WO1986000987A1 - Device for electromagnetic measurement of the filling of metallurgical vessels - Google Patents

Device for electromagnetic measurement of the filling of metallurgical vessels Download PDF

Info

Publication number
WO1986000987A1
WO1986000987A1 PCT/EP1985/000319 EP8500319W WO8600987A1 WO 1986000987 A1 WO1986000987 A1 WO 1986000987A1 EP 8500319 W EP8500319 W EP 8500319W WO 8600987 A1 WO8600987 A1 WO 8600987A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring unit
coils
coil
transmitter
level
Prior art date
Application number
PCT/EP1985/000319
Other languages
English (en)
French (fr)
Inventor
Franz-Rudolf Block
Wolfgang Theissen
Urs Basler
Branislav Pesovic
Original Assignee
Stopinc Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stopinc Aktiengesellschaft filed Critical Stopinc Aktiengesellschaft
Priority to AT85903270T priority Critical patent/ATE44173T1/de
Priority to BR8506854A priority patent/BR8506854A/pt
Priority to KR1019860700135A priority patent/KR860700291A/ko
Publication of WO1986000987A1 publication Critical patent/WO1986000987A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/26Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means

Definitions

  • the invention relates to a device for level measurement for metallurgical vessels, in particular intermediate vessels for casting molten steel in molds, consisting of electromagnetic coils which are arranged in the vessel wall with axes directed towards the bath and as primary or . transmitting coils and r as a secondary or receiver coil are formed, which serve, depending on the prior Badador ⁇ induced AC voltages as input signals for a measurement processing.
  • coil the Sende ⁇ and the receiver coil separately at different points of Geutzes in the refractory lining is provided, for example in the region of the corner a melting furnace on two adjacent or two opposite walls of a vessel.
  • a special cable is made from an inner wire, temperature-resistant ceramic insulation and an outer steel tube.
  • separate coil arrangements are relatively complex and complicated to assemble because each coil has to be mounted individually at the intended location of the vessel lining and the coils interacting must be aligned very precisely with one another in order to obtain usable output signals.
  • the object of the present invention is to simplify the device for measuring the fill level of metallurgical vessels with a higher measuring accuracy by means of an improved design and arrangement of transmitter and receiver coils.
  • transmitter and receiver coils are combined as a measuring unit, which has at least one transmitter coil extending in the direction of the fill height and at least two associated, offset in height receiver coils.
  • a measuring unit which has at least one transmitter coil extending in the direction of the fill height and at least two associated, offset in height receiver coils.
  • a measuring unit has proven to be particularly advantageous, which consists of a system made of bare wires on insulators, consisting of transmitter and receiver coils, and refractory material with electrically insulating properties cast around it.
  • a structural unit that can be easily inserted into the fireproof lining of the vessel can be produced with simple means, the installation of which is expediently in the permanent lining with the intermediation of mineral wool, slightly lös b arem mortar or the like is performed, a S eparie ⁇ ren the.
  • Measuring unit when replacing the vessel lining to it ⁇ leic h you.
  • A has ls appropriate also the procedure b esta ⁇ Untitled, an end- the S and receiver coil frame supporting b zw. Moldings to use the rendem of refractory electrically isolie ⁇ material b esteht and guide grooves has, for example, in the form of cracks, in inserted the coil wires an d a, d em f your solid material equivalent mortar can be conces- lubricated.
  • a measuring unit which has a transmitter coil with a different field flow in the direction of the fill level and in which the receiver coils are arranged in different field flow areas of the transmitter coil. It can thus be achieved that the characteristic curve on which the voltage values are recorded increases almost linearly, which means that the strength of the measurement signal also increases with increasing fill level.
  • Both the transmitter coils and the receiver coils can also have other winding shapes in addition to a preferable rectangular shape.
  • Fig. 2 shows a section through the wall of the .
  • FIG. 4 shows the side view of FIG. 3,
  • FIG. 5 shows a special embodiment of the coil system of the measuring unit in an exploded view
  • FIG. 6 shows a characteristic curve of the coil system according to FIG. 5 and
  • FIG. 7 shows the circuit diagram of electronics for a measuring unit with coils according to FIG. 5.
  • 1, 1 means the new measuring unit, which is provided on an intermediate vessel 2 for casting steel melt in molds 3, from which the cooled melt is drawn off in the form of a strand 4.
  • the intermediate vessel 2 receives the molten steel from a pouring ladle 5, which has a pouring closure 6, which serves to regulate the pouring jet 7 depending on the height of the bath level 8 in the intermediate vessel 2.
  • the measuring unit 1 is followed by an electronic measuring processing device 9 with an associated computer 10, which controls a mechanical control device 11 coupled to the pouring closure 6.
  • a measured value transmitter 12 reports the degree of the opening or closing position of the pouring closure 6 to the computer for evaluation 10 back, which can be used in the following, for example, to control a display device 13, further in a manner not shown for triggering alarms, for automatic casting or also for controlling the gravity tower carrying the steel casting ladle 5 or the like.
