US3704075A - Combined turbine nozzle and bearing frame - Google Patents

Combined turbine nozzle and bearing frame Download PDF

Info

Publication number
US3704075A
US3704075A US97575A US3704075DA US3704075A US 3704075 A US3704075 A US 3704075A US 97575 A US97575 A US 97575A US 3704075D A US3704075D A US 3704075DA US 3704075 A US3704075 A US 3704075A
Authority
US
United States
Prior art keywords
annular passage
bearing
bearing frame
nozzle
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US97575A
Inventor
Karl W Karstensen
Richard W Kizer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Application granted granted Critical
Publication of US3704075A publication Critical patent/US3704075A/en
Assigned to CATERPILLAR INC., A CORP. OF DE. reassignment CATERPILLAR INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CATERPILLAR TRACTOR CO., A CORP. OF CALIF.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades

Definitions

  • ABSTRACT A turbine engine having a gasifier turbine rotor and a power turbine rotor, a bearing frame providing a bearing support for the shaft of the gasifier turbine rotor, the bearing frame and a turbine nozzle being integrally formed to provide a continuous annular passage between the rotors, support struts extending radially across the annular passage within the bearing frame being integrally formed with respective vanes extending radially across the annular passage within the turbine nozzle to simplify construction of the turbine engine and reduce flow disturbance within the annular 3,059,902 10/l962 Savonuzzi ..-....60/39 .I6R passage 3,018,623 1/1962 Birmann ..60/39.l6R 2,650,060 8/1953 Stalker ..415/68 4Claims,2Drawing Figures 4
  • the present invention relates to a combined nozzle and bearing frame assembly forming an annular passage adjacent either a compressor or turbine rotor, for example, the assembly including a bearing support structure having struts extending radially across the annular passage and a nozzle having vanes extending radially across the annular passage.
  • each of the struts is arranged in alignment with a respective one of the nozzle vanes with adjacent edges of each strut and its respective vane being faired toward each other to reduce flow disturbance within the annular passage.
  • the bearing support structure and the nozzle are integrally formed to provide greater continuity along the surfaces of the annular passage, the associated struts and vanes also being integrally formed to further reduce flow disturbance and to simplify construction of the assembly.
  • a first rotor such as a gasifier turbine rotor is arranged at one end of the annular passage with another rotor such as a power turbine rotor being arranged at the opposite end of the annular passage adjacent a power turbine nozzle or guide vanes employed for example in a compressor unit.
  • Support struts for the bearing frame are commonly arranged in axially spaced apart relation from the vanes within the turbine and the power turbine rotors, the spaced apart relation between the struts and the vanes tends to develop a significant flow disturbance or wake downstream of each strut.
  • the preferred integral construction of the bearing support and turbine nozzle also tends to provide greater continuity along the annular passage to further reduce flow disturbance and to simplify construction of the turbine.
  • An additional object of the invention is to provide a nozzle integrally formed along with a bearing support structure to provide greater continuity within an annular passage formed thereby and/or to facilitate and simplify construction or assembly.
  • Still another object of the invention is to provide a combined bearing and nozzle assembly for use in conjunction with either a turbine or compressor rotor, for example, to reduce aerodynamic interference between the rotor and structural components within the bearing and nozzle assembly.
  • FIG. 1 is a longitudinally sectioned view of a turbine machine embodying the present invention.
  • FIG. 2 is a view taken along section lines II-II of FIG. 1.
  • FIG. 1 illustrates a two-shaft gas turbine engine having a housing or shell 11.
  • a gasifier turbine rotor 12,and a power turbine rotor 13 are arranged in axial alignment for rotation within the turbine shell 11.
  • An annular passage 14 is formed between the two rotors by a bearing support structure 16 and a power turbine nozzle 17.
  • the bearing support structure 16 includes inner and outer cylindrical elements 18 and 19 which are spaced apart to form the annular passage 14.
  • the inner cylindrical element 18 also supports a bearing arrangement 21 for the shaft 22 of the gasifier turbine rotor 12.
  • the inner cylindrical element 18 of the bearing support member 16 is positioned by support struts extending radially across the annular passage 14, one of the struts being indicated at 23.
  • the power turbine nozzle 17 also has a relatively large number of vanes 24 extending radially across the annular passage 14 adjacent the power turbine rotor 13.
  • each of the struts 23 is arranged adjacent and in general alignment with one of the power turbine nozzle vanes, such as that indicated at 24a.
  • the trailing edge of the strut 23 and the leading edge of the associated vane 24a are faired toward each other for reducing flow disturbance within the annular passage in a manner described in greater detail above.
  • the power turbine nozzle 17 is formed integrally for example by casting, together with the bearing support structure 16 with the cylindrical elements 18 and 19 extending continuously along the length of the annular passage 14.
  • Each of the struts 23 is also integrally formed together with the associated vane 24a.
