US3709664A - High shear mixing apparatus for making silica gels - Google Patents

High shear mixing apparatus for making silica gels Download PDF

Info

Publication number
US3709664A
US3709664A US00070623A US3709664DA US3709664A US 3709664 A US3709664 A US 3709664A US 00070623 A US00070623 A US 00070623A US 3709664D A US3709664D A US 3709664DA US 3709664 A US3709664 A US 3709664A
Authority
US
United States
Prior art keywords
blades
sets
rotatable
stationary
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00070623A
Inventor
J Krekeler
C Wehr
H Aboutboul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT PETRO CHEM
NAT PETRO CHEM CORP US
Original Assignee
NAT PETRO CHEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT PETRO CHEM filed Critical NAT PETRO CHEM
Application granted granted Critical
Publication of US3709664A publication Critical patent/US3709664A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • B01F27/902Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms  cooperating with intermeshing elements fixed on the receptacle walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/924Significant dispersive or manipulative operation or step in making or stabilizing colloid system
    • Y10S516/929Specified combination of agitation steps, e.g. mixing to make subcombination composition followed by homogenization
    • Y10S516/93Low shear followed by high shear

Definitions

  • ABSTRACT Apparatus comprising a rotary agitator possessing movable sets of flat blades interspersed with stationary sets of flat blades, the pitch and clearances of the blades being such that high shear agitation is obtained.
  • This apparatus is suitable for use in the carrying out of any process requiring high shear mixing. It has been found to be particularly useful in the preparation of silica gels of high quality.
  • a drying step which comprises displacing the water from the gel by use of a suitable organic solvent (e.g., a surfactant, an alcohol, acetone, etc.) which can displace the water and reduce the surface tension of the wetting agent in the pores of the gel, followed by drying the gel.
  • a suitable organic solvent e.g., a surfactant, an alcohol, acetone, etc.
  • Ser. No. 750,733 discloses a method of drying the gel which comprises a vacuum freeze-drying process to remove essentially all the water, wherein the gel is frozen at a temperature between C and -10C and the water is then vacuum sublimed from the gel.
  • the reagents are admixed in a suitable reaction vessel and subjected to agitation in order to obtain as thorough a mixing of the reactants as possible.
  • agitation tends to produce a gel which varies in particle size and other physical properties from batch to batch
  • the reactions are usually subjected to high shear mixing before the drying of the gel in order to obtain uniformity in particle size between various lots of silica gel produced.
  • the product After gelation, the product is heat aged while maintaining the pH within a specified narrow range. Inadequate agitation tends to cause a non-uniform pH level, resulting in a pH gradient across the gel particles. Such gradients tend to result in undesirable variations in physical properties of the final silica gel product.
  • the mixing apparatus of the present invention comprises a vertical vessel having cylindrical walls, a vertical driven shaft disposed centrally therein, a plurality of movable sets of flat blades secured to said shaft for rotation therewith, each of said movable sets being spaced equidistant from each other along the length of said shaft with the blades in each set extending radially outwardly from said shaft in equally spaced relation and pitched at an angle with respect to the axis of said shaft, a plurality of sets of stationary flat blades secured to said cylindrical wall of said vessel, each of said stationary sets being spaced equidistant from each other along the length of said shaft with the blades in each set extending radially inwardly from said wall toward said shaft in equally spaced relation and disposed at an acute angle with respect to the axis of said shaft, said stationary sets being located in alternate relation with said movable sets with substantially identical clearances therebetween and with the blades in selected sets being pitched in the opposite direction with respect to the pitched blades in other selected sets, the blades of each
  • FIG. I is a plan view of one embodiment of the apparatus of the present invention, illustrating the arrangement of the stationary and movable sets of blades therein.
  • FIG. 2 is a side elevation of the apparatus of FIG. 1, modified as explained below for purposes of illustration.
  • FIG. 3 is a sectional view taken along line A A of FIG. 2, illustrating the pitched configuration of the various blades.
  • FIG. 4 is a graphic illustration of the particle size distribution of silica gels produced in the apparatus of the present invention.
  • the apparatus consists of a vertical, cylindrical tank with a flat top and bottom.
  • the top lid 6 contains a partial hinged door 6a, which may be used for inspection and cleaning.
  • the sides and bottom of the apparatus may be jacketed as shown at 7 and provision made for the introduction and removal of heating or cooling fluid to the jacketed portion at 70 and 7b. Insulation, for example foam or glass fiber, (not illustrated) may be applied to the exterior of this jacket.
  • the agitator consists of at least rows of 4-bladed movable sets 1, 2, 3, 4 and 5, mounted on a vertical shaft 8, each blade being pitched at an angle of 45.
  • the pitch of the blades can be varied from the disclosed 45pitch, although a 45 pitch provides the advantage of being able to reverse the direction of agitation for another application of the apparatus; for example, when working with a suspension where the solid is lighter than the medium.
  • a pitch greater than 45 e.g., 60
  • a pitch lower than 45 e.g., 30
  • each such stationary set contains two blades, although as will readily occur to one skilled in the art, additional blades could be employed in such sets, although additional blades would necessarily increase the power required to turn the agitator blades.
  • the number of rows of blades is not limited so long as the apparatus remains a vessel" instead of a column.”
  • the stationary paddles should not be positioned at the bottom of the vessel since this would inhibit the complete and thorough agitation required by the process for producing the silica gel product described herein.
  • agitator blade sets 1 to 5 are staggered with respect to each other, each at an angle of 18, as shown in the plan view of FIG. 1.
  • the agitator blades are shown aligned vertically instead of being staggered.
  • This method of illustrating the apparatus has been employed in order to more clearly illustrate the pitched configuration of the various blades, clearly shown in Section 3-3 of FIG. 2, and should not be construed as an illustration of the actual positions of the movable sets of blades, which are, in reality, staggered as shown in FIG. 1.
  • the agitator comprising blade sets 1 to 5 and vertical shaft 8, is driven by a suitable motor, preferably combined with a variable speed drive and reduction gear coupled to the vertical agitator shaft.
  • a suitable motor preferably combined with a variable speed drive and reduction gear coupled to the vertical agitator shaft.
  • Various combinations of motor and gears can be employed in order to obtain any desired range of speed and/or power.
  • the vessel possessed a 6-foot diameter and the agitator possessed a speed range of 5 to 50 RPM. It will be understood, however, that the vessel size and speed range can be varied at will and the present invention will not be limited by the above.
  • the blades of the present apparatus preferably have square edges and the horizontal edges of the blades and paddles are preferably parallel to each other and spaced as set forth below.
  • the ends of the agitator blades are illustrated as being square, but can be slightly rounded if desired.
  • the shear action occurs along the front (i.e., leading) edge of the blades as they rotate and little, if any, takes place along the end of the blades as they travel through the liquid along the wall of the vessel.
  • the configuration of the ends of the blades should be such that there is a minimum clearance between the blade ends and the vessel wall to prevent a buildup of solids in this space.
  • the tapered ends of the stationary paddles is desirable since the hub end of the rotating blades should not touch the ends of the paddles when the former are slipped into position along shaft 8.
  • a flanged ball bearing 9 at the top of the unit supports the drive shaft and a bushing 10 stabilizes the lower end of the shaft. Spacers between the rotating horizontal paddles maintain the proper spacing.
  • a quick opening valve 11 may be located at the bottom in order to drain the tank.
  • Reactants or the ingredients to be mixed may be added at inlets I2 and 13.
  • a direct and continuous reading temperature gauge and pH meter may be installed.
  • the temperature may be automatically controlled for both cooling and heating cycles and, in addition, automatic control of the addition of reactants may also be achieved, as by control of the addition of an acid in response to the pH of the mixture.
