US2714066A - Planographic printing plate - Google Patents

Planographic printing plate Download PDF

Info

Publication number
US2714066A
US2714066A US519900A US51990055A US2714066A US 2714066 A US2714066 A US 2714066A US 519900 A US519900 A US 519900A US 51990055 A US51990055 A US 51990055A US 2714066 A US2714066 A US 2714066A
Authority
US
United States
Prior art keywords
plate
light
silicate
film
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US519900A
Inventor
Clifford L Jewett
John M Case
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27498333&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2714066(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BE540601D priority Critical patent/BE540601A/xx
Priority to BE507657D priority patent/BE507657A/xx
Priority to GB27413/51A priority patent/GB718525A/en
Priority to DEM11920A priority patent/DE907147C/en
Priority to FR1051461D priority patent/FR1051461A/en
Priority to CH309940D priority patent/CH309940A/en
Priority to US519900A priority patent/US2714066A/en
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to US523951A priority patent/US3136636A/en
Publication of US2714066A publication Critical patent/US2714066A/en
Application granted granted Critical
Priority to FR69770D priority patent/FR69770E/en
Priority to DEM27983A priority patent/DE1091433B/en
Priority to CH357974D priority patent/CH357974A/en
Priority to GB23641/55A priority patent/GB815471A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/038Treatment with a chromium compound, a silicon compound, a phophorus compound or a compound of a metal of group IVB; Hydrophilic coatings obtained by hydrolysis of organometallic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/016Diazonium salts or compounds
    • G03F7/021Macromolecular diazonium compounds; Macromolecular additives, e.g. binders

