 との係合または離脱を行わせる油圧手段 Pとで構成されている。 δ ここで、 油圧手段 Ρは連結ピン 3 1後端側の油室 rと油通路 3 3 を連通させる油路 4 1と、 油通路 3 3に連通する供耠油路 5 9と、 供給油路 5 9に高圧油を供給する油圧ポンプ 5 8と、 供耠油路 5 9 に設けられた髙圧油を油通路 3 3側に供給したり、 遮断したりする 油圧制御機構 6 0と、 油圧制御機構 6 0と油圧ポンプ 5 8間の供給0 油路 5 9に設けられ、 油庄制御機構 6 0と油圧ポンプ 5 8間の供耠 油路 5 9内の油圧が所定庄以上と成った時に、 油圧を逃すリリーフ 弁 6 1とで構成されている。
油圧制御機構 6 0は、 油圧ポンプ 5 8からの高圧油を油通路 3 3 に供給する第 1位置と、 油圧ポンプ 5 8と油通路 3 3とを遮断し、 '- 油通路 3 3を低圧のオイルタンク 6 2に連通する第 2位置とに切り 換える切換弁 6 3と、 切換弁 6 3を駆動させ 2つの位置を選択的に 切換るゾレノイド 6 4と、 ソレノイド 6 4をエンジン回転と負荷に 応じて操作するコンピュータ 6 5と、 エンジン回転数情報をコンビ ユータ 6 5に出力するエンジン回転センサ 6 6と、 エンジン負荷情0 報をコンピュータ 6 5に出力する負荷センサ 6 7とで構成されてい る。
ここで、 切換弁 6 3およびソレノィド 6 4は第 7図に示すように 構成されている。 ここで、 ケ一シング 6 8の上部にはソレノイド 6 4が収容され、 下部にはスプリング 6 9に下方付勢された弁体 7 0 が摺動可能に配設されている。 弁体 7 0にはポンプポ一ト P Pと、 タンクポート t Pと、 操作ポート c Pとが対設される。 この切換弁 6 3のオフ時には、 操作ポ一ト c pとタンクポート t Pが連通し、 オン時には、 操作ポート c pとポンプポート p pが連通する。
コンピュータ 6 5はその書き込み専用メモリに、 第 8図に示すよ うな切換弁制御プログラムや、 第 9図に示すような運転域判定マッ プを備える。
このコンピュータ 6 5は切換弁制御処理のルーチンに達すると、 現在のエンジン回転数およびエンジン負荷を取リ込む。 その上で、 現在の運転域を判定する。 この場合、 エンジン回転が低回転側で、 かつ負荷側である低速カム運転域 e 1か、 あるいはエンジン回転が 髙回転側でかつ高負荷側である高速カム運転域 e 2か否かを、 所定 の運転域判定マップを用いて判定し、 選択的に、 s 3, s 4のステ ップを実行してリターンする。 即ち、 s 3のステップに進むと、 ソ レノイド 6 4をオフに切り換え、 連結ピン 3 1を第 4図 (a ) , ( b ) に示す収容位置に保持し、 給排気バルブを低速カム 2 0で駆 動する。 この場合、 鍔部 3 8の後端の突部面が低速ロッカアーム 1 3のロッカシャフ卜揷通孔の回転面 1 3 cに接合するか、 または極 めて接近する状態と成る。 この時、 連結ピン 3 1はその先端がロッ 力シャフ卜 1 1の外周面から内方へ引き込んだ状態と成って、 低速 ロッカアーム 1 3がロジカシャフ ト 1 1に固定されない状態と成る。 他方、 高速カム運転域 e 2では s 4のステップに進み、 ソレノィ ド 6 4をオンに切換え、 連結ピン 3 1を第 5図 ( a ) , ( b ) に示 す突出位置に保持し、 給排気バルブを高速カム 2 1で驄動する。 この場合、 油通路 3 3から油路 4 1を通り油室 rへ油圧が供給さ れ、 連結ピン 3 1における鍔部 3 8の先端側と後端側との受圧面積 の差による差圧に起因して連結ピン 3 1の駆動力が作用し、 この駆 動力がスプリング 4 3の付勢力を超えるようになって、 連結ピン 3 1は低速ロジカアーム 1 3の係合穴 4 2へ進入する。
なお、 低速口ッカアーム 1 3のロジカシャフト 1 1の軸方向位置 は一対のスナップリング 5 0 a, 5 0 bおよび、 スラストスプリン グ 5 1により位置規制が的確に成されている。 第 4図 (b ) に示す ように、 第 1スナップリング 5 0 aは、 低速ロッカアーム 1 3の一 側面と係合すると共に、 ロジカシャフ卜 1 1の外周面に係止され、 第 2スナップリング 5 0 bは、 低速ロッカアーム 1 3の他側面側と 間隙を介して配設され、 その間隙には圧縮状態のスラストスプリン グ 5 1が係合されている。
第 1の動弁装置の駆動手段は、 上述のように構成されているので、 エンジンが低速域において運転されている場合には、 ロジカシャフ ト 1 1における油通路 3 3に油圧が供耠されず、 第 4図 (a ) , ( b ) に示すように、 連結ピン 3 1はロジカシャフト 1 1から突出 しない状態とされる。
このため、 低速ロジカアーム 1 3はロッカシャフト 1 1に対して フリーの状態と成って、 ロッカシャフト 1 1の動きが低速口ッカァ 一ムには伝えられなくなり、 低速カム 2 0のカムリフトが、 ローラ ベアリング 1 7およびシャフト 1 9を介し、 低速ロジカアーム 1 3 に伝達されて、 低速ロッカアーム 1 3が低速カム 2 0のカムプロフ ィルに対応した揺動を行う。 この低速ロジカアーム 1 3の揺動により、 バルブ 1 6 a ( 1 6 b ) が駆動されるため、 このバルブは第 1 0図に示すような低速カム 2 0のカムプロフィルに対応した往復動を行う。
一方、 エンジンが高速域において運転される時は、 ロッカシャフ 5 ト 1 1における油通路 3 3に油圧が供給され、 第 5図 ( a ) , ( b ) に示すように、 連結ピン 3 1がロッカシャフ ト 1 1の外周から突出 し、 髙速口ッカアームの係合穴 4 2に進入し嵌合される。
これにより、 ロッカシャフ ト 1 1 と低速ロッカアーム 1 3とがー 体回転するように固定されるが、 ロジカシャフ ト 1 1は、 髙速口ッC 力アーム 14を通じて高速カム 2 1からの駆動力 (カムリフ ト) を 受けて、 この駆動力で駆動されるので、 低速ロッカアーム 1 3も、 高速カム 2 1のカムリフ 卜によって駆動されるようになる。
つまり、 髙速カム 2 1によリ髙速口ッカアーム 14が揺動され、 この揺動が口ッカシャフ ト 1 1の回転揺動を介し、 低速口ッカァ一 ム 1 3の揺動として伝達されるのである。
これは、 第 1 0図に示すように、 髙速カム 2 1のカムリフ トは低 速カム 2 0のカムリフ トよリ大きいためであリ、 髙速カム 2 1によ る低速ロジカアーム 1 3の揺動が低速カム 20による揺動に優先さ れ、 低速カム 2 0は空回りしながら、 低速口ッカアーム 1 3は高速 カムに対応した揺動を行い、 バルブ 1 6 a ( 1 6 b ) は髙速運転に 対応したタイミングで開閉が行われる。
そして、 第 1 1図乃至第 14図は、 第 1図の実施例の構造の変形 例を示しているが、 第 1 1図に示す変形例は、 低速ロッカアーム 1 3を二股形状にすることにより、 2個の吸気バルブ 1 6 aを同時に 開閉できるようにしたものである。
また、 第 1 2図に示す変形例では、 第 1 1図に示す構造について 係合手段 Rを低速口ッカアーム 1 3に代えて髙速口ッカアーム 1 4 のロジカシャフ ト 1 1への枢支部に設けるように変更したものであ る。 係合手段 Rの解除時には、 髙速口ッカアーム 1 4の動きが低速 ロッカアーム 1 3には伝えられず、 低速口ッカアーム 1 3が低速力 ム 2 0に応じて作動し、 係合手段 Rの固定時には口ッカシャフ ト 1 1は、 高速口ッカアーム 1 4の動きが低速ロッカアーム 1 3に伝え られて、 低速ロッカアーム 1 3が高速カム 2 1に応じて作動する。 これにより、 第 1 1図に示す構造と略同様に作動する。
そして、 第 1 3図に示す構造では、 2個の吸気用バルブ 1 6 aの それぞれにロッカアームを設け、 何れもロジカシャフ ト 1 1に固定 し、 第 1 2図に示すものと同様に髙速口ッカアーム 1 4と口ッカシ ャフ ト 1 1との間に係合手段 Rを設けたものであり、 第 1 2図に示 すものと同様に低速ロジカアーム 1 3が作動し、 2個の吸気用バル ブ 1 6 aが同時に開閉される。
さらに、 第 1 4図に示す構造では、 2個の吸気用バルブ 1 6 aの それぞれにロジカアーム 1 3を設け、 そのそれぞれに係合手段 Rを 設けたもので、 ロッカアーム 1 3毎に作動タイミングを設定するこ とができる。
このように、 第 1図あるいは第 1 1図乃至第 1 4図の各動弁装置 は, ロッカシャフ ト 1 1と髙速あるいは低速ロッカアーム 1 3, 1 4との間を係合手段 Rによって、 スムーズに係合又は雜脱させるこ とができ、 切換作動の信頼性が向上し、 しかも、 動弁系の重量増加 を抑えることができ、 鋭敏な応答性を保持できる。 更に、 駆動手段 D内の油圧手段 Pがエンジン回転数および負荷に応じて的確に連結 ピン 3 1を収容位置と突出位置に切換え制御できる。
第 1 5図には本発明の他の実施例としての動弁装置を示した。 δ ここでの動弁装置は、 複数の気筒に各一対の吸気バルブ 1 6 aが 配設された 4弁式エンジンに装着されている。
第 1 5図、 第 1 6図でのロッカシャフ ト 1 1は、 シリンダヘッド のロッカシャフ トジャーナル 7 2に回転自在に支持されている。 こ のロッカシャフ ト 1 1にも低速ロジカアーム 1 3、 髙速ロッカァ一 K ム 1 4が並設されている。 しかも、 同アームには, 高速ロジカァ一 ム 1 4を回転可能に支持する第 1のアーム支持部 1 1 aと、 低速口 ッカアーム 1 3を固定状態に支持する雄ねじ状の第 2のアーム支持 部 l i bとが設けられている。 そして、 髙速口ッカアーム 1 4は、 ロッカシャフ ト 1 1の第 1のアーム支持部 1 1 aに回転可能に取付 i " けられている。 また、 低速ロッカアーム 1 3は、 ロジカシャフト 1
1の第 2のアーム支持部 1 1 bに螺着状態で固定されている。 この 場合、 ロッカシャフ ト 1 1の第 2のアーム支持部 1 1 bには、 低速 ロッカアーム 1 3と共にロックナッ ト 1 5が螺着されており、 この ロックナツ卜 1 5によって、 低速ロジカアーム 1 3が回り止めされ C ている。 そして、 エンジン動作時には、 低速ロジカアーム 1 3は口 ッカシャフト 1 1と一体的に回動動作するようになっている。
さらに、 低速ロジカアーム 1 3の先端部は、 二股状に分岐されて いる。 そして、 この低速ロッカアーム 1 3の一対の先端分岐部 1 3 a , 1 3 bには、 同一気筒内に配設されるバルブ (吸気バルブ、 あ るいは排気バルブ) 1 6 a, 1 6 bのステムエンドがそれぞれ当て られている。 この場合、 バルブ 1 6 a, 1 6 bのステムエンドにお ける低速ロッカアーム 1 3との接合部位には、 バルブクリアランス 調整用のシム 1 6 cがそれぞれ装着されている。
5 また、 低速ロッカアーム 1 3の本体には転動ローラ 1 7取付用の 開口部 1 8が形成されている。 この開口部 1 8には、 転動ローラ 1 7がま軸 1 9を介して回転自在に取付けられている。 さらに、 この 低速ロジカアーム 1 3の上には、 第 1 8図に示すように低速カム 2 0が配設されている。 この低速カム 2 0は、 第 1 9図に示す高速力