  • the present arrangement of the struts further permits the struts to be placed further downstream from the gasifier turbine rotor 12.
  • the present invention permits greater design freedom in arranging components within the turbine machine and reduced aerodynamic interference between various elements in the fluid flow path.
  • FIG. 1 Additional structural features of the present turbine machine are also illustrated in FIG. 1.
  • the outer cylindrical element 19 of the bearing support structure 16 and acylindrical casing 31 arranged about the gasifier turbine rotor 12 are secured to an inwardly extending flange 32 on the turbine shell 11 by bolts such as those indicated at 33.
  • a similar cylindrical casing 34 arranged about the power turbine rotor 13 is secured to another flange 36 on the turbine shell 11 by means of bolts such as those indicated at 37.
  • the inner cylindrical element 18 of the bearing support structure 16 has inwardly extending flanges 41 and 42 arranged respectively adjacent the upstream and downstream ends of the annular passage 14.
  • a cylindrical housing member 43 is secured to the flange 41 by means suchas screws indicated at 44.
  • An outer bearing support 46 and a seal support 47 together with an end plate 48 are secured to the other end of the housing member 43 by bolts such as those indicated at 49.
  • the outer bearing support member 46, the seal support member 47 and the end plate 48 are also piloted within the flange 42.
  • Outer and inner races 51 and S2 for bearings 53 are arranged respectively upon the bearing support member 46 and a stepped portion of the shaft 22.
  • a seal 54 is arranged between the seal support member 47 and the stepped portion of theshaft 22.
  • Another seal 56 is arranged between the shaft 22 and a second seal support member 57 to hydraulically isolate the bearing arrangement 21.
  • a conduit or tube indicated at 61 is arranged within one of the struts 23 to deliver lubricant to the bearing assembly 21.
  • Another conduit similarly arranged within another strut may be employed to provide a drain passage for the lubricant.
  • an axial flow fluid turbine engine comprising a power turbine rotor, a gasifier turbine rotor mounted on a shaft extending toward the power turbine rotor, a bearing frame arranged between the two rotors and a power turbine nozzle arranged between the bearing frame and the power turbine rotor, the bearing frame having two generally cylindrical, spaced apart elements forming an annular passage in fluid communication with the gasifier turbine rotor, a plurality of struts extending radially across the annular passage of the bearing frame to support the inner member relative to the outer member, the inner member providing a bearing support for the gasifier turbine rotor shaft, the power turbine nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the power turbine rotor, a plurality of vanes extending radially across the annular passage of the power turbine nozzle, the improvement comprising the bearing frame and power turbine nozzle being integrally formed to provide a unitary annular passage between the power turbine rotor and the gasifier turbine rotor
  • conduit means for providing lubricant to a bearing between the inner frame element and the gasifier turbine rotor shaft is disposed within at least one of the struts, a cylindrical housing member being secured within the inner element of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the gasifier turbine rotor shaft and means providing a seal between the housing member and shaft on axially opposite sides of the bearing.
  • the bearing frame in a combined nozzle and bearing frame arrange- 'ment for use in conjunction with an axially aligned turbine or compressor rotor, the bearing frame having two generally cylindrical, spaced apart members forming an annular passage in fluid communication with the rotor,
  • a plurality of struts extendin radially across the annular passage of the bearing rame to support the inner member relative to the outer member, the inner member providing a bearing support for the rotor, the nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the rotor, a plurality of vanes extending radiallyacross the annular passage of the nozzle, the improvement comprising the bearing frame and nozzle being integrally formed to provide a unitary annular passage in communication with the rotor, each of the struts being integrally formed with a respective one of the nozzle vanes, each strut being faired into its integral vane for reducing flow disturbance within the unitary annular passage.
  • conduit means for providing lubricant to a bearing between the inner frame element and a shaft for the rotor is disposed within at least one of the struts, a cylindrical housing member being secured within the inner member of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the rotor shaft with means providing a seal between the housing member and shaft on axially opposite sides of the hearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A turbine engine having a gasifier turbine rotor and a power turbine rotor, a bearing frame providing a bearing support for the shaft of the gasifier turbine rotor, the bearing frame and a turbine nozzle being integrally formed to provide a continuous annular passage between the rotors, support struts extending radially across the annular passage within the bearing frame being integrally formed with respective vanes extending radially across the annular passage within the turbine nozzle to simplify construction of the turbine engine and reduce flow disturbance within the annular passage.