  • the intermediate vessel 2 has an outer steel jacket 14 and a fire-resistant lining 15, which according to FIG. 2 in the peripheral wall 16 consists of a permanent lining 17 lying against the steel jacket 14, a sand layer 18 and an inner wear lining
  • the measuring unit 1 is embedded in the permanent chuck 17 by means of an easily detachable peripheral layer, not shown, so that protection against wear of the chuck 19 is provided and effortless removal is possible.
  • the measuring unit 1 consists of a transmitter coil
  • the coil system 20, 21 has bare wires, which are wound on insulators 22 to form a coil structure 20, 21, 22, which is encased with a refractory, electrically non-conductive material 23, for which purpose the coil structure 20, 21, 22 when the wire ends are connected in a manner suitable for connection 24 detachably fastened in a formwork and then pourable refractory material 23 is filled.
  • the finished measuring unit 1 which contains transmitter and receiver coils 20, 21, can be switched off and used in a simple manner on metallurgical vessels when the refractory lining is being produced, although several units 1 can also be provided, although in most cases the arrangement of a single measuring unit coupled to an electrical connection 24 in the peripheral wall 16 of the vessel 2 is sufficient.
  • the measuring unit 1 equipped with the coil system 20, 21 acts in such a way that when the intermediate vessel 2 is empty, the total voltage of the receiver coils 21 a, b is zero, or was adjusted to zero with the aid of the downstream electronics. If the Bath level 8 on, corresponding voltages are induced. Instead of the two secondary coils shown, a larger number of secondary coils can also be used. This will be used in particular if "calibration marks" are to be measured. In this case, calibration marks are specific fixed heights associated voltage values - usually 'zero crossings - which are largely independent of the position of the leaching refractory Zu ⁇ . The voltages leading to calibration marks are obtained from linear combinations of the amounts of the preferably previously compared secondary voltages.
  • the system according to FIG. 5 represents a special embodiment of the coil system 20, 21 according to FIG. 2 to, in which the rectangular transmitter coil 30 made from two turns has a Z set coil 30 a in the upper third, in which a receiver coil 31 with three W is arranged, while a second receiver coil 32 with five • turns is in the middle of the transmitter coil 30. Equipped with such a coil system 30, 30a, 31, 32, differential voltage values ⁇ result for the measuring unit 1.
  • U according to the characteristic curve shown in FIG. 6, which rises linearly in the height range of the transmitter coil 30, within which the areas of the receiver coils 31 and 32 lie, which means that the differential voltage induced in the receiver coils 31, 32 and thus the measurement signal is proportional to the height h of the bath level 8.
  • the electronics belonging to the measuring unit 1 with a coil system 30, 31, 32 have, as can be seen from FIG. 7, a frequency generator 40, the electrical current with the desired frequency, which is 10 kHz for the exemplary embodiment, via a power amplifier 41 delivers to the transmitter coil 30.
  • Electrical voltages are induced in the receiver coils 31 and 32, on the one hand directly from the fields of the transmitter coil 30 and on the other hand from the fields of those currents which are in the liquid metal or in the electrically conductive construction of the intermediate vessel 2 have arisen.
  • the induced voltages of the receiver coils 31 and 32 are fed to a differential amplifier 46 in the measured value processing device 9 via filters 42 and 43 as well as phase shifters and adjustable amplifiers 44 and 45.
  • the output signal of the differential amplifier 46 is filtered again in a filter 47 and then rectified in a rectifier 48.
  • the rectified signal is taken over by the computer 10, which controls the control device 11, which influences the height of the bath level 8 of the intermediate vessel 2 via the pouring closure 6 of the steel casting ladle 5.
  • the measured value processing device 9 balances and amplifies the two voltages induced in the receiver coils 31, 32 in the phase shifters and amplifiers 44, 45 so that they are empty when the vessel 2 is empty the measured value is zero.
  • the measuring unit 1 continuously delivers voltage values to the measured value processing device 9, which passes on a corresponding actual value of the bath level 8 to the computer 10. This compares the actual value with a stored nominal value and controls the pouring closure 6 of the steel casting ladle 5 accordingly, in order to regulate the inflow of the molten steel to the intermediate vessel 2.
  • the actual position of the pouring closure 6, i.e. the degree of its opening or closing position is detected by the sensor 12 and reported back to the computer 10 for evaluation.
  • means 10 can also be provided in the computer 10 which detect the changes in the distance between the measuring unit 1 and the inner wall of the intermediate vessel 2 and thus possible deviations of the measured values also take into account the effective bath level heights in the level measurement.
  • sinusoidal signals are additionally generated, whose zero crossings serve as calibration marks, since the signal values of the bath level heights remain the same regardless of the changes in the distance mentioned.
  • changes in the said distance from the computer 10 can be detected and corresponding correction values can be formed, with which the effective bath level heights can then be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Continuous Casting (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Description