  • agitator blades of sets 1, 3 and 4 are angled so that they tend to lift the ingredients in the mixer, while the blades of sets 2 and 5 are angled so that they tend to push the ingredients being mixed in a downward direction.
  • the rotating sets of blades are keyed to the drive shaft, the keyways being successively 18 apart, which configuration assists in decreasing the magnitude of the power impulses required.
  • the clearance employed between the movable sets of blades and the stationary sets of blades, as well as between the ends of the rotating blades and the vertical mixer wall may vary between one-eighth inch and 2 inches, a spacing of one-half inch being preferred.
  • the aforementioned clearances are the preferred dimensions for the production of the uniform silica gel product described herein.
  • the spacing which is chosen is as small as is commercially practicable but sufficient to maintain suitable spacing between the various components to prevent accidental collisions due to vibration or wear of the components.
  • the clearance may be increased for products other than the silica gel described herein, bearing in mind that larger clearances result in less shear action and would necessitate greater rotational speed to compensate therefor.
  • the superior high shear mixing which may be achieved as a result of the improved reactor design of the present invention will be illustrated in the following examples by the affect upon a silica gel product prepared in accordance with the aforesaid application Ser. No. 750,734.
  • the silica gel product obtained in accordance with the process of this application possesses a narrow pore diameter distribution primarily in the range of from 300 to 600 A., a surface area in the range of from 200 to 500 m lg and stability at temperatures of up to 2,000F, even when subjected to fluidized processing.
  • narrow pore diameter distribution indicates that 70 percent, or more, of the cumulative pore volume is in the pore diameter range of 300-600A. when measured by N adsorption by the B.E.T. Method.
  • poor volume of the xerogel-type silica gel product varies from 2.0 to 3.5 cc/gr. when measured by N adsorption by the B.E.T. Method.
  • the properties of the silica gel obtained are discussed in terms of pore volume (PV), surface area (SA), and average pore diameter (PD), where PD 4PV/SA Determinations of the values for the various properties are made by nitrogen absorption-desorption techniques well known in the art and described in detail in the Journal of the American Chemical Society, Volume 60, Page 309 (1938), Journal of Catalysis," Volume 2, Page 1 l l (1955).
  • the first example describes a preferred method for carrying out the preparation of the silica gel employing the apparatus of the present invention, to obtain a silica gel with the desired physical properties and illustrates the consistency of the results .obtained.
  • the remainder of the examples illustrate trials with other types of mixers and agitators.
  • EXAMPLE I 2,090 pounds of sodium silicate solution containing 28.7% SiO and 8.9% Na O were added to 387 gallons of deionized water in the reactor illustrated in FIGS. 1 and 2 and described above and cooled to 5C with agitation of 20 RPM.
  • the final pH of the gel was adjusted to 5.0 to 5.5 and the SiO content was approximately 8.5 percent.
  • Example II The particle size distribution curve of the material produced in Example I is shown in FIG. 4. This shows a narrow distribution of the particles between and microns.
  • EXAMPLE ll Three different types of commercially available mixers were used for preliminary silica gel polymerizations. They were studied and modified when necessary to obtain the best design for the reactor. The data obtained demonstrates the superiority of the reactor of the present invention. The amount of reagents used in each experiment were less then in Example I but were used in the same proportions and with the same technique as described in Example 1 so that the results, as listed in Table ll, are comparable with those of Example I.
  • the turbine reactor consisted of a small vertical tank having an approximate capacity of gallons with provisions for various types of agitator and baffle arrangements as noted in Table II.
  • the agitator speed was varied during the experiments from 160 to 260 RPM.
  • the Kettle mixer was round bottomed, cylindrical 60-gallon tank similar to those used in restaurants and bakeries for food preparation.
  • impeller designs were used: agitators with scraper, paddle blades, and beaters which were geared for dual rotation so that as each agitator rotated in the usual way, the set of beaters also revolved in a circular manner. This method was used to assure uniform agitation of the entire contents of the kettle. The rate of agitation was controlled throughout the experiment (i.e., the RPM varied from 68 to 160).
  • the shear bar reactor experiments were conducted in l8-gallon size batches.
  • the four impeller blades were elliptically shaped and staggered so as not to pass the opposing stationary blades at the same instant.
  • the agitator was driven at a RPM which varied from 50 to 90 throughout the experiments.
  • the slurry of silica gel in its mother liquor is aged so as to obtain the desired properties. This is achieved by raising the temperature at a predetermined rate and holding the suspension at the desired minimum temperature for the necessary length of time. This time-temperature relationship is set forth in the above-identified applications.
  • An important part of such heat aging is the control of the pH of the suspension within a narrow range during the heating. lnadequate agitation, as indicated above, will result in a non-uniform pH level through the particle and variation in the physical properties of the finished silica gel.
  • Table ll indicates that for runs 88-1 6, SS27, SS29, KM-l, KM-2, KM-3, BM-l and BM-lO, even when properties of the polymerized gel obtained are as desired as shown by the Example ll results, these properties can be destroyed during the heat aging step, even though proper overall heat aging conditions are respected.
  • EXAMPLE lV This example illustrates the effect of reactor design in the washing step of the silica gel. Subsequent to the polymerization and heat aging of the silica gel, a washing operation is carried out to remove sodium from the gel as disclosed in the afore-mentioned applications. As pointed out previously, if the silica gel particles are too large or have been allowed to agglomerate during polymerization due to inadequate agitation, then the washing operation will be ineffective for the efficient removal of the sodium ions and large amounts of sodium will remain in the interior of the gel particles even though the content of sodium in the effluent water indicates that the product has been thoroughly washed (i.e., contains less than 20 ppm of sodium).
  • Table ll lists the physical properties of silica gels produced in each of the three experimental reactors. The presence of high concentrations of sodium is revealed by a significant lowering of the pore volume of the gel when heated to 1800F. Test runs SSl2, 58-1 8 and BM-4 show that they have shrunk, whereas the gel obtained in accordance with Example I diminished much less in pore volume.
  • Kettle mixer K 3 bar agitators with scrappers 0 613 l. 77 3 perforated addle blades 0 868 1.49 3 eater bla es 0 337 1.76
  • a further and necessary step in silica gel manufacture is heat aging of the gel after formation.
  • High-shear mixing apparatus comprising:
  • each stationary blade being secured to said interior surface of said vessel, each set of stationary blades comprising at least two blades positioned equidistant around the interior surface of said vessel;
  • said sets of rotatable blades alternating with said sets of stationary blades along the length of said shaft, with the lowermost set of blades being rotatable, the clearance between each vertically adjacent set of rotatable and stationary blades and between the free ends of the rotatable blades and the interior surface of the vessel varying from one-eighth to 2 inches;
  • each rotatable set are uniformly angularly offset in the same circumferential direction from the blades of the next vertically adjacent set of rotatable blades with the angle of offset being such that the blades of the lowermost and uppermost set of rotatable blades are offset by the same increment as the blades of the vertically adjacent sets of rotatable blades;
  • blades of selected sets of rotatable blades are pitched opposite to the pitch of the blades of other selected sets of rotatable blades and to the pitch of the stationary blades.
  • each of said blades is pitched at an angle of 45.
  • each of said sets of rotatable blades contains four blades.
  • the apparatus of claim 1 comprising, in addition, a jacket disposed around said vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Apparatus comprising a rotary agitator possessing movable sets of flat blades interspersed with stationary sets of flat blades, the pitch and clearances of the blades being such that high shear agitation is obtained. This apparatus is suitable for use in the carrying out of any process requiring high shear mixing. It has been found to be particularly useful in the preparation of silica gels of high quality.