Description

United States Patent Karstensen et al.
[451 Nov. 28,1972
[54] COMBINED TURBINE NOZZLE AND BEARING FRAME Karl W. Karstensen, 9 Peoria; Richard W. Kizer, Morton, both of I11.
Caterpillar Tractor Co., Peoria, 111.
Dec. 14, 1970 Inventors:
Int. Cl. ..t ..F02c 3/10 Field of Search ..60/39.l6; 415/68, 69, 66
[56] References Cited UNITED STATES PATENTS 3,099,433 8/1963 Wagner ..4l5/68X 3,319,931 5/1967 Bell ..60/39.l6X
Primary Examiner-CarltonR. Croyle Assistant ExaminerRobert E. Garrett Attorney-Fryer, Tjensvold, Feix, Phillips & Lempio [57] ABSTRACT A turbine engine having a gasifier turbine rotor and a power turbine rotor, a bearing frame providing a bearing support for the shaft of the gasifier turbine rotor, the bearing frame and a turbine nozzle being integrally formed to provide a continuous annular passage between the rotors, support struts extending radially across the annular passage within the bearing frame being integrally formed with respective vanes extending radially across the annular passage within the turbine nozzle to simplify construction of the turbine engine and reduce flow disturbance within the annular 3,059,902 10/l962 Savonuzzi ..-....60/39 .I6R passage 3,018,623 1/1962 Birmann ..60/39.l6R 2,650,060 8/1953 Stalker ..415/68 4Claims,2Drawing Figures 4I43 46 I2 t? 35 l I .l ll n 33 p] 23 I L I PATENTED 2 3.704.075
INVENTORS KARL W. .KARSTENSEN RICHARD W. K IZER ATTORNEYS COMBINED TURBINE NOZZLE AND BEARING FRAME I The present invention relates to a combined nozzle and bearing frame assembly forming an annular passage adjacent either a compressor or turbine rotor, for example, the assembly including a bearing support structure having struts extending radially across the annular passage and a nozzle having vanes extending radially across the annular passage. As contemplated by the present invention, each of the struts is arranged in alignment with a respective one of the nozzle vanes with adjacent edges of each strut and its respective vane being faired toward each other to reduce flow disturbance within the annular passage. Preferably, the bearing support structure and the nozzle are integrally formed to provide greater continuity along the surfaces of the annular passage, the associated struts and vanes also being integrally formed to further reduce flow disturbance and to simplify construction of the assembly.
In conventional or turbine machinery, for example, a first rotor such as a gasifier turbine rotor is arranged at one end of the annular passage with another rotor such as a power turbine rotor being arranged at the opposite end of the annular passage adjacent a power turbine nozzle or guide vanes employed for example in a compressor unit. Support struts for the bearing frame are commonly arranged in axially spaced apart relation from the vanes within the turbine and the power turbine rotors, the spaced apart relation between the struts and the vanes tends to develop a significant flow disturbance or wake downstream of each strut.
In addition to eliminating or minimizing this source of flow disturbance, the preferred integral construction of the bearing support and turbine nozzle also tends to provide greater continuity along the annular passage to further reduce flow disturbance and to simplify construction of the turbine.
An additional advantage of the present invention accrues because of the relatively compact construction of such turbine machinery. In the prior art, the spacing between the two rotors and the separate construction of the bearing support structure and the turbine nozzle may dictate minimum spacing between the struts and the gasifier turbine rotor. Aerodynamic interaction might accordingly occur therebetween giving rise to an additional source of flow disturbance. Through use of the construction contemplated by the present invention, the struts may be placed somewhat further downstream from the first rotor, thus eliminating or minimizing that source of flow disturbance.
Accordingly, it is an object of the present invention to provide turbine machinery having a pair of rotors and an annular passage therebetween with flow disturbance being minimized within the annular passage.
An additional object of the invention is to provide a nozzle integrally formed along with a bearing support structure to provide greater continuity within an annular passage formed thereby and/or to facilitate and simplify construction or assembly.
Still another object of the invention is to provide a combined bearing and nozzle assembly for use in conjunction with either a turbine or compressor rotor, for example, to reduce aerodynamic interference between the rotor and structural components within the bearing and nozzle assembly.
Other objects and advantages of the present invention are made apparent in the following description having reference to the accompanying drawing.
In the drawing: 1
FIG. 1 is a longitudinally sectioned view of a turbine machine embodying the present invention; and
FIG. 2 is a view taken along section lines II-II of FIG. 1.
Referring now to the drawing, FIG. 1 illustrates a two-shaft gas turbine engine having a housing or shell 11. A gasifier turbine rotor 12,and a power turbine rotor 13 are arranged in axial alignment for rotation within the turbine shell 11. An annular passage 14 is formed between the two rotors by a bearing support structure 16 and a power turbine nozzle 17. The bearing support structure 16 includes inner and outer cylindrical elements 18 and 19 which are spaced apart to form the annular passage 14. The inner cylindrical element 18 also supports a bearing arrangement 21 for the shaft 22 of the gasifier turbine rotor 12.
The inner cylindrical element 18 of the bearing support member 16 is positioned by support struts extending radially across the annular passage 14, one of the struts being indicated at 23. The power turbine nozzle 17 also has a relatively large number of vanes 24 extending radially across the annular passage 14 adjacent the power turbine rotor 13. As may be best seen in FIG. 2, each of the struts 23 is arranged adjacent and in general alignment with one of the power turbine nozzle vanes, such as that indicated at 24a. The trailing edge of the strut 23 and the leading edge of the associated vane 24a are faired toward each other for reducing flow disturbance within the annular passage in a manner described in greater detail above.