1し' ム 2 1と共にカムシャフト 2 2上に装着されている。 そして、 この 低速カム 2 0によって、 低速口ッカアーム 1 3がロッカシャフ ト 1 1を中心に揺動駆動されるようになっている。
また、 高速口ッカアーム 1 4には、 ロッカシャフ ト 1 1を中心と して突設部 1 4 a, 1 4 bが形成されている。 そして、 この高速口 ッカアーム 1 4の一方の突設部 1 4 aには、 第 1 9図に示すように バルブの代りに、 この髙速口ッカアーム 1 4を支える第 1付勢手段 としてのスプリング式のリフト機構 2 3が当てられている。 このリ フト機構 2 3には、 シリンダへッドのカムジャーナル 2 5の取付け 穴 2 4内に揷入された有底円筒状の固定筒体 2 6が設けられている。
20 この筒体 2 6内には、 有底円筒状の可動筒体 2 7が突没可能に装着 されている。 この場合、 固定筒体 2 6と可動简体 2 7との間には、 可動筒体 2 7を固定筒体 2 6の外部側に突出させる方向に付勢する コイルばね 2 8が収容されている。 そして、 このコイルばね 2 8の 付勢力によって、 可動筒体 2 7の突出端部 2 7 aが髙速口ッカァ一 ム 1 4の一方の突設部 1 4 aに当てられる。
さらに、 高速ロッカアーム 1 4の他方の突設部 1 4 bには、 髙速 カム 2 1と摺接状態で接触する摺接部 2 9が設けられている。 そし て、 エンジン動作時には、 高速カム 2 1によって、 この高速ロッカ 5 アーム 1 4がロッカシャフ ト 1 1を中心に揺動铌動されるようにな つている。
また、 ロッカシャフ ト 1 1には、 高速ロジカアーム 1 4をこの口 ッカシャフ ト 1 1に係脱可能に係止して、 低速ロッカアーム 1 3と 高速ロッカアーム 1 4との間を係合または離脱状態に切リ換え操作C' する係合手段 Rが設けられている。 この係合手段 Rには、 第 2 0図 に示す連結ピン 3 1が設けられている。 この連結ピン 3 1はロッカ シャフ ト 1 1の軸心と直交する方向に沿って、 ロッカシャフ ト 1 1 に形成された貫通穴 3 2に装着されている。 ここで、 ロッカシャフ ト 1 1の軸心部には、 油通路 3 3が形成されているため、 貫通穴 3 " 2はこの油通路 3 3と直交状態で穿設されることとなる。 さらに、 莨通六 3 2には、 一方の開口端部側に大径部 3 4 , 他方の開口端部 側に小径部 3 5がそれぞれ形成されており、 その中間に段部 3 6が 形成されている。
また、 連結ピン 3 1には、 第 2 0図に示すように略丸棒状の軸部 3 7の一端部側に大径な鍔部 3 8が形成されている。 この場合、 連 結ピン 3 1の軸部 3 7は、 貫通穴 3 2の小径部 3 5内に摺動自在に 挿入されていると共に、 鍔部 3 8は貫通穴 3 2の大径部 3 4内に摺 動自在に揷入されている。 さらに、 この連結ピン 3 1の軸部 3 7の 他端部には、 口ッカシャフ卜の外周面の半径と略同径に丸められた 突球面 (突曲面) 3 7 aが形成されいる。 また、 鍔部 3 8の端面に は、 高速口ッカアーム 1 4におけるロッカシャフ 卜 1 1との摺接面 と略同径の突球面 (突曲面) 3 8 aが形成されている。 さらに、 こ の連結ピン 3 1には、 鍔部 3 8の突球面 3 8 aの先端に形成された 開口部 3 9と軸部 3 7の外周面に形成された一対の開口部 4 0 a, 4 0 bとの間を連通させる略 T字状の油路 4 1が形成されている。 この場合、 貫通穴 3 2の大径部 3 4は油通路 3 3と連通されている, そして、 油通路 3 3内の作動油は、 この連結ピン 3 1の開口部 4 0 a , 4 0 bから油路 4 1内を通り、 鍔部 3 8の突球面 3 8 aと対向 する油室 rに供給されるようになっている。
また、 髙速 Πッ力アーム 1 4における口ッカシャフト 1 1との摺 接面 (回転面) には、 貫通穴 3 2の小径部 3 5と対応する位置に、 連結ピン 3 1の軸部 3 7の先端部が装脱可能に揷入される係合穴 4 2が形成されている。 さらに、 貫通穴 3 2の大径部 3 4内には、 貫 通穴 3 2の段部 3 6と連結ピン 3 1の鍔部 3 8との間に配設された コイルばねによって形成されるリターンスプリング 4 3が揷入され ている。 そして、 通常、 連結ピン 3 1は、 このリターンスプリング 4 3のばね力によって鍔部 3 8の突球面 3 8 aを高速ロッカアーム 1 4の回転面に圧接させた状態で保持されている。 なお、 このよう に連結ピン 3 1の鍔部 3 8の突球面 3 8 aが高速口ッカアーム 1 4 の回転圧接された状態において、 連結ピン 3 1の軸部 3 7の先端部 が貫通穴 3 2の小径部 3 5内に没入されるように、 連結ピン 3 1の 長さ寸法が設定されている。
また、 油通路 3 3は第 6図に示したと同様の油圧手段 Pに連通さ れ、 同手段のコンピュータ 6 5によリ供給油圧を制御されている。 このため、 ここではその重複説明を略す。
次に、 第 1 5図の動弁装置の作動を説明する。
この場合も、 コンピュータ 6 5はエンジン運転域が比較的低い低 5 速回転域では、 切換弁 6 3をオフする。 このため、 係合手段 Rのリ ターンスプリング 4 3のばね力によって、 第 1 7図および第 1 9図 に示すように、 連結ピン 3 1の軸部 3 7の先端部が貫通穴 3 2に突 入された状態で保持される。 しかも、 高速カム 2 1によって高速口 ッカアーム 1 4がロッカシャフト 1 1を中心に揺動駆動された際に、 - 高速口ッカアーム 1 4はロッカシャフト 1 1とは独立に動作する。
従って、 髙速口ッカアーム 1 4の動作はバルブ 1 6 a, 1 6 b側に は伝達されず、 低速ロッカアーム 1 3の動作に従ってバルブ 1 6 a , 1 6 bが開閉駆動される。
また、 エンジンの回転数が上昇し、 高速回転域に達すると、 コン : ピュータ 6 5は切換弁 6 3をオンして高圧油を油通路 3 3、 油路 4 1を通して油室 rに供耠する。 これにより、 係合手段 Rは、 リタ一 ンスプリング 4 3のばね力に杭して連結ピン 3 1を突出位置に移動 させる。 すなわち、 第 2 1図および第 2 2図に示すように、 ロッカ シャフ 卜の貫通穴 3 2の小径部 3 5と髙速口ッカアーム 1 4の係合0 穴 4 2とが合致した時点で、 連結ピン 3 1はリターンスプリング 4 3のばね力に杭して、 連結ピン 3 1の軸部 3 7の先端部が係合穴 4 2に突入される。 このため、 この状態では、 髙速ロジカアーム 1 4 はロッカシャ フ ト 1 1に係合され、 低速および高速口ッカアーム 1 4, 1 3が実質的に一体化され、 高速カム 2 1によって駆動される 高速口ッカアーム 1 4の動作が、 低速 C1ッカアーム 1 3を介してバ ルブ 1 6 a, 1 6 bに伝達され、 髙速カム 2 1によってバルブ 1 6 a , 1 6 bが開閉作動される。
ここで、 第 1 5図乃至第 2 3図の動弁装置にあっては、 以下の効 5 果が得られる。 すなわち、 ロジカシャフ ト 1 1に軸心方向と直交す る方向に沿って貫通穴 3 2を形成し、 この貧通六 3 2内に係合手段 Rの連結ピン 3 1、 リターンスプリング 4 3および油室 r (莨通穴 3 2の大径部 3 4の回転面、 連結ピン 3 1の突球面 3 8 a、 および 髙速 αッカアーム 1 4の回転面 1 4 c間に形成される) を配置した
1 - ので、 高速ロジカアーム 1 4側に係合手段 Rの構成部品を装着する 必要がない。 そのため、 髙速ロジカアーム 1 4の構成を簡略化する ことができる。 この場合、 髙速口ッカアーム 1 4には髙速口ッカァ —ム 1 4におけるロッカシャフ ト 1 1との摺接面 (回転面) に、 連 結ピン 3 1の軸部 3 7の先端部が装脱可能に揷入される係合穴 4 2 を形成するだけで良いので、 その製作を容易化することができる さらに、 この係合穴 4 2は連結ピン 3 1の軸部 3 7の先端部を揷脱 可能に揷入できるものであれば良いので、 格別に精度を高める必要 が無く、 容易に加工することができる。
また、 係合手段 Rの連結ピン 3 1、 リターンスプリング 4 3を収
20 容する収容部を口ッカシャフト 1 1の莨通穴 3 2によって形成した ので、 ロッカシャフト 1 1内に止め穴を形成する場合に比べて口ッ 力シャフト 1 1の製作を容易化することができる。 この場合、 ロジ 力シャフ ト 1 1の莨通穴 3 2と連結ピン 3 1との間の摺動部を比較 的容易に研磨することができるので、 製作精度の向上を図ることが できる。
さらに、 髙速口ッカアーム 1 4の係合六 4 2内に連結ピン 3 1の 軸部 3 7の先端が挿入され、 髙速口ッカアーム 1 4がロッカシャフ ト 1 1に係合された状態で、 剪断力が作用する連結ピン 3 1の軸部 5 3 7の部分に格別に油圧通路等を成形する (中空にする) 必要が無 いので、 強度を高めることができる。 この場合、 貫通六 3 2の小径 部 3 5の長さがそのまま連結ピン 3 1をま持するピンガイド長さと 成り、 このピンガイド長さを比較的大きく採ることができるので、 がたつき低減して、 十分な支持強度を得ることができる。
0 さらに、 第 1 5図乃至第 2 3図の動弁装置にあっては、 次の効果 も得られる。
すなわち、 低速ロッカアーム 1 3に低速カム 2 0と接触する転動 ローラ 1 7を設けると共に、 髙速口ッカアーム 1 4に高速カム 2 1 と摺接状態で接触する摺接部 2 9を設け、 エンジンの低速回転域で ': は低速口ッカアーム 1 3の転動ローラ 1 7を低速カム 2 0のカム面 に沿って転動させる動作に伴いバルブ 1 6 a, 1 6 bの開閉タイミ ングを制御するようにしたので、 低速ロッカアーム 1 3にスリッパ 式の□ッカアームを採用した場合に比べて、 エンジンの低速回転域 における低速口ッカアーム 1 3と低速カム 2 0のカム面との間の摩 擦抵抗を約 1 0 %程度低減することができ、 動弁系の駆動トルクを 第 2 3図に示すように、 1 / 2〜1 3程度に低減することができ る。 本機構では、 エンジンの低速回転域においても、 髙速口ッカァ —ム 1 4がリフ ト機構 2 3の勅きにより高速カム 2 1に摺接してい る。 このため、 摺接部 2 9では常時フリクションが発生するが、 こ のフリクションはバルブスプリングによるフリクションに対して 1 / 5以下と小さいので、 問題ない。
なお、 第 2 4図はエンジン回転数に応じた動弁系駆動トルクの変 動状態を示すものである。 そして、 同図中で、 実線の特性曲線 Aは、 5 転動ローラ 1 7を備えた低速ロッカアーム 1 3を使用した場合の変 動特性、 一点缜線の特性曲線 Bはスリッパ式の口ッカアームを使用 した場合の変動特性をそれぞれ示すものである。
なお、 第 2 5図はエンジン回転数に応じたエンジンフリクション の変動状態、 第 2 6図はエンジン回転数に応じたエンジン全開トル 1 & クの変動状態をそれぞれ示すものである。 そして、 同図中で、 実線 の特性曲線 Aは、 転動ローラ 1 7を備えた低速ロッカアーム 1 3を 使用した場合の変動特性、 一点鎖線の特性曲線 Bは、 スリッパ式の 口ッカアームを使用した場合の変動特性をそれぞれ示すものである。 さらに、 動弁系の駆動トルクの低減効果によって、 エンジン全体 の摩擦抵抗を第 2 5図に示すように、 低速回転域では約 1 0 %程度 低減することができ、 それに伴い低速回転域 (約 4 5 0 0 r p m以 下程度) の全開トルクを第 2 6図に示すように、 約 1〜2 %程度向 上させることができる。