Definitions

  • PLANOGRAPHIC PRINTING PLATE Original Filed Aug. 16, 1954 LIGHT-5EN5ITIVE DIAZO RESIN SILICATE TREATMENT ALUMINUM SHEET 10 /j-* ALUMINUM SHEET SILICATE TREATMENT COATING of IMAGE DEVELOPER LIGHTREACTED DIAZO RESIN SILICATE TREATMENT ALUMINUM SHEET INVENTORS CLIFFORD LJEWETT JOHN M. CASE w mmf ATTORNE 5 LIGI-IT-REACTED DIAZO RESIN United States Patent i PLANOGRAPHEC PRINTING PLATE Cliliord L. .lewett, Minneapolis, and John M. Case,
  • This invention relates to planographic printing plates. it particularly concerns plates of a type which may be used on well known commercial forms of lithographic presses.
  • This application is a continuationdn-part of our copending application Serial No. 199,5 66, filed December 6, 1950, and is a division of our application Serial No. 1:
  • Our invention is especially concerned with a plate formed from a thin metal sheet having at least one surface thereof reated to provide a tightly bonded, thin, preferably inorganic, hydrophilic surface formed from a solution of an alkali metal silicate, silicic acid, or other treating agent which will form a permanently hydrophillc scum-preventing and tone-reducing film overlying and in firmly-bonded contact with the surface of the plate, and having a coatin of light-sensitive organic material such as a light-sensitive diazo resin or other light-sensitive organic nitrogen-containing material over the exposed hydrophilic treated surface, i. e. over the exposed surface of the scum-preventing and tonereducing film or treatment.
  • a light-sensitive organic material such as a light-sensitive diazo resin or other light-sensitive organic nitrogen-containing material
  • Lithographic plates of one type and another have been known for a great many years; for example, see Stevens, U. S. Patent No. 556,380, granted March 17, 1896, which is one of the early patents connected generally with this subject.
  • Zahn U. S. Patent No. 2,100,063, granted November 23, 1937; and Toland et al., U. S. Patent No. 2,373,357, granted April 10, 1945, are examples from a large number of other patents which describe various forms of lithographic plates, and which have been granted since the aforesaid Stevens patent.
  • the lithographic plates employed in commerce and industry have consisted mainly of grained zinc plates, commonly produced by people who are in the business of graining plates. These grained plates are customarily supplied to a large number of shops throughout the country that make finished plates for the printer and lithographer.
  • planographic plates which are presensitized, i. e. are ready for an exposure through a negative or stencil without further treatment. These plates can be stored for considerable periods of time, i. e. weeks or months, and still be used, merely upon exposure to light through a negative or stencil, followed by washing off the unexposed light-sensitive material.
  • German Patent No. 581,697 which is equivalent to Schmidt and Zahn U. S. Patent No. 2,063,631, granted December 8, 1936; and Stevens, U. S. Patent No. 556,380, granted March 17, 1896.
  • Light-sensitive diazo resins and other like light-sensitive organic materials are notably sensitive to metals.
  • Kalle British Patent No. 699,413, published November 4, 1953, at page 1 points out that if water soluble diazo compounds, or like light-sensitive substances, are coated on metal supports, a plate which can be stored in the unexposed state, i. e. a presensitized plate, cannot be made, owing to the decomposition of the light-sensitive substance caused by the metal.
  • Others concerned with metal plates have coated them with a substantial layer of cellulose acetate, or other material, and then hydrolyzed the surface of the acetate and coated the diazo resin or equivalent thereover.
  • -' is also an object of our invention to provide a presensiitized plate which can replace the prior art method, cumbersorhe under many circumstances, of securing grained 'Zinc plates and then subsequently coating the same with V a light-sensitive colloidal coating.
  • a further object is to provide a presensitized plate which preferably is free of surface roughness or grain, and from which sharp lined impressions can be produced and from which printing of high resolution, that is, extreme clarity of detail of the printed matter, can be obtained.
  • a further object is to provide a presensitized lithographic plate of high dimensional stability which will be suitable for applications where accurate registration is required such, for example, as in multicolor work, where the same sheet is successively printed from different lithographic plates.
  • Another object is to provide, for the first time, a commercially acceptable presensitized lithographic plate.
  • Fig. 1 shows an aluminum sheet 10, in broken-away view, showing a scum-preventing film or thin silicate treatment 11 tightly and. chemically bonded to one surface of the aluminum sheet 10;
  • Fig. '2- is like Fig. 1 but additionally has a thin coating 12 of a water-soluble light sensitive diazo resin coated over or absorbed by the said silicate coating;
  • Fig. 3 is like Fig. 2 except the plate of Fig. 2 has .been exposed to ultraviolet light through a photographic negative and then washed with water or standard gum arabic fountain solution, leaving the hydrophobic and organophilic diazo image 12a; and
  • Fig. 4 is like Fig. 3 except that the exposed plate of Fig. 3 has its image surface wiped with an image developer, leaving an extremely thin coating of image developer 13.
  • the aluminum sheet 10 though being a foil having a thickness of only about .005 to .012 inch, is shown in broken-away view, in respect to its thickness as well as its length, to illustrate the fact that the silicate treatment 11 is really very thin compared with the aluminum foil 10.
  • the silicate treatment is probably little more than -a monomolecular layer.
  • diazo light-sensitive resin 12 is shown in the drawing as also being a very thin coating, but it is not the intention in the drawing to illustrate whether the light-sensitive diazo resin coating is equal to, greater than, or less than the thickness of the silicate treatment. Actually, the diazo coating is apparently absorbed to some extent in the surface of the thin silicate treatment.
  • a salient embodiment of our invention consists in providing a thin treatment or film, probably often substantially of monomolecular thickness, of a hydrophilic inorganic material (e. g. formed from treatment with an alkali metal silicate solution) on a surface of a given metal plate, for example, an aluminum plate.
  • a hydrophilic inorganic material e. g. formed from treatment with an alkali metal silicate solution
  • the aluminum plate may be from .005 to .012 inch in thickness, although this obviously depends upon the type of press on which the plate is to be employed and other factors, and these dimensions may be greatly varied as circumstances permit.
  • a thin coating of preferably a water-soluble lightsensitive diazo resin Over the exposed silicate treated or like hydrophilic and scum-preventing surface, we apply a thin coating of preferably a water-soluble lightsensitive diazo resin.
  • This product following drying, may be packaged in any convenient ligh -proof container, and shipped to the customer in a distant city or State.
  • the customer desires to use the plate, which may be many weeks, or even months, after the plate was manufactured and shipped to him, he will remove the plate from its package under subdued light, place it in contact with a negative or stencil, then expose it to a source of ultraviolet light for a short period of time, e. g. from 1 to 5 minutes, depending upon the intensity of the ultraviolet light, and then wash the surface of the plate with Water, whereupon the unexposed diazo material (that shielded by the stencil or negative), which remains water-soluble, is cleanly washed off, leaving the hydrophilic silicate treated surface exposed in those areas.
  • the portion of the diazo coating which was exposed to the ultraviolet light was thereby insolubilized and rendered hydrophobic and organophilic (that is, water-repellent and ink-receptive), expelling nitrogen from the molecule in the process.
  • the diazo light-sensitive material it becomes very strongly bonded to the surface of the scumpreventing film, which is usually an inorganic material such as a silicate.
  • This plate is then ready to be placed on a lithographic press, without further treatment, and used in printing or reproducing the desired writings or images.
  • the image developer may take various forms.
  • One example is a pigmented resin emulsion which will adhere to the inkreceptive areas but will not adhere to the hydrophilic areas of the plate.
  • a printers developing ink can also be 'used'as an image developer.
  • An example of an image developer, which we have found to be particularly useful, is described in a copending application of Myron W.
  • the image developer is of this practical importance: prior to the application of the image developer, the image is not visible. If a plate in that form is presented to the lithographer or printer, he cannot be sure whether he is putting the plate on the press correctly or whether he has it backwards. Additionally, in the absence of the visible image, the ressman would not know whether he had an exposed plate, unless this were denoted by some coding system or such like. In addition to making the image visible, so the pressman can see it, a good image developer also (a) helps the plate to ink up more readily when placed on the press, and (b) strengthens the image so that more copies can be run from a single plate, while still getting clear reproductions.
  • Example Aluminum foil or sheet material of about .005 inch in thickness is first made ready for treatment with a silicate. Since greasy lubricants are commonly used in aluminum mills during the rolling operation, it is first desirable to treat the aluminum foil or sheet so as to remove any greasy film, so that the surface exposed will be an aluminum surface.
  • One method which we have found to be advantageous in cleaning the aluminum surface is to immerse the same in a solution of trisodium phosphate for a sufiicient time only to clean the aluminum, e. g. for a period of 5 minutes.
  • the temperature of the solution may be controlled at approximately 160 F.
  • nitric acid of about concentration, employed at room temperatures, will clean the scum off of the surfaces of the aluminum foil or sheet material and leave it in good condition for the subsequent steps of our plate making operation.
  • nitric acid of about concentration, employed at room temperatures, will clean the scum off of the surfaces of the aluminum foil or sheet material and leave it in good condition for the subsequent steps of our plate making operation.
  • Al foil or sheet material is thoroughly rinsed with water to remove any residual acid.
  • the cleaned surface of the aluminum is then treated with a solution of an alkali metal silicate, calcium silicate, silicic acid, colloidal hydrated silica or polymerized silicic acid (such as Du Ponts Ludox), or equivalent,
  • a suitable type of sodium silicate can be chosen from those commercially available having a silica to soda ratio within the range from 3.2 to 1 to 1.8 to 1; and a particularly suitable one is Star Brand, of Philadelphia Quartz Company, having a silica to soda ratio of 2.50 to l.
  • the concentration of the sodium silicate in the solution may advantageously be about 2 to 5%, e. g. 2%, although weaker or stronger solutions can be employed.
  • Calcium silicate and silicic acid are relatively insoluble in water (less than one percent) and are commonly described as being insoluble in water. Insolubility, however, it is not total, a saturated solution of each containing probably in excess of .01 of one percent of the respective chemicals in solution. Regardless of the concentration achieved, saturated solutions of calcium silicate and silicic acid are sufficient usefully to treat an aluminum sheet prior to applying a light-sensitive diazo resin or equivalent, to make our plates.
  • magnesium silicate, copper silicate and aluminum silicate illustrate materials having such a high degree of insolubility as to be useless in the practice of our invention.
  • silicic acid in solution, diluted with water to a concentration range of 1 percent to .1 percent Ludox, has been found to be a fully satisfactory equivalent of sodium silicate for our purposes, even though du Pont trade literature states that This product should not be considered as an alkali silicate, such as the sodium silicate of commerce, because in contrast to sodium silicate, it contains no significant quantity of alkali and in general Ludox as few properties in common with alkali silicates.
  • the colloidal water dispersion of silica sold by Monsanto Chemical Co. under the trade name of Syton-W-ZO" and commonly known as a silica sol disclosed by Jahoda in his U. S. Patent No.
  • a preferred method of treating the aluminum foil or sheet material with the soluble silicate involves dipping a cleaned aluminum surface in the silicate solution maintained at temperatures of the order of 21'2 F. This can conveniently be done by running a web of aluminum foil continuously through an immersion bath. At these temperatures the soluble silicate will react with the surface of the aluminum to form an insoluble hydrophilic silicious surface. After this treatment, the excess soluble silicate, and any other soluble materials present, are immediately thoroughly washed away, and the treated foil or sheet is dried. The resulting silicate treatment on the surface of the aluminum foil or sheet is extremely thin but is very abrasion resistant. It is also substantially free of water-soluble material.
  • the silicate treatment is very effective in rendering the surface of the aluminum permanently hydrophilic: the aluminum sheet in this form will not oxidize to a hydrophobic surface on exposure to air, as it will do in the absence of such a silicate treated surface or equivalent.
  • the silicate treatment or equivalent provides a permanently hydrophilic scum-preventing and tone-reducing film or treatment.
  • the silicate treated aluminum foil or sheet ust described is of quite a smooth character and usually has a metallic sheen or relatively smooth appearance,as contrasted Withthe dull appearance of various prior art grained plates. While some very slight amount of etching may unavoidably occur on the aluminum surface of the sheet during the cleaning operation, this is so small that it does not impart to the finished silicate treated sheet a rou h surface or a matte appearance. This is important in securing the highest performance characteristics, sought after in our finished presensitized lithographic plates, particularly where fine line work or fine half-tones are being reproduced.
  • the smooth silicate treated surface of our plate for example produced as just described, without graining or deep etching, has the property of tenaciously holding image formed by exposure to light of light-sensitive organic nitrogen-containing material, e. g. light-sensitive diazo compounds, on the surface thereof, as described and illustrated hereinbelow.
  • light-sensitive organic nitrogen-containing material e. g. light-sensitive diazo compounds
  • Suitable light-sensitive diazo resins are available commercially, from several manufacturers, e. g. Ringwood Chemi- I? cals, Inc. (formerly Edwal Laboratories, Inc.), Ringwood, Illinois.
  • One suitable method of making a suitable light-sensitive diazo resin is as follows: thirty-four parts of the sulfate salt of para-diazodiphenyl amine (available, for example, from the Fairmount Chemical Company, Newark, N. 1., at the present time as Para-diazodiphenyl amine salt) is mixed with 3.25 parts of para-formaldehyde and 4.5 parts of anhydrous zinc chloride. The above mixture is gradually introduced into 135 parts of cool sulfuric acid of 66 Baume, care being taken that the temperature does not exceed 6 C.
  • the brown solution decomposes to a black tarry material, essentially an impure diazo resin, which is removed and dissolvedin water.
  • Addition of an excess of a saturated zinc chloride solution to this aqueous diazo resin solution precipitates a yellow solid which is removed; this yellow solid is then further purified by dissolving in water and precipitating by the addition of alcohol.
  • This new precipitate is the purified light-sensitive diazo resin and, in the form of a dilute solution in water, for example, about a 1% solution, is used in applying a light-sensitive coating to our aluminum sheet or the like, above described, which has been given a silicate treatment or otherwise provided with a scum-preventing and tone-reducing film overlying and in contact with the surface of the metal, as herein illustrated.
  • the reactions and precipitations employed in the mak- I ing of the light-sensitive diazo resin are carried out under subdued light, for example, under a yellow light. This is also true of the operation of coating the silicate or like inorganic or other hydrophilic surface of the aluminum sheet with a dilute solution of the light-sensitive diazo resin or equivalent.
  • the dilute solution of light-sensitive diazo resin may be applied to the exposed surface of the permanently hydrophilic silicate treated sheet, or equivalent, above described, by a roll coating method, for example.
  • the diazo coating be an extremely thin one, for example, leaving a residue of about 0.903 gram, or even less, e. g. 0.001 gram, of the diazo resin per square foot of plate area.
  • a heavier residue of diazo resin but still a thin film, can be coated on the surface.
  • the treated and sensitized sheet is then die cut to standard plate sizes and, continuing under subdued light, the plates are packaged in light-tight packages, in which they are sent to the users and customers.
  • the customer in using the same, removes them from the package under subdued light and places a negative or sten cil thereover and exposes the same to ultraviolet light, to produce the desired image, as already described hereinabove.
  • Sensitized plates made according to our above described method are more sensitive to light than conventional albumin, ammonium bichromate plates; and our plates can be sufficiently exposed in about two-thirds the time.
  • Exposure of our presensitized lithographic plates may be carried out in a printing frame under a source of ultraviolet light. Carbon arcs may be used but are not required. Photo-flood bulbs and black light fluorescent tubes will also give satisfactory results. While the exposure time is not critical, under-exposure may result in broken images or no image at all. Extreme over-exposure may cause dirty highlights and blocked-up shadows in half-tone areas. While the user of our presensitized plates has considerable latitude in the amount of exposure, the foregoing will serve to guide him from undue extremes of over-exposure or under-exposure.
  • the plate where a diazo resin is used as the sensitizer
  • a solution of gum arabic which dissolves and removes the unreacted diazo sensitizer.
  • the image is invisible. While the plate is still Wet with the gum arabic solution, an image developer or strengthener consisting of a resin emulsion (or, alternatively, a printers developing ink of conventional type) is poured on the plate and rubbed in quickly with a soft pad or cotton wad. The excess image developer should be wiped away before it dries completely.
  • the resinous portion of the image developer should preferably contain a pigment or dye which will make the image clearly visible as the particles of resin adhere to the hydrophobic and organophilic image.
  • the plate is then ready for the press, or it may be coated with gum arabic if it is to be stored before use.
  • lithographic plates are of such nature, due to the particular materials and the thickness thereof, that they do not wrinkle or stretch during processing or on the press (as do paper or plastic planographic plates, for example) and, therefore, are particularly suitable for 1 9 lithographic printing, even where very accurate registration is required.
  • Aluminum foil to be used for our process is one produced by the Aluminum Company of America and designated as 381-119, the same containing about 1.25% manganese alloyed with the aluminum.
  • Aluminum foil or sheeting which would be too soft and pliable to be well suited for our use if employed in the form of relatively thin gauge sheets, although any commercial type of aluminum which is stifl enough to resist wrinkling and creasing, in the form of thin sheets or foil, may be employed.
  • water-soluble or water-dispersible silicates of commerce are the most desirable and convenient materials for producing permanently hydrophilic surface treatments on metal sheets for our purposes, yet with variations in metal sheets and/or with variations in the light-sensitive organic material to be employed and/or with variations in the treating procedure, treating materials other than the water-soluble silicates may be useful or even preferred.
  • silicon-containing compounds such as Ludox colloidal silica or saturated solutions of calcium silicate have been employed by us, experimentally, as treating materials, because of special characteristics of these solutions, such as stability, lower alkalinity and others.
  • Certain non-silicon compounds e. g. certain polyhydroxy and polymolecular organic acids have also been experimented with, which render metal surfaces permanently hydrophilic and of a scum-preventing nature, and provide a strong bond between the metal surfaces above described and light-reacted diazo resin or the like. Further information on this matter will be made the subject of a separate application.
  • Diazo materials especially diazo resins, have been described herein as the preferred light-sensitive materials for our purposes. However, variations in this regard are contemplated.
  • the azide of our preferred diazo resin can, with suitable modifications, be used as the light-sensitive coating.
  • This polymeric azido resin is not water soluble and only slightly soluble in common organic solvents, but a concentration suitable for coating can be obtained using as solvents toluene or methyl cellosolve, or mixtures of these, or other organic solvents.
  • the un-light-decomposed azide can conveniently be re moved by a water-toluene mixture, leaving a hydrophobic printing image of water-insoluble, light-reacted azide.
  • Simons describes a paper lithographic plate in which silica, freshly precipitated from sodium silicate, is used to form, a grained printing surface.
  • Champion et al. describe a direct image printing plate in which the margins only are coated with sodium silicate to provide a smudgeproof border.
  • Ayers employs sodium silicate, said to serve as a protective coating, over the printing face of an exposed albuminbichrornate coated zinc plate.
  • Toland et a1. provide a rough, grained surface on paper-backed lithographic plates by applying to the paper a mixture of clay, calcium carbonate or silica, bonded together with sodium silicate, as a base for an albumin typelightsensitive coating.
  • Mason provides a method for the multiple etching of aluminum to produce matte surfaces, and may employ sodium fluoride and sodium silicate in his operation.
  • none of these patents or publications disclose a presensitized plate of any type.
  • our invention concerns, not merely a presensitized plate, but a presensitized plate in which a metal surface, preferably a smooth metal surface, e. g. aluminum, is provided with a permanently hydrophilic thin film or surface treatment, preferably formed from an aqueous sodium silicate solution or equivalent and chemically bonded to the metal surface; and having applied to the silicate, or other permanently hydrophilic surface or scum-preventing and tone-reducing film, a thin coating of a light-sensitive diazo resin, or other light-sensitive organic material which, upon exposure to light, will tightly and preferably chemically bond itself to the silicate or other permanently hydrophilic surface.
  • Our presensitized planographic plate of the construction just summarized, and hereinabove illustrated, provides a new article for commerce and industry. It is a plate which will yield high quality reproductions and long plate life, as well as fulfilling other objectives above set forth.
  • our plates can be used to advantage in the photographic preparation of permanent metal name plates, instruction panels, templates, Wiring diagrams, dial and scale faces, advertising specialties, signs, maps and the like.
  • the plate is exposed to ultra-violet light through a photographic negative, followed by desensitizing and inking or de veloping as described above.
  • the visible image may be produced by the use of an ordinary lithographic printing ink'or an image developer, such, for example, as that disclosed above and also described in detail in the co pending application of Myron Hall, Serial No. 239,841.
  • the developed plate with its visible image After the developed plate with its visible image has been washed and dried, it may be used as such, or the surface may be further protected by spraying with a clear lacquer.
  • Such plates may be fastened to machinery and the like, and made a permanent part thereof, to aid in the operation and maintenance of the machinery, and to identify its parts, its manufacturer, etc. This use of our invention is becoming of increased importance.
  • said metal sheet having on at least one surface thereof a permanently hydrophilic scum-preventing and tone-reducing film formed by reacting an aqueous solution of a soluble silicate with the surface of said metal sheet, said film overlying and being firmly bonded to said surface of said sheet and being substantially free of water-soluble material, said film being further characterized in that it will cause an in situ insolubilized diazo image strongly to adhere to the surface of the sheet, and over and in contact with said film a thin coating of a light-sensitive diazo resin, said light-sensitive material being characterized in that, upon exposure of the plate to ultra-violet light through a stencil or negative, it will react in the exposed portions, expelling nitrogen from the molecule and forming a water-insoluble hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic film, providing a printing image, the light-sensitive resin material being readily washed away from the unexposed areas, leaving the permanently hydrophilic film
  • a presensitized planographic plate comprising an aluminum sheet having at least one smooth surface thereof rendered permanently hydrophilic by treatment with an aqueous solution of an alkali metal silicate, said permanently hydrophilic surface being provided by a thin layer of the reaction product of said aluminum and said silicate and being substantially free of water-soluble materials, said permanently hydrophilic surface being coated with a thin coating of a water-soluble light-sensitive diazo resin, said diazo resin being characterized in that, upon exposure of the plate to ultra-violet light through a stencil or negative, it will react in the exposed portions to form an image of water-insoluble, hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic surface, the diazo resin remaining water-soluble and capable of being readily washed away clean from the unexposed areas, leaving said permanently hydrophilic surface bare in said areas.
  • a plate suitable for use in planographic printing and related uses comprising an aluminum sheet having on at least one surface thereof an extremely thin layer of the reaction product of said aluminum sheet and an aqueous solution of an alkali metal silicate, providing a permanently hydrophilic surface, said surface being substantially free of water-soluble materials, and said surface having thereover a thin coating of a water-soluble light-sensitive diazo resin, which, upon exposure of the plate to ultra-violet light through a stencil or negative, will react in the exposed portions to form an image of water-insoluble, hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic surface.
  • a plate suitable for use in planographic printing and related uses comprising a sheet having as at least one surface thereof a metal from the class consisting of aluminum, zinc and tin, and over and bonded to the surface of said metal an extremely thin layer of the reaction product of said metal and an aqueous solution or 13 an alkali metal silicate, providing a permanently hydrophilic surface thereon, said surface being substantially free of water-soluble materials, and said surface having coated thereover a thin coating of a Water-soluble lightsensitive diazo resin.