Einrichtung zur elektromagnetischen Füllstandsmessung für metallurgische Gefässe
Die Erfindung bezieht sich auf eine Einrichtung zur Füllstands¬ messung für metallurgische Gefässe, insbesondere Zwischengefässe zum Vergiessen von Stahlschmelze in Kokillen, bestehend aus elek¬ tromagnetischen Spulen, die mit zum Bad gerichteten Achsen in der Gefässwandung angeordnet und als an Wechselstrom anschliess- bare Primär bzw. Sendespulen sowie als Sekundär- bzw. Empfängerr spulen ausgebildet sind, deren, in Abhängigkeit des Badspiegel¬ standes induzierte Wechselspannungen als Eingangssignale für eine Meßwertverarbeitungseinrichtung dienen.
Bei' derartigen Einrichtungen sind, wie beispielsweise aus der DE-OS 27 22 214 und der US-PS 4 144 576 ersichtlich, die Sende¬ spule und die Empfängerspule getrennt an verschiedenen Stellen des Gefasses in der feuerfesten Auskleidung vorgesehen, z.B. im Bereich der Ecke eines Schmelzofens an zwei angrenzenden oder zwei gegenüberliegenden Wänden eines Gefäßes. Hierbei wird zum Bilden der Spulen ein besonderes Kabel aus einem inneren Draht, einer temperaturbeständigen keramischen Isolierung und einem äus- seren Stahlrohr verwendet. Grundsätzlich sind getrennte Spulen¬ anordnungen relativ aufwendig und umständlich in der Montage, weil jede Spule einzeln an der vorgesehenen Stelle der Gefässaus- kleidung zu montieren ist und dabei die zusammenwirkenden Spulen sehr genau gegeneinander ausgerichtet werden müssen, um brauch¬ bare Ausgangssignale zu erhalten.
Aufgabe vorliegender Erfindung ist es, durch eine verbesserte Ausbildung und Anordnung von Sende- und Empfängerspulen zueinan¬ der die Einrichtung zum Messen des Füllstandes an metallurgi¬ schen Gefässen bei höherer Messgenauigkeit zu vereinfachen.
Die gestellte Aufgabe wird gemäss der Erfindung dadurch gelöst, dass Sende- und Empfängerspulen zusammengefasst als Messeinheit vorgesehen sind, die wenigstens eine sich in Richtung der Füll¬ höhe erstreckende Sendespule und wenigstens zwei dieser zugeord¬ nete, in der Höhe versetzte Empfängerspulen aufweist. Dadurch kann die Unterb ingung der Sende- und Empfängerspulen in der Ge- fässwandung beim Errichten der feuerfesten Auskleidung leicht und mit wenigen Handgriffen erfolgen, da die Spulen bereits vor dem Einbau als Messeinheit zusammengebaut und dabei funktioneil auf das auszurüstende metallurgische Gefäss ausgerichtet werden. Ein mühevolles Einstellen einzelner Spulen in spezielle Lagen in der Gefässwandung ist nicht mehr erforderlich. Unter dem Begriff Messeinheit ist hierbei eine mit Halte-, Binde-, Verbindungs¬ oder dergleichen Mitteln zusammengefasste Spuleneinheit zu ver¬ stehen, die bezogen auf jeweilige spezielle messtechnische Er¬ fordernisse eines metallurgischen Gefasses vorfabriziert wird.
Als besonders vorteilhaft hat sich gemäss der Erfindung eine Messeinheit erwiesen, die aus einem aus blanken Drähten auf Iso¬ latoren gestaltetem System aus Sende- und Empfängerspulen und darum herum gegossenem feuerfesten Material mit elektrisch iso¬ lierenden Eigenschaften besteht. Auf diese Weise lässt sich mit einfachen Mitteln eine problemlos in die feuerfeste Auskleidung des Gefasses einfügbare Baueinheit herstellen, deren Einbau zweckmässig im Dauerfutter unter Vermittlung von Mineralwolle, leicht lösbarem Mörtel oder dergleichen erfolgt, um ein Separie¬ ren der .Messeinheit beim Erneuern der Gefässauskleidung zu er¬ leichtern. Als zweckdienlich hat sich auch das Vorgehen bestä¬ tigt, einen die Sende- und Empfängerspulen tragenden Rahmen bzw. Formkörper zu verwenden, der aus feuerfestem elektrisch isolie¬ rendem Material besteht und Führungsnuten, beispielsweise in Form von Ritzen hat, in die die Spulendrähte eingelegt und mit einem, dem feuerfesten Material gleichwertigem Mörtel zuge- schmiert werden können.
Im Besonderen empfiehlt sich eine Meßeinheit, die eine Sendespul mit in Richtung der Füllhöhe unterschiedlichem Feldfluß aufweist und bei der die Empfängerspulen in unterschiedlichen Feldflußbe¬ reichen der Sendespule angeordnet sind. Damit kann erreicht wer¬ den, daß die Kennlinie, auf der man die Spannungswerte aufnimmt, nahezu linear ansteigend verläuft, was bedeutet, daß mit zuneh¬ mender Füllhöhe auch die Stärke des Meßsignals ansteigt.