他方、 エンジンの高速回転域では、 髙速口ッカアーム 1 4の摺接 20 部 2 9を高速カム 2 1のカム面に沿って摺動させる動作に伴い、 バ ルブ 1 6 a, 1 6 bの開閉タイミングを制御するようにしたので、 高速回転域でも、 転動ローラ 1 7を備えた口ッカアームを使用した 場合のような高速回転域におけるバルブ 1 6 a , 1 6 b開放時の時 間面積の低下を防止して、 トルクの向上を図ることができる。 すなわち、 転動ローラ 1 7を備えたロッカアーム (低速ロジカァ ーム 1 3) を髙速カム 2 1に接触させたとする。 この場合には、 力 ム 2 1 との接触部位 (転動ローラ 1 7) の半径がスリッパ式口ッカ アーム 14のカム 2 1との接触部位 (摺接部) の半径よりも小さい 5 ので、 カム 2 1がベース円部分から山形のリフ ト部分に回転して、 バルブ 1 6 a , 1 6 bのリフ ト操作が開始された際に、 第 2 7図に 示すように、 バルブ 1 6 a, 1 6 bのリフト動作速度が遅くなる。 なお、 第 2 7図は、 転動ローラ 1 7を備えたロジカアームを使用し た場合のバルブ 1 6 a, 1 6 bのリフト動作特性 (同図中に点線の 1: 特性曲線 Cで示す) 、 およびバルブ 1 6 a, 1 6 bのリフト動作時 の加速度特性 (同図中に点線の特性曲線: Dで示す) と、 スリッパ式 口ッカアーム 14を使用した場合のバルブ 1 6 a , 1 6 bのリフト 動作特性 (同図中に実線の特性曲線 Eで示す) 、 およびバルブ 1 6 a , 1 6 bのリフ卜動作時の加速度特性 (同図中に実線の特性曲線 I: Fで示す) とをそれぞれ示すものである。 そして、 この第 2 7図か らも明らかなように、 転動ローラ 1 7を備えたロッカアームを使用 した場合には、 バルブ 1 6 a, 1 6 bのリフ ト動作の初期時おょぴ 終了時の正加速度区間(特性曲線 D) が、 スリッパ式ロッカアーム 14 (特性曲線 F) に比べて長くなるので、 リフ ト動作速度が遅く 0 なり、 髙速回耘域におけるエンジン性能が低下する。
なお、 転動ローラ 1 7を備えたロジカアームを使用して、 スリツ パ式ロジカアーム 14と同一のリフトカーブ (特性曲線) を得よう とする場合には、 第 28図に示すようにカム 2 1のべ一ス円部分 2 l aと山形のリフト部分 2 1 bとの間に形成される凹み曲面部分 2 1 cを小さくする必要がある。
ところで、 この凹み曲面部分 2 1 cはカム 2 1の製作時に、 砥石 によって研磨加工されるようになっているので、 凹み曲面部分 2 1 cは砥石 4 4の半径凹 Rによって制限を受ける。 この場合、 砥石 4 4の半径凹 Rを小さくすると、 砥石 4 4の外周面の長さが短くなり、 砥石 4 4の減りが早くなるので、 生産性の悪化を招く。 その為、 転 動ローラ 1 7を備えたロジカアームを使用した場合には、 砥石 4 4 の半径凹 Rを所定値以上小さくできないので、 スリッパ式口ッカァ ーム 1 4と同一のリフトカーブ (特性曲線) を得ることができず、 バルブ 1 6 a , 1 6 bのリフト動作の初期時および終了時の正加速 度区間 (特性曲線 D ) が、 スリッパ式ロッカアーム 1 4 (特性曲線 F ) に比べて長くなることになる。 従って、 高速回転域では、 スリ ッパ式ロジカアーム 1 4を使用することにより、 転動ローラ 1 7を 備えた口ッカアームを使用した場合に比べて、 エンジン性能の向上 を図ることができる。
また、 バルブ 1 6 a, 1 6 bのリフト動作時の初期時および終了 時の正加速度区間が長い場合には、 負加速度区間が短くなリ、 最大 負荷速度 /9が大きくなる。 従って、 転動ローラ 1 7を備えたロッカ アームの最大負加速度 3 Rとスリッパ式口ッカアーム 1 4の最大負 加速度 <5 s との関係は
β ^ > β s
となる。 さらに、 エンジンの動弁機構において、 ロッカアームが力 ム面から離れるジャンビングや、 バウンシングを起こすエンジンの 限界回転数 Νは、 動弁系慣性重量 (弁側換算) を w、 重力加速度を g、 弁スプリング加重を Pとすると、
6 0
N ' P g / w · /5
% で与えられるが、 口ッカアームの弁側換算重量 wも転動ローラ 1つ を備えたロッカアームがスリツパ式ロッカアーム 1 4よりもその構 造上大きくなる上に、 上述した如く /3 R〉 /3 sであるので、 ェンジ ンの限界回転数 Nは、 転動ローラ 1 7を備えたロジカアームの方が 低くなることが分かる。 このため、 ローラ式ロッカアームを使用し た場合は、 エンジン回転を高速回転域まで回すことが難しいので、0 エンジン性能が低下する。 また、 エンジンの限界回転数 Nを上げる ためには、 弁スプリング加重 Pを大きくすれば良いが、 この場合に は動弁系でのフリクションが増大すると共に、 弁スプリングのコス トも増大することになる。 その為、 髙速回転域ではスリッパ式ロッ 力アーム 1 4を使用することにより、 転動ローラ 1 7を備えた口ッ : 力アームを使用した場合に比べて、 エンジン性能の向上を図る上で 有利と成る。
このように、 第 1 5図の動弁装置は、 低速ロッカアーム 1 3に低 速カム 2 0と接触する転動ローラを設け、 高速ロッカアーム 1 4に 高速カム 2 1と摺接する摺接部 2 9を設けたので、 エンジンの低速 回転域での低速カムと口ッカアームとの間の摩擦抵抗を低減でき、 高速回転域での開弁時間面積の低下を防止して、 出力ロスを防止で さる。
第 1 5図の動弁装置は、 低速ロジカアーム 1 3をロッカシャフト 1 1に一体結合し、 高速口ッカアーム 1 4をロッカシャフ ト 1 1に 回転可能に支持すると共に、 係合手段 Rによリロッカシャフト 1 1 と高速ロジカアーム 1 4を接合または離脱状態に切リ喚え可能に構 成されていた。 ここでは、 この係合手段 Rのその他の実施例を第 2 9図乃至第 3 4図と共に説明する。
第 2 9図乃至第 3 1図の係合手段 Rは、 第 1 5図に示した動弁装 置の髙速口ッカアーム 1 4と同様のものに装着され、 ここではその 重複説明を略す。
ここでの係合手段 Rも連結ピン 3 1を備え、 同連結ピン 3 1が第 6図に示した駆動手段 Dによって翻動制御され、 これによつてロッ 力シャフ ト 1 1と高速ロジカアーム 1 4とが、 接合または離脱状態 に切換可能に構成されている。
この連結ピン 3 1は、 ロッカシャフト 1 1の軸心と直交する方向 に沿ってロジカシャフ ト 1 1に形成された貫通六 3 2内に装着され ている。 ここで、 ロッカシャフ ト 1 1の軸心部には油通路 3 3が形 成されているため、 貫通六 3 2はこの油通路 3 3と直交状態で穿設 されることになる。 さらに、 貫通六 3 2には、 一方の開口端部側に 大径部 3 4、 他方の開口端部側に小径部 3 5がそれぞれ形成されて おり、 その中間に段部 3 6が形成されている。 この場合、 貫通穴 3 2の大径部 3 4は油通路 3 3と連通されている。
また、 連結ピン 3 1には、 第 2 9図に示すように、 略丸棒状の軸 部 3 7の一端部側に、 大径な鍔部 3 8が形成されている。 この場合、 連結ピン 3 1の軸部 3 7は、 貫通六 3 2の小径部 3 5内に摺動自在 に揷入されていると共に、 鍔部 3 8は貫通穴 3 2の大径部 3 4内に 摺動自在に挿入されている。 さらに、 この連結ピン 3 1の軸部 3 7 の他端部には、 丸められた突球面 (突曲面) 3 7 aが形成されてい る。 また、 鍔部 3 8の端面には、 髙速口ッカアーム 1 4における口 ッカシャフ ト 1 1との摺接面と略同形の突球面 3 8 aが形成されて いる。
また、 高速口ッカアーム 1 4におけるロッカシャフ ト 1 1と摺接 I する回転面 1 4 cには、 貫通穴 3 2の小径部 3 5と対応する位置に、 連結ピン 3 1の軸部 3 7の先端部が揷脱可能に揷入される係合六 4 2が形成されている。 さらに、 貫通穴 3 2の大径部 3 4内には、 貫 通穴 3 2の段部 3 6と連結ピン 3 1の鍔部 3 8との間に配設された コイルばねによって形成されたリターンスプリング (付勢部材) 40 3が揷入されている。 そして、 通常、 連結ピン 3 1は、 このリタ一 ンスプリング 4 3のばね力によって鍔部 3 8の突球面 3 8 aを髙速 ロジカアーム 1 4の回転面 1 4 cに圧接させた状態で保持されてい る。 なお、 このように連結ピン 3 1の鍔部 3 8の突球面 3 8 aが、 高速ロッカアーム 1 4の回転面 1 4 cに圧接された状態において、 連結ピン 3 1の軸部 3 7の先端部が貫通穴 3 2の小径部 3 5内に没 入されるように、 連結ピン 3 1の長さ寸法が設定されている。
さらに、 ロジカシャフ ト 1 1における貧通六 3 2の油通路 3 3と の一対の連結部位には、 第 2 9図および第 3 1図に示すように、 油 通路 3 3の圧油を連結ピン 3 1の突曲面 3 8 a側に導く油通路 4 4 ,C 4 5が形成されている。 これらの油通路 4 4, 4 5はそれぞれ連結 ピン 3 1と略平行な直径 Dの円形穴によって形成されている。
また、 油通路 3 3は、 第 6図に示したと同様の油圧手段 Pの供給 油路 5 9に連通している。
次に、 上記構成の作動を説明する。 まず、 エンジンの回転数が比較的低い低速回転域では、 切換弁 6 3が閉状態で保持される。 この場合には、 係合手段 Rのリターンス プリング 4 3のばね力によって、 第 2 9図および第 3 1図に示すよ うに、 連結ピン 3 1の鍔部 3 8の突球面 38 aが髙速口ッカアーム 5 14の回転面 14 cに圧接され、 連結ピン 3 1の軸部 3 7の先端部 が、 貫通六 32の小径部 3 5内に没入された状態で保持される。 そ の為、 この状態では、 髙速口ッカアーム 14はロジカシャフ ト 1 1 に対して連結解除状態で保持されるので、 高速カム 2 1によって高 速口ッカアーム 14が、 ロジカシャフト 1 1を中心に揺動駆動され
K た際に、 高速ロジカアーム 14はロッカシャフ ト 1 1とは独立に動 作し、 低速口ッカアーム 1 3と髙速口ッカアーム 14とはそれぞれ 独立に動作する。 従って、 この場合には、 高速ロッカアーム 14の 動作はバルブ 1 6 a , 1 6 b側に伝達されず、 低速カム 2 0によつ て踩動される低速ロッカアーム 1 3の動作に従って、 バルブ 1 6 a,
1 1 6 bが開閉駆動される。
また、 エンジンの回転数が上昇し、 高速回転域に達すると、 切換 弁 63が開状態に切換え操作される。 このように切換弁 6 3が開操 作された場合には, ロジカシャフ ト 1 1の油通路 3 3内に圧油が供 耠される。 この圧油は、 油通路 3 3から貫通穴 32の大径部 34内