Description

United States Patent 1 Krekeler et :11.
[ 1 Jan. 9, 1973 [54] HIGH SHEAR MIXING APPARATUS FOR MAKING SILICA GELS [75] Inventors: Jerome H. Krekeler, Cincinnati; Charles H. Wehr, Butler, both of Ohio; Henri A. Aboutboul, Byrarn, Conn.
[73] Assignee: National Petro-Chemicals Corporation, New York, N.Y.
[22] Filed: Aug. 14, 1970 [21] Appl. No.: 70,623
[52] U.S. Cl ..23/285, 23/283, 23/182 R, 261/84, 259/7, 259/8, 259/23, 259/24,
[51] Int. Cl ..C0lb 33/16, BOlj 1/04, BOlf 7/20 [58] Field of Search.23/283, 285, 252, 182 R, 270.5; 261/84; 259/7, 8, 23, 24, 43, 44,107,108;
[56] References Cited UNITED STATES PATENTS 452,147 5/1891 Nvebling ..259/107 1,941,808 1/1934 McConnaughay ..252/359 C UX 2,033,412 3/1936 Chapman ..259/8 Primary Examiner-James H. Tayman, Jr. Attorney-AllenA. Meyer, Jr.
[57] ABSTRACT Apparatus comprising a rotary agitator possessing movable sets of flat blades interspersed with stationary sets of flat blades, the pitch and clearances of the blades being such that high shear agitation is obtained. This apparatus is suitable for use in the carrying out of any process requiring high shear mixing. It has been found to be particularly useful in the preparation of silica gels of high quality.
11 Claims, 4 Drawing Figures PATENTEUJAN s :975 3. 709.664
PARTICLE SIZE MICRON INVENTORS HENRI A. ABOUTBOUL JEROME H. KREKELER 3 CHARLES H. WEHR BY g ATTORNEY HIGH SHEAR MIXING APPARATUS FOR MAKING SILICA GELS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a novel, internally baffled and agitated high shear mixing apparatus.
2. Description of the Prior Art The provision of apparatus which can be employed to obtain thorough and complete mixing of various ingredients or chemical reactants has been a long soughtafter goal. Various solutions to the problem of obtaining thorough and uniform admixture of various materials have been proposed. Many of the proposed solutions relate to the use of some combination of baffles and rotating agitating means or blades within a confined mixing zone.
This type of mixing apparatus is illustrated by the disclosures of U.S. Pat. Nos. 634,093, 1,138,201, 1,520,375, l,854,732 and 3,063,815. Each ofthese disclosures relate to the use of some combination of baffles and agitator blades in order to obtain improved mixing and illustrate the variety of different, although similar, arrangements of such means which have been brought to bear on the problem.
However, the degree of uniform, high shear mixing obtainable with apparatus presently available leaves something to be desired. Although presently available apparatus is perfectly suitable for applications which do not require extremely uniform high shear forces, the effectiveness of such apparatus has left something to be desired in the case of certain processes in which highly uniform application of the shearing forces is particularly advantageous.
One such process is the large scale production of silica gel, particularly the production of silica gel in accordance with the method set forth in copending application Ser. No. 750,734, filed on Aug. 6, 1968, now U.S. Pat. No. 3,652,215. For convenience, the apparatus of the present invention will be described and exemplified by reference to this specific process, although it will be understood that the present apparatus is particularly applicable to any mixing process in which the application of highly uniform shearing forces is desired.
In addition to the afore-mentioned application which describes a method of preparing a xerogel-type silica gel, copending applications Ser. Nos. 750,733 and 766,693, now U.S. Pat. Nos. 3,652,214 and 3,652,216, respectively also describe similar processes. Each of the three applications describe a method which comprises critically controlled steps of precipitation of a sodium silicate solution to form a hydrogel; heat-aging the hydrogel under specific temperature, time and pH limitations; reducing the sodium ion concentration of the hydrogel below a certain point; reducing the gel particle size by high shear mixing; and removing substantially all the water from the gel by a drying step.
In Ser. No. 750,734, a drying step is disclosed which comprises displacing the water from the gel by use of a suitable organic solvent (e.g., a surfactant, an alcohol, acetone, etc.) which can displace the water and reduce the surface tension of the wetting agent in the pores of the gel, followed by drying the gel.
Ser. No. 750,733, discloses a method of drying the gel which comprises a vacuum freeze-drying process to remove essentially all the water, wherein the gel is frozen at a temperature between C and -10C and the water is then vacuum sublimed from the gel.
Lastly, in Ser. No. 766,693 there is disclosed a drying procedure which comprises adding a non-water miscible solvent which forms an azeotrope with water when distilled and distilling the azeotrope so as to remove substantially all the water under specified conditions.
In the aforesaid method for the production of silica gel, the reagents are admixed in a suitable reaction vessel and subjected to agitation in order to obtain as thorough a mixing of the reactants as possible. As it has been found that non-specific agitation tends to produce a gel which varies in particle size and other physical properties from batch to batch the reactions are usually subjected to high shear mixing before the drying of the gel in order to obtain uniformity in particle size between various lots of silica gel produced.
In the preparation of high pore volume silica gel, it has been found to be necessary to conduct the polymerization with thorough and extremely turbulent agitation This violent gitation is necessary for a variety of reasons.
Unless the agitation is thorough and extremely turbulent at the time of gelation, there is a tendency to form agglomerates of the gel which tend to separate from the bulk of the gel suspension until dissipated by the lowering of the pH of the reaction mixture. The delay in disintegration of such agglomerates causes the gel contained therein to be neutralized at a slower rate than the remainder of the gel formed, which results in the production of a product possessing non-uniform pore volumes.
After gelation, the product is heat aged while maintaining the pH within a specified narrow range. Inadequate agitation tends to cause a non-uniform pH level, resulting in a pH gradient across the gel particles. Such gradients tend to result in undesirable variations in physical properties of the final silica gel product.
In order to insure efficient leaching of alkali from the gel during the subsequent washing operations, it is necessary that the gel possess a uniform, fine particle size. Variations in particle size will result in uneven leaching of the alkali during the washing operations which, again, would result in uneven product properties. The application of uniform shearing forces throughout the reactant mixture would result in a product possessing uniform particle sizes and thus overcome this problem.
Further, the thorough and efficient agitation of the reactants and gelled products avoids the necessity of a separate homogenization step before the drying of the gel, which step has heretofore been normally required in this art in order to insure uniform particle size. The elimination of such a step results in self-evident economies.
SUMMARY OF THE INVENTION Applicants have discovered that very high shear mixing can be obtained by the use of a particular apparatus of the agitator-baffle type, in which stationary and movable sets of blades are arranged in a specific configuration with respect to each other. The specific design of the mixing apparatus of the present invention permits the obtaining of uniform and controlled application of high shear forces which result in extremely thorough and efficient agitation of ingredients or reactants with which the apparatus may be charged.
Essentially the mixing apparatus of the present invention comprises a vertical vessel having cylindrical walls, a vertical driven shaft disposed centrally therein, a plurality of movable sets of flat blades secured to said shaft for rotation therewith, each of said movable sets being spaced equidistant from each other along the length of said shaft with the blades in each set extending radially outwardly from said shaft in equally spaced relation and pitched at an angle with respect to the axis of said shaft, a plurality of sets of stationary flat blades secured to said cylindrical wall of said vessel, each of said stationary sets being spaced equidistant from each other along the length of said shaft with the blades in each set extending radially inwardly from said wall toward said shaft in equally spaced relation and disposed at an acute angle with respect to the axis of said shaft, said stationary sets being located in alternate relation with said movable sets with substantially identical clearances therebetween and with the blades in selected sets being pitched in the opposite direction with respect to the pitched blades in other selected sets, the blades of each movable set being offset in the same circumferential direction from the blades of the adjacent movable set thereabove by equal angular increments.