Sowohl die Sendespulen als auch die Empfängerspulen können neben einer vorzuziehenden rechteckigen Form auch andere Windungsfor¬ men haben. Insbesondere lassen sich zur Erzielung eines unter¬ schiedlichen Feldflusses innerhalb einer Sendespule, was vorzugs weise mit zusätzlichen Nebenwindungen geschieht, zweckdienlich beispielsweise auch dreieckige Windungsformen mit zur Spitze des Dreiecks hin abnehmendem Feldfluß einsetzen.
Die Erfindung ist nachstehend anhand der Zeichnungen an zwei Aus¬ führungsbeispielen veranschaulicht.
Es zeigen:
Fig. 1 schematisch die Regelung des Zuflusses der Stahlschmelze aus einer Giesspfanne in ein Zwischengefäss,
Fig. 2 einen Schnitt durch die Wandung des . Zwischengefässes mit eingebauter Messeinheit in grösserem Masstab,
Fig. 3 eine aufgebrochene Messeinheit mit Blick auf das Spulen¬ system,
Fig. 4 die Seitenansicht zu Fig.3,
Fig. 5 ein spezielles Ausführungsbeispiel des Spulensystems der Meßeinheit in Explosionsdarstellung,
Fig. 6 eine Kennlinie des Spulensystems nach Fig.5 und
Fig. 7 das Schaltbild einer Elektronik für eine Messeinheit mit Spulen nach Fig.5.
In der Füllstandsmesseinrichtung nach Fig.l bedeutet 1 die neue Messeinheit, die an einem Zwischengefäss 2 zum Vergiessen von Stahlschmelze in Kokillen 3 vorgesehen ist, aus denen die erkal¬ tete Schmelze in Form eines Stranges 4 abgezogen wird. Seiner¬ seits erhält das Zwischengefäss 2 die Stahlschmelze aus einer Giesspfanne 5, die einen Ausgussverschluss 6 aufweist, der zum Regeln des Giesstrahls 7 in Abhängigkeit der Höhe des Badspie¬ gels 8 im Zwischenge äss 2 dient. Hierzu ist der Messeinheit 1 eine elektronische Messverarbeitungseinrichtung 9 mit einem zu¬ geordneten Rechner 10 nachgeschaltet, der eine mit dem Ausguss¬ verschluss 6 gekoppelte jmechanische Regeleinrichtung 11 steuert. Ein Messwertgeber 12 meldet den Grad der Oeffnungs- bzw.Schliess- stellung des Ausgussverschlusses 6 zur Auswertung an den Rechner 10 zurück, der im weiteren beispielsweise zur Steuerung eines Anzeigegerätes 13, ferner in nicht dargestellter Weise zum Aus¬ lösen von Alarmen, zum automatischen Angiessen oder auch zum Steuern des die Stahlgiesspfanne 5 tragenden Schwenkturms oder dergleichen benutzt werden kann.
Das Zwischengefäss 2 hat einen äusseren Stahlmantel 14 und eine feuerfeste Auskleidung 15, die gemäss Fig.2 in der Umfangswan- dung 16 aus einem an den Stahlmantel 14 anliegenden Dauerfutter 17, einer Sandschicht 18 sowie einem inneren Verschleissfutter
19 besteht. Im Dauerfutter 17 ist die Messeinheit 1 mittels ei¬ ner nicht dargestellten leicht lösbaren Umfangsschicht eingebet¬ tet, so dass ein Schutz bei Abnutzung des Verschleissfutters 19 gegeben und ein müheloser Ausbau möglich ist.
Nach Fig.2 bis 4 besteht die Messeinheit 1 aus einer Sendespule
20 mit etwa parellel zum Badspiegel 8 gerichteten Achsen und darin in Richtung der Füllhöhe versetzten, d. h. verschiedene Flächenbereiche der Sendespule 20 überdeckenden, Empfängerspu¬ len 21 a, b. Das Spulensystem 20, 21 hat blanke Drähte, die auf Isolatoren 22 zu einem Spulengebilde 20, 21, 22 gewickelt sind, das mit einem feuerfesten, elektrisch nicht leitenden Material 23 umgössen ist, wozu das Spulengebilde 20, 21, 22 bei anschlußgerechter Fassung der Drahtenden 24 in einer Verschalung lösbar befestigt und dann das gießfähige feuer¬ feste Material 23 eingefüllt wird. Nach Erstarren des Materials 23 kann die fertige, Sende- und Empfängerspulen 20,21 gemeinsam enthaltende Messeinheit 1 ausgeschalt und in einfacher Art an metallurgischen Gefässen bei Erstellung der feuerfesten Ausklei¬ dung eingesetzt werden, wobei auch mehrere Einheiten 1 vorgese¬ hen sein können, obwohl in den meisten Fällen die Anordnung ei¬ ner einzigen, mit einem elektrischen Anschluss 24 in der Umfangs- wandung 16 des Gefasses 2 gekoppelten Messeinheit genügt.
Die mit dem Spulensystem 20, 21 ausgerüstete Meßeinheit 1 wirkt derart, daß bei leerem Zwischengefäß 2 die Gesamtspannung der Empfängerspulen 21 a,b gleich Null ist, oder mit Hilfe der nach¬ geschalteten Elektronik auf Null abgeglichen wurde. Steigt der Badspiegel 8 an, so werden entsprechende Spannungen induziert. Statt der eingezeichneten beiden Sekundärspulen kann auch eine größere Zahl von Sekundärspulen verwendet werden. Hierauf wird man insbesondere dann zurückgreifen, wenn "Eichmarken" gemes¬ sen werden sollen. Dabei sind Eichmarken speziellen festen Höhen zugeordnete Spannungswerte - in der Regel 'Nulldurchgänge - die weitgehend unabhängig von der Auswaschung der feuerfesten Zu¬ stellung sind. -Die zu Eichmarken führenden Spannungen werden aus Linearkombinationen der Beträge der vorzugsweise zuvor abgegli¬ chenen SekundärSpannungen gewonnen.