Referring also to FIG. 1, it may be noted that the power turbine nozzle 17 is formed integrally for example by casting, together with the bearing support structure 16 with the cylindrical elements 18 and 19 extending continuously along the length of the annular passage 14. Each of the struts 23 is also integrally formed together with the associated vane 24a.
In addition to reducing flow disturbance between the strut 23 and the vanes 24a and facilitating assembly of the turbine machine, it may be noted that the present arrangement of the struts further permits the struts to be placed further downstream from the gasifier turbine rotor 12. Thus, the present invention permits greater design freedom in arranging components within the turbine machine and reduced aerodynamic interference between various elements in the fluid flow path.
Additional structural features of the present turbine machine are also illustrated in FIG. 1. The outer cylindrical element 19 of the bearing support structure 16 and acylindrical casing 31 arranged about the gasifier turbine rotor 12 are secured to an inwardly extending flange 32 on the turbine shell 11 by bolts such as those indicated at 33. A similar cylindrical casing 34 arranged about the power turbine rotor 13 is secured to another flange 36 on the turbine shell 11 by means of bolts such as those indicated at 37.
The inner cylindrical element 18 of the bearing support structure 16 has inwardly extending flanges 41 and 42 arranged respectively adjacent the upstream and downstream ends of the annular passage 14. A cylindrical housing member 43 is secured to the flange 41 by means suchas screws indicated at 44. An outer bearing support 46 and a seal support 47 together with an end plate 48 are secured to the other end of the housing member 43 by bolts such as those indicated at 49. The outer bearing support member 46, the seal support member 47 and the end plate 48 are also piloted within the flange 42.
Outer and inner races 51 and S2 for bearings 53 are arranged respectively upon the bearing support member 46 and a stepped portion of the shaft 22. A seal 54 is arranged between the seal support member 47 and the stepped portion of theshaft 22. Another seal 56 is arranged between the shaft 22 and a second seal support member 57 to hydraulically isolate the bearing arrangement 21.
To permit lubrication of the bearing means during high speed operation of the turbine, a conduit or tube indicated at 61 (Also see FIG. 2) is arranged within one of the struts 23 to deliver lubricant to the bearing assembly 21. Another conduit similarly arranged within another strut (not shown) may be employed to provide a drain passage for the lubricant.
What is claimed is: I
l. in an axial flow fluid turbine engine comprising a power turbine rotor, a gasifier turbine rotor mounted on a shaft extending toward the power turbine rotor, a bearing frame arranged between the two rotors and a power turbine nozzle arranged between the bearing frame and the power turbine rotor, the bearing frame having two generally cylindrical, spaced apart elements forming an annular passage in fluid communication with the gasifier turbine rotor, a plurality of struts extending radially across the annular passage of the bearing frame to support the inner member relative to the outer member, the inner member providing a bearing support for the gasifier turbine rotor shaft, the power turbine nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the power turbine rotor, a plurality of vanes extending radially across the annular passage of the power turbine nozzle, the improvement comprising the bearing frame and power turbine nozzle being integrally formed to provide a unitary annular passage between the power turbine rotor and the gasifier turbine rotor, each of the struts being integrally formed with a respective one of the nozzle vanes, each strut being faired into its integral vane for reducing flow disturbance within the unitary annular passage.
2. The turbine'engine of claim 1 wherein conduit means for providing lubricant to a bearing between the inner frame element and the gasifier turbine rotor shaft is disposed within at least one of the struts, a cylindrical housing member being secured within the inner element of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the gasifier turbine rotor shaft and means providing a seal between the housing member and shaft on axially opposite sides of the bearing.
3. in a combined nozzle and bearing frame arrange- 'ment for use in conjunction with an axially aligned turbine or compressor rotor, the bearing frame having two generally cylindrical, spaced apart members forming an annular passage in fluid communication with the rotor,
a plurality of struts extendin radially across the annular passage of the bearing rame to support the inner member relative to the outer member, the inner member providing a bearing support for the rotor, the nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the rotor, a plurality of vanes extending radiallyacross the annular passage of the nozzle, the improvement comprising the bearing frame and nozzle being integrally formed to provide a unitary annular passage in communication with the rotor, each of the struts being integrally formed with a respective one of the nozzle vanes, each strut being faired into its integral vane for reducing flow disturbance within the unitary annular passage.
4. The nozzle and bearing frame assembly of claim 3 wherein conduit means for providing lubricant to a bearing between the inner frame element and a shaft for the rotor is disposed within at least one of the struts, a cylindrical housing member being secured within the inner member of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the rotor shaft with means providing a seal between the housing member and shaft on axially opposite sides of the hearing.