Description

Julv 26, 1955 c, L, JEWETT ET AL 2,714,066
PLANOGRAPHIC PRINTING PLATE Original Filed Aug. 16, 1954 LIGHT-5EN5ITIVE DIAZO RESIN SILICATE TREATMENT ALUMINUM SHEET 10 /j-* ALUMINUM SHEET SILICATE TREATMENT COATING of IMAGE DEVELOPER LIGHTREACTED DIAZO RESIN SILICATE TREATMENT ALUMINUM SHEET INVENTORS CLIFFORD LJEWETT JOHN M. CASE w mmf ATTORNE 5 LIGI-IT-REACTED DIAZO RESIN United States Patent i PLANOGRAPHEC PRINTING PLATE Cliliord L. .lewett, Minneapolis, and John M. Case,
Mounds View Township, Ramsey County, Minn, assignors to Minnesota Mining & Manufacturing Company, St. Paul, Minn., a corporation of Delaware Original application August 16, 1954, Serial No. 450,149. Divided and this application July 5, 1955, Serial No. 519,900
5 Claims. or. as-s This invention relates to planographic printing plates. it particularly concerns plates of a type which may be used on well known commercial forms of lithographic presses. This application is a continuationdn-part of our copending application Serial No. 199,5 66, filed December 6, 1950, and is a division of our application Serial No. 1:
450,149, filed August 16, 1954.
Our invention is especially concerned with a plate formed from a thin metal sheet having at least one surface thereof reated to provide a tightly bonded, thin, preferably inorganic, hydrophilic surface formed from a solution of an alkali metal silicate, silicic acid, or other treating agent which will form a permanently hydrophillc scum-preventing and tone-reducing film overlying and in firmly-bonded contact with the surface of the plate, and having a coatin of light-sensitive organic material such as a light-sensitive diazo resin or other light-sensitive organic nitrogen-containing material over the exposed hydrophilic treated surface, i. e. over the exposed surface of the scum-preventing and tonereducing film or treatment. is preferably a water-soluble, rapidly light-insolubilized organic compound, especially a diazo type of light-sensitive material, as more fully described below.
Lithographic plates of one type and another have been known for a great many years; for example, see Stevens, U. S. Patent No. 556,380, granted March 17, 1896, which is one of the early patents connected generally with this subject. Zahn, U. S. Patent No. 2,100,063, granted November 23, 1937; and Toland et al., U. S. Patent No. 2,373,357, granted April 10, 1945, are examples from a large number of other patents which describe various forms of lithographic plates, and which have been granted since the aforesaid Stevens patent.
Prior to the present invention the lithographic plates employed in commerce and industry have consisted mainly of grained zinc plates, commonly produced by people who are in the business of graining plates. These grained plates are customarily supplied to a large number of shops throughout the country that make finished plates for the printer and lithographer. These shops coat the grained zinc plates with a suitable composition, normally colloidal and most usually an albumin, ammonium bichromate solution and then, following drying, promptly expose the sensitized plate, through a suitable stencil or negative, to secure the desired image, then apply a developing ink (by swabbiug) to the entire surface of the plate, then wash the entire plate with water to wash oil the unexposed colloidal and water-soluble materials and developing ink adhering thereto (which develops the image, whereupon the plate maker can see whether he has a good plate and the light-reacted albumin-bichromate layer is thus protected from water, so that it remains inkreceptive), then they apply a guru arabic solution to the printing surface of the plate, and then supply the finished plate to the printer or lithographer, for use on his presses.
One of the major disadvantages of the type of plate just described is that it must be coated with a light-sensitreatment, .I
The light-sensitive material i atented July 26, 1955 tive coating just shortly prior to exposure (through a negative or stencil) because, upon storage, the ammonium bichromate and albumin will react slowly, even in the dark at room temperatures, insolubilizing the colloid coating and rendering the plate unfit for use. Nonetheless, grained zinc plates, se sitizcd and exposed as just described, had (prior to this invention) long been the standar type of lithographic plate employed in commerce and industry when good reproduction was desired. Much of the printed matter or designs, produced by lithographic processes, had been (prior to this invention) and presently much of it still is, made with the type of zinc plate above described. While a rather large number of direct image paper plates has recently been used, they are employed only where a relatively few reproductions are needed and where high quality reproductions are not important.
One of the purposes of this invention is to provide planographic plates which are presensitized, i. e. are ready for an exposure through a negative or stencil without further treatment. These plates can be stored for considerable periods of time, i. e. weeks or months, and still be used, merely upon exposure to light through a negative or stencil, followed by washing off the unexposed light-sensitive material.
We are aware that others have previously attempted to make presensitized lithographic plates, and have succeeded in making plates which have found some commercial acceptance. However, these prior presensitized lithographic plates, which have made a limited appearance on the market, have been made with paper, plastic, or like stretchable backings to which a colloidal material had been applied. The paper hacked and plastic backed presensitized lithographic plates are the only types of presensitized plates which made their appearance on the market prior to our invention. Both of these presensitized plates have had a very limited usefulness and acceptance, for a number of reasons, especially their short press life and their lack of dimensional stability, that is, their tendency to stretch and distort the desired images.
Where attempts have been made to employ a metal plate and attach an organic colloid material thereto, these elforts have failed to meet with commercial success for any or all of a number of reasons, including (a) lack of dimensional stability of the organic colloid coating, and (b) susceptibility of the coating to stretching and abrasion, which meant that the image desired was easily damaged and only a limited number of impressions could be run off from a single plate, as Well as other reasons. In this general connection, attention is directed generally to the following: Zahn, U. S. Patent No. 2,100,063, granted November 23, 1937; the publication Light Sensitive Reproduction Materials, prepared by Field Information Agency, Technical United States Group Control Council for Germany, bearing a date of November 24, 1945, e. g. page 5 thereof; a German application of a Kalle & Co., A. G., which bore a date of August 31, 1942, and was apparently subsequently published, and makes reference in the body thereof to German Patent No. 581,697, which is equivalent to Schmidt and Zahn U. S. Patent No. 2,063,631, granted December 8, 1936; and Stevens, U. S. Patent No. 556,380, granted March 17, 1896.
However, insofar as we are aware, no one has ever previously produced any commercially acceptable presensitized metal-backed planographic plate; and no one has ever previously produced any presensitized planographic plate of any construction which will compete with grained zinc plates of the prior art, as above described, Where long press life and quality reproductions are important. Our plate, on the other hand, is a presensitized metal plate, and yet will produce work with a sharpness of dots and lines, and other details, considerably beyond what can be produced with the conventional commercial albumin-coated grained zinc plates of the prior art.
Light-sensitive diazo resins and other like light-sensitive organic materials are notably sensitive to metals. For example, Kalle British Patent No. 699,413, published November 4, 1953, at page 1, points out that if water soluble diazo compounds, or like light-sensitive substances, are coated on metal supports, a plate which can be stored in the unexposed state, i. e. a presensitized plate, cannot be made, owing to the decomposition of the light-sensitive substance caused by the metal. Others concerned with metal plates have coated them with a substantial layer of cellulose acetate, or other material, and then hydrolyzed the surface of the acetate and coated the diazo resin or equivalent thereover. No one, insofar as we are aware, ever visualized that aluminum or other metal plates could be used to receive a coating of a lightsensitive diazo resin, or the like, by the simple expedient of first briefly treating the metal surface with an aqueousalkali' metal silicate, silicic acid, or equivalent, which will give the metal a permanently hydrophilic surface, e. g. a scum-preventing surface film, and will not measurably increase the thickness of the metal plate. Furthermore, a plate madeas just indicated has outstanding quality and performance characteristics, not possessedbyany prior plate, and this was also entirely unappreciated heretofore, to the best of our knowledge and belief.
While Kalle French Patent No. 904,255, of February 19, 1945, suggests certain treatments for aluminum in the making of lithographic plates, such suggestions never proved practical or commercially useful, for various reasons: see Affidavit executed August 6, 1954, of record in our parent application Serial No. 199,566.
, It is an object of our invention to provide a presenti- .tized lithographic plate which avoids the various defects of prior art presentizide plates, as above illustrated. It
-'is also an object of our invention to provide a presensiitized plate which can replace the prior art method, cumbersorhe under many circumstances, of securing grained 'Zinc plates and then subsequently coating the same with V a light-sensitive colloidal coating. A further object is to provide a presensitized plate which preferably is free of surface roughness or grain, and from which sharp lined impressions can be produced and from which printing of high resolution, that is, extreme clarity of detail of the printed matter, can be obtained. A further object is to provide a presensitized lithographic plate of high dimensional stability which will be suitable for applications where accurate registration is required such, for example, as in multicolor work, where the same sheet is successively printed from different lithographic plates. Another object is to provide, for the first time, a commercially acceptable presensitized lithographic plate. Other objects and advantages will appear from the description taken as a whole.
To illustrate a preferred form of our invention, reference is made to the appended drawing in which:
Fig. 1 shows an aluminum sheet 10, in broken-away view, showing a scum-preventing film or thin silicate treatment 11 tightly and. chemically bonded to one surface of the aluminum sheet 10;
Fig. '2-is like Fig. 1 but additionally has a thin coating 12 of a water-soluble light sensitive diazo resin coated over or absorbed by the said silicate coating;
Fig. 3 is like Fig. 2 except the plate of Fig. 2 has .been exposed to ultraviolet light through a photographic negative and then washed with water or standard gum arabic fountain solution, leaving the hydrophobic and organophilic diazo image 12a; and
Fig. 4 is like Fig. 3 except that the exposed plate of Fig. 3 has its image surface wiped with an image developer, leaving an extremely thin coating of image developer 13.
All'dimensions in the drawing are greatly'exaggerated for clarity of illustration. The aluminum sheet 10, though being a foil having a thickness of only about .005 to .012 inch, is shown in broken-away view, in respect to its thickness as well as its length, to illustrate the fact that the silicate treatment 11 is really very thin compared with the aluminum foil 10. The silicate treatment is probably little more than -a monomolecular layer.
The coating of diazo light-sensitive resin 12 is shown in the drawing as also being a very thin coating, but it is not the intention in the drawing to illustrate whether the light-sensitive diazo resin coating is equal to, greater than, or less than the thickness of the silicate treatment. Actually, the diazo coating is apparently absorbed to some extent in the surface of the thin silicate treatment.
A salient embodiment of our invention consists in providing a thin treatment or film, probably often substantially of monomolecular thickness, of a hydrophilic inorganic material (e. g. formed from treatment with an alkali metal silicate solution) on a surface of a given metal plate, for example, an aluminum plate. The aluminum plate may be from .005 to .012 inch in thickness, although this obviously depends upon the type of press on which the plate is to be employed and other factors, and these dimensions may be greatly varied as circumstances permit. Over the exposed silicate treated or like hydrophilic and scum-preventing surface, we apply a thin coating of preferably a water-soluble lightsensitive diazo resin. This product, following drying, may be packaged in any convenient ligh -proof container, and shipped to the customer in a distant city or State. When the customer desires to use the plate, which may be many weeks, or even months, after the plate was manufactured and shipped to him, he will remove the plate from its package under subdued light, place it in contact with a negative or stencil, then expose it to a source of ultraviolet light for a short period of time, e. g. from 1 to 5 minutes, depending upon the intensity of the ultraviolet light, and then wash the surface of the plate with Water, whereupon the unexposed diazo material (that shielded by the stencil or negative), which remains water-soluble, is cleanly washed off, leaving the hydrophilic silicate treated surface exposed in those areas. The portion of the diazo coating which was exposed to the ultraviolet light was thereby insolubilized and rendered hydrophobic and organophilic (that is, water-repellent and ink-receptive), expelling nitrogen from the molecule in the process. During such exposure and insolubilization of the diazo light-sensitive material it becomes very strongly bonded to the surface of the scumpreventing film, which is usually an inorganic material such as a silicate. This plate is then ready to be placed on a lithographic press, without further treatment, and used in printing or reproducing the desired writings or images. However, before placing it on the lithographic press, it is advantageous to treat the printing surface of the plate with what, for want of a better term, might be referred to as an image developer. The image developer may take various forms. One example is a pigmented resin emulsion which will adhere to the inkreceptive areas but will not adhere to the hydrophilic areas of the plate. A printers developing ink can also be 'used'as an image developer. An example of an image developer, which we have found to be particularly useful, is described in a copending application of Myron W.
4- l-iall, entitled Planographic Printing-Plate image De veloper, Serial No. 239,841, filed August 1, 1951.
The image developer is of this practical importance: prior to the application of the image developer, the image is not visible. If a plate in that form is presented to the lithographer or printer, he cannot be sure whether he is putting the plate on the press correctly or whether he has it backwards. Additionally, in the absence of the visible image, the ressman would not know whether he had an exposed plate, unless this were denoted by some coding system or such like. In addition to making the image visible, so the pressman can see it, a good image developer also (a) helps the plate to ink up more readily when placed on the press, and (b) strengthens the image so that more copies can be run from a single plate, while still getting clear reproductions.