Eine spezielle Ausführung zum Spulensystem 20,21 nach Fig. 2 bis stellt das System nach Fig. 5 dar, bei dem die aus zwei Windunge hergestellte, rechteckige Sendespule 30 im oberen Drittel eine Z satzspule 30a aufweist, in der eine Empfängerspule 31 mit drei W dungen angeordnet ist, während eine zweite Empfängerspule 32 mit fünf• Windungen sich in der Mitte der Sendespule 30 befindet. Aus¬ gerüstet mit einem solchen Spulensystem 30,30a, 31, 32 ergeben sich für die Messeinheit 1 Differenzspannungswerte Δ. U nach der in Fig.6 dargestellten Kennlinie, die im Höhenbereich der Sende¬ spule 30, innerhalb dessen die Bereiche der Empfängerspulen 31 und 32 liegen, linear ansteigt, was heisst, dass die in den Emp¬ fängerspulen 31,32 induzierte Differenzspannung und damit das Messignal proportional zur Höhe h des Badspiegels 8 verläuft.
Die zur Messeinheit 1 mit einem Spulensystem 30,31,32 gehörende Elektronik hat, wie aus Fig.7 ersichtlich, einen Frequenzgenera¬ tor 40, der elektrischen Strom mit der gewünschten Frequenz, die für das Ausführungsbeispiel 10 kHz beträgt, über einen Leistungs¬ verstärker 41 an die Sendespule 30 liefert. In den Empfängerspu¬ len 31 und 32 werden elektrische Spannungen induziert, und zwar einerseits unmittelbar aus den Feldern der Sendespule 30 und an¬ dererseits aus den Feldern derjenigen Ströme, die in dem flüssi¬ gen Metall oder in der elektrisch leitenden Konstruktion des Zwi- schengefässes 2 entstanden sind. Die induzierten Spannungen der Empfängerspulen 31 und 32 werden in der Messwertverarbeitungsein- richtung 9 über Filter 42 bzw. 43 sowie Phasenschieber und ein¬ stellbare Verstärker 44 bzw. 45 einem Differenzverstärker 46 zu¬ geführt. Das Ausgangssignal des Differenzverstärkers 46 wird nochmals in einem Filter 47 gefiltert und dann in einem Gleich¬ richter 48 gleichgerichtet. Das gleichgerichtete Signal wird vom Rechner 10 übernommen, der die Regeleinrichtung 11 steuert, die die Höhe des Badspiegels 8 des Zwischengefässes 2 über den Aus- gussverschluss 6 der Stahlgiesspfanne 5 beeinflusst.
Vor dem Einfüllen des flüssigen Stahls in das Zwischengefäss 2 werden von der Messwertverarbeitungseinrichtung 9 die beiden in den Empfängerspulen 31,32 induzierten Spannungen in den Phasen¬ schiebern und Verstärkern 44,45 gegeneinander auf Null abgegli¬ chen und verstärkt, so dass bei leerem Gefäss 2 der Messwert gleich Null ist. Sobald Stahlschmelze eingefüllt wird, werden von der Messeinheit 1 laufend Spannungswerte an die Messwertver- arbeitungseinrichtung 9 geliefert, die einen entsprechenden Ist¬ wert der Badspiegelhöhe 8 an den Rechner 10 weitergibt. Dieser vergleicht den Istwert mit einem gespeicherten Sollwert und steu¬ ert entsprechend den Ausgusεverschluss 6 der Stahlgiesspfanne 5, zwecks Regelung des Zuflusses der Stahlschmelze zum Zwischenge¬ fäss 2. Dabei wird die Istposition des Ausgussverschlusses 6, d.h. der Grad seiner Oeffnungs- bzw. Schliessstellung von dem Messwertgeber 12 erfasst und an den Rechner 10 zur Auswertung zurückgemeldet.
Wenn das Verschleissfutter 19 des Zwischengefässes 2 grossen Ab¬ nutzungen ausgesetzt ist, können im Rechner 10 ferner Mittel vor¬ gesehen sein, die die entstehenden Aenderungen des Abstandes zwischen der Messeinheit 1 und der inneren Wandung des Zwischen¬ gefässes 2 und damit mögliche Abweichungen der gemessenen zu den effektiven Badspiegelhöhen bei der Füllstandsmessung mitberück¬ sichtigen. So werden entsprechend der Anordnung der Sekundärspu¬ len beispielsweise sinusförmige Signale zusätzlich erzeugt, de¬ ren Nulldurchgänge als Eichmarken dienen, da bei diesen unab¬ hängig der Aenderungen des genannten Abstandes die Signalwerte der Badspiegelhöhen gleich bleiben. Anhand dieser Eichmarken können Aenderungen des genannten Abstandes vom Rechner 10 er¬ fasst und entsprechend Korrekturwerte gebildet werden, mit denen sich dann die effektiven Badspiegelhöhen bestimmen lassen.