Claims (4)

1. In an axial flow fluid turbine engine comprising a power turbine rotor, a gasifier turbine rotor mounted on a shaft extending toward the power turbine rotor, a bearing frame arranged between the two rotors and a power turbine nozzle arranged between the bearing frame and the power turbine rotor, the bearing frame having two generally cylindrical, spaced apart elements forming an annular passage in fluid communication with the gasifier turbine rotor, a plurality of struts extending radially across the annular passage of the bearing frame to support the inner member relative to the outer member, the inner member providing a bearing support for the gasifier turbine rotor shaft, the power turbine nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the power turbine rotor, a plurality of vanes extending radially across the annular passage of the power turbine nozzle, the improvement comprising the bearing frame and power turbine nozzle being integrally formed to provide a unitary annular passage between the power turbine rotor and the gasifier turbine rotor, each of the struts being integrally formed with a respective one of the nozzle vanes, each strut being faired into its integral vane for reducing flow disturbance within the unitary annular passage.
2. The turbine engine of claim 1 wherein conduit means for providing lubricant to a bearing between the inner frame element and the gasifier turbine rotor shaft is disposed within at least one of the struts, a cylindrical housing member being secured within the inner element of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the gasifier turbine rotor shaft and means providing a seal between the housing member and shaft on axially opposite sides of the bearing.
3. In a combined nozzle and bearing frame arrangement for use in conjunction with an axially aligned turbine or compressor rotor, the bearing frame having two generally cylindrical, spaced apart members forming an annular passage in fluid communication with the rotor, a plurality of struts extending radially across the annular passage of the bearing frame to support the inner member relative to the outer member, the inner member providing a bearing support for the rotor, the nozzle defining an annular passage for fluid communication between the annular passage of the bearing frame and the rotor, a plurality of vanes extending radially across the annular passage of the nozzle, the improvement comprising the bearing frame and nozzle being integrally formed to provide a unitary annular passage in communication with the rotor, each of the struts being integrally formed with a respective one of the nozzle vanes, each strut being faired into its integral vane for reducing flow disturbance within the unitary annular passage.
4. The nozzle and bearing frame assembly of claim 3 wherein conduit means for providing lubricant To a bearing between the inner frame element and a shaft for the rotor is disposed within at least one of the struts, a cylindrical housing member being secured within the inner member of the bearing frame, outer bearing support means being fixed within the housing member, inner bearing support means being fixed to the rotor shaft with means providing a seal between the housing member and shaft on axially opposite sides of the bearing.
US97575A 1970-12-14 1970-12-14 Combined turbine nozzle and bearing frame Expired - Lifetime US3704075A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9757570A 1970-12-14 1970-12-14

Publications (1)

Publication Number Publication Date
US3704075A true US3704075A (en) 1972-11-28

Family

ID=22264107

Family Applications (1)

Application Number Title Priority Date Filing Date
US97575A Expired - Lifetime US3704075A (en) 1970-12-14 1970-12-14 Combined turbine nozzle and bearing frame

Country Status (1)