In order better to illustrate our novel planographic plate, we will now describe in detail a specific method of making one specific form of our plate.
Example Aluminum foil or sheet material of about .005 inch in thickness is first made ready for treatment with a silicate. Since greasy lubricants are commonly used in aluminum mills during the rolling operation, it is first desirable to treat the aluminum foil or sheet so as to remove any greasy film, so that the surface exposed will be an aluminum surface. One method which we have found to be advantageous in cleaning the aluminum surface is to immerse the same in a solution of trisodium phosphate for a sufiicient time only to clean the aluminum, e. g. for a period of 5 minutes. The temperature of the solution may be controlled at approximately 160 F. Higher temperatures may be used with a corresponding reduction in the time of treatment, and lower temperatures may be used with a corresponding increase in the time of treatment; and other solution concentrations may be used, if desired. The cleaning or degreasing of the aluminum foil or sheet material in the manner outlined above will often develop a black scum or residue on the surface of the aluminum (which probably consists primarily of oxides and hydroxides of alloyed metals) which must be either thoroughly wiped or washed away mechanically or dissolved in an acid solution such, for example, as concentrated nitric acid. If there is no scum, then there is nothing to clean away;
but if there is a black scum, we have found that nitric acid of about concentration, employed at room temperatures, will clean the scum off of the surfaces of the aluminum foil or sheet material and leave it in good condition for the subsequent steps of our plate making operation. (Aluminum is passive to 70% nitric acid.) After treatment with the acid solution, the aluminum foil or sheet material is thoroughly rinsed with water to remove any residual acid.
The cleaned surface of the aluminum is then treated with a solution of an alkali metal silicate, calcium silicate, silicic acid, colloidal hydrated silica or polymerized silicic acid (such as Du Ponts Ludox), or equivalent,
for the purpose of rendering the sheet permanently hydrophilic. We have found it advantageous to use a relatively dilute solution of a sodium silicate, potassium silicate or calcium silicate, but preferably sodium or potassium silicate, and of these sodium silicate is less expensive and fully as satisfactory. A suitable type of sodium silicate can be chosen from those commercially available having a silica to soda ratio within the range from 3.2 to 1 to 1.8 to 1; and a particularly suitable one is Star Brand, of Philadelphia Quartz Company, having a silica to soda ratio of 2.50 to l. The concentration of the sodium silicate in the solution may advantageously be about 2 to 5%, e. g. 2%, although weaker or stronger solutions can be employed.
Calcium silicate and silicic acid are relatively insoluble in water (less than one percent) and are commonly described as being insoluble in water. Insolubility, however, it is not total, a saturated solution of each containing probably in excess of .01 of one percent of the respective chemicals in solution. Regardless of the concentration achieved, saturated solutions of calcium silicate and silicic acid are sufficient usefully to treat an aluminum sheet prior to applying a light-sensitive diazo resin or equivalent, to make our plates. On the other hand, magnesium silicate, copper silicate and aluminum silicate illustrate materials having such a high degree of insolubility as to be useless in the practice of our invention.
silicic acid, in solution, diluted with water to a concentration range of 1 percent to .1 percent Ludox, has been found to be a fully satisfactory equivalent of sodium silicate for our purposes, even though du Pont trade literature states that This product should not be considered as an alkali silicate, such as the sodium silicate of commerce, because in contrast to sodium silicate, it contains no significant quantity of alkali and in general Ludox as few properties in common with alkali silicates. However, the colloidal water dispersion of silica sold by Monsanto Chemical Co. under the trade name of Syton-W-ZO" and commonly known as a silica sol, disclosed by Jahoda in his U. S. Patent No. 2,433,515 for use in making photographic paper, not for making lithographic plates, has been found to be useless in the practice of our invention. From a comparison of those silicacontaiuing materials which are satisfactory in the practice of our invention and those which are unsatisfactory, it seems that at least one requirement for a satisfactory material is a concentration of the SiOz radical in solution at least equal to a certain minimum. Ludox furnishes enough SlOz radical to be effective for our purposes, whereas Syton-W-Zl) does not.
A preferred method of treating the aluminum foil or sheet material with the soluble silicate involves dipping a cleaned aluminum surface in the silicate solution maintained at temperatures of the order of 21'2 F. This can conveniently be done by running a web of aluminum foil continuously through an immersion bath. At these temperatures the soluble silicate will react with the surface of the aluminum to form an insoluble hydrophilic silicious surface. After this treatment, the excess soluble silicate, and any other soluble materials present, are immediately thoroughly washed away, and the treated foil or sheet is dried. The resulting silicate treatment on the surface of the aluminum foil or sheet is extremely thin but is very abrasion resistant. It is also substantially free of water-soluble material. It appears to be chemically bonded to the aluminum and apparently can only be abraded away by penetrating the surface of the aluminum sheet. The silicate treatment is very effective in rendering the surface of the aluminum permanently hydrophilic: the aluminum sheet in this form will not oxidize to a hydrophobic surface on exposure to air, as it will do in the absence of such a silicate treated surface or equivalent. Thus the silicate treatment or equivalent provides a permanently hydrophilic scum-preventing and tone-reducing film or treatment.
The silicate treated aluminum foil or sheet ust described is of quite a smooth character and usually has a metallic sheen or relatively smooth appearance,as contrasted Withthe dull appearance of various prior art grained plates. While some very slight amount of etching may unavoidably occur on the aluminum surface of the sheet during the cleaning operation, this is so small that it does not impart to the finished silicate treated sheet a rou h surface or a matte appearance. This is important in securing the highest performance characteristics, sought after in our finished presensitized lithographic plates, particularly where fine line work or fine half-tones are being reproduced.
The smooth silicate treated surface of our plate, for example produced as just described, without graining or deep etching, has the property of tenaciously holding image formed by exposure to light of light-sensitive organic nitrogen-containing material, e. g. light-sensitive diazo compounds, on the surface thereof, as described and illustrated hereinbelow.
Our silicate treated sheet is next treated with a solution of a light-sensitive diazo resin or equivalent. Suitable light-sensitive diazo resins are available commercially, from several manufacturers, e. g. Ringwood Chemi- I? cals, Inc. (formerly Edwal Laboratories, Inc.), Ringwood, Illinois.
One suitable method of making a suitable light-sensitive diazo resin is as follows: thirty-four parts of the sulfate salt of para-diazodiphenyl amine (available, for example, from the Fairmount Chemical Company, Newark, N. 1., at the present time as Para-diazodiphenyl amine salt) is mixed with 3.25 parts of para-formaldehyde and 4.5 parts of anhydrous zinc chloride. The above mixture is gradually introduced into 135 parts of cool sulfuric acid of 66 Baume, care being taken that the temperature does not exceed 6 C. When poured on twice its Weight of ice, the brown solution (obtained from the above reaction) decomposes to a black tarry material, essentially an impure diazo resin, which is removed and dissolvedin water. Addition of an excess of a saturated zinc chloride solution to this aqueous diazo resin solution precipitates a yellow solid which is removed; this yellow solid is then further purified by dissolving in water and precipitating by the addition of alcohol. This new precipitate is the purified light-sensitive diazo resin and, in the form of a dilute solution in water, for example, about a 1% solution, is used in applying a light-sensitive coating to our aluminum sheet or the like, above described, which has been given a silicate treatment or otherwise provided with a scum-preventing and tone-reducing film overlying and in contact with the surface of the metal, as herein illustrated.
The reactions and precipitations employed in the mak- I ing of the light-sensitive diazo resin are carried out under subdued light, for example, under a yellow light. This is also true of the operation of coating the silicate or like inorganic or other hydrophilic surface of the aluminum sheet with a dilute solution of the light-sensitive diazo resin or equivalent.
The dilute solution of light-sensitive diazo resin, just described, may be applied to the exposed surface of the permanently hydrophilic silicate treated sheet, or equivalent, above described, by a roll coating method, for example. Running the sheet in pressure contact with a rotating rubber roller, which is wet with the dilute diazo solution, applies a thin continuous coating of the diazo solution over the surface. It is preferred that the diazo coating be an extremely thin one, for example, leaving a residue of about 0.903 gram, or even less, e. g. 0.001 gram, of the diazo resin per square foot of plate area. For special purposes, e. g. to obtain a visible image after exposure, a heavier residue of diazo resin, but still a thin film, can be coated on the surface. When the diazo coating is dried, the treated and sensitized sheet is then die cut to standard plate sizes and, continuing under subdued light, the plates are packaged in light-tight packages, in which they are sent to the users and customers. The customer, in using the same, removes them from the package under subdued light and places a negative or sten cil thereover and exposes the same to ultraviolet light, to produce the desired image, as already described hereinabove.
Sensitized plates made according to our above described method are more sensitive to light than conventional albumin, ammonium bichromate plates; and our plates can be sufficiently exposed in about two-thirds the time.
Scratches, fingerprints and other foreign matter will impair the light-sensitive surface, and the plate, there fore, should be handled carefully, by the edges. After the plate has been exposed, if it is going to be stored for a period of time, a desirable precaution is to coat the image with a gum arabic solution, which gives mechanical protection to the image and then can easily be washed off with water when it is desired again to use the plate.
Conventional grained zinc plates (whether they have the usual albumin, ammonium bichromate light-sensitive coatings, or are otherwise sensitized according to the prior practice) are so subject to attack by the oxygen of the air that it is necessary for the lithographer to coat the image surface of such a plate with a gum arabic solution, to protect it, even while he goes to lunch, whereas our plates are resistant to oxidation, due to our scum-preventing film, e. g. of silicate or the like, and such protection by a gum arabic solution is not needed even though a plate would remain inactive on a lithographic press for a considerable time.
Exposure of our presensitized lithographic plates may be carried out in a printing frame under a source of ultraviolet light. Carbon arcs may be used but are not required. Photo-flood bulbs and black light fluorescent tubes will also give satisfactory results. While the exposure time is not critical, under-exposure may result in broken images or no image at all. Extreme over-exposure may cause dirty highlights and blocked-up shadows in half-tone areas. While the user of our presensitized plates has considerable latitude in the amount of exposure, the foregoing will serve to guide him from undue extremes of over-exposure or under-exposure.
Suggested exposure times for the following light sources are:
Minutes Bank of 15 watt BL light tubes at 6" 2-4 35 amp. carbon are at 24" 1-2 After exposure the plate (where a diazo resin is used as the sensitizer) is desensitized by wiping with a solution of gum arabic, which dissolves and removes the unreacted diazo sensitizer. At this point the image is invisible. While the plate is still Wet with the gum arabic solution, an image developer or strengthener consisting of a resin emulsion (or, alternatively, a printers developing ink of conventional type) is poured on the plate and rubbed in quickly with a soft pad or cotton wad. The excess image developer should be wiped away before it dries completely. The resinous portion of the image developer should preferably contain a pigment or dye which will make the image clearly visible as the particles of resin adhere to the hydrophobic and organophilic image. The plate is then ready for the press, or it may be coated with gum arabic if it is to be stored before use.
Our lithographic plates require the use of less water on a lithographic press than is required where the conventional prior art grained zinc plates are used. This is a factor in giving more brilliant colors in lithographic reproductions made from our plates, since the reduction of color brilliancy caused by emulsification of water and ink in the case of grained Zinc plates is greatly minimized where our plates are used.
Where our plates are used, less ink is also required to give the same tone values in the finished work, and especially so in multicolored printing, thereby significantly reducing the drying time required between the printing of successive colors.
After our plate (made, for example, with a diazo lightscnsitive resin) has been installed on a lithographic press. the gum arabic coating (if previously applied) is removed by sponging with water or with a weak fountain solution. The fountain rollers should be dropped first and, after a few revolutions, the ink rollers may be dropped. The image should ink up quickly. No special inks or fountain solutions are required, and most materials commonly used for this purpose will be found to be satisfactory for use with our plates. in order to obtain the maximum number of satisfactory impressions, the press should be carefully adjusted to the least pressure consistent with quality printing.
Our lithographic plates are of such nature, due to the particular materials and the thickness thereof, that they do not wrinkle or stretch during processing or on the press (as do paper or plastic planographic plates, for example) and, therefore, are particularly suitable for 1 9 lithographic printing, even where very accurate registration is required.
One advantageous type of aluminum foil to be used for our process, in the manner above described, is one produced by the Aluminum Company of America and designated as 381-119, the same containing about 1.25% manganese alloyed with the aluminum. There are some other types of aluminum foil or sheeting which would be too soft and pliable to be well suited for our use if employed in the form of relatively thin gauge sheets, although any commercial type of aluminum which is stifl enough to resist wrinkling and creasing, in the form of thin sheets or foil, may be employed.