DESCRIPTION OF THE DRAWINGS FIG. I is a plan view of one embodiment of the apparatus of the present invention, illustrating the arrangement of the stationary and movable sets of blades therein.
FIG. 2 is a side elevation of the apparatus of FIG. 1, modified as explained below for purposes of illustration.
FIG. 3 is a sectional view taken along line A A of FIG. 2, illustrating the pitched configuration of the various blades.
FIG. 4 is a graphic illustration of the particle size distribution of silica gels produced in the apparatus of the present invention.
The apparatus consists of a vertical, cylindrical tank with a flat top and bottom. The top lid 6 contains a partial hinged door 6a, which may be used for inspection and cleaning. The sides and bottom of the apparatus may be jacketed as shown at 7 and provision made for the introduction and removal of heating or cooling fluid to the jacketed portion at 70 and 7b. Insulation, for example foam or glass fiber, (not illustrated) may be applied to the exterior of this jacket.
As illustrated, the agitator consists of at least rows of 4-bladed movable sets 1, 2, 3, 4 and 5, mounted on a vertical shaft 8, each blade being pitched at an angle of 45. However, the pitch of the blades can be varied from the disclosed 45pitch, although a 45 pitch provides the advantage of being able to reverse the direction of agitation for another application of the apparatus; for example, when working with a suspension where the solid is lighter than the medium. A pitch greater than 45 (e.g., 60) would result in more agitation but would require more power and would not necessarily provide more shear; while a pitch lower than 45 (e.g., 30) would give less mixing and require more, or larger, blades to fill the tank.
Between these movable blades in the vertical direction are mounted 4 (or more) rows of horizontal stationary sets of blades 14 positioned apart and also pitched at an angle of 45. These horizontal stationary blades are mounted to the vertical walls of the vessel. As illustrated, each such stationary set contains two blades, although as will readily occur to one skilled in the art, additional blades could be employed in such sets, although additional blades would necessarily increase the power required to turn the agitator blades. In addition, the number of rows of blades is not limited so long as the apparatus remains a vessel" instead of a column."
The stationary paddles should not be positioned at the bottom of the vessel since this would inhibit the complete and thorough agitation required by the process for producing the silica gel product described herein.
It should be noted that agitator blade sets 1 to 5 are staggered with respect to each other, each at an angle of 18, as shown in the plan view of FIG. 1. In the side elevational view of FIG. 2, however, the agitator blades are shown aligned vertically instead of being staggered. This method of illustrating the apparatus has been employed in order to more clearly illustrate the pitched configuration of the various blades, clearly shown in Section 3-3 of FIG. 2, and should not be construed as an illustration of the actual positions of the movable sets of blades, which are, in reality, staggered as shown in FIG. 1.
It should be noted that any arrangement of the rotating blades and stationary paddles is possible, as long as the arrangement selected provides the intimate and thorough mixing required to minimize the concentration gradients in the system equivalent to the preferred design shown above.
The agitator, comprising blade sets 1 to 5 and vertical shaft 8, is driven by a suitable motor, preferably combined with a variable speed drive and reduction gear coupled to the vertical agitator shaft. Various combinations of motor and gears can be employed in order to obtain any desired range of speed and/or power. In the apparatus used in the following specific examples, the vessel possessed a 6-foot diameter and the agitator possessed a speed range of 5 to 50 RPM. It will be understood, however, that the vessel size and speed range can be varied at will and the present invention will not be limited by the above.
The blades of the present apparatus preferably have square edges and the horizontal edges of the blades and paddles are preferably parallel to each other and spaced as set forth below.
The ends of the agitator blades are illustrated as being square, but can be slightly rounded if desired. The shear action occurs along the front (i.e., leading) edge of the blades as they rotate and little, if any, takes place along the end of the blades as they travel through the liquid along the wall of the vessel. The configuration of the ends of the blades should be such that there is a minimum clearance between the blade ends and the vessel wall to prevent a buildup of solids in this space.
The tapered ends of the stationary paddles is desirable since the hub end of the rotating blades should not touch the ends of the paddles when the former are slipped into position along shaft 8.
A flanged ball bearing 9 at the top of the unit supports the drive shaft and a bushing 10 stabilizes the lower end of the shaft. Spacers between the rotating horizontal paddles maintain the proper spacing.
A quick opening valve 11 may be located at the bottom in order to drain the tank.
Reactants or the ingredients to be mixed may be added at inlets I2 and 13.
Various additional instrumentation may be employed, as is well known and conventional in the art. For example, a direct and continuous reading temperature gauge and pH meter may be installed. The temperature may be automatically controlled for both cooling and heating cycles and, in addition, automatic control of the addition of reactants may also be achieved, as by control of the addition of an acid in response to the pH of the mixture.
DETAILED DESCRIPTION OF THE INVENTION In operation, agitator blades of sets 1, 3 and 4 are angled so that they tend to lift the ingredients in the mixer, while the blades of sets 2 and 5 are angled so that they tend to push the ingredients being mixed in a downward direction. The rotating sets of blades are keyed to the drive shaft, the keyways being successively 18 apart, which configuration assists in decreasing the magnitude of the power impulses required.
The clearance employed between the movable sets of blades and the stationary sets of blades, as well as between the ends of the rotating blades and the vertical mixer wall may vary between one-eighth inch and 2 inches, a spacing of one-half inch being preferred. The aforementioned clearances are the preferred dimensions for the production of the uniform silica gel product described herein. The spacing which is chosen is as small as is commercially practicable but sufficient to maintain suitable spacing between the various components to prevent accidental collisions due to vibration or wear of the components.
The clearance may be increased for products other than the silica gel described herein, bearing in mind that larger clearances result in less shear action and would necessitate greater rotational speed to compensate therefor.
The superior high shear mixing which may be achieved as a result of the improved reactor design of the present invention will be illustrated in the following examples by the affect upon a silica gel product prepared in accordance with the aforesaid application Ser. No. 750,734. The silica gel product obtained in accordance with the process of this application possesses a narrow pore diameter distribution primarily in the range of from 300 to 600 A., a surface area in the range of from 200 to 500 m lg and stability at temperatures of up to 2,000F, even when subjected to fluidized processing.
The terminology narrow pore diameter distribution" indicates that 70 percent, or more, of the cumulative pore volume is in the pore diameter range of 300-600A. when measured by N adsorption by the B.E.T. Method. In addition, the poor volume of the xerogel-type silica gel product varies from 2.0 to 3.5 cc/gr. when measured by N adsorption by the B.E.T. Method.
The properties of the silica gel obtained, particularly the porosity characteristics, are discussed in terms of pore volume (PV), surface area (SA), and average pore diameter (PD), where PD 4PV/SA Determinations of the values for the various properties are made by nitrogen absorption-desorption techniques well known in the art and described in detail in the Journal of the American Chemical Society, Volume 60, Page 309 (1938), Journal of Catalysis," Volume 2, Page 1 l l (1955).
The first example describes a preferred method for carrying out the preparation of the silica gel employing the apparatus of the present invention, to obtain a silica gel with the desired physical properties and illustrates the consistency of the results .obtained. The remainder of the examples illustrate trials with other types of mixers and agitators.