Country Link
US (1) US3704075A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881841A (en) * 1973-11-29 1975-05-06 Avco Corp Damped compressor bearing mounting assembly
US3902314A (en) * 1973-11-29 1975-09-02 Avco Corp Gas turbine engine frame structure
US3939651A (en) * 1973-08-08 1976-02-24 Caterpillar Tractor Co. Mounting for attaching a tubular member in co-axial registration with an aperture in a wall
DE2741063A1 (en) * 1977-09-13 1979-03-22 Motoren Turbinen Union GAS TURBINE ENGINE
US4369016A (en) * 1979-12-21 1983-01-18 United Technologies Corporation Turbine intermediate case
FR2527267A1 (en) * 1982-05-20 1983-11-25 United Technologies Corp DIFFUSER HOUSING FOR A GAS TURBINE ENGINE
EP0337852A1 (en) * 1988-04-13 1989-10-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Thermaly regulated exhaust channel for a turbo machine
EP0628728A1 (en) * 1993-06-10 1994-12-14 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Splitter vane diffuser for a jet engine with profiled struts which serve also as outlet guide vanes
JP2603759Y2 (en) 1992-04-23 2000-03-21 石川島播磨重工業株式会社 Gas turbine engine
EP0942150A3 (en) * 1998-03-11 2000-12-20 Rolls-Royce Plc A stator vane assembly for a turbomachine
EP1424467A2 (en) * 2002-11-27 2004-06-02 General Electric Company Row of long and short chord length turbine airfoils
EP1621733A2 (en) * 2004-07-28 2006-02-01 MTU Aero Engines GmbH Flow device for a gas turbine
WO2008092806A3 (en) * 2007-01-29 2008-10-09 Siemens Ag Flow guiding element on a spoke of a casing of a gas turbine engine
EP2096320A1 (en) * 2006-12-18 2009-09-02 IHI Corporation Cascade of axial compressor
EP2159398A2 (en) * 2008-08-18 2010-03-03 United Technologies Corporation Separation-resistant inlet duct for mid-turbine frames
US20130170969A1 (en) * 2012-01-04 2013-07-04 General Electric Company Turbine Diffuser
EP2669474A1 (en) * 2012-06-01 2013-12-04 MTU Aero Engines GmbH Transition channel for a fluid flow engine and fluid flow engine
US20140255159A1 (en) * 2013-03-07 2014-09-11 Pratt & Whitney Canada Corp. Integrated strut-vane
US20150078908A1 (en) * 2011-08-04 2015-03-19 Paolo Calza Gas turbine engine for aircraft engine
EP2860354A1 (en) * 2013-10-08 2015-04-15 Pratt & Whitney Canada Corp. Integrated strut and turbine vane nozzle arrangement
US20160298646A1 (en) * 2015-04-08 2016-10-13 General Electric Company Gas turbine diffuser and methods of assembling the same
US9631517B2 (en) 2012-12-29 2017-04-25 United Technologies Corporation Multi-piece fairing for monolithic turbine exhaust case
US9835038B2 (en) 2013-08-07 2017-12-05 Pratt & Whitney Canada Corp. Integrated strut and vane arrangements
US9909434B2 (en) 2015-07-24 2018-03-06 Pratt & Whitney Canada Corp. Integrated strut-vane nozzle (ISV) with uneven vane axial chords
US20190085725A1 (en) * 2017-09-20 2019-03-21 General Electric Company Lube system for geared turbine section
DE102017222193A1 (en) 2017-12-07 2019-06-13 MTU Aero Engines AG Turbomachinery flow channel
US10443451B2 (en) 2016-07-18 2019-10-15 Pratt & Whitney Canada Corp. Shroud housing supported by vane segments
US10570758B1 (en) * 2018-05-18 2020-02-25 Florida Turbine Technologies, Inc. Geared turbofan aero gas turbine engine with solid bore turbine disk
US11371370B2 (en) 2017-07-19 2022-06-28 MTU Aero Engines AG Flow arrangement for placing in a hot gas duct of a turbomachine
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650060A (en) * 1948-04-27 1953-08-25 Edward A Stalker Gas turbine adapted as a starter
US3018623A (en) * 1960-11-04 1962-01-30 Birmann Rudolph Explosion gas turbines
US3059902A (en) * 1961-07-03 1962-10-23 Chrysler Corp Adjustable nozzle and intermediate inner shroud support
US3099433A (en) * 1961-05-08 1963-07-30 Chrysler Corp Method and means for braking and reversing a gas turbine rotor
US3319931A (en) * 1963-07-25 1967-05-16 Chrysler Corp Turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650060A (en) * 1948-04-27 1953-08-25 Edward A Stalker Gas turbine adapted as a starter
US3018623A (en) * 1960-11-04 1962-01-30 Birmann Rudolph Explosion gas turbines
US3099433A (en) * 1961-05-08 1963-07-30 Chrysler Corp Method and means for braking and reversing a gas turbine rotor
US3059902A (en) * 1961-07-03 1962-10-23 Chrysler Corp Adjustable nozzle and intermediate inner shroud support
US3319931A (en) * 1963-07-25 1967-05-16 Chrysler Corp Turbine engine