Claims

- Ö _
P a t e n t a n s p r ü c h e
Einrichtung zur Füllstandsmessung für metallurgische Gefässe, insbesondere Zwischengefässe zum Vergiessen von Stahlschmel¬ ze in Kokillen, bestehend aus elektromagnetischen Spulen, die mit zum Bad gerichteten Achsen in der Gefässwandung an¬ geordnet und als an Wechselstrom anschliessbare Primär- bzw. Sendespulen sowie als Sekundär- bzw. Empfängerspulen ausge¬ bildet sind, deren in Abhängigkeit des Badspiegelstandes in¬ duzierte Wechselspannungen als Eingangssignale für eine Mess- wertverarbeitungseinrichtung dienen, dadurch g e k e n n ¬ z e i c h n e t , dass Sende- und Empfängerspulen zusammen- gefasst als Messeinheit (1) vorgesehen sind, die wenigstens eine sich in Richtung der Füllhöhe erstreckende Sendespule (20,30) und wenigstens zwei dieser zugeordnete, in der Höhe versetzte Empfängerspulen (21,31,32) aufweist.
Einrichtung nach Anspruch 1, dadurch g e k e n n z e i c h ¬ n e t , dass die Messeinheit (1) aus einem aus blanken Dräh¬ ten auf Isolatoren (22) gestaltetem System aus Sende- und Empfängerspulen (20,21a,b) und darum herumgegossenem feuer¬ festem Material (23) mit elektrisch isolierenden Eigenschaf¬ ten besteht. 3. Einrichtung nach Anspruch 1, dadurch g e k e n n z e i c h ¬ n e t , dass als Messeinheit (1) ein aus feuerfestem, elek¬ trisch isolierendem Material bestehender Rahmen bzw. Formkör¬ per mit die Drähte des Spulensystems aufweisenden Führungs¬ nuten dient.
4. Einrichtung nach den Ansprüchen 2 und 3, dadurch g e k e n ¬ z e i c h n e t , dass die Messeinheit (1) unter Vermittlung von leicht lösbaren Stoffen in das Dauerfutter (17) des me¬ tallurgischen Gefasses eingefügt ist.
5. Einrichtung nach den Ansprüchen 1 bis 4, dadurch g e k e z e i c h n e t, daß an die Sendespule eine Wechselspannung im 10 kHz-Bereich gelegt wird.
6. Einrichtung nach den Ansprüchen 1 bis 4, dadurch g e e n n¬ z e i c h n e t , dass die Messeinheit (1) eine Sendespule (30) mit in Richtung der Füllhöhe unterschiedlichem Feldfluss aufweist und die Empfängerspulen (31,32) in unterschiedli¬ chen Feldflussbereichen der Sendespule angeordnet sind.
7. Einrichtung nach Anspruch 6, dadurch g e k e n n z e i c h ¬ n e t , dass die Messeinheit (1) eine Sendespule (30) mit im Bereich des optimalen Standes des Badspiegels (8) stärkeren Feldfluss' hat und dem geringeren und stärkeren Feldflussbe¬ reich je eine Empfängerspule (31,32) mit unterschiedlichen Windungszahlen zugeordnet ist.
8. Einrichtung nach den Ansprüchen 6 und 7, dadurch g e e n n¬ z e i c h n e t , dass die Sendespule (30) mit den stärkeren Feldfluss bewirkenden Nebenwindungen (30a), Windungsprofilen oder dergleichen ausgestattet ist. 9. Einrichtung nach Anspruch 1, dadurch g e k e n n z e i c h ¬ n e t , dass im Rechner (10) der Messwertverarbeitungsein- richtung (9) die Eingangssignale gespeichert, Eichmarken für bestimmte Badspiegelhöhen und Korrekturwerte für die Aus¬ gangssignale gebildet sind, um den Verschleisε des Ver- schleissfutters (19) des Zwischengefässes (2) und damit Aen¬ derungen des Abstandes zwischen dem Bad und der Messeinheit (1) mitzuberücksichtigen.
10. Einrichtung nach Anspruch 1 und 9, dadurch g e k e n n z e i n e t, daß die Zahl der Sekundärspulen oder Linearkombination aus Signalen der Sekundärspulen so erhöht wird, daß alleine d Information, ob die einzelnen Eichmarken überschritten sind, mit genügender Genauigkeit die Badhöhe festlegt.
PCT/EP1985/000319 1984-07-26 1985-07-03 Device for electromagnetic measurement of the filling of metallurgical vessels WO1986000987A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT85903270T ATE44173T1 (de) 1984-07-26 1985-07-03 Einrichtung zur elektromagnetischen fuellstandsmessung fuer metallurgische gefaesse.
BR8506854A BR8506854A (pt) 1984-07-26 1985-07-03 Dispositivo para a medicao eletromagnetico do nivel em recipientes metalurgico
KR1019860700135A KR860700291A (ko) 1984-07-26 1985-07-03 야금용기용 충전레벨 측정장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3427563.0 1984-07-26
DE3427563A DE3427563C2 (de) 1984-07-26 1984-07-26 Einrichtung zur elektromagnetischen Füllstandsmessung für metallurgische Gefässe