EXAMPLE I 2,090 pounds of sodium silicate solution containing 28.7% SiO and 8.9% Na O were added to 387 gallons of deionized water in the reactor illustrated in FIGS. 1 and 2 and described above and cooled to 5C with agitation of 20 RPM.
Approximately 250 gallons of 12.75 weight percent sulfuric acid were added at the following rates:
a. 40 percent of the acid was added at a constant rate over a period of 1 hour, with the agitator at 20 RPM.
b. the remainder was added over a period of 45 minutes with agitation at 28 RPM.
The final pH of the gel was adjusted to 5.0 to 5.5 and the SiO content was approximately 8.5 percent.
The pore volume of the silica gel made as described in this example as well as others made in subsequent runs are listed in Table I. The reproducibility from batch to batch as a result of the specific design of the reaction of the present invention can be seen.
The consistency of the results after heat aging is also shown in the appropriate column of Table I.
TABLE I After Polymerization After Heat Aging Pore Surface Pore Surface Volume Area Volume Area cm lg mlg cmVg mlg In addition, the first silica gel product was coated with catalyst which reduced the PV to 2.43 and then was heated to 1,800F with only a slight change in values:
PV 2.28 cm lg, SA 315 m /g The particle size distribution curve of the material produced in Example I is shown in FIG. 4. This shows a narrow distribution of the particles between and microns.
EXAMPLE ll Three different types of commercially available mixers were used for preliminary silica gel polymerizations. They were studied and modified when necessary to obtain the best design for the reactor. The data obtained demonstrates the superiority of the reactor of the present invention. The amount of reagents used in each experiment were less then in Example I but were used in the same proportions and with the same technique as described in Example 1 so that the results, as listed in Table ll, are comparable with those of Example I.
The turbine reactor consisted of a small vertical tank having an approximate capacity of gallons with provisions for various types of agitator and baffle arrangements as noted in Table II. The agitator speed was varied during the experiments from 160 to 260 RPM.
The Kettle mixer was round bottomed, cylindrical 60-gallon tank similar to those used in restaurants and bakeries for food preparation. Several impeller designs were used: agitators with scraper, paddle blades, and beaters which were geared for dual rotation so that as each agitator rotated in the usual way, the set of beaters also revolved in a circular manner. This method was used to assure uniform agitation of the entire contents of the kettle. The rate of agitation was controlled throughout the experiment (i.e., the RPM varied from 68 to 160).
The shear bar reactor experiments were conducted in l8-gallon size batches. The four impeller blades were elliptically shaped and staggered so as not to pass the opposing stationary blades at the same instant. The agitator was driven at a RPM which varied from 50 to 90 throughout the experiments.
In all three of the above experiments, the agitation rate was varied to give what visually looked to be adequate agitation for each stage of the polymerization. The rate was varied within the above-defined limits during each run, and the same applies to the remaining examples.
Column 4 of Table ll lists the pore volume and surface area for representative runs after gellation in the above three reactors. Variation in the results between similar runs are evident.
EXAMPLE "I This example illustrates that even when a precipitated gel which has the desired properties after gellation is obtained without using the reactor of the present invention, those properties can be destroyed during heat aging.
proper pH, the slurry of silica gel in its mother liquor is aged so as to obtain the desired properties. This is achieved by raising the temperature at a predetermined rate and holding the suspension at the desired minimum temperature for the necessary length of time. This time-temperature relationship is set forth in the above-identified applications. An important part of such heat aging is the control of the pH of the suspension within a narrow range during the heating. lnadequate agitation, as indicated above, will result in a non-uniform pH level through the particle and variation in the physical properties of the finished silica gel.
Table ll indicates that for runs 88-1 6, SS27, SS29, KM-l, KM-2, KM-3, BM-l and BM-lO, even when properties of the polymerized gel obtained are as desired as shown by the Example ll results, these properties can be destroyed during the heat aging step, even though proper overall heat aging conditions are respected.
EXAMPLE lV This example illustrates the effect of reactor design in the washing step of the silica gel. Subsequent to the polymerization and heat aging of the silica gel, a washing operation is carried out to remove sodium from the gel as disclosed in the afore-mentioned applications. As pointed out previously, if the silica gel particles are too large or have been allowed to agglomerate during polymerization due to inadequate agitation, then the washing operation will be ineffective for the efficient removal of the sodium ions and large amounts of sodium will remain in the interior of the gel particles even though the content of sodium in the effluent water indicates that the product has been thoroughly washed (i.e., contains less than 20 ppm of sodium).
Table ll lists the physical properties of silica gels produced in each of the three experimental reactors. The presence of high concentrations of sodium is revealed by a significant lowering of the pore volume of the gel when heated to 1800F. Test runs SSl2, 58-1 8 and BM-4 show that they have shrunk, whereas the gel obtained in accordance with Example I diminished much less in pore volume.
- 9 an, m.
TABLE II Example 2, Examp1e3, Exampls i, after alter after gellation heat age l,800 F. Reactor type Agitator Bafiies PV SA PV SA PV SA Turbine reactor:
4 fiat blades 4 not pitched. 2. 52 686 2. 60 do 0 1. 637 1. 55 542 1. 76 618 2. 59 4 axi 352 2.28 88-29 ..d 578 1.62 Kettle mixer: K 3 bar agitators with scrappers 0 613 l. 77 3 perforated addle blades 0 868 1.49 3 eater bla es 0 337 1.76
A further and necessary step in silica gel manufacture is heat aging of the gel after formation. At the We claim: 1. High-shear mixing apparatus comprising:
a vertically disposed cylindrical vessel provided with a plurality of sets of stationary, horizontally disposed and uniformly pitched flat blades extending radially inwardly from the interior surface of said vessel toward said shaft, the end of each stationary blade being secured to said interior surface of said vessel, each set of stationary blades comprising at least two blades positioned equidistant around the interior surface of said vessel;
said sets of rotatable blades alternating with said sets of stationary blades along the length of said shaft, with the lowermost set of blades being rotatable, the clearance between each vertically adjacent set of rotatable and stationary blades and between the free ends of the rotatable blades and the interior surface of the vessel varying from one-eighth to 2 inches;
wherein the blades of each rotatable set are uniformly angularly offset in the same circumferential direction from the blades of the next vertically adjacent set of rotatable blades with the angle of offset being such that the blades of the lowermost and uppermost set of rotatable blades are offset by the same increment as the blades of the vertically adjacent sets of rotatable blades; and
wherein the blades of selected sets of rotatable blades are pitched opposite to the pitch of the blades of other selected sets of rotatable blades and to the pitch of the stationary blades.
2. The apparatus of claim 1, wherein each of said blades is pitched at an angle of 45.
3. The apparatus of claim 1, wherein each of said sets of rotatable blades contains four blades.
4. The apparatus of claim 1, which contains five rotatable sets of blades and four stationary sets of blades, each stationary set containing two blades.
5. The apparatus of claim 1 comprising, in addition, a jacket disposed around said vessel.
6. The apparatus of claim 1 wherein said angular offset is about 18.
7. The apparatus of claim 1, wherein said clearance is about one-half inch.
3. The apparatus of claim 4, wherein the second and fifth rotatable sets of blades, the first set being the lowermost set in the vessel, are pitched in a direction opposite to the pitch of the other rotatable sets of blades.
9. The apparatus of claim 1 wherein at least five sets of said rotatable blades are provided and wherein at least four sets of said stationary blades are provided.
10. The apparatus of claim 1 wherein the number of sets of said stationary blades is equal to one less than the number of sets of said rotatable blades.
11. The apparatus of claim 10 wherein the uppermost set of blades is rotatable, the blades of said uppermost set being pitched downwardly, and wherein the blades of the lowermost set of rotatable blades are pitched upwardly.