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939651A (en) * 1973-08-08 1976-02-24 Caterpillar Tractor Co. Mounting for attaching a tubular member in co-axial registration with an aperture in a wall
US3881841A (en) * 1973-11-29 1975-05-06 Avco Corp Damped compressor bearing mounting assembly
US3902314A (en) * 1973-11-29 1975-09-02 Avco Corp Gas turbine engine frame structure
DE2741063A1 (en) * 1977-09-13 1979-03-22 Motoren Turbinen Union GAS TURBINE ENGINE
US4369016A (en) * 1979-12-21 1983-01-18 United Technologies Corporation Turbine intermediate case
FR2527267A1 (en) * 1982-05-20 1983-11-25 United Technologies Corp DIFFUSER HOUSING FOR A GAS TURBINE ENGINE
EP0337852A1 (en) * 1988-04-13 1989-10-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Thermaly regulated exhaust channel for a turbo machine
FR2630159A1 (en) * 1988-04-13 1989-10-20 Snecma TURBOMACHINE EXHAUST CASING WITH THERMAL REGULATION DEVICE
US4900220A (en) * 1988-04-13 1990-02-13 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Turbo-engine exhaust gas housing with temperature control device
JP2603759Y2 (en) 1992-04-23 2000-03-21 石川島播磨重工業株式会社 Gas turbine engine
FR2706534A1 (en) * 1993-06-10 1994-12-23 Snecma Multiflux diffuser-separator with integrated rectifier for turbojet.
US5592821A (en) * 1993-06-10 1997-01-14 Societe Nationale D'etude Et De Construction De Moteurs F'aviation S.N.E.C.M.A. Gas turbine engine having an integral guide vane and separator diffuser
EP0628728A1 (en) * 1993-06-10 1994-12-14 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Splitter vane diffuser for a jet engine with profiled struts which serve also as outlet guide vanes
EP0942150A3 (en) * 1998-03-11 2000-12-20 Rolls-Royce Plc A stator vane assembly for a turbomachine
EP1424467A2 (en) * 2002-11-27 2004-06-02 General Electric Company Row of long and short chord length turbine airfoils
EP1424467A3 (en) * 2002-11-27 2006-09-27 General Electric Company Row of long and short chord length turbine airfoils
EP1621733A2 (en) * 2004-07-28 2006-02-01 MTU Aero Engines GmbH Flow device for a gas turbine
EP1621733A3 (en) * 2004-07-28 2011-12-21 MTU Aero Engines AG Flow device for a gas turbine
EP2096320A1 (en) * 2006-12-18 2009-09-02 IHI Corporation Cascade of axial compressor
EP2096320A4 (en) * 2006-12-18 2014-05-21 Ihi Corp Cascade of axial compressor
US20100031673A1 (en) * 2007-01-29 2010-02-11 John David Maltson Casing of a gas turbine engine
WO2008092806A3 (en) * 2007-01-29 2008-10-09 Siemens Ag Flow guiding element on a spoke of a casing of a gas turbine engine
US8402769B2 (en) 2007-01-29 2013-03-26 Siemens Aktiengesellschaft Casing of a gas turbine engine having a radial spoke with a flow guiding element
EP2159398A2 (en) * 2008-08-18 2010-03-03 United Technologies Corporation Separation-resistant inlet duct for mid-turbine frames
EP2159398A3 (en) * 2008-08-18 2013-08-28 United Technologies Corporation Separation-resistant inlet duct for mid-turbine frames
US20150078908A1 (en) * 2011-08-04 2015-03-19 Paolo Calza Gas turbine engine for aircraft engine
US9810082B2 (en) * 2011-08-04 2017-11-07 Ge Avio S.R.L. Gas turbine engine for aircraft engine
US20130170969A1 (en) * 2012-01-04 2013-07-04 General Electric Company Turbine Diffuser
EP2669474A1 (en) * 2012-06-01 2013-12-04 MTU Aero Engines GmbH Transition channel for a fluid flow engine and fluid flow engine
US9631517B2 (en) 2012-12-29 2017-04-25 United Technologies Corporation Multi-piece fairing for monolithic turbine exhaust case
US20140255159A1 (en) * 2013-03-07 2014-09-11 Pratt & Whitney Canada Corp. Integrated strut-vane
US11193380B2 (en) * 2013-03-07 2021-12-07 Pratt & Whitney Canada Corp. Integrated strut-vane
US10221707B2 (en) * 2013-03-07 2019-03-05 Pratt & Whitney Canada Corp. Integrated strut-vane
EP2775098A3 (en) * 2013-03-07 2014-09-24 Pratt & Whitney Canada Corp. Integrated strut-vane
US10221711B2 (en) 2013-08-07 2019-03-05 Pratt & Whitney Canada Corp. Integrated strut and vane arrangements
US9835038B2 (en) 2013-08-07 2017-12-05 Pratt & Whitney Canada Corp. Integrated strut and vane arrangements
US10662815B2 (en) 2013-10-08 2020-05-26 Pratt & Whitney Canada Corp. Integrated strut and turbine vane nozzle arrangement
US9556746B2 (en) 2013-10-08 2017-01-31 Pratt & Whitney Canada Corp. Integrated strut and turbine vane nozzle arrangement
EP2860354A1 (en) * 2013-10-08 2015-04-15 Pratt & Whitney Canada Corp. Integrated strut and turbine vane nozzle arrangement
US20160298646A1 (en) * 2015-04-08 2016-10-13 General Electric Company Gas turbine diffuser and methods of assembling the same
US10151325B2 (en) * 2015-04-08 2018-12-11 General Electric Company Gas turbine diffuser strut including a trailing edge flap and methods of assembling the same
US9909434B2 (en) 2015-07-24 2018-03-06 Pratt & Whitney Canada Corp. Integrated strut-vane nozzle (ISV) with uneven vane axial chords
US10443451B2 (en) 2016-07-18 2019-10-15 Pratt & Whitney Canada Corp. Shroud housing supported by vane segments
US11371370B2 (en) 2017-07-19 2022-06-28 MTU Aero Engines AG Flow arrangement for placing in a hot gas duct of a turbomachine
US20190085725A1 (en) * 2017-09-20 2019-03-21 General Electric Company Lube system for geared turbine section
US11255221B2 (en) * 2017-09-20 2022-02-22 General Electric Company Lube system for geared turbine section
US11098599B2 (en) 2017-12-07 2021-08-24 MTU Aero Engines AG Flow channel for a turbomachine
DE102017222193A1 (en) 2017-12-07 2019-06-13 MTU Aero Engines AG Turbomachinery flow channel
US10570758B1 (en) * 2018-05-18 2020-02-25 Florida Turbine Technologies, Inc. Geared turbofan aero gas turbine engine with solid bore turbine disk
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Similar Documents