20 に導かれた後、 油通路 44 , 4 5内を通り、 鍔部 38の突球面 38 a側に供給される。 この場合、 連結ピン 3 1の鍔部 3 8における表 裏面の受圧面積の相違から、 圧油は連結ピン 3 1を第 29図および 第 30図中で上方向に向けて押圧する方向に作用する。 その結果、 ロジカシャフ ト 1 1の貫通六 3 2の小径部 3 5と高速ロッカアーム 1 4の係合六 4 2とが合致した時点で、 連結ピン 3 1はリタン一ス プリング 4 3のばね力に杭して、 第 2 9図および第 3 0図中で上方 向に移動し、 第 3 2図および第 3 3図に示す'ように、 高速口ッカァ —ム 1 4の係合穴 4 2内に、 この連結ピン 3 1の軸部 3 7の先端が 挿入される。 その為、 この状態では、 高速ロッカアーム 1 4はロッ 力シャフ ト 1 1に係合された状態で保持されるので、 この場合には 低速ロジカアーム 1 3と髙速口ッカアーム 1 4とが一体化され、 高 速カム 2 1によって駆動される高速ロジカアーム 1 4の動作が、 低 速口ッカアーム 1 3を介してバルブ 1 6 a, 1 6 b側に伝達されて、 バルブ 1 6 a, 1 6 bが開閉操作される。 すなわち、 髙速カム 2 1 の回転によってバルブ 1 6 a, 1 6 bが開閉駆動される。
上記構成のものにあっては、 以下の効果が得られる。 すなわち、 ロジカシャ フ ト 1 1における貫通穴 3 2の油通路 3 3と一対の連結 部位に, 連結ピン 3 1と略平行に形成され、 油通路 3 3内の圧油を 連結ピン 3 1の突曲面 3 8 a側にスムーズに導く油路 4 4, 4 5を 設けたので、 連結ピン 3 1の軸部 3 7の周囲に第 4 1図 ( a ) , (b ) 、 第 5図 ( a ) , ( b ) に示すようなリング状の油溝 5 7を 形成する必要も無く、 第 4 2図乃至第 44図に示すような切欠部 p を鍔部 3 8に形成する必要も無い。 なお、 第 4 2図乃至第 44図に 示す連結ピン 3 1は、 第 2 9図乃至第 3 1図の係合手段 Rに先駆け て本発明者が提案しているものである。 この段階では、 切欠部 Pが 油通路 3 3と油室 rとの間の油路を比較的大きく確保できたが、 し かし、 連結ピン 3 1が係合穴 4 2に突入した時点で、 スプリング 4 3によって切欠部 Pが狭められ易く、 十分な油路断面積の確保がな されていなかった。 これに対して、 第 2 9図乃至第 3 1図の係合手 段 Rでは、 連結ピン 3 1の軸部 3 7の周囲にリング状の油溝 5 7を 形成した場合に比べて、 連結ピン 3 1の強度を高めることができる。 さらに、 連結ピン 3 1の軸部 3 7の周囲にリング状の油溝 5 7を形 成した場合のように、 連結ピン 3 1の軸部 3 7とロッカシャフ ト 1 1の貫通穴 3 2の内周面との接触部の長さ (連結ピン 3 1のガイド 長さ) が短くなる畏れが無いので、 連結ピン 3 1が Πッカシャフト 1 1の賞通穴 3 2内を摺動する際のがたつきを低減することができ る。
また、 連結ピン 3 1の鍔部 3 8の端面に、 高速ロッカアーム 1 4 における口ッカシャフ ト 1 1との摺接面 (回転面 1 4 c ) と唣同径 の突球面 3 8 aを形成したので、 この連結ピン 3 1の鍔部 3 8の端 面 (突球面 3 8 a ) と髙速ロジカアーム 1 4の回転面 1 4 cとの間 に、 第 3 0図に示すように楔状の油室 rを形成することができる。 その為、 係合手段 Rのリターンスプリング 4 3のばね力によって、 連結ピン 3 1の鍔部 3 8の突球面 3 8 aが高速口ッカアーム 1 4の 回転面に圧接され、 連結ピン 3 1の軸部 3 7の先端部が賞通穴 3 2 の小径部 3 5内に没入されている状態から、 エンジン回転数の上昇 に伴い、 切換弁 S 3が閉状態から開状態に切換操作され、 油通路 3 3内に圧油が供給された際に、 連結ピン 3 1の鍔部 3 8の端面 (突 球面 3 8 a ) と髙速口ッカアーム 1 4の回転面との間の油室 rにこ の油圧を迅速に作用させることができる。 従って、 油圧の応答性を 高め、 低速口ッカアーム 1 3と高速ロッカアーム 1 4との間を連結 状態と連結解除状態とに切換操作する切換操作の円滑化を図ること ができる。
さらに、 連結ピン 3 1の鍔部 3 8は、 高速 Πッカアーム 1 4の係 合六 4 2よりも大径に形成されているので、 エンジンの低速回転域 で、 高速ロジカアームがロッカシャフ ト 1 1 と独立に動作した際に、 連結ピン 3 1の鍔部 3 8が、 髙速口ッカアーム 1 4の係合穴 4 2の 位置に達した場合であっても、 鍔部 3 8が髙速口ッカアーム 1 4の 係合穴 4 2内に進入しないという利点がある。 この場合、 鍔部 3 8 の短面は、 高速口ッカアーム 1 4におけるロッカシャフ ト 1 1との 摺接面 (回転面 1 4 a ) と略同径の突球面 3 8 aによって形成され ているので、 連結ピン 3 1の鍔部 3 8が高速 Πッカアーム 1 4の係 合六 4 2の位置に達した際に、 この係合六 4 2を円滑に通過させる ことができる。
また、 連結ピン 3 1の内部に特別に油路 4 1を形成する必要がな いので、 この連結ピン 3 1の内部に油路を形成し場合に比べて、 連 結ピン 3 1の製作を容易化することが出来る。
なお、 この発明は上記実施例に限定されるものではない。 例えば、 第 3 4に示すように、 ロッカシャフ ト 1 1における貫通穴 3 2の油 通路 3 3との一対の連結部位に、 各一対の油路 4 4 a , 4 4 b , 4 5 a , 4 5 bを設け、 油路 4 4、 4 5の数を增加することにより、 油路面積を増大させる構成にしてもよい。
さらに、 上記実施例では、 同一気筒内に各一対の吸気バルブおよ び排気バルガが配設された 2弁式エンジンにこの発明を適用しても 良い。
ところで、 低速及び高速ロッカアーム 1 3, 1 4と吸排気バルブ 1 6 a , 1 6 bの間はバルブの熱膨張を吸収できるだけのクリアラ ンス C rが基本的に必要とされる。
そこで、 このような前提条件の基で、 第 1 8図及び第 1 9図に示 した動弁装置は構成されている。 ここでは、 後述の第 2付勢手段 5 (第 3 6図中の符号 75を参照) を低速ロッカアーム 1 3に装着し ないため、 低速カム 2 0と低速口ッカアーム 1 3間にクリアランス C rが確保されている。 そして、 他方の高速ロジカアーム 14は、 第 1付勢手段としてのスプリング式のリフト機構 2 3によリ髙速力 ム 2 1側に押圧付勢されており、 これによリ高速口ッカアーム 14 1C と高速カム 2 1との間のクリアランス C rは消去されている。
ここで、 係合手段 Rが離脱状態にあると、 低速カム 20と低速□ ッカアーム 1 3のクリアランス C rが吸排気バルブ 1 6 a, 1 6 b の熱膨張を吸収できる。 しかし、 吸排気バルブ 1 6 a, l S bが自 重により低速ロッカアーム 1 3に当接した状態で、 係合手段 Rが係 i: 合状態に切リ替わって低速口ッカアーム 1 3側の口ッカシャ フ ト 1 1と高速ロッカアーム 14が固定されるように設定されていると、 次のような問題を生じる。
この場合、 吸排気バルブ 1 6 a, 1 6 bと低速ロジカアーム 1 3 間及び高速ロッカアーム 14と高速カム 2 1間の各クリアランス C 20 rが削除された状態となっているため、 吸排気バルブ 1 6 a, 1 6 の熟膨張は吸収されない状態となる。
これに対して、 第 3 5図乃至第 3 7図に示した動弁装置では、 低 速口ッカアーム 1 3に第 2付勢手段としてのコイルスプリング 7 5 が装着される。 このため低速ロッカアーム 1 3は、 コイルスプリン グ 7 5によって吸排気バルブ 1 6 a, 1 6 bよリクリアランス C r を介して対向配備される。 ここでは、 この状態で係合手段 Rが係合 状態に切リ替わって低速口ッカアーム 1 3側のロッカシャフ ト 1 1 と高速口ッカアーム 1 4が固定されるように設定されているので、 係合手段 Rが係合状態に切リ替わってもバルブの熱膨張を吸収でき、 しかも、 後述の係合穴と貫通穴の中心ずれを防止できるようになつ ている。
ここでの第 1付勢手段 S 1はシリンダへッド 7 1側に設けられた 固定筒体 2 6と、 固定筒体内部に突没可能に装着され、 その先端が 髙速口ッカアーム 1 4に当接する可動筒体 2 7と、 両筒体 2 6, 2 7の間に介装された比較的大きなパネ定数を有する第 2の付勢部材 としての圧縮スプリング 7 3と、 ロッカシャフ トと髙速口ッカァ一 ム 1 4との間に介装され、 髙速口ッ力アームを高速カム 2 1へ当接 させる比較的弱いパネ定数の第 1の付勢部材としての捩じリスラス トスプリング 7 4とで構成されている。
摈じリスラストスプリング 7 4は、 その一端がロッカシャフ ト 1 1に係止され、 その他端が髙速口ッカアーム 1 4に係合しており、 コイル状に形成されている。 このため、 圧縮スプリング 7 3が自由 長に達した時、 高速口ッカアーム 1 4を更にクリアランス C r 1分 だけ高速カム 2 1側に回動させることが出来る。
ところで、 第 1 8図および第 1 9図に示した動弁装置では、 係合 手段 Rの連結ピン 3 1が離脱よリ係合状態に切換わる場合、 第 4 1 図に示すように、 高速ロッカアーム 1 4がリフ ト機構 2 3によって クリアランス C rの範囲でずれて回動しておリ、 髙速口ッカアーム 1 4上の係合穴 4 2と連結ピン 3 1との雨者の中心線が一致しなく なことがある。 この結果、 連結ピン 3 1を係合穴 4 2に向けて突出 し作動させた場合に、 連結ピン 3 1が係合六 4 2の緣部に当り、 こ れを押しのけるだけの余分な操作力を含む推進力 f が必要と成って 5 いた。
しかし、 第 3 5図乃至第 3 7図に示した動弁装置は、 第 1付勢手 段 S 1の 2段目のパネ定数が比較的小さく設定されている。 このた め、 たとえ連結ピン 3 1と係合穴 4 2との雨中心線がずれていても、 高速口ッカアーム 1 4には握じリスても、 高速口ッカアーム 1 4に 】: は捩じリスラストスプリング 7 4による比較的弱い回転モ一メン卜 しか作用していない。 結果として、 油圧による推進力 ίを受けた連 結ピン 3 1は比較的スムーズに連結ピン 3 1と係合穴 4 2の緣部の 干渉を修正して係合六 4 2に突入でき、 係合作動の信頼性が向上す る。
1: 上述の第 3 5図乃至第 3 7図に示した動弁装置は、 特に、 係合手 段 Rによって高速口ッカアーム 1 4とロッカシャフト 1 1を係合ま たは離脱操作するように構成され、 その高速口ッカアーム 1 4と口 ッカシャフ ト 1 1間に第 1付勢手段 S 1を備えていた。
これに代えて、 係合手段 Rによって低速口ッカアーム 1 3とロッ 力シャフ卜 1 1を係合または離脱操作するように構成しても良い。 この場合も第 2付勢手段を構成する比較的弱いバネ定数の捩じリス ラストスプリング (図示せず) の一端がエンジン不動部材に係止さ れ、 その他端が低速ロッカアームに係合し、 この低速ロジカアーム と吸排気バルブの間にクリアランスを確保するように設定すること が出来る。 産業上の利用可能性
以上のように、 本発明に係る動弁装置は、 自動車用その他の O H Cエンジンに有効利用でき、 特に、 エンジン回転数等の使用運転条 件が広範囲で、 常時変化しやすい自動車のエンジンに採用された場 合に、 その効果を十分に発揮できる。