While aluminum appears, at the present time, to be our preferred metal backing sheet material, on the basis of cost, handling properties and such like, we have also successfully employed sheets of lithographic zinc, foils of copper, lead and tin, electro-deposited chromium and copper surfaces, sheets of commercially pure magnesium,'
polished sheets of tantalum and a sheet of titanium known as Ti-75A, treating the same with a silicate or the like, as above illustrated, to render the metal surface permanently hydrophilic and to provide a scum-preventing film or surface to which an insoluble diazo image will strongly adhere. Still other metals may be employed in making our presensitized planographic plates, so long as a strongly adherent or chemically bonded silicate or other permanently hydrophlic coating or treatment can be applied thereto, with suitable control of conditions, but we believe that the amphoteric metals, as a class, provide the best surfaces on which to apply silicate or equivalent permanently hydrophilic surface treatments.
While water-soluble or water-dispersible silicates of commerce are the most desirable and convenient materials for producing permanently hydrophilic surface treatments on metal sheets for our purposes, yet with variations in metal sheets and/or with variations in the light-sensitive organic material to be employed and/or with variations in the treating procedure, treating materials other than the water-soluble silicates may be useful or even preferred.
For example, other silicon-containing compounds such as Ludox colloidal silica or saturated solutions of calcium silicate have been employed by us, experimentally, as treating materials, because of special characteristics of these solutions, such as stability, lower alkalinity and others. Certain non-silicon compounds, e. g. certain polyhydroxy and polymolecular organic acids have also been experimented with, which render metal surfaces permanently hydrophilic and of a scum-preventing nature, and provide a strong bond between the metal surfaces above described and light-reacted diazo resin or the like. Further information on this matter will be made the subject of a separate application.
Where solutions of calcium silicate or silicic acid are used, for example, in place of sodium silicate, treating temperatures of the order of ISO-212 F. can be used, and the conditions of treatment may otherwise be similar to those described above for sodium silicate.
Diazo materials, especially diazo resins, have been described herein as the preferred light-sensitive materials for our purposes. However, variations in this regard are contemplated.
it has been found, for instance, that the azide of our preferred diazo resin can, with suitable modifications, be used as the light-sensitive coating. This polymeric azido resin is not water soluble and only slightly soluble in common organic solvents, but a concentration suitable for coating can be obtained using as solvents toluene or methyl cellosolve, or mixtures of these, or other organic solvents. After exposure through a negative or stencil the un-light-decomposed azide can conveniently be re moved by a water-toluene mixture, leaving a hydrophobic printing image of water-insoluble, light-reacted azide.
It is possible to prepare and use, as light-sensitive materials, other polymeric azido resins, particularly aromatic azido resins, which seem to be particularly useful, and also aliphatic azido resins. Similarly, diazo oxides (see The Aromatic Diazo Compounds, by K. H. Saunders, published 1949 by Edward Arnold & Co., London, page 29 thereof), both monoand poly-molecular have been found to be useful light-sensitive compounds in making our plate. The mono-molecular imino-quinone-diazide (see page 24 of said book by Saunders) made from the monomer of our preferred diazo resin has also been found to be useful. Certain parwtertiary-amino-diazo resins can be prepared and are useful. The preparation of polyvinyl cinnamate light-sensitive materials has been recently disclosed and at least certain of these materials have been found to be useful in the practice of this invention.
While we have just pointed out variations and modifications of our invention, the form of our planographic plate which has been marketed by the assignee of this application since a few months prior to the filing of our aforesaid parent application Serial No. 199,566 is made with an aluminum sheet, having a permanently hydrophilic silicate or silicon-containing scum-preventing film or surface treatment bonded thereto, and a thin lightsensitive diazo resin coating over the hydrophilic silicious surface.
Hereinabove we have made reference to various illustrative descriptions of lithographic plates in the prior art. We are also aware that it has been known or suggested heretofore that aluminum be treated or coated with sodium silicate, for one purpose or another. For example, see: Soluble Silicates in Industry by James G. Vail, published in the year 1928, by the Chemical Catalogue Co., Inc, New York, N. Y., at page 371 thereof; The Aluminum Industry, by Edwards et al., published in 1930, by McGraw-Hill Book Company, Inc., New York, N. Y., page 771 thereof, for example; Simons, U. S. Patent No. 2,132,443, granted October 11, 1938; Champion et al., U. S. Patent No. 2,225,736, granted December 24, 1940; Ayers, U. S. Patent No. 2,233,573, granted March 4, 1941; Toland et al., U. S. Patent No. 2,311,889, granted February 23, 1943; and Mason, U. S. Patent No. 2,507,314, granted May 9, 1950. However, none of the patents or other disclosures just identified, nor any others to our knowledge, disclose or teach our improved presensitized lithographic plate or any plate of similar utility or like advantages. Vail describes the action of sodium silicate on aluminum as a detergent in cleaning aluminum. Edwards et al. describe a use of sodium silicate as a corrosion inhibitor. Simons describes a paper lithographic plate in which silica, freshly precipitated from sodium silicate, is used to form, a grained printing surface. Champion et al. describe a direct image printing plate in which the margins only are coated with sodium silicate to provide a smudgeproof border. Ayers employs sodium silicate, said to serve as a protective coating, over the printing face of an exposed albuminbichrornate coated zinc plate. Toland et a1. provide a rough, grained surface on paper-backed lithographic plates by applying to the paper a mixture of clay, calcium carbonate or silica, bonded together with sodium silicate, as a base for an albumin typelightsensitive coating. Mason provides a method for the multiple etching of aluminum to produce matte surfaces, and may employ sodium fluoride and sodium silicate in his operation. However, none of these patents or publications disclose a presensitized plate of any type.
It will be understood, however, that our invention concerns, not merely a presensitized plate, but a presensitized plate in which a metal surface, preferably a smooth metal surface, e. g. aluminum, is provided with a permanently hydrophilic thin film or surface treatment, preferably formed from an aqueous sodium silicate solution or equivalent and chemically bonded to the metal surface; and having applied to the silicate, or other permanently hydrophilic surface or scum-preventing and tone-reducing film, a thin coating of a light-sensitive diazo resin, or other light-sensitive organic material which, upon exposure to light, will tightly and preferably chemically bond itself to the silicate or other permanently hydrophilic surface. Our presensitized planographic plate, of the construction just summarized, and hereinabove illustrated, provides a new article for commerce and industry. It is a plate which will yield high quality reproductions and long plate life, as well as fulfilling other objectives above set forth.
While we have described our novel article primarily in connection with its use as a lithographic plate, it has other uses. For example, our plates can be used to advantage in the photographic preparation of permanent metal name plates, instruction panels, templates, Wiring diagrams, dial and scale faces, advertising specialties, signs, maps and the like. For these purposes, the plate is exposed to ultra-violet light through a photographic negative, followed by desensitizing and inking or de veloping as described above. The visible image may be produced by the use of an ordinary lithographic printing ink'or an image developer, such, for example, as that disclosed above and also described in detail in the co pending application of Myron Hall, Serial No. 239,841. After the developed plate with its visible image has been washed and dried, it may be used as such, or the surface may be further protected by spraying with a clear lacquer. Such plates may be fastened to machinery and the like, and made a permanent part thereof, to aid in the operation and maintenance of the machinery, and to identify its parts, its manufacturer, etc. This use of our invention is becoming of increased importance.
Hereinabove We have referred to scumming, scumpreventing and such like. In Photography and Plate Making for Photo-Lithography, by I. H. Sayre, published in 1949 by Lithographic Textbook Publishing Company, Chicago, at page 435, in the Glossary, the following definition is given: Scumming-the press plate takes ink in the non-printing areas and transfers it to the paper. Also see Plate Iroubies in Offset Lithography, Shop Manual No. 31, issued in 1947 by Lithographic Technical Foundation, Inc., New York, at page 10 thereof. Also note use of the terms scum-preventing and tone-reducing in Australian Patent No. 155,324.
Insofar as we are aware, prior to our invention there had never been a satisfactory presensitized metal lithograph plate; nor had there been any presensitized metal lithographic plate on the market.
Hereinabove we have attempted to describe and illustrate our invention in various details, and not to limit it. All modifications and variations which are within the scope of the appended claims are contemplated.
What we claim is: j
l. A presensitized, dimensionally stable plate suitable for lithographic printing and related uses, and capable of being shipped in light-proof packages, stored and then used weeks or months after manufacture, com prising an aluminum sheet having on at least one surface thereof a permanently hydrophilic scum-preventing and tone-reducing film formed by reacting an aqueous solution of a soluble silicate with the surface of said aluminum sheet, said film overlying and being firmly bonded to said surface of said sheet and being substantially free of water-soluble material, said film being fur ther characterized in that it willcause an in situ insolubilized diazo image strongly to adhere to the surface of the sheet, and overand in contact with said film a thin coating of a light-sensitive diazo resin, said lightsensitive material being characterized in that, upon exposure of the plate to ultra-violet light through a stencil or negative, it will react in the exposed portions, expelling nitrogen from the molecule and forming a water-insoluble hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic thin metal sheet from the class consisting of aluminum,
zinc, tin, magnesium, chromium and copper, said metal sheet having on at least one surface thereof a permanently hydrophilic scum-preventing and tone-reducing film formed by reacting an aqueous solution of a soluble silicate with the surface of said metal sheet, said film overlying and being firmly bonded to said surface of said sheet and being substantially free of water-soluble material, said film being further characterized in that it will cause an in situ insolubilized diazo image strongly to adhere to the surface of the sheet, and over and in contact with said film a thin coating of a light-sensitive diazo resin, said light-sensitive material being characterized in that, upon exposure of the plate to ultra-violet light through a stencil or negative, it will react in the exposed portions, expelling nitrogen from the molecule and forming a water-insoluble hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic film, providing a printing image, the light-sensitive resin material being readily washed away from the unexposed areas, leaving the permanently hydrophilic film bare in said areas, said hydrophilic film eing further characterized in that it will prevent the metal from causing decomposition of the diazo lightsensitive material, thus providing long shelf life for the presensitized plate.
3. A presensitized planographic plate comprising an aluminum sheet having at least one smooth surface thereof rendered permanently hydrophilic by treatment with an aqueous solution of an alkali metal silicate, said permanently hydrophilic surface being provided by a thin layer of the reaction product of said aluminum and said silicate and being substantially free of water-soluble materials, said permanently hydrophilic surface being coated with a thin coating of a water-soluble light-sensitive diazo resin, said diazo resin being characterized in that, upon exposure of the plate to ultra-violet light through a stencil or negative, it will react in the exposed portions to form an image of water-insoluble, hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic surface, the diazo resin remaining water-soluble and capable of being readily washed away clean from the unexposed areas, leaving said permanently hydrophilic surface bare in said areas.
4. A plate suitable for use in planographic printing and related uses comprising an aluminum sheet having on at least one surface thereof an extremely thin layer of the reaction product of said aluminum sheet and an aqueous solution of an alkali metal silicate, providing a permanently hydrophilic surface, said surface being substantially free of water-soluble materials, and said surface having thereover a thin coating of a water-soluble light-sensitive diazo resin, which, upon exposure of the plate to ultra-violet light through a stencil or negative, will react in the exposed portions to form an image of water-insoluble, hydrophobic and organophilic material which is tightly bonded to said permanently hydrophilic surface.
5. A plate suitable for use in planographic printing and related uses comprising a sheet having as at least one surface thereof a metal from the class consisting of aluminum, zinc and tin, and over and bonded to the surface of said metal an extremely thin layer of the reaction product of said metal and an aqueous solution or 13 an alkali metal silicate, providing a permanently hydrophilic surface thereon, said surface being substantially free of water-soluble materials, and said surface having coated thereover a thin coating of a Water-soluble lightsensitive diazo resin.
References Cited in the file of this patent UNITED STATES PATENTS 208,114 Obernetter Sept. 17, 1878 711,101 Foerster Oct. 14, 1902 1,325,890 Freuder Dec. 23, 1919 1,574,378 Dobinson Feb. 23, 1926 2,433,515 Jahoda Dec. 30, 1947 2,507,314 Mason May 9, 1950 FOREIGN PATENTS 6,857 Great Britain of 1914 14,344 Great Britain July 11, 1921 322,007 Great Britain Nov. 28, 1929 402,737 Great Britain Mar. 4, 1932 407,830 Great Britain Mar. 29, 1934 14 Great Britain Aug. 7, 1935 Great Britain Aug. 12, 1935 France May 5, 1899 France Dec. 23, 1940 France July 12, 1943 France Feb. 19, 1945 Germany Oct. 23, 1924 Germany Sept. 15, 1928 Germany Aug. 31, 1932 OTHER REFERENCES Hi-Speed Processing Plate, publication in The National Lithographer, May 1949; 2 pages; page 40 and page 60; page 40 particularly relied upon.
5 Ilford Manual of Process Work, L. P. Clerc, fourth edition, 1946; Ilford Limited, Ilford, London, pages La Technique des Reproductions Photomechaniques, L. P. Clerc, vol. 1, 1947, Etablissements Bouzard-Cal- 20 mels, Paris, pages 356, 357 and 509-519