Claims (10)

  1. 2. The apparatus of claim 1, wherein each of said blades is pitched at an angle of 45* .
  2. 3. The apparatus of claim 1, wherein each of said sets of rotatable blAdes contains four blades.
  3. 4. The apparatus of claim 1, which contains five rotatable sets of blades and four stationary sets of blades, each stationary set containing two blades.
  4. 5. The apparatus of claim 1 comprising, in addition, a jacket disposed around said vessel.
  5. 6. The apparatus of claim 1 wherein said angular offset is about 18*.
  6. 7. The apparatus of claim 1, wherein said clearance is about one-half inch.
  7. 8. The apparatus of claim 4, wherein the second and fifth rotatable sets of blades, the first set being the lowermost set in the vessel, are pitched in a direction opposite to the pitch of the other rotatable sets of blades.
  8. 9. The apparatus of claim 1 wherein at least five sets of said rotatable blades are provided and wherein at least four sets of said stationary blades are provided.
  9. 10. The apparatus of claim 1 wherein the number of sets of said stationary blades is equal to one less than the number of sets of said rotatable blades.
  10. 11. The apparatus of claim 10 wherein the uppermost set of blades is rotatable, the blades of said uppermost set being pitched downwardly, and wherein the blades of the lowermost set of rotatable blades are pitched upwardly.
US00070623A 1970-08-14 1970-08-14 High shear mixing apparatus for making silica gels Expired - Lifetime US3709664A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7062370A 1970-08-14 1970-08-14

Publications (1)

Publication Number Publication Date
US3709664A true US3709664A (en) 1973-01-09

Family

ID=22096418

Family Applications (1)

Application Number Title Priority Date Filing Date
US00070623A Expired - Lifetime US3709664A (en) 1970-08-14 1970-08-14 High shear mixing apparatus for making silica gels

Country Status (1)

Country Link
US (1) US3709664A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966176A (en) * 1975-08-25 1976-06-29 Lux Ivan E Method and apparatus for producing filled resins
US3987021A (en) * 1973-08-30 1976-10-19 Karl Fischer Apparate U. Rohrleitungsbau Process utilizing a stirring reactor
US4126250A (en) * 1976-02-26 1978-11-21 Brodrene Gram A/S Apparatus for dispensing granular material
US4136972A (en) * 1975-06-26 1979-01-30 Doom Lewis G Premixer
US4154798A (en) * 1976-04-09 1979-05-15 Luwa Ag Apparatus for producing a homogeneous, chemically reactive system
EP0009615A2 (en) * 1978-10-09 1980-04-16 Dieter Thörmer Machine for producing leaven
WO1980002589A1 (en) * 1979-05-23 1980-11-27 Paulista Caldeiras Compac Process and method for emulsion and burning of combustible oil
US4261175A (en) * 1978-07-14 1981-04-14 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel supply apparatus
US4310124A (en) * 1978-12-05 1982-01-12 Friedrich Wilh. Schwing Gmbh Mixer for viscous materials, for example for filter cake, pulp or the like
US4347135A (en) * 1977-08-23 1982-08-31 Fives-Cail Babcock Apparatus for superflocculating and thickening a sludge
US4380503A (en) * 1980-07-01 1983-04-19 Th. Goldschmidt Ag Process for preparing oil-in-water emulsion
FR2539646A1 (en) * 1983-01-24 1984-07-27 Ribard Marcel "Mixer" comprising means for adjusting the temperature of the product to be mixed
US4653313A (en) * 1985-10-18 1987-03-31 Halliburton Company Positive stirring consistometer cup and method of using the same
US4698984A (en) * 1986-01-15 1987-10-13 Carpigiani Bruto Macchine Automatiche Beater device for ice cream making machines
US4737349A (en) * 1985-11-01 1988-04-12 Ciba-Geigy Corporation Tubular reactor for heterogeneous reactions
US4838704A (en) * 1987-12-15 1989-06-13 Carver David L Mixer apparatus
US4934828A (en) * 1989-06-07 1990-06-19 Ciba-Geigy Corporation Apparatus for mixing viscous materials
US4953633A (en) * 1988-11-03 1990-09-04 Stork Amsterdam B.V. Apparatus for keeping at a determined temperature a product mixture consisting of a liquid containing solid pieces
US5098669A (en) * 1989-01-13 1992-03-24 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Stirring reactor for viscous materials
US5145255A (en) * 1987-05-19 1992-09-08 Mitsubishi Jukogoyo Kabushiki Kaisha Stirring apparatus and stirring tower type apparatus for polmerization reactions
US5215733A (en) * 1986-04-25 1993-06-01 Unilever Patent Holdings B.V. Manufacture of silica gels using shear to reduce the particle size prior to washing with a hydrocyclone
US5328105A (en) * 1992-02-20 1994-07-12 Nortru, Inc. Transportable processing unit capable of receiving various chemical materials to produce an essentially homogeneous admixture thereof
US5330567A (en) * 1988-08-16 1994-07-19 Lenzing Aktiengesellschaft Process and arrangement for preparing a solution of cellulose
US5551859A (en) * 1993-07-19 1996-09-03 Novacor Chemicals (International) S.A. Particulator
WO1997015705A1 (en) * 1995-10-26 1997-05-01 E.I. Du Pont De Nemours And Company Process and apparatus for mechanically mixing polymers and lower viscosity fluids
US6043175A (en) * 1992-12-08 2000-03-28 Vkvs Worldwide Corporation Method and apparatus for producing a silicon based binding composition and product prepared therefrom
US6179458B1 (en) 1996-11-01 2001-01-30 E. I. Du Pont De Nemours And Company Forming a solution of fluids having low miscibility and large-scale differences in viscosity
WO2002015859A1 (en) * 2000-08-18 2002-02-28 J.M. Huber Corporation Methods of making dentifrice compositions and products thereof
WO2002015858A1 (en) * 2000-08-18 2002-02-28 J.M. Huber Corporation Abrasive compositions and methods for making same
US6386002B1 (en) * 1996-05-14 2002-05-14 Fitel Usa Corporation Process entailing sol-gel production of silica glass
US6536936B1 (en) * 2000-09-15 2003-03-25 Masco Corporation Mix head assembly for a molding material delivery system
US6540871B1 (en) * 1999-12-21 2003-04-01 The Maitland Company Method for processing black liquor sediment
US20030072215A1 (en) * 2001-07-05 2003-04-17 Heinz Binder Method for vertical mixing and device for this
US20040052156A1 (en) * 2000-11-10 2004-03-18 Brown Christopher John Dynamic mixer
US20050169817A1 (en) * 2004-02-04 2005-08-04 Toshiaki Matsuo Polymerization processor
US20060261501A1 (en) * 2005-05-17 2006-11-23 Galleta Robert J Jr Method and apparatus for aeration of liquid medium
US20080025143A1 (en) * 2004-09-15 2008-01-31 Hiroaki Ohashi Apparatus and Method for Solid-Liquid Contact
US20080025144A1 (en) * 2006-07-31 2008-01-31 Spx Corportation In-line mixing system and method
US20090272699A1 (en) * 2005-05-17 2009-11-05 Galletta Robert J Method and Apparatus for Aeration of Liquid Medium in a Pipe
US20090321369A1 (en) * 2005-05-17 2009-12-31 Galletta Jr Robert J Method and apparatus for submersible or self contained aeration of liquid medium
US20100284241A1 (en) * 2008-01-11 2010-11-11 Johan Fondelius Mixer assembly and method for flow control in a mixer assembly
US20100283162A1 (en) * 2005-05-17 2010-11-11 Galletta Jr Robert Joeseph Method and apparatus for controlled aeration of liquid medium in a pipe
US20110032791A1 (en) * 2008-04-03 2011-02-10 Umicore Ag & Co. Kg Stirring system and method for homogenizing glass melts
EP2311783A1 (en) * 2004-07-27 2011-04-20 Tower Technology Holdings (Pty) Limited A hydraulic binder product
US20110267920A1 (en) * 2010-04-28 2011-11-03 Fina Technology, Inc. Method and Apparatus for Controlling Residence Time Distribution in Continuous Stirred-Tank Reactors
US20140318230A1 (en) * 2013-04-26 2014-10-30 Pall Corporation Stirrer cell module and method of using
CN104370283A (en) * 2014-10-23 2015-02-25 江阴碳谷科技有限公司 Graphene stripping kettle, graphene production system and graphene production method
US9084973B2 (en) 2005-05-17 2015-07-21 Robert J. Galletta, JR. Methods and apparatus for aeration of liquid medium and vectoring flow control
US9216920B2 (en) 2005-05-17 2015-12-22 Robert J. Galletta, JR. Methods and apparatus for controlled scrubbing and aeration of liquid medium
WO2016023931A1 (en) 2014-08-13 2016-02-18 Versalis S.P.A. Rotor and stirring device
US9266759B2 (en) 2005-05-17 2016-02-23 Robert J. Galletta Methods and apparatus for aeration of liquid medium and liquid medium treatment system
RU169417U1 (en) * 2016-07-18 2017-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) MIXER
CN106573210A (en) * 2014-07-31 2017-04-19 陶氏环球技术有限责任公司 In-line dynamic mixing apparatus for flocculating and dewatering oil sands fine tailings
WO2017155848A1 (en) 2016-03-06 2017-09-14 Waters Technologies Corporation Porous materials with controlled porosity; process for the preparation thereof; and use thereof for chromatographic separations
RU222911U1 (en) * 2023-08-15 2024-01-23 Автономная некоммерческая организация высшего образования "Университет при Межпарламентской Ассамблее ЕврАзЭС" FRAME STIRRER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US452147A (en) * 1891-05-12 nuebling
US1941808A (en) * 1930-12-08 1934-01-02 Pre Cote Corp Emulsifier
US2033412A (en) * 1932-04-23 1936-03-10 Kraft Phenix Cheese Corp Emulsifying apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US452147A (en) * 1891-05-12 nuebling
US1941808A (en) * 1930-12-08 1934-01-02 Pre Cote Corp Emulsifier
US2033412A (en) * 1932-04-23 1936-03-10 Kraft Phenix Cheese Corp Emulsifying apparatus