Claims

請 求 の 範 囲
1 . 低速カムと高速カムが装着されているカムシャフ トと、 上記カムシャフトに隣接され、 支持部材に回動可能に取付け られているロッカシャフ 卜と、
上記ロッ力シャフ トに固定されると共にその端部にバルブのス テム部を当接し、 かつ上記低速カムによリ揺動されて上記口ッカ シャフトを中心に回動し、 上記バルブを駆動させる低速口ッカァ —ムと、
上記低速口ッカアームに並設されると共に上記口ッカシャフ ト に回転可能に支持され、 上記高速カムによリ揺動される高速ロッ 力アームと、
上記口ッカシャフ卜と上記高速口ッカアームとの係合又は離脱 を行なう係合手段と、
上記係合手段をエンジン運転状態に応じて作動させ、 上記口ッ 力シャフ卜と上記高速口ッカアームとの係合又は離脱を行なわせる 駆動手段と、
を備えたことを特徴とする動弁装置。
2 . 第 1項において、
上記係合手段は、
上記口ツカンャフ 卜を回転する上記高速口ッカアームの回転 面に形成された係合六と、
上記口ッカシャフト内に上記口ッカシャフ卜の軸方向と垂直 方向に設けられ、 上記高速カムのベース円が上記高速□、ソカァ一 ムに接しているときに、 その中心軸線を上記係合穴の中心軸線と 一致させた貫通穴と、
上記貫通六内に収容された収容位置から上記係合穴側に突出 した突出位置まで突没自在に装着され、 上記中心軸線が一致して δ いる時に上記係合穴に係合するプランジャと、
上記プランジャ後端部と上記髙速口ッカアームの回転面間に 設けられた油室と、
を備えたことを特徴とする。
3 . 第 1項において、
上記駆動手段は、
上記口ッカシャフ ト内に上記口ッカシャフ 卜の軸方向に沿つ て形成された油通路と、
上記油通路を通して上記係合手段に油を供耠し、 上記係合手 段を作動させて上記口ツカンャフ卜と上記高速口ッカァ一ムとの 係合又は離脱を行なわせる油圧手段と
を備えたことを特徴とする。
4 . 第 1項において、
上記係合手段は、
上記口ッカシャフ トを回転する上記高速口ッカアームの回転 面に形成された係合穴と、
上記口ッカシャフ 卜内に上記口ッカシャフ 卜の軸方向と垂直 方向に設けられ、 上記高速カムのベース円が上記髙速口ッカァ一 ムに接しているときに、 その中心軸線を上記係合穴の中心軸線と 一致させた賞通六と、 上記莨通穴内に収容された収容位置から上記係合穴側に突出 した突出位置まで突没自在に装着され、 上記両中心軸線が一致し ている時に上記係合六に係合するプランジャと、
上記プランジャ後端部と上記高速口ッカアームの回転面間に 設けられた油室とを備え、
上記駆動手段は、
上記口ッカシャフト内に上記軸方向に沿って形成された油通 路と、
上記油通路を通して上記油室に油を供飴し、 上記プランジャ l を作動させて上記ロッ力シャフ卜と上記高速口ッカアームとの係 合又は離脱を行なわせる油圧手段とを備えたことを特徴とする。 5 . 第 1項において、
上記低速口ッ力アームは上記口ッカシャフ トに一体に形成さ れていることを特徴とする。
1 ·" 6 . 第 1項において、
上記低速ロッカアームは上記ロッカシャフ トに螺着され、 上 記ロッカシャフ トに螺着したロックナツ トにより上記ロッカンャ フ卜に固定されていることを特徴とする。
7 . 第 1項において、
2 上記低速ロッカアームは、 上記ロジカシャフ トに設けられた キー溝と上記低速ロジカアームに設けられたキ一溝とを対面させ、 両キー溝にキーを圧入して上記口ッカシャフ卜に固定されること を特徴とする。
8 . 第 1項において、 上記低速ロッカアームは上記ロジカシャフ トに複数個取付け られ、 上記複数個の低速口ッカアームは各々バルブのステム部と 当接すると共に上記低速カムと当接し、 上記低速カムによリ上記 低速ロッカアームを各々介して、 複数のバルブを駆動させること を特徴とする。
. 第 1項において、
上記低速ロッカアームは上記端部が二股に分かれ、 上記二股 の各端部に各々バルブのステム部を当接させることを特徴とする。
0 . 第 1項において、
上記高速ロッカアームおよび上記低速ロッカアームは、 各々 その中央部に上記高速カムおよび上記低速カムと接触する転動口 ーラを備えたことを特徴とする。
1 . 第 1項において、
上記低速ロッカアームはその中央部に上記低速カムと接触す る転動口一ラを備え、
上記高速口シカアームはその中央部に上記高速カムと接触す る摺接部を設けたことを特徴とする。
2 . 第 1項において、
上記低速口ッカアームに並設される上記髙速口ッカアームは、 —端がエンジンの不動部材に当接し, 他端が上記高速ロッカァ一 ムに当接する第 1付勢手段により、 常時上記高速カムに押圧され ていることを特徴とする。
3 . 第 1項において、
上記高速ロジカアームは、 上記高速ロッカアームを挾み、 力、 つ上記口ッカシャフト外周に係止された一対のスナップリングに よリ、 上記口ッカシャフトをその軸方向に移動しないように位置 規制されていることを特徴とする。
1 4 . 第 1項において、
上記高速ロッカアームは、 上記高速ロッカアーム一側面と係 合すると共に、 上記ロジカシャフト外周に係止した第 1スナップ リングと、 上記ロッカンャフ ト他側面側に間隙を有して上記ロッ 力シャフト外周に係止した第 2スナップリングと、 上記第 2のス ナップリングと上記 αッカシャフト他側面との間の上記間隙に介0 装され, 圧縮状態で取付けられたスプリングとにより、 上記ロッ 力シャフトをその軸方向に移動しないように位置規制されている ことを特徴とする。
1 5 . 第 2項において、
上記係合六は、 凹曲面に形成され、
上記係合六に突入するプランジャ先端部は上記凹曲面と合致 する彤状の突曲面に形成されていることを特徴とする。
1 6 . 第 3項において、
上記油圧手段は、
高圧油を発生させる油圧ポンプと、
0 上記高圧油をロッカシャフ ト内の上記油通路へ供給する供給 油路と、
上記供給油路に設けられ上記高圧油を上記油通路へ供給した U又は遮断したりする油圧制御機構と、
上記油圧制御機構と上記油圧ポンプ間の上記供給油路に設け られ、 上記油圧制御機構と上記油圧ポンプ間の上記供給油路内の 油圧が所定圧以上になった時に上記油圧を逃すリリーフ弁と、 から成ること.を特徴とする。
1 7 . 第 1 6項において、
:' 上記油圧制御機構は、
上記油圧ポンプからの高圧油を上記油通路へ供給する第 1位 置と、 上記油圧ポンプと上記油通路との連通を遮断し、 上記油通 路を低圧のオイルタンクに連通する第 2位置とに切リ換おる切換 弁ど、
上記切換弁を駆動させ上記 2つの位置を選択的に切換させる ソレノイ ド'と、
上記ソレノィドをエンジン回転と負荷に応じて操作させるコ ンピュータと、
を備えたことを特徴とする。
" 1 8 . 第 1 7項において、
上記コンピュータは、 エンジン回転が髙回転側でかつ髙負荷 側の時に上記ソレノィドを励磁させて上記切換弁を駆動させ、 高 圧油を上記油通路へ供飴するようにし、 エンジン回転が低回転側 でかつ低負荷側の時に上記ソレノィドを消磁させて上記切換弁を 非駆動にし、 上記油通路の高圧油を上記オイルタンクへ戻すよう にしたことを特徴とする。
1 9 . 第 4項において、
上記係合手段は、 さらに
上記プランジャの一端部に形成され、 上記莨通穴に沿って摺 動可能な鍔部と、
上記貫通六に収容されると共に、 上記鍔部と上記ロッカンャ フ ト間に介装され、 上記プランジャを上記収容位置で保持する方 向に付勢した付勢部材とを備え、
5 上記駆動手段は、 さらに
上記油通路の油を上記油室に導く油路と、
を備えたことを特徴とする。
2 0 . 第 1 9項において、
上記油路は、 上記貫通穴の側壁に形成されていることを特徴 10 とする。
2 1 . 第 1 9項において、
上記油路は、
上記プランジャの中央部外周に形成された油溝と、 上記プランジャ内部に形成され、 上記油溝から上記プランジ 】 ャ鍔部側の上記油室へ連通する油供給孔と
から形成されることを特徴とする。
2 2 . 第 1 9項において、
上記油路は、 上記プランジャの上記鍔部の外周に設けられた 切欠部で形成されたことを特徴とする。
2 2 3 . 第 4項において,
上記係合手段は、 さらに
上記貫通穴の一端部側に設けられ、 上記係合六よりも大きな 径を有する大径部と、
上記プランジャに形成され、 上記大径部に沿って摺動可能な 鍔部と、
上記プランジャの上記大径部側端面に形成された突部と、 上記大径部に収容されると共に、 上記鐸部と上記ロッカンャ フト間に介装され上記プランジャを上記収容位置で保持する方向 5 に付勢するスプリングとを備え、
上記駆動手段は、 さらに上記油通路の油を上記油室に導く油 路と、
を備えたことを特徴とする。
2 4 . 第 2 3項において、
13 上記突部は、 上記ロッカシャフ トの外周面の半径と唣同径を 有する突曲面に形成されていることを特徴とする。
2 5 . 第 4項において、