Claims (1)

1. A PRESENSITIZED, DIMENSIONALLY STABLE PLATE SUITABLE FOR LITHOGRAPHIC PRINTING AND RELATED USE, AND CAPABLE OF BEING SHIPPED IN LIGHT-PROOF PACKAGES, STORED AND THEN USED WEEKS OR MONTHS AFTER MANUFACTURE, COMPRISING AN ALUMINUM SHEET HAVING ON AT LEAST ONE SURFACE THEREOF A PERMANENTLY HYROPHILIC SCUM-PREVENTING AND TONE-REDUCING FILM FORMED BY REACTING AN AQUEOUS SOLUTION OF A SOLUBLE SILICATE WITH THE SURFACE OF SAID ALUMINUM SHEET, SAID FILM OVERLYING AND BEING FIRMLY BONDED TO SAID SURFACE OF SAID SHEET AND BEING SUBSTANTIALLY FREE OF WATER-SOLUBLE MATERIAL, SAID FILM BEING FURTHER CHARACTERIZED IN THAT IT WILL CAUSE AN IN SITU INSOLUBILIZED DIAZO IMAGE STRONGLY TO ADHERE TO THE SURFACE OF THE SHEET, AND OVER AND IN CONTACT WITH SAID FILM A THIN COATING OF A LIGHT-SENSITIVE DIAZO RESIN, SAID LIGHTSENSITIVE MATERIAL BEING CHARACTERIZED IN THAT, UPON EXPOSURE OF THE PLATE TO ULTRA-VIOLET LIGHT THROUGH A STENCIL OR NEGATIVE, IT WILL REACT IN THE EXPOSURE PORTIONS EXPELLING NITROGEN FROM THE MOLECULE AND FORMING A WATER-INSOLUBLE HYDROPHOBIC AND ORGANOPHILIC MATERIAL WHICH IS TIGHTLY BONDED TO SAID PERMANENTLY HYDROPHILIC FILM, PROVIDING A PRINTING IMAGE, THE LIGHT-SENSITIVE RESIN MATERIAL BEING READILY WASHED AWAY FROM THE UNEXPOSED AREAS, LEAVING THE PERMANENTLY HYDRROPHILIC FILM BARE IN SAID AREAS, SAID HYDROPHILIC FILM BEING FURTHER CHARACTERIZED IN THAT IT WILL PREVENT THE METAL FROM CAUSING DECOMPOSITION OF THE DIAZO LIGHT-SENSITIVE MATERIAL, THUS PROVIDING LONG SHELF LIFE FOR THE PRESENSITIZED PLATE.
US519900A 1950-12-06 1955-07-05 Planographic printing plate Expired - Lifetime US2714066A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BE540601D BE540601A (en) 1950-12-06
BE507657D BE507657A (en) 1950-12-06
GB27413/51A GB718525A (en) 1950-12-06 1951-11-22 Improvements in or relating to photographically presensitized metal plates
DEM11920A DE907147C (en) 1950-12-06 1951-12-01 Presensitized planographic printing plate
FR1051461D FR1051461A (en) 1950-12-06 1951-12-03 Presensitized planographic printing plates
CH309940D CH309940A (en) 1950-12-06 1951-12-06 A method of making a presensitized planographic plate and a plate obtained by this method.
US519900A US2714066A (en) 1950-12-06 1955-07-05 Planographic printing plate
US523951A US3136636A (en) 1950-12-06 1955-07-25 Planographic printing plate comprising a polyacid organic intermediate layer
FR69770D FR69770E (en) 1950-12-06 1955-08-13 Presensitized planographic printing plates
DEM27983A DE1091433B (en) 1950-12-06 1955-08-15 Presensitized planographic printing plate
CH357974D CH357974A (en) 1950-12-06 1955-08-15 Process for making a presensitized plate suitable for planographic printing
GB23641/55A GB815471A (en) 1950-12-06 1955-08-16 Improved photosensitized planographic metal plates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19956650A 1950-12-06 1950-12-06
US45014954A 1954-08-16 1954-08-16
US519900A US2714066A (en) 1950-12-06 1955-07-05 Planographic printing plate
US523951A US3136636A (en) 1950-12-06 1955-07-25 Planographic printing plate comprising a polyacid organic intermediate layer

Publications (1)

Publication Number Publication Date
US2714066A true US2714066A (en) 1955-07-26

Family

ID=27498333

Family Applications (2)

Application Number Title Priority Date Filing Date
US519900A Expired - Lifetime US2714066A (en) 1950-12-06 1955-07-05 Planographic printing plate
US523951A Expired - Lifetime US3136636A (en) 1950-12-06 1955-07-25 Planographic printing plate comprising a polyacid organic intermediate layer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US523951A Expired - Lifetime US3136636A (en) 1950-12-06 1955-07-25 Planographic printing plate comprising a polyacid organic intermediate layer

Country Status (6)

Country Link
US (2) US2714066A (en)
BE (2) BE540601A (en)
CH (2) CH309940A (en)
DE (2) DE907147C (en)
FR (2) FR1051461A (en)
GB (2) GB718525A (en)