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987021A (en) * 1973-08-30 1976-10-19 Karl Fischer Apparate U. Rohrleitungsbau Process utilizing a stirring reactor
US4136972A (en) * 1975-06-26 1979-01-30 Doom Lewis G Premixer
US3966176A (en) * 1975-08-25 1976-06-29 Lux Ivan E Method and apparatus for producing filled resins
US4126250A (en) * 1976-02-26 1978-11-21 Brodrene Gram A/S Apparatus for dispensing granular material
US4154798A (en) * 1976-04-09 1979-05-15 Luwa Ag Apparatus for producing a homogeneous, chemically reactive system
US4347135A (en) * 1977-08-23 1982-08-31 Fives-Cail Babcock Apparatus for superflocculating and thickening a sludge
US4261175A (en) * 1978-07-14 1981-04-14 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel supply apparatus
EP0009615A3 (en) * 1978-10-09 1980-04-30 Dieter Thormer Machine for producing leaven and operating process for such a machine
EP0009615A2 (en) * 1978-10-09 1980-04-16 Dieter Thörmer Machine for producing leaven
US4310124A (en) * 1978-12-05 1982-01-12 Friedrich Wilh. Schwing Gmbh Mixer for viscous materials, for example for filter cake, pulp or the like
WO1980002589A1 (en) * 1979-05-23 1980-11-27 Paulista Caldeiras Compac Process and method for emulsion and burning of combustible oil
US4380503A (en) * 1980-07-01 1983-04-19 Th. Goldschmidt Ag Process for preparing oil-in-water emulsion
FR2539646A1 (en) * 1983-01-24 1984-07-27 Ribard Marcel "Mixer" comprising means for adjusting the temperature of the product to be mixed
US4653313A (en) * 1985-10-18 1987-03-31 Halliburton Company Positive stirring consistometer cup and method of using the same
US4737349A (en) * 1985-11-01 1988-04-12 Ciba-Geigy Corporation Tubular reactor for heterogeneous reactions
US4698984A (en) * 1986-01-15 1987-10-13 Carpigiani Bruto Macchine Automatiche Beater device for ice cream making machines
US5215733A (en) * 1986-04-25 1993-06-01 Unilever Patent Holdings B.V. Manufacture of silica gels using shear to reduce the particle size prior to washing with a hydrocyclone
US5145255A (en) * 1987-05-19 1992-09-08 Mitsubishi Jukogoyo Kabushiki Kaisha Stirring apparatus and stirring tower type apparatus for polmerization reactions
US4838704A (en) * 1987-12-15 1989-06-13 Carver David L Mixer apparatus
US5330567A (en) * 1988-08-16 1994-07-19 Lenzing Aktiengesellschaft Process and arrangement for preparing a solution of cellulose
US4953633A (en) * 1988-11-03 1990-09-04 Stork Amsterdam B.V. Apparatus for keeping at a determined temperature a product mixture consisting of a liquid containing solid pieces
US5098669A (en) * 1989-01-13 1992-03-24 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Stirring reactor for viscous materials
EP0402317A1 (en) * 1989-06-07 1990-12-12 Ciba-Geigy Ag Apparatus for mixing viscous materials
US4934828A (en) * 1989-06-07 1990-06-19 Ciba-Geigy Corporation Apparatus for mixing viscous materials
US5328105A (en) * 1992-02-20 1994-07-12 Nortru, Inc. Transportable processing unit capable of receiving various chemical materials to produce an essentially homogeneous admixture thereof
US6043175A (en) * 1992-12-08 2000-03-28 Vkvs Worldwide Corporation Method and apparatus for producing a silicon based binding composition and product prepared therefrom
US5551859A (en) * 1993-07-19 1996-09-03 Novacor Chemicals (International) S.A. Particulator
WO1997015705A1 (en) * 1995-10-26 1997-05-01 E.I. Du Pont De Nemours And Company Process and apparatus for mechanically mixing polymers and lower viscosity fluids
US6386002B1 (en) * 1996-05-14 2002-05-14 Fitel Usa Corporation Process entailing sol-gel production of silica glass
US6179458B1 (en) 1996-11-01 2001-01-30 E. I. Du Pont De Nemours And Company Forming a solution of fluids having low miscibility and large-scale differences in viscosity
US6540871B1 (en) * 1999-12-21 2003-04-01 The Maitland Company Method for processing black liquor sediment
US6419174B1 (en) * 2000-08-18 2002-07-16 J. M. Huber Corporation Abrasive compositions and methods for making same
US6403059B1 (en) * 2000-08-18 2002-06-11 J. M. Huber Corporation Methods of making dentifrice compositions and products thereof
WO2002015858A1 (en) * 2000-08-18 2002-02-28 J.M. Huber Corporation Abrasive compositions and methods for making same
WO2002015859A1 (en) * 2000-08-18 2002-02-28 J.M. Huber Corporation Methods of making dentifrice compositions and products thereof
US6536936B1 (en) * 2000-09-15 2003-03-25 Masco Corporation Mix head assembly for a molding material delivery system
US20040052156A1 (en) * 2000-11-10 2004-03-18 Brown Christopher John Dynamic mixer
US7237943B2 (en) * 2000-11-10 2007-07-03 Maelstrom Advanced Process Technologies, Ltd. Dynamic fluid mixer
US20030072215A1 (en) * 2001-07-05 2003-04-17 Heinz Binder Method for vertical mixing and device for this
US6789935B2 (en) * 2001-07-05 2004-09-14 Buhler Ag Method for vertical mixing and device for this
US20050169817A1 (en) * 2004-02-04 2005-08-04 Toshiaki Matsuo Polymerization processor
US7931872B2 (en) * 2004-02-04 2011-04-26 Hitachi Plant Technologies, Ltd. Polymerization processor
EP2311783A1 (en) * 2004-07-27 2011-04-20 Tower Technology Holdings (Pty) Limited A hydraulic binder product
US20080025143A1 (en) * 2004-09-15 2008-01-31 Hiroaki Ohashi Apparatus and Method for Solid-Liquid Contact
US8596858B2 (en) * 2004-09-15 2013-12-03 Kureha Corporation Apparatus for solid-liquid contact
US9266759B2 (en) 2005-05-17 2016-02-23 Robert J. Galletta Methods and apparatus for aeration of liquid medium and liquid medium treatment system
US20090321369A1 (en) * 2005-05-17 2009-12-31 Galletta Jr Robert J Method and apparatus for submersible or self contained aeration of liquid medium
US9216920B2 (en) 2005-05-17 2015-12-22 Robert J. Galletta, JR. Methods and apparatus for controlled scrubbing and aeration of liquid medium
US9084973B2 (en) 2005-05-17 2015-07-21 Robert J. Galletta, JR. Methods and apparatus for aeration of liquid medium and vectoring flow control
US20090272699A1 (en) * 2005-05-17 2009-11-05 Galletta Robert J Method and Apparatus for Aeration of Liquid Medium in a Pipe
US20060261501A1 (en) * 2005-05-17 2006-11-23 Galleta Robert J Jr Method and apparatus for aeration of liquid medium
US20100283162A1 (en) * 2005-05-17 2010-11-11 Galletta Jr Robert Joeseph Method and apparatus for controlled aeration of liquid medium in a pipe
US8096531B2 (en) 2005-05-17 2012-01-17 Galletta Robert J Method and apparatus for aeration of liquid medium in a pipe
US8191869B2 (en) 2005-05-17 2012-06-05 Galletta Aerator, LLC Method and apparatus for submersible or self contained aeration of liquid medium
US8454000B2 (en) 2005-05-17 2013-06-04 Robert J. Galletta, JR. Method and apparatus for controlled aeration of liquid medium in a pipe
US7427058B2 (en) 2005-05-17 2008-09-23 Galletta Jr Robert J Method and apparatus for aeration of liquid medium
US20080025144A1 (en) * 2006-07-31 2008-01-31 Spx Corportation In-line mixing system and method
US20100284241A1 (en) * 2008-01-11 2010-11-11 Johan Fondelius Mixer assembly and method for flow control in a mixer assembly
US8764278B2 (en) * 2008-01-11 2014-07-01 Xylem Ip Holdings Llc Mixer assembly and method for flow control in a mixer assembly
US8961000B2 (en) * 2008-04-03 2015-02-24 Umicore Ag & Co. Kg Stirring system with interspaced stirring elements and baffles, and method for homogenizing glass melts
US20110032791A1 (en) * 2008-04-03 2011-02-10 Umicore Ag & Co. Kg Stirring system and method for homogenizing glass melts
US20110267920A1 (en) * 2010-04-28 2011-11-03 Fina Technology, Inc. Method and Apparatus for Controlling Residence Time Distribution in Continuous Stirred-Tank Reactors
US20140318230A1 (en) * 2013-04-26 2014-10-30 Pall Corporation Stirrer cell module and method of using
CN106573210A (en) * 2014-07-31 2017-04-19 陶氏环球技术有限责任公司 In-line dynamic mixing apparatus for flocculating and dewatering oil sands fine tailings
US20170216791A1 (en) * 2014-07-31 2017-08-03 Dow Global Technologies Llc In-line dynamic mixing apparatus for flocculating and dewatering oil sands fine tailings
WO2016023931A1 (en) 2014-08-13 2016-02-18 Versalis S.P.A. Rotor and stirring device
US10384177B2 (en) 2014-08-13 2019-08-20 Versalis S.P.A. Rotor and stirring device
CN104370283A (en) * 2014-10-23 2015-02-25 江阴碳谷科技有限公司 Graphene stripping kettle, graphene production system and graphene production method
WO2017155848A1 (en) 2016-03-06 2017-09-14 Waters Technologies Corporation Porous materials with controlled porosity; process for the preparation thereof; and use thereof for chromatographic separations
RU169417U1 (en) * 2016-07-18 2017-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) MIXER
RU222911U1 (en) * 2023-08-15 2024-01-23 Автономная некоммерческая организация высшего образования "Университет при Межпарламентской Ассамблее ЕврАзЭС" FRAME STIRRER