上記係合穴は、 凹曲面に形成され、
上記係合穴に突入するプランジャ先端部は上記凹曲面と合致 する形状の突曲面に形成されていることを特徴とする。
2 6 . 第 4項において、
上記油圧手段は、
高圧油を発生させる油庄ポンプと、
上記高圧油をロッカシャフ ト内の上記油通路へ供給する供給 油路と、
上記供給油路に設けられ上記高圧油を上記油通路へ供給した リ又は遮断したりする油圧制御機構と、
上記油圧制御機構と上記油圧ポンプ間の上記供給油路に設け られ、 上記油圧制御機構と上記油圧ポンプ間の上記供給油路内の 油圧が所定圧以上と成つた時に上記油圧を逃すリリーフ弁と、 から成ることを特徴とする。
7 . 第 2 6項において、
上記油圧制御機構は、
上記油圧ポンプからの高圧油を上記油通路へ供給する第 1位 置と、 上記油圧ポンプと上記油通路との連通を遮断-し、 上記油通 路を低圧のオイルタンクに連通する第 2位置に切り換わる切換弁 と、
上記切換弁を駆動させ上記 2つの位置を選択的に切リ換えさ せるソレノイ ドと、
上記ソレノィドをエンジン回転と負荷に応じて操作させるコ ンピュ一タと、
を備えたことを特徴とする。
8 . 第 2 7項において
上記コンピュータは、 エンジン回転が髙回転側でかつ高負荷 側の時に上記ソレノイドを励磁させて上記切換弁を駆動させ、 高 圧油を上記油通路へ供耠するようにし、 エンジン回転が低回転側 でかつ低負荷側の時に上記ソレノィドを消磁させて上記切換弁を 非駆動にし、 上記油通路の高圧油を上記オイルタンクへ戻すよう にしたことを特徴とする。
9 . 第 1 2項において
上記第 1付勢手段は、
エンジンの不動部材に設けられた有底の固定筒体と、 上記固定筒体内に突没可能に装着され、 その先端部が上記高 速口ッカアームに当接する可動筒体と、
上記固定筒体と上記可動筒体との間に介装された圧縮スプリ ングと、
から成ることを特徴とする。
3 0 . 第 1 2項において、
上記第 1付勢手段は、
上記口ッカシャフトと上記高速□ッカアームとの間に介装さ れ、 上記髙速ロジカアームを上記高速カムへ当接させる比較的弱 いばね定数を有する第 1の付勢部材と、
エンジンの不動部材から上記髙速口ッカアームを上記高速力 ム方向へ付勢する比較的大きなばね定数を有する第 2の付勢部材 とから形成され、
上記第 1の付勢部材によリ上記高速口ッカアームが上記高速 カムのベース円上に当接されているときに、 上記第 2の付勢部材 と上記高速ロッカアームに間隙を設けたことを特徴とする。
3 1 . 第 3 0項において、
上記第 1の付勢部材は、 その一端が上記ロッカシャフトに係 止し, その他端が上記高速ロジカアームに係合したスプリングか ら成ることを特徴とする。
3 2 . 第 3 0項において、
上記第 2の付勢部材は、
エンジン不動部材に設けられた有底の固定筒体と、
上記固定筒体内に突没可能に装着され、 その先端部が上記高 速カムのベース円に当接している際には上記先端部と上記高速口 ッカアーム間に間隙を有する可動筒体と、
上記固定筒体と上記可動筒体との間に介装されたスプリング と、
を備えたことを特徴とする。
5 3 3 . 第 1 2項において、
上記低速口ッカアームは、 第 2付勢手段により常時上記低速 カムに当接されると共に、
上記低速口ッカアームと上記バルブのステム部との間には微 小の間隙を設けたことを特徴とする。
K' 3 4 . 第 3 3項において、
上記第 2付勢手段は、 その一端がエンジン不動部材に係止し、 その他端が上記低速口ッカアームに係合した上記口ッカシャフ ト を卷回するスプリングからなることを特徴とする。
3 δ . 低速カムと高速カムが装着されているカムシャフ トと、 .: 上記カムシャフ トに隣接され、 支持部材に回動可能に取付け られているロッカシャフトと、
上記口ッカシャフ卜に固定されると共に上記高速カムにより 揺動されて、 上記ロッカンャフトを中心に回動する高速口ッカァ ームと、
20 上記高速ロジカアームに並設され、 上記ロジカシャフ トに回 転可能にま持されると共に端部にバルブのステム部を当接し、 上 記低速カムによリ揺動されて、 上記ロジカシャフトを中心に回動 し、 上記バルブを駆動させる低速ロッカアームと、
上記口ツカンャフトと上記低速口ッカアームとの係合および 離脱を行なう係合手段と、
上記係合手段をエンジン運転状態に応じて作動させ、 上記口 ッカシャフ卜と上記低速口ッカアームとの係合又は離脱を行なわ せる驄動手段と、
5 を備えたことを特徴とする動弁装置。
3 6 . 第 3 5項において、
上記係合手段は、
上記口ッカシャフ トを回転する上記低速 Π3ッカアームの回転 面に形成された係合穴と、
^ 上記口ッカシャフ ト内に上記口ッカシャフ 卜の軸方向と垂直 方向に設けられ、 上記低速カムのベース円が上記低速口ッカァ一 ムに接しているときに、 その中心軸線を上記係合穴の中心軸線と 一致させた貫通穴と、
上記賞通穴に収容された収容位置から上記係合穴に突出した ·— 突出位置まで突没自在に装着され、 上記両中心軸線が一致してい る時に上記係合穴に係合するプランジャと、
上記プランジャ後端部と上記低速口ッカアームの回転面間に 設けられた油室と、
を備えたことを特徴とする。
C 3 7 . 第 3 5項において、
上記駆動手段は、
上記口ッカシャフ ト内に上記口ッカシャフ 卜の軸方向に沿つ て形成された油通路と、
上記油通路を通して上記係合手段に油を供給し上記係合手段 を作動させて上記ロジカシャフ 卜と上記低速ロッカアームとの係 合または離脱を行なわせる油圧手段
とを備えたことを特徴とする。
3 8 . 第 3 5項において、
5 上記係合手段は、
上記口ッカシャフトを回転する上記低速口ッカアームの回転 面に形成された係合六と、
上記口ツカンャフ 卜内に上記口ジカシャフト軸方向と垂直方 向に設けられ、 上記低速カムのベース円が上記低速ロッカアーム 1〔· に接している時に、 その中心軸線を上記係合穴の中心軸線と一致 させた貫通穴と、
上記貫通穴内に収容された収容位置から上記係合穴側に突出 した突出位置まで突没自在に装着され、 上記両中心軸線が一致し ている時に上記係合六に係合するプランジャと、
' 上記プランジャ後端部と上記低速口ジカアームの回転面間に 設けられた油室とを備え、
上記駆動手段は、
上記ロッカンャフ卜に軸方向に沿って形成された油通路と、 上記油通路を通して上記油室に油を供耠し上記プランジャを
20 作動させて上記ロッカシャフ卜と上記低速ロッカアームとの係合 又は離脱を行なわせる油圧手段とを
備えたことを特徴とする。
3 9 . 第 3 5項において、
上記高速口ッ力アームは上記口ッカシャフトに一体に形成さ れていることを特徴とする。
0 . 第 3 5項において、
上記ロッカアームは上記ロッカシャフ トに嫘着され、 上記口 ッカシャフ トに螺着したロックナッ トにより上記ロッカシャフ ト に固定されていることを特徴とする。
1 . 第 3 5項において、
上記口ッカアームは、 上記口ッカシャフ トに設けられたキー 溝と上記高速ロッカアームに設けられたキ一溝とを対面させ、 上 記雨キー溝にキ一を圧入して上記ロッカンャフトに固定されるこ とを特徴とする。
2 . 第 3 5項において、
上記低速口ッカアームは上記口ッカシャフ 卜に複数個取付け られ、 上記複数個の低速口ッカアームは各々バルブのステム部と 当接すると共に上記低速カムと当接し、 上記低速カムによリ上記 低速ロッカアームを各々介して、 複数のバルブを驄動させること を特徴とする。
3 . 第 3 5項において、
上記低速ロッカアームは上記端部が二股に分かれ、 上記二股 の各端部に各々バルブのステム部を当接させたことを特徴とする。 4 . 第 3 5項において、
上記高速ロッカアームおよび上記低速ロジカアームは、 各々 その中央部に上記髙速カムと上記低速カムと接触する転動ローラ を備えたことを特徴とする。
5 . 第 3 5項において、 上記低速ロッカアームは、 その中央部に上記低速カムと接触 する転動ローラを備え、
上記高速ロッカアームは、 その中央部に上記高速カムと接触 する摺接部を設けたこと、
5 を特徴とする。
4 6 . 第 3 5項において、
上記低速口ッカアームに並設される上記高速ロッカアームは、 一端がエンジンの不動部材に当接し、 他端が上記高速ロジカァ一 ムに当接する第 1付勢手段によリ、 常時上記高速カムに押圧され 1 ていることを特徴とする。
4 7 . 第 3 5項において、
上記低速ロッカアームは、 上記低速ロッカアームを挟み、 力、 つ上記口ツカンャフト外周に係止された一対のスナップリングに より、 上記口ッカシャフトをその軸方向に移動しないように位置 - 規制されていることを特徴とする。
4 8 . 第 3 5項において、
上記低速ロジカアームは、 上記低速ロッカアーム一側面と係 合すると共に上記ロッカンャフ ト外周に係止した第 1スナップリ ングと、