Cited By (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865750A (en) * 1955-03-18 1958-12-23 Eastman Kodak Co Photomechanical reproduction
US2870011A (en) * 1957-01-18 1959-01-20 Eastman Kodak Co Photosensitization of vinylazidophthalate polymers
US2871119A (en) * 1955-02-21 1959-01-27 Dietzgen Co Eugene Diazotype reproduction material and method
US2882154A (en) * 1954-02-04 1959-04-14 Polychrome Corp Planographic printing plate
US2922715A (en) * 1956-03-26 1960-01-26 Polychrome Corp Presensitized printing plate and method for preparing same
US2948610A (en) * 1955-07-29 1960-08-09 Eastman Kodak Co Light-sensitive compositions and their use in photomechanical processes
US2977260A (en) * 1958-10-09 1961-03-28 Ca Atomic Energy Ltd Inhibition of corrosion of aluminum alloys
US2982648A (en) * 1958-06-09 1961-05-02 Gen Aniline & Film Corp Process of producing a master plate for offset printing and the master plate so produced
US2994609A (en) * 1956-09-25 1961-08-01 Azoplate Corp Development of diazotype printing plates
US3003413A (en) * 1957-03-12 1961-10-10 Eastman Kodak Co Film printing plate and method of manufacture
US3010389A (en) * 1953-03-09 1961-11-28 Buskes Willem Marie Photographic transfer printing plates
US3010390A (en) * 1954-06-29 1961-11-28 Buskes Willem Marie Planographic printing plates
US3010391A (en) * 1954-06-29 1961-11-28 Grinten Chem L V D Light-sensitive sheets and process for producing transfer images
US3030210A (en) * 1959-02-12 1962-04-17 Gen Aniline & Film Corp Treatment of metal surfaces for the manufacture of lithographic plates
US3064562A (en) * 1959-01-12 1962-11-20 Lithoplate Inc Acrylic acid monomer coatings for metal bases
US3085008A (en) * 1957-01-04 1963-04-09 Minnesota Mining & Mfg Positively-acting diazo planographic printing plate
US3091533A (en) * 1958-05-22 1963-05-28 Developer composition for a light
US3096311A (en) * 1955-07-29 1963-07-02 Eastman Kodak Co Polymeric azides and azidophthalic anhydrides
US3110596A (en) * 1958-08-08 1963-11-12 Azoplate Corp Process for simultaneously developing and fixing printing plates
US3113023A (en) * 1961-07-25 1963-12-03 Polychrome Corp Photosensitive lithographic plate comprising photosensitive diazo resins and method for preparing same
US3136636A (en) * 1950-12-06 1964-06-09 Minnesota Mining & Mfg Planographic printing plate comprising a polyacid organic intermediate layer
US3136637A (en) * 1958-11-26 1964-06-09 Minnesota Mining & Mfg Presensitized lithographic light-sensitive sheet construction
US3136639A (en) * 1957-11-01 1964-06-09 Lithoplate Inc Diazo presensitized lithographic plate base comprising a urea-formaldehyde intermediate layer and process for making
US3163534A (en) * 1961-03-13 1964-12-29 Harris Intertype Corp Lithographic plate including a hydrophilic barrier layer comprising a silane, an acrylic compound, and an organic metal ester
US3173787A (en) * 1959-03-24 1965-03-16 Eastman Kodak Co Photosensitive element comprising a hydrophobic support, a hydrophilic layer thereonand a light-sensitive resin overcoat layer and photomechanical processes therewith
US3208849A (en) * 1963-06-24 1965-09-28 Sperry Rand Corp Planographic printing plate having a fibrous alumina coating thereon
US3246984A (en) * 1961-03-09 1966-04-19 Polaroid Corp Photographic processes and products
US3246986A (en) * 1961-08-07 1966-04-19 Azoplate Corp Diazo materials for screen process printing
US3259496A (en) * 1962-11-27 1966-07-05 Azoplate Corp Diazo presensitized lithographic printing plate comprising intermediate layer of hydrophilic metal ferrocyanide and process for making
US3298852A (en) * 1963-02-07 1967-01-17 Dick Co Ab Metal offset plate and method for manufacture
US3310404A (en) * 1963-02-18 1967-03-21 Dick Co Ab Offset master preparation and elements
US3336163A (en) * 1963-09-24 1967-08-15 Olin Mathieson Process for activating aluminum anode
US3382069A (en) * 1964-06-18 1968-05-07 Azoplate Corp Planographic printing plate
US3390992A (en) * 1964-06-15 1968-07-02 North American Rockwell Non-etching circuit fabrication
US3417055A (en) * 1964-02-27 1968-12-17 Eastman Kodak Co Process for preparation and separation of light sensitive stabilized diazo resins
US3419394A (en) * 1964-11-18 1968-12-31 Dick Co Ab Light sensitive lithographic plate of a water soluble diazo compound and a hydrophilic filler material
US3480432A (en) * 1966-01-04 1969-11-25 Scott Paper Co Imaging of lithographic plates by gelatin transfer
JPS5013222B1 (en) * 1969-01-21 1975-05-17
US3894873A (en) * 1972-03-21 1975-07-15 Toray Industries Dry planographic printing plate
US3945830A (en) * 1972-12-20 1976-03-23 Fuji Photo Film Co., Ltd. Dry pre-sensitized azide and silicone rubber containing planographic plates and methods of preparation
US3952307A (en) * 1963-06-18 1976-04-20 The United States Of America As Represented By The Secretary Of The Air Force Deactivating radar chaff
US3960676A (en) * 1972-10-04 1976-06-01 Kansai Paint Company, Ltd. Coating process for aluminum and aluminum alloy
US4054094A (en) * 1972-08-25 1977-10-18 E. I. Du Pont De Nemours And Company Laser production of lithographic printing plates
FR2388305A1 (en) * 1977-04-18 1978-11-17 Polychrome Corp IMPROVED PROCESSING OF LITHOGRAPHIC PRINTING PLATES BY A MID LAYER
US4148649A (en) * 1977-02-09 1979-04-10 Polychrome Corporation Method for producing lithographic printing plates
JPS5475670U (en) * 1977-11-08 1979-05-29
US4172729A (en) * 1976-06-28 1979-10-30 Fuji Photo Film Co., Ltd. Photosensitive diazo lithographic printing plate with oxalic acid as stabilizer
US4207106A (en) * 1973-05-29 1980-06-10 Fuji Photo Film Co., Ltd. Positive working O-quinone diazide photocopying process with organic resin overlayer
US4272604A (en) * 1975-06-09 1981-06-09 Western Litho Plate & Supply Co. Base plate and lithographic plate prepared by sensitization thereof
US4272605A (en) * 1975-06-09 1981-06-09 Western Litho Plate & Supply Co. Base plate and lithographic plate prepared by sensitization thereof
FR2480676A1 (en) * 1980-04-16 1981-10-23 Nouel Jean Marie NEW OFFSET STEEL PLATES USING CHROME OXIDE SURFACES
US4376814A (en) * 1982-03-18 1983-03-15 American Hoechst Corporation Ceramic deposition on aluminum
US4391897A (en) * 1979-10-12 1983-07-05 Howard A. Fromson Diazo lithographic printing plate developing process
US4414315A (en) * 1979-08-06 1983-11-08 Howard A. Fromson Process for making lithographic printing plate
US4427765A (en) 1981-07-06 1984-01-24 Hoechst Aktiengesellschaft Hydrophilic coating of salt-type phosphorus or sulfur polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon
US4427766A (en) 1981-07-06 1984-01-24 Hoechst Aktiengesellschaft Hydrophilic coating of salt type nitrogen polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon
US4469778A (en) * 1978-12-01 1984-09-04 Hitachi, Ltd. Pattern formation method utilizing deep UV radiation and bisazide composition
US4483913A (en) * 1983-07-18 1984-11-20 Polychrome Corporation Planographic printing plate
US4492616A (en) * 1982-09-01 1985-01-08 Hoechst Aktiengesellschaft Process for treating aluminum oxide layers and use in the manufacture of offset-printing plates
US4552827A (en) * 1983-07-18 1985-11-12 Polychrome Corp. Planographic printing plate having cationic compound in interlayer
US4689272A (en) * 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
US4777109A (en) * 1987-05-11 1988-10-11 Robert Gumbinner RF plasma treated photosensitive lithographic printing plates
US4816333A (en) * 1985-01-25 1989-03-28 Minnesota Mining And Manufacturing Company Silica coating
US4842988A (en) * 1986-08-23 1989-06-27 Hoechst Aktiengesellschaft Presensitized waterless planographic printing plate with amorphous silicic acid interlayer and process of making and using
US4842990A (en) * 1986-08-23 1989-06-27 Hoechst Aktiengesellschaft Presensitized negative working waterless planographic printing plate with amorphous silicic acid interlayer and process of making and using
US4935332A (en) * 1986-08-16 1990-06-19 Basf Aktiengesellschaft Photosensitive element having an aluminum base and silane intermediate layer
US4983497A (en) * 1985-10-10 1991-01-08 Eastman Kodak Company Treated anodized aluminum support and lithographic printing plate containing same
EP0410606A2 (en) 1989-07-12 1991-01-30 Fuji Photo Film Co., Ltd. Siloxane polymers and positive working light-sensitive compositions comprising the same
US5178961A (en) * 1990-07-21 1993-01-12 Hoechst Aktiengesellschaft Thermally crosslinkable hydrophilic copolymers and their use in reprography
US5178963A (en) * 1990-07-21 1993-01-12 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5219664A (en) * 1990-07-21 1993-06-15 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5262244A (en) * 1990-07-21 1993-11-16 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5302460A (en) * 1990-07-21 1994-04-12 Hoechst Aktiengesellschaft Support material for offset-printing plates in the form of a sheet, a foil or a web process for its production and offset-printing plate comprising said material
US5364740A (en) * 1992-12-30 1994-11-15 Minnesota Mining And Manufacturing Company Bleaching of dyes in photosensitive systems
US5380612A (en) * 1992-05-18 1995-01-10 Konica Corporation Process for manufacturing planographic printing plate
US5427887A (en) * 1992-08-17 1995-06-27 Konica Corporation Light-sensitive composition
EP0689096A1 (en) 1994-06-16 1995-12-27 Eastman Kodak Company Lithographic printing plates utilizing an oleophilic imaging layer
US5563023A (en) * 1994-11-02 1996-10-08 Minnesota Mining And Manufacturing Co. Photoimageable elements
US5597677A (en) * 1994-11-02 1997-01-28 Minnesota Mining And Manufacturing Company Photoimageable elements
EP0772089A2 (en) 1995-10-31 1997-05-07 Minnesota Mining And Manufacturing Company Low optical dot gain color proof composites
EP0780730A2 (en) 1995-12-22 1997-06-25 Fuji Photo Film Co., Ltd. Positive-type light-sensitive lithographic printing plate
EP0799717A1 (en) * 1996-04-03 1997-10-08 Agfa-Gevaert N.V. A method for preparing a hydrophilic surface of a lithographic aluminum base for lithographic printing plates
US5691098A (en) * 1996-04-03 1997-11-25 Minnesota Mining And Manufacturing Company Laser-Induced mass transfer imaging materials utilizing diazo compounds
US5747217A (en) * 1996-04-03 1998-05-05 Minnesota Mining And Manufacturing Company Laser-induced mass transfer imaging materials and methods utilizing colorless sublimable compounds
US5846685A (en) * 1997-01-31 1998-12-08 Kodak Polychrome Graphics, Llc Radiation sensitive diazo sulfo-acrylic adducts and method for producing a printing plate
US6014929A (en) * 1998-03-09 2000-01-18 Teng; Gary Ganghui Lithographic printing plates having a thin releasable interlayer overlying a rough substrate
US6105500A (en) * 1995-11-24 2000-08-22 Kodak Polychrome Graphics Llc Hydrophilized support for planographic printing plates and its preparation
US6138568A (en) * 1997-02-07 2000-10-31 Kodak Polcyhrome Graphics Llc Planographic printing member and process for its manufacture
US6182571B1 (en) 1996-11-21 2001-02-06 Kodak Polcyhrome Graphics Llc Planographic printing
US6270938B1 (en) 2000-06-09 2001-08-07 Kodak Polychrome Graphics Llc Acetal copolymers and use thereof in photosensitive compositions
US6293197B1 (en) 1999-08-17 2001-09-25 Kodak Polychrome Graphics Hydrophilized substrate for planographic printing
US6357351B1 (en) 1997-05-23 2002-03-19 Kodak Polychrome Graphics Llc Substrate for planographic printing
EP1203659A2 (en) 2000-10-03 2002-05-08 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US6427596B1 (en) * 1997-05-23 2002-08-06 Kodak Polychrome Graphics, Llc Method for making corrections on planographic printing plates
US6458511B1 (en) 2000-06-07 2002-10-01 Kodak Polychrome Graphics Llc Thermally imageable positive-working lithographic printing plate precursor and method for imaging
EP1251014A2 (en) 2001-04-20 2002-10-23 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
EP1314552A2 (en) 1998-04-06 2003-05-28 Fuji Photo Film Co., Ltd. Photosensitive resin composition
US6627380B2 (en) 2000-05-23 2003-09-30 Dainippon Ink And Chemicals, Inc. Photosensitive composition, original plate using the same for lithographic printing, and method for producing images on original plate
EP1356929A2 (en) 2002-04-24 2003-10-29 Fuji Photo Film Co., Ltd. Method of preparation of lithographic printing plates
US6794107B2 (en) 2002-10-28 2004-09-21 Kodak Polychrome Graphics Llc Thermal generation of a mask for flexography
US6808857B2 (en) 2001-05-21 2004-10-26 Kodak Polychrome Graphics Llc Negative-working photosensitive composition and negative-working photosensitive lithographic printing plate
EP1602982A2 (en) 2004-05-31 2005-12-07 Fuji Photo Film Co., Ltd. method of producing a lithographic printing plate and planographic printing method
EP1614537A1 (en) 2004-07-07 2006-01-11 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1619023A2 (en) 2004-07-20 2006-01-25 Fuji Photo Film Co., Ltd. Image forming material
EP1621338A1 (en) 2004-07-27 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1621341A2 (en) 2004-07-30 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1627732A1 (en) 2004-08-18 2006-02-22 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1630618A2 (en) 2004-08-24 2006-03-01 Fuji Photo Film Co., Ltd. Production method of lithographic printing plate, lithographic printing plate precursor and lithographic printing method
EP1637324A2 (en) 2004-08-26 2006-03-22 Fuji Photo Film Co., Ltd. Color image-forming material and lithographic printing plate precursor
EP1640173A1 (en) 2004-09-27 2006-03-29 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1669195A1 (en) 2004-12-13 2006-06-14 Fuji Photo Film Co., Ltd. Lithographic printing method
EP1685957A2 (en) 2005-01-26 2006-08-02 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor, lithographic printing method and packaged body of lithographic printing plate precursors
EP1690685A2 (en) 2005-02-09 2006-08-16 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1700890A2 (en) 2005-03-08 2006-09-13 Fuji Photo Film Co., Ltd. Ink composition, inkjet recording method, printed material, method of producing planographic printing plate, and planographic printing plate
EP1705004A1 (en) 2005-03-22 2006-09-27 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1710627A1 (en) 2005-03-28 2006-10-11 Fuji Photo Film Co., Ltd. Photosensitive lithographic printing plate
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP1728805A1 (en) 2005-05-31 2006-12-06 Fuji Photo Film Co., Ltd. Aspherical-polymer fine particles and production method thereof, and method for producing lithographic printing plate, ink composition and electrophoretic particle composition
EP1728838A1 (en) 2005-05-31 2006-12-06 Fuji Photo Film Co., Ltd. Ink composition for ink jet-recording and method for preparing lithographic printing plate using the same
EP1754597A2 (en) 2005-08-19 2007-02-21 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing process
EP1755002A2 (en) 2005-08-18 2007-02-21 Fuji Photo Film Co., Ltd. Manufacturing method of lithographic printing plate and manufacturing apparatus of lithographic printing plate
EP1754758A2 (en) 2005-08-17 2007-02-21 Fuji Photo Film Co., Ltd. Ink composition comprising an onium salt and a cationically polymerisable compound, inkjet recording method, printed material, process for producing lithographic printing plate, and lithographic printing plate
EP1757635A1 (en) 2005-08-23 2007-02-28 Fuji Photo Film Co., Ltd. Curable modified oxetane compound and ink composition comprising it
EP1762599A1 (en) 2005-09-07 2007-03-14 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, process for producing lithographic plate, and lithographic printing plate
EP1872943A2 (en) 1999-05-21 2008-01-02 FUJIFILM Corporation Photosensitive composition and planographic printing plate base using same
US20080032121A1 (en) * 2006-06-30 2008-02-07 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Silicate treatment of sealed anodized aluminum
EP1925447A1 (en) 2002-09-17 2008-05-28 FUJIFILM Corporation Image forming material
EP1939687A2 (en) 2006-12-26 2008-07-02 FUJIFILM Corporation Polymerizable composition, lithographic printing plate precursor and lithographic printing method
EP1939692A2 (en) 2006-12-28 2008-07-02 FUJIFILM Corporation Method for preparation of lithographic printing plate
EP1947514A2 (en) 2007-01-17 2008-07-23 FUJIFILM Corporation Method for preparation of lithographic printing plate
EP1952982A1 (en) 2007-02-02 2008-08-06 FUJIFILM Corporation Radiation-curable polymerizable composition, ink composition, inkjet recording method, printed material, planographic printing plate, and method for forming planographic printing plate
EP1956428A2 (en) 2007-02-06 2008-08-13 FUJIFILM Corporation Photosensitive composition, lithographic printing plate precursor, lithographic printing method, and cyanine dyes