Publications (1)

Publication Number Publication Date
WO1986000987A1 true WO1986000987A1 (en) 1986-02-13

Family

ID=6241628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1985/000319 WO1986000987A1 (en) 1984-07-26 1985-07-03 Device for electromagnetic measurement of the filling of metallurgical vessels

Country Status (10)

Country Link
US (1) US4708191A (de)
EP (1) EP0190178B1 (de)
JP (1) JPS61501472A (de)
KR (1) KR860700291A (de)
AT (1) ATE44173T1 (de)
BR (1) BR8506854A (de)
CA (1) CA1238503A (de)
DE (1) DE3427563C2 (de)
WO (1) WO1986000987A1 (de)
ZA (1) ZA854960B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192043A1 (de) * 1985-02-01 1986-08-27 Arbed S.A. Vorrichtung zur Füllstandsmessung in Behältern, insbesondere Stranggiesskokillen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427563C2 (de) * 1984-07-26 1986-12-11 Stopinc Ag, Baar Einrichtung zur elektromagnetischen Füllstandsmessung für metallurgische Gefässe
NL8800491A (nl) * 1988-02-26 1989-09-18 Hoogovens Groep Bv Werkwijze voor het meten van het niveau van een metaalbad.
US4942351A (en) * 1989-03-28 1990-07-17 Robertshaw Controls Company System for monitoring a level of material, device therefor and methods of making the same
US5269188A (en) * 1991-07-29 1993-12-14 Rosemount Inc. Continuous self test time gate ultrasonic sensor and method
SE470179B (sv) * 1992-02-20 1993-11-29 Metpump Ab Pumpanordning för pumpning av smält metall
US5437178A (en) * 1992-07-06 1995-08-01 Kay-Ray/Sensall, Inc. Controller for ultrasonic sensors
US5428984A (en) * 1993-08-30 1995-07-04 Kay-Ray/Sensall, Inc. Self test apparatus for ultrasonic sensor
CN1168560C (zh) * 1997-12-08 2004-09-29 新日本制铁株式会社 采用熔化金属高度计的连续浇铸设备
US6577118B2 (en) 2001-02-02 2003-06-10 B.D.H. Industries Inc. System and method for measuring liquid metal levels or the like
EP1229313A3 (de) * 2001-02-02 2003-09-03 Bdh Industries Inc. Vorrichtung und Verfahren zur Messung des Füllstandes von Flüssigmetall
DE102009022992A1 (de) * 2009-03-02 2010-10-07 Micro-Epsilon Messtechnik Gmbh & Co. Kg Positionssensor
FR2945118B1 (fr) * 2009-04-29 2011-06-17 Avemis Capteur et procede de mesure de niveau de la surface d'un metal en phase liquide
WO2011136729A1 (en) * 2010-04-30 2011-11-03 Agellis Group Ab Measurements in metallurgical vessels
EP2568265A1 (de) * 2011-09-09 2013-03-13 Tata Steel UK Limited Vorrichtung und Verfahren zum Messen des Flüssigmetallstands in einem metallurgischen Gefäß
KR101938031B1 (ko) 2011-09-15 2019-01-11 아겔리스 그룹 에이비 야금 용기 내 수준 측정
DE102017204441A1 (de) 2017-03-16 2018-09-20 Robert Bosch Gmbh Füllstandsmessung für Ausgangsmaterial in einem 3D-Druckkopf
IT201800006804A1 (it) * 2018-06-29 2019-12-29 Dispositivo di rilevamento del livello di metallo in un forno elettrico ad arco
DE102019105628B3 (de) * 2019-03-06 2020-03-19 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur berührungslosen Bestimmung der Geschwindigkeitsverteilung eines Schmelzvolumens in einer Stranggusskokille