2リ 上記ロジカシャフト他側面側に間隙を有して上記口ツカンャ フ ト外周に係止した第 2スナップリングと、
上記第 2のスナップリングと上記口ツカンャ フ ト他側面との 間の上記間隙に介装され、 圧縮状態で取付けられたスプリングと、 により、 上記ロッ力シャフ卜をその軸方向に移動しないように位 置規制されていることを特徴とする。
4 9 . 第 3 6項において、
上記係合穴は凹曲面に形成され、
上記係合穴に突入するプランジャ先端部は上記凹曲面と合致 5 する形状の突曲面に形成されていること、
を特徴とする。
5 0 . 第 3 7項において、
上記油圧手段は、
高圧油を発生させる油圧ポンプと、
' 上記高圧油をロッカンャ フ ト内の上記油通路へ供給する供給 油路と、
上記供給油路に設けられた上記高圧油を上記油通路へ供給し たりまたは遮断したりする油圧制御機構と、
上記油圧制御機構と上記油圧ポンプ間の上記供給油路に設け られ、 上記油圧制御機構と上記油圧ポンプ間の上記供給油路[¾の 油圧が所定圧以上と成つた時に上記油圧を逃すリリーフ弁と、 から成ることを特徴とする。
5 1 . 第 5 0項において、
上記油圧制御機構は、
^ 上記油庄ポンプからの高圧油を上記油通路へ供給する第 1位 置と、 上記油圧ポンプと上記油通路との連通を遮断し、 上記油通 路を低圧のオイルタンクに連通する第 2位置とに切り換わる切換 弁と、
上記切換弁を駆動させ上記 2つの位置を選択的に切リ換えさ せるソレノイドと、
上記ソレノィドをエンジン回転と負荷に応じて操作させるコ ンピュータと、
を備えたことを特徴とする。
2 . 第 5 1項において、
上記コンピュータは、 エンジン回転が高回転側でかつ高負荷 側の時に上記ソレノィドを励磁させて上記切換弁を駆動させ、 高 圧油を上記油通路へ供給するようにし、 エンジン回転が低回転 でかつ低負荷側の時に上記ソレノィ ドを消磁させて上記切換弁を 非駆動にし、 上記油通路の高圧油を上記オイルタンクに戻すよう にしたことを特徴とする。
3 . 第 3 8項において、
上記係合手段は、 さらに
上記プランジャの一端部に形成され、 上記貫通穴に沿って摺 動可能な鍔部と、
上記貫通穴に収容されると共に、 上記鍔部と上記ロッカシャ フト間に介装され、 上記プランジャを上記収容位置で保持する方 向に付勢した付勢部材とを備え、
上記駆動手段は、 さらに
上記油通路の圧油を上記油室に導く油路と、
を備えたことを特徴とする。
4 . 第 5 3項において、
上記油路は、 上記貫通穴の側壁に形成されていることを特徴 とする。
5 5 . 第 5 3項において、
上記油路は、
上記プランジャの中央部外周に形成された油溝と、 上記プランジャ内部に形成され、 上記油溝から上記プランジ - ャの鍔部側の上記油室八連通する油供給孔と、
から形成されていることを特徴とする。
5 6 . 第 5 3項において、
上記油路は、 上記プランジャの上記鍔部の外周に設けられた 切欠部で形成されたことを特徴とする。
5 7 . 第 3 8項において、
上記係合手段は、 さらに
上記貫通穴の一端部側に設けられ、 上記係合穴よりも大きな 径を有する大径部と、
上記プランジャに形成され、 上記大径部に沿って摺動可能な- 鍔部と、
上記プランジャの上記大径部側端面に形成された突部と、 上記大径部に収容されると共に、 上記鍔部と上記ロッカンャ フ卜間に介装され上記プランジャを上記収容位置で保持する方向 に付勢するスプリングとを備え、
〔: 上記驄動手段は、 さらに上記油通路の油を上記油室に導く油 路とを備えたことを特徴とする。
5 8 . 第 5 7項において、
上記突部は、 上記ロジカシャ フ トの外周面の半径と唣同径を 有する突曲面に形成されていることを特徴とする。
9 . 第 3 8項において、
上記係合六は凹曲面に形成され、
上記係合.六内に突入するプランジャ先端部は上記凹曲面と合 致する形状の突曲面に形成されていることを特徴とする。
0 . 第 3 8項において、
上記油圧手段は、
高圧油を発生させる油圧ポンプと、
上記高圧油をロッカンャ フ ト内の上記油通路へ供給する供給 油路と、
上記供給油路に設けられ上記髙圧油を上記油通路へ供給した リまたは遮断したりする油圧制御機構と、
上記油圧制御機構と上記油圧ポンプ間の上記供給油路に設け られ、 上記油圧制御機構と上記油圧ポンプ間の上記供耠油路内の 油圧が所定圧以上と成った時に上記油圧を逃すリリーフ弁と、 から成ることを特徴とする。
1 . 第 6 0項において、
上記油圧制御機構は、
上記油圧ポンプからの高圧油を上記油通路へ供給する第 1位 置と、 上記油圧ポンプと上記油通路との連通を遮断し、 上記油通 路を低圧のオイルタンクに連通する第 2位置とに切リ換おる切換 弁と、
上記切換弁を駆動させ上記 2つの位置を選択的に切リ換えさ せるソレノイドと、
上記ソレノイドをエンジン回転と負荷に応じて操作させるコ ンピュータと、
を備えたことを特徴とする。
6 2 . 第 6 1項において、
上記コンピュータは、 エンジン回転が高回転側でかつ高負荷 側の時に上記ソレノイドを励磁させて上記切換弁を駆動させ、 高 圧油を上記油通路へ供給するようにし、 エンジン回転が低回転側 でかつ低負荷側の時に上記ソレノィ ドを消磁させて上記切換弁を 非駆動にし、 上記油通路の高圧油を上記オイルタンクに戻すよう にしたことを特徴とする。
: 6 3 . 第 4 6項において、
上記第 1付勢手段は、
エンジンの不動部材に設けられた有底の固定筒体と、 上記固定筒体内に突没可能に装着され、 その先端部が上記高 速口ッカアームに当接する可動筒体と、
= 上記固定筒体と上記可動筒体との間に介装された圧縮スプリ ングとから
なることを特徴とする。
6 4 . 第 4 6項において、
上記第 1付勢手段は、
上記口ツカンャフ卜と上 IB高速口ッカアームとの間に介装さ れ、 上記髙速口ッカ.アームを上記高速カムへ当接させる比較的弱 いばね定数を有する第 1の付勢部材と、
エンジンの不動部材から上記髙速口ジカアームを上記髙速力 ム方向へ付勢する比較的大きなばね定数を有する第 2の付勢部材 とから形成され、 上記第 1の付勢部材によリ上記高速ロッカァ一 ムが上記高速カムのベース円上に当接されている時に、 上記第 2 の付勢部材と上記高速口ッカアーム間に間隙を設けたことを 特徴とする。
:' 6 5 . 第 6 4項において、
上記第 1の付勢部材は、 その一端が上記ロッカシャフ 卜に係 止し、 その他端が上記高速口ッカアームに係合したスプリングか ら成ることを特徴とする。
6 6 . 第 6 4項において、
1 ' 上記第 2の付勢部材は、
エンジン不動部材に設けられた有底の固定筒体と、 上記固定筒体内に突没可能に装着され、 その先端部が上記高 速口ジカアームに当接すると共に上記高速口ッカアームが上記高 速カムのベース円に当接している際には上記先端部と上記高速コ ッカアーム間に間隙を有する可動筒体と、
上記固定筒体と上記可動筒体との間に介装されたスプリング と、
を備えたことを特徴とする。
6 7 . 第 4 6項において、
上記低速ロッカアームは、 第 2付勢手段により常時上記低速 カムに当接されると共に、
上記低速口ッカアームと上記バルブのステム部との間には微 小の間隙を設けたことを特徴とする。
6 8 . 第 6 7項において、 上記第 2付勢手段は、 その一端がエンジン不動部材に係止し、 その他端が上記低速口ッカアームに係合した上記口ッカシャフ ト を卷回るスプリングからなることを特徴とする。
PCT/JP1991/000053 1990-01-18 1991-01-18 Valve driving device WO1991010816A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4190087A DE4190087C2 (de) 1990-01-18 1991-01-18 Ventilbetätigungsvorrichtung
US08/389,315 USRE35662E (en) 1990-01-18 1991-01-18 Valve operating apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2/9425 1990-01-18
JP2009425A JP2595737B2 (ja) 1990-01-18 1990-01-18 アーム中継式往復動装置
JP1990033578U JPH03127007U (ja) 1990-03-31 1990-03-31
JP1990033579U JPH03127008U (ja) 1990-03-31 1990-03-31
JP2/33579U 1990-03-31
JP1990033577U JPH03127006U (ja) 1990-03-31 1990-03-31
JP2/33578U 1990-03-31
JP2/33577U 1990-03-31