Publication Publication Date Title
US3704075A (en) Combined turbine nozzle and bearing frame
US4478551A (en) Turbine exhaust case design
US3262635A (en) Turbomachine sealing means
US3250512A (en) Gas turbine engine
US4697981A (en) Rotor thrust balancing
US2406947A (en) Centrifugal pump
US3526092A (en) Gas turbine engine having improved bearing support means for concentric shafts
US3269119A (en) Turbo-jet powerplant with toroidal combustion chamber
US9903224B2 (en) Scupper channelling in gas turbine modules
US10663036B2 (en) Gas turbine engine with rotating reversing compound gearbox
ES410317A1 (en) Centrifugal flow gas turbine engine with annular combustor
JP2017150484A (en) Core differential bearing with centering spring and squeeze film damper
GB1298868A (en) Improvements in or relating to turbomachines
US3077074A (en) Regenerative gas turbine
US3907386A (en) Bearing assembly systems
US3053590A (en) Shaft seal
EP3379056B1 (en) Two-shaft tower shaft support and mounting method
US3850544A (en) Mounting arrangement for a bearing of axial flow turbomachinery having variable pitch stationary blades
US4598600A (en) Bearing support structure
US3531935A (en) Gas turbine engine
GB931904A (en) Fluid flow machine
US4053189A (en) Turbine construction
US2972441A (en) Variable blade system
GB826568A (en) Improvements in or relating to rotors, for example rotor discs for axial-flow turbines
US3332242A (en) Aft fan jet engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., A CORP. OF DE.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515

Owner name: CATERPILLAR INC., 100 N.E. ADAMS STREET, PEORIA, I

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CATERPILLAR TRACTOR CO., A CORP. OF CALIF.;REEL/FRAME:004669/0905

Effective date: 19860515