Similar Documents

Publication Publication Date Title
US3709664A (en) High shear mixing apparatus for making silica gels
US3985909A (en) Incorporating a gas in candy
US2701245A (en) Bead polymerization of methyl methacrylate
US3770252A (en) Apparatus for treating viscous liquids
US3801705A (en) Preparation of silica gels
US3604690A (en) Agitation system
US2386810A (en) Gels comprising silica
US3857924A (en) Process for preparing silica particles
US4728731A (en) Reactor and its use in polysaccharide ether production
CA1121976A (en) Continuous process for the production of amorphous sodium aluminosilicate
US4690989A (en) Method for the single-step production of vinyl polymers
CA1311737C (en) Process of making uniform size porous silica spheres
EP0277117B1 (en) Process for the manufacture of shperical bodies by selective agglomeration
JP2755694B2 (en) Stirring tank provided with a radial discharge type stirrer and at least one baffle, and method for mixing liquids using the stirrer
KR840003579A (en) Continuous conversion of meta-kaolin to very fine zeolitic sodium aluminum silicate
US2921839A (en) Silica precipitation method
US3998931A (en) Process for continuous conversion of liquid white phosphorus to red phosphorus in agitated slurry
EP0030794B1 (en) Slurries of terephthalic acid in ethylene glycol
US3472787A (en) Preparation of dried gel
Starks Interfacial area generation in two-phase systems and its effect on kinetics of phase transfer catalyzed reactions
KR860001976B1 (en) Preparation for alumino silicates
Tanaka et al. Application of stirred tank reactor equipped with draft tube to suspension polymerization of styrene
RU2751345C2 (en) Method for synthesis of polymethylsilsesquioxane
US3656901A (en) Method of making silica particles
Kiełbus-Rąpała et al. Solid suspension and gas dispersion in gas-solid-liquid agitated systems