Publications (1)

Publication Number Publication Date
WO1991010816A1 true WO1991010816A1 (en) 1991-07-25

Family

ID=27455175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000053 WO1991010816A1 (en) 1990-01-18 1991-01-18 Valve driving device

Country Status (4)

Country Link
US (2) US5186128A (ja)
KR (1) KR940001318B1 (ja)
DE (2) DE4190087C2 (ja)
WO (1) WO1991010816A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559199A1 (en) * 1992-03-05 1993-09-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve-moving apparatus for internal combustion engine
EP0600221A2 (en) * 1992-10-30 1994-06-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for valve system in automobile engine
EP0583584B1 (en) * 1992-07-16 1996-04-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve operating system structure with variable valve timing mechanism

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230320A (en) * 1991-06-27 1993-07-27 Mazda Motor Corporation Intake and exhaust control system for automobile engine
DE69304371T2 (de) * 1992-03-11 1997-03-27 Mitsubishi Motors Corp Brennkraftmaschine mit mehreren Zylindern
DE4227567C1 (de) * 1992-08-20 1993-11-11 Daimler Benz Ag Ventilantriebssystem für eine mehrzylindrige Brennkraftmaschine
DE4310735C1 (de) * 1993-04-01 1994-05-26 Audi Ag Ventiltrieb für eine Brennkraftmaschine
DE9405694U1 (de) * 1994-04-06 1994-05-26 INA Wälzlager Schaeffler KG, 91074 Herzogenaurach Schlepphebel für einen Ventiltrieb einer Brennkraftmaschine
JPH09184407A (ja) * 1995-12-28 1997-07-15 Mitsubishi Motors Corp 内燃機関の動弁機構
DE19618416C2 (de) * 1996-05-08 2003-11-13 Ina Schaeffler Kg Steckachse eines Betätigungshebels für einen Ventiltrieb einer Brennkraftmaschine
JP3916819B2 (ja) * 1999-11-29 2007-05-23 株式会社日立製作所 エンジンの弁作動装置
US7140333B2 (en) * 2002-11-12 2006-11-28 Volvo Lastvagnar Ab Apparatus for an internal combustion engine
US7007650B2 (en) * 2003-10-31 2006-03-07 Caterpillar Inc Engine valve actuation system
US7156059B2 (en) * 2003-11-06 2007-01-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable valve train apparatus for an internal combustion engine
JP4221327B2 (ja) * 2004-04-13 2009-02-12 三菱ふそうトラック・バス株式会社 内燃機関の可変動弁装置
KR101282840B1 (ko) * 2004-05-06 2013-07-05 자콥스 비히클 시스템즈, 인코포레이티드. 엔진 밸브 작동 장치 및 방법
DE102006034951A1 (de) * 2005-08-22 2007-03-29 Schaeffler Kg Ventiltrieb für eine Brennkraftmaschine
DE102008038628B4 (de) 2008-08-12 2012-01-12 Hartmut Flaig Konteranordnung
WO2010146121A1 (fr) * 2009-06-17 2010-12-23 Valeo Systemes De Controle Moteur Vanne comportant un dispositif de transformation de mouvement
JP4923098B2 (ja) * 2009-12-03 2012-04-25 本田技研工業株式会社 エンジンのロッカアーム切換装置
KR101209733B1 (ko) * 2010-09-01 2012-12-07 현대자동차주식회사 가변 밸브 리프트 장치
JP2015178799A (ja) * 2014-03-19 2015-10-08 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
DE102016009344A1 (de) 2016-08-02 2018-02-08 Daimler Ag Brennkraftmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119912A (ja) * 1984-07-06 1986-01-28 Honda Motor Co Ltd 内燃機関の動弁装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444123A (en) * 1977-09-14 1979-04-07 Nissan Motor Co Ltd Valve lift aparatus of internal combustion engine
JPS54114633A (en) * 1978-02-27 1979-09-06 Nissan Motor Co Ltd Valve lift gear of internal combustion engine
EP0040121B1 (fr) * 1980-05-08 1983-10-05 Regie Nationale Des Usines Renault Dispositif culbuteur de soupape déconnectable
JPH0629524B2 (ja) * 1984-05-02 1994-04-20 スズキ株式会社 内燃機関のバルブタイミング切換え装置
DE3613945A1 (de) * 1985-04-26 1986-10-30 Mazda Motor Corp., Hiroshima Veraenderbarer ventilmechanismus fuer verbrennungsmaschinen
JPS62203913A (ja) * 1986-02-28 1987-09-08 Fuji Heavy Ind Ltd 自動車用エンジンの動弁装置
DE3735156A1 (de) * 1986-10-16 1988-05-26 Honda Motor Co Ltd Einrichtung zur ventilbetaetigung in einer brennkraftmaschine
US4901685A (en) * 1986-12-19 1990-02-20 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for an internal combustion engine
GB2199894B (en) * 1987-01-08 1990-10-24 Honda Motor Co Ltd Valve operating device in internal combustion engine
KR950005088B1 (ko) * 1990-07-10 1995-05-18 미쯔비시 지도샤 고교 가부시끼가이샤 자동차용 동력 밸브 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119912A (ja) * 1984-07-06 1986-01-28 Honda Motor Co Ltd 内燃機関の動弁装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559199A1 (en) * 1992-03-05 1993-09-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve-moving apparatus for internal combustion engine
US5320082A (en) * 1992-03-05 1994-06-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve-moving apparatus for internal combustion engine
EP0583584B1 (en) * 1992-07-16 1996-04-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve operating system structure with variable valve timing mechanism
EP0600221A2 (en) * 1992-10-30 1994-06-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for valve system in automobile engine
EP0600221A3 (en) * 1992-10-30 1994-08-24 Mitsubishi Motors Corp Control device for valve system in automobile engine.

Also Published As

Publication number Publication date
USRE35662E (en) 1997-11-18
DE4190087C2 (de) 1999-06-24
KR940001318B1 (ko) 1994-02-19
DE4190087T (ja) 1992-01-30
US5186128A (en) 1993-02-16
KR910014589A (ko) 1991-08-31

Similar Documents

Publication Publication Date Title
WO1991010816A1 (en) Valve driving device
US7814875B2 (en) Stroke adjusting device for valves of a combustion engine
US5188067A (en) Adjustable valve system for an internal combustion engine
US4615313A (en) Automatic decompression device for internal combustion engine
US6055949A (en) Variable valve actuator apparatus
US4850311A (en) Three dimensional cam cardanic follower valve lifter
EP0563574B1 (en) Valve-moving apparatus for internal combustion engine
JP4134587B2 (ja) 動弁装置およびこれを備えた内燃機関
JP4276621B2 (ja) エンジンの動弁装置
JPS62253913A (ja) 自動車用エンジンにおけるバルブ停止装置
JPWO2003098012A1 (ja) エンジンの動弁装置
JP2595737B2 (ja) アーム中継式往復動装置
JP3319896B2 (ja) エンジンの弁作動装置
JP2792314B2 (ja) 内燃機関の動弁装置
JP2586163B2 (ja) アーム中継式往復動装置
JPH06229216A (ja) エンジンの弁作動装置
JPH10121925A (ja) 内燃機関用バルブ駆動装置
US20060091344A1 (en) Variable valve gear
JPS6316112A (ja) 内燃機関における休止機構付き動弁機構
JPH0586818A (ja) ローラロツカアーム
JP3299364B2 (ja) 内燃機関の動弁装置
JPH0749018A (ja) 内燃機関の動弁機構の潤滑装置
JPH0586820A (ja) 可変バルブタイミングリフト機構用ロツカアーム
JPH0396608A (ja) エンジンの弁作動装置
JP2755022B2 (ja) 内燃機関の動弁装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

RET De translation (de og part 6b)

Ref document number: 4190087

Country of ref document: DE

Date of ref document: 19920130

WWE Wipo information: entry into national phase

Ref document number: 4190087

Country of ref document: DE