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2352287A1 (fr) * 1976-05-20 1977-12-16 Atomenergi Ab Systeme de mesure electromagnetique d'une grandeur relative a une matiere liquide conductrice d'electricite
EP0010539A1 (de) * 1978-10-25 1980-04-30 Arbed S.A. Verfahren zur Messung des Füllstandes von flüssigen Metallen in Gefässen, insbesondere in Stranggiesskokillen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311870B2 (de) * 1971-09-30 1978-04-25
DE7333074U (de) * 1973-09-12 1975-06-26 Interatom Int Atomreaktorbau Gmbh Kontinuierlicher Füllstandsmesser für elektrisch leitende Flüssigkeiten
US3962919A (en) * 1975-07-15 1976-06-15 Westinghouse Electric Corporation Temperature compensated inductive liquid metal level detection system
DE2556012A1 (de) * 1975-12-12 1977-06-16 Philips Patentverwaltung Verfahren und anordnung zur ermittlung der raeumlichen verteilung einer strahlung in einer ebene eines koerpers
GB1574706A (en) * 1976-01-07 1980-09-10 Nat Res Dev Devices for measuring the length of a curved path
SE403655B (sv) * 1976-05-20 1978-08-28 Atomenergi Ab Anordning for elektromagnetisk metning av niva och/eller avstand i samband med i en behallare innehallet, flytande ledande material
CH624323A5 (de) * 1977-09-19 1981-07-31 Atomenergi Ab
JPS567570A (en) * 1979-06-30 1981-01-26 Hitachi Ltd Purity automatic adjusting system for color braun tube
JPS5739374A (en) * 1980-08-20 1982-03-04 Ricoh Elemex Corp Hand operating method of electronic timepiece
EP0060800B1 (de) * 1981-03-18 1986-06-11 Arbed S.A. Verfahren und Vorrichtung zum Messen des Füllstandes in Stranggiesskokillen
DE3427563C2 (de) * 1984-07-26 1986-12-11 Stopinc Ag, Baar Einrichtung zur elektromagnetischen Füllstandsmessung für metallurgische Gefässe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2352287A1 (fr) * 1976-05-20 1977-12-16 Atomenergi Ab Systeme de mesure electromagnetique d'une grandeur relative a une matiere liquide conductrice d'electricite
EP0010539A1 (de) * 1978-10-25 1980-04-30 Arbed S.A. Verfahren zur Messung des Füllstandes von flüssigen Metallen in Gefässen, insbesondere in Stranggiesskokillen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192043A1 (de) * 1985-02-01 1986-08-27 Arbed S.A. Vorrichtung zur Füllstandsmessung in Behältern, insbesondere Stranggiesskokillen

Also Published As

Publication number Publication date
ATE44173T1 (de) 1989-07-15
DE3427563C2 (de) 1986-12-11
JPS61501472A (ja) 1986-07-17
US4708191A (en) 1987-11-24
DE3427563A1 (de) 1986-02-06
EP0190178B1 (de) 1989-06-21
BR8506854A (pt) 1986-09-23
EP0190178A1 (de) 1986-08-13
CA1238503A (en) 1988-06-28
ZA854960B (en) 1986-02-26
KR860700291A (ko) 1986-08-01

Similar Documents

Publication Publication Date Title
WO1986000987A1 (en) Device for electromagnetic measurement of the filling of metallurgical vessels
DE2722506C2 (de) Anordnung zur elektromagnetischen Messung von Größen in Verbindung mit elektrisch leitendem flüssigem Material
DE2722214C2 (de)
DE2839953C3 (de) Vorrichtung und Verfahren zum Messen der Badspiegelhöhe in einer Stranggießkokille
EP0198910B1 (de) Verfahren und vorrichtung zum detektieren von schlacke
DE3842690C2 (de) Feuerfeste Verbindung sowie Induktionsspule hierfür
EP0010539A1 (de) Verfahren zur Messung des Füllstandes von flüssigen Metallen in Gefässen, insbesondere in Stranggiesskokillen
EP1384997B1 (de) Verfahren und Vorrichtung zur Auswertung von Wirbelstrom-Messsignalen
DE2722475C2 (de)
EP0060800B1 (de) Verfahren und Vorrichtung zum Messen des Füllstandes in Stranggiesskokillen
DE3346650A1 (de) Verfahren und vorrichtung zum bestimmen und regeln eines niveaus einer metallschmelze
DE19515230C2 (de) Verfahren zum induktiven Aufheizen eines feuerfesten Formteils sowie ein entsprechendes Formteil
CH632173A5 (de) Stranggiessanlage.
DE69811889T2 (de) Rinneninduktor
EP0706032B1 (de) Messgerät für strömende Medien
DE3423868C2 (de)
EP0223901B1 (de) Flacher induktiver Füllstandsfühler für flüssige Metalle
DE3500978A1 (de) Verfahren zur regelung einer giess- bzw. foerdereinrichtung beim fuellen einer gussform mit fluessigmetall und zugehoerige gussform sowie vorrichtung zur durchfuehrung des verfahrens
DE944990C (de) Verfahren und Einrichtung zum Feststellen und Regeln der Hoehenlage des Metallspiegels in Stranggiesskokillen
DE20108904U1 (de) Induktiver Näherungsschalter zum materialunabhängigen Nachweis von metallischen Gegenständen
DE7133639U (de) Diskontinuierlicher fuellstandsmesser fuer fluessige metalle
DE1548949A1 (de) Vorrichtung zur Durchflussmessung in offenen Kanaelen,Gerinnen oder Abwasserrohren
DD237487A1 (de) Anordnung zur induktiven fuellstandsmessung an giessoefen
DE2016567C (de) Durchflußmeßgerät
DE102005056165A1 (de) Magnetisch-induktiver Durchflußmesser sowie Meßrohr für einen solchen Durchflußmesser

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1985903270

Country of ref document: EP

AK Designated states

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Designated state(s): AT CH FR GB IT SE

WWP Wipo information: published in national office

Ref document number: 1985903270

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985903270

Country of ref document: EP