EP1964894A2 (en) 2007-02-27 2008-09-03 FUJIFILM Corporation Ink composition, inkjetrecording method, printed material, method for producing planographic printing plate, and planographic printing plate
EP1973000A2 (en) 2007-03-22 2008-09-24 FUJIFILM Corporation Dipping-type automatic developing apparatus and method for lithographic printing plates
EP1972440A2 (en) 2007-03-23 2008-09-24 FUJIFILM Corporation Negative lithographic printing plate precursor and lithographic printing method using the same
EP1972438A1 (en) 2007-03-20 2008-09-24 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP1974914A2 (en) 2007-03-29 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP1975706A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor
EP1975213A1 (en) 2006-07-03 2008-10-01 FUJIFILM Corporation Ink composition, injet recording method, printed material, and process for producing lithographic printing plate
EP1975708A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor
EP1975212A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, planographic printing plate, and method for forming planographic printing plate
EP1975710A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Plate-making method of lithographic printing plate precursor
EP1988136A1 (en) 2007-03-01 2008-11-05 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, method for producing planographic printing plate, and planographic printing plate
EP1992482A2 (en) 2007-05-18 2008-11-19 FUJIFILM Corporation Planographic printing plate precursor and printing method using the same
EP2006091A2 (en) 2007-06-22 2008-12-24 FUJIFILM Corporation Lithographic printing plate precursor and plate making method
EP2006738A2 (en) 2007-06-21 2008-12-24 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
EP2011643A2 (en) 2007-07-02 2009-01-07 FUJIFILM Corporation Planographic printing plate precursor and printing method using the same
EP2036721A1 (en) 2000-11-30 2009-03-18 FUJIFILM Corporation Planographic printing plate precursor
EP2042305A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2042310A2 (en) 2007-09-27 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2042924A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Method for preparing lithographic printing plate
EP2042308A2 (en) 2007-09-27 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2042312A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Processing method of lithographic printing plate precursor
EP2042311A1 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method
EP2042923A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Image-forming method and lithographic printing plate precursor
EP2045662A2 (en) 2007-09-28 2009-04-08 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP2048000A2 (en) 2007-09-18 2009-04-15 FUJIFILM Corporation Plate making method of lithographic printing plate precursor
EP2055476A2 (en) 2007-10-29 2009-05-06 FUJIFILM Corporation Lithographic printing plate precursor
EP2070696A1 (en) 2007-12-10 2009-06-17 FUJIFILM Corporation Method of preparing lithographic printing plate and lithographic printing plate precursor
EP2078984A1 (en) 2008-01-11 2009-07-15 Fujifilm Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method
EP2078985A1 (en) 2008-01-09 2009-07-15 Fujifilm Corporation Method for developing lithographic printing plate
EP2082875A1 (en) 2008-01-22 2009-07-29 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
WO2009093688A1 (en) 2008-01-25 2009-07-30 Fujifilm Corporation Hydrophilic composition having mildewproofing effect and hydrophilic member
WO2009096531A1 (en) 2008-02-01 2009-08-06 Fujifilm Corporation Hydrophilic members
EP2088468A1 (en) 2008-02-06 2009-08-12 FUJIFILM Corporation Method of preparing lithographic printing plate and lithographic printing plate precursor
EP2090933A1 (en) 2008-02-05 2009-08-19 FUJIFILM Corporation Lithographic printing plate precursor and printing method
EP2093055A1 (en) 2003-03-26 2009-08-26 Fujifilm Corporation Lithographic printing method and presensitized plate
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
EP2101218A1 (en) 2008-03-10 2009-09-16 FUJIFILM Corporation Method for preparing lithographic printing plate and lithographic printing plate precursor
EP2100731A2 (en) 2008-03-11 2009-09-16 Fujifilm Corporation Lithographic printing plate precursor and method of lithographic printing
EP2103994A1 (en) 2008-03-21 2009-09-23 FUJIFILM Corporation Automatic processing apparatus for making lithographic printing plate
EP2103639A1 (en) 2005-11-04 2009-09-23 Fujifilm Corporation Curable polycyclic epoxy composition, ink composition and inkjet recording method therewith
EP2103993A1 (en) 2008-03-21 2009-09-23 FUJIFILM Corporation Automatic processing for making lithographic printing plate
EP2105800A2 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Processing solution for preparing lithographic printing plate and processing method of lithographic printing plate precursor
EP2105796A1 (en) 2008-03-28 2009-09-30 FUJIFILM Corporation Plate-making method of lithographic printing plate
EP2105298A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
EP2105297A1 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Planographic printing plate precursor and plate making method using the same
EP2105797A1 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Lithographic printing plate precursor
WO2009119827A1 (en) 2008-03-27 2009-10-01 富士フイルム株式会社 Original plate for lithographic printing plate, and method for production of lithographic printing plate using the same
EP2107422A1 (en) 2008-03-31 2009-10-07 FUJIFILM Corporation Method for preparing lithographic printing plate
EP2106907A2 (en) 2008-04-02 2009-10-07 FUJIFILM Corporation Planographic printing plate precursor
EP2108999A1 (en) 2005-07-25 2009-10-14 Fujifilm Corporation Method for preparation of lithographic printing plate and lithographic printing plate precursor
EP2109000A1 (en) 2004-09-10 2009-10-14 FUJIFILM Corporation Polymer having polymerizable group, polymerizable composition, planographic printing plate precursor, and planographic printing method using the same
EP2110261A2 (en) 2008-04-18 2009-10-21 FUJIFILM Corporation Aluminum alloy plate for lithographic printing plate, ligthographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
EP2112555A2 (en) 2008-03-27 2009-10-28 FUJIFILM Corporation Lithographic printing plate precursor
EP2145772A2 (en) 2008-07-16 2010-01-20 FUJIFILM Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate, lithographic printing plate support and presensitized plate
EP2161129A2 (en) 2008-09-09 2010-03-10 Fujifilm Corporation Photosensitive lithographic printing plate precursor for infrared laser
EP2163949A1 (en) 2008-09-12 2010-03-17 FUJIFILM Corporation Developer for lithographic printing plate precursor and process for producing lithographic printing plate
EP2166411A2 (en) 2008-09-18 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor, process for producing lithographic printing plate, and lithographic printing plate
EP2165829A1 (en) 2008-09-22 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2165830A1 (en) 2008-09-22 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor and printing method using the same
EP2168765A2 (en) 2008-09-25 2010-03-31 FUJIFILM Corporation Lithographic printing plate precursor and process for producing lithographic printing plate
EP2168767A1 (en) 2008-09-24 2010-03-31 Fujifilm Corporation Method of preparing lithographic printing plate
EP2168766A1 (en) 2008-09-26 2010-03-31 FUJIFILM Corporation Process for making lithographic printing plate
WO2010035697A1 (en) 2008-09-24 2010-04-01 富士フイルム株式会社 Process for producing lithographic printing plate
WO2010038795A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Lithographic printing original plate, method for producing lithographic printing plate, and polymerizable monomer
EP2177357A2 (en) 2008-08-29 2010-04-21 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
WO2010061869A1 (en) 2008-11-26 2010-06-03 富士フイルム株式会社 Method for manufacturing lithographic printing plate, developer for original lithographic printing plate, and replenisher for developing original lithographic printing plate
WO2010072157A1 (en) 2008-12-24 2010-07-01 Chengdu Xingraphics Co., Ltd. Thermosensitive imaging composition and lithographic plate comprising the same
EP2223804A2 (en) 2009-02-26 2010-09-01 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2236292A2 (en) 2009-03-30 2010-10-06 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2236293A2 (en) 2009-03-31 2010-10-06 FUJIFILM Corporation Lithographic printing plate precursor
EP2236291A1 (en) 2009-03-30 2010-10-06 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2239138A2 (en) 2009-03-30 2010-10-13 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2246741A1 (en) 2004-05-19 2010-11-03 Fujifilm Corporation Image recording method
EP2295247A1 (en) 2003-07-07 2011-03-16 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
WO2011030645A1 (en) 2009-09-14 2011-03-17 富士フイルム株式会社 Photopolymerizable composition, color filter, method for producing same, solid-state image pickup element, liquid crystal display device, lithographic printing original plate, and novel compound
EP2301760A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing aluminum substrate for planographic printing plate and method of recycling planographic printing plate
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011036923A1 (en) 2009-09-25 2011-03-31 富士フイルム株式会社 Method for processing waste solution in plate-making process of photosensitive lithographic printing plate
WO2011040114A1 (en) 2009-09-29 2011-04-07 富士フイルム株式会社 Method for producing planographic printing plate precursor
WO2011045423A1 (en) 2009-10-16 2011-04-21 Henkel Ag & Co. Kgaa Multi-step method for producing alkali-resistant anodized aluminum surfaces
EP2339400A2 (en) 2009-12-25 2011-06-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2011081064A1 (en) 2009-12-28 2011-07-07 富士フイルム株式会社 Support for planographic printing plate, method for producing support for planographic printing plate, and planographic printing original plate
EP2354854A1 (en) 2002-09-20 2011-08-10 FUJIFILM Corporation Method of making lithographic printing plate
EP2353882A1 (en) 2010-01-29 2011-08-10 Fujifilm Corporation Lithographic printing plate support, method of manufacturing the same and presensitized plate
EP2357530A2 (en) 2010-02-17 2011-08-17 Fujifilm Corporation Method for producing a planographic printing plate
WO2011102485A1 (en) 2010-02-19 2011-08-25 富士フイルム株式会社 Process for making lithographic printing plate
EP2363748A1 (en) 2010-02-12 2011-09-07 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2365389A1 (en) 2010-03-08 2011-09-14 Fujifilm Corporation Positive-working lithographic printing plate precursor for infrared laser and process for making lithographic printing plate
EP2366546A2 (en) 2010-03-18 2011-09-21 FUJIFILM Corporation Process for making lithographic printing plate and lithographic printing plate
WO2011115125A1 (en) 2010-03-19 2011-09-22 富士フイルム株式会社 Color developing photosensitive composition, lithographic printing original plate, and method for producing same
WO2011118457A1 (en) 2010-03-26 2011-09-29 富士フイルム株式会社 Master planographic printing plate and manufacturing method therefor
WO2011118456A1 (en) 2010-03-26 2011-09-29 富士フイルム株式会社 Planographic printing master plate and production method therefor
WO2011122378A1 (en) 2010-03-30 2011-10-06 富士フイルム株式会社 Method for producing lithographic printing plate
EP2381312A2 (en) 2000-08-25 2011-10-26 Fujifilm Corporation Alkaline liquid developer for lithographic printing plate and method for preparing lithographic printing plate
EP2383118A2 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound
EP2383612A1 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2383314A1 (en) 2005-12-28 2011-11-02 Fujifilm Corporation Ink composition, inkjet recording method, printed material, method for producing planographic printing plate, and planographic printing plate
EP2383125A1 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate support and presensitized plate
EP2423748A1 (en) 2010-08-31 2012-02-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2012026265A1 (en) 2010-08-27 2012-03-01 富士フイルム株式会社 Master planographic printing plate for on-press development, and plate-making method using said master planographic printing plate
EP2441783A1 (en) 2010-09-24 2012-04-18 FUJIFILM Corporation Polymerizable composition and lithographic printing plate precursor including the same, and lithographic printing method
EP2447085A2 (en) 2010-07-23 2012-05-02 Fujifilm Corporation Lithographic printing plate support and presensitized plate
EP2471654A2 (en) 2010-12-28 2012-07-04 Fujifilm Corporation Lithographic printing plate precursor, plate making method thereof and lithographic printing method thereof
EP2471655A2 (en) 2010-12-28 2012-07-04 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
EP2481604A1 (en) 2011-01-31 2012-08-01 Fujifilm Corporation Lithographic printing plate support and presensitized plate
EP2492751A1 (en) 2011-02-28 2012-08-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2012115124A1 (en) 2011-02-24 2012-08-30 富士フイルム株式会社 Process of producing lithographic printing plate
WO2012165060A1 (en) 2011-05-31 2012-12-06 富士フイルム株式会社 Presensitized plate for lithographic printing and method for processing same
EP2565714A1 (en) 2011-08-31 2013-03-06 Fujifilm Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate using the same
WO2013039235A1 (en) 2011-09-15 2013-03-21 富士フイルム株式会社 Method for recycling wastewater produced by plate-making process
WO2013046856A1 (en) 2011-09-28 2013-04-04 富士フイルム株式会社 Method for producing lithographic printing plate
WO2013046877A1 (en) 2011-09-30 2013-04-04 富士フイルム株式会社 Printing method using on press development lithograph printing plate precursor
WO2013111652A1 (en) 2012-01-24 2013-08-01 富士フイルム株式会社 Lithographic printing plate support, lithographic printing plate support manufacturing method and lithographic printing plate master
WO2013125323A1 (en) 2012-02-23 2013-08-29 富士フイルム株式会社 Chromogenic composition, chromogenic curable composition, lithographic printing plate precursor, platemaking method, and chromogenic compound
EP2641738A2 (en) 2012-03-23 2013-09-25 Fujifilm Corporation Method of producing planographic printing plate and planographic printing plate
EP2644379A1 (en) 2012-03-30 2013-10-02 FUJIFILM Corporation Method of producing a planographic printing plate
EP2644380A2 (en) 2012-03-27 2013-10-02 Fujifilm Corporation Lithographic printing plate precursor
EP2644378A1 (en) 2012-03-30 2013-10-02 Fujifilm Corporation Method of making planographic printing plate and planographic printing plate
WO2014002835A1 (en) 2012-06-29 2014-01-03 富士フイルム株式会社 Method for concentrating processing waste liquid and method for recycling processing waste liquid
EP2690495A1 (en) 2012-07-27 2014-01-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2014017640A1 (en) 2012-07-27 2014-01-30 富士フイルム株式会社 Support for lithographic printing plate and manufacturing method therefor, as well as original lithographic printing plate
WO2014045783A1 (en) 2012-09-20 2014-03-27 富士フイルム株式会社 Original planographic printing plate, and plate making method
WO2014050359A1 (en) 2012-09-26 2014-04-03 富士フイルム株式会社 Lithographic presensitized plate and method for making lithographic printing plate
WO2014050435A1 (en) 2012-09-26 2014-04-03 富士フイルム株式会社 Lithographic printing original plate and plate making method
WO2014132721A1 (en) 2013-02-27 2014-09-04 富士フイルム株式会社 Infrared-sensitive chromogenic composition, infrared-curable chromogenic composition, lithographic printing plate precursor, and plate formation method
WO2014141781A1 (en) 2013-03-14 2014-09-18 富士フイルム株式会社 Concentrating method for platemaking waste fluid and recycling method
WO2015115598A1 (en) 2014-01-31 2015-08-06 富士フイルム株式会社 Infrared-sensitive color developing composition, lithographic printing original plate, plate making method for lithographic printing plate, and infrared-sensitive color developer
WO2015119089A1 (en) 2014-02-04 2015-08-13 富士フイルム株式会社 Lithographic printing plate precursor, manufacturing method therefor, plate manufacturing method for lithographic printing plate, and printing method
EP3086176A1 (en) 2005-02-28 2016-10-26 Fujifilm Corporation A lithographic printing method
WO2016174122A1 (en) 2015-04-30 2016-11-03 Henkel Ag & Co. Kgaa Method for sealing oxide protective layers on metal substrates
EP3284599A1 (en) 2004-01-09 2018-02-21 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method using the same
WO2018092661A1 (en) 2016-11-16 2018-05-24 富士フイルム株式会社 Radiation sensitive composition, original plate for lithographic printing plate, and method of manufacturing lithographic printing plate
WO2018159087A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Method for creating planographic printing plate
WO2018159640A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Curable composition, lithographic printing plate precursor, method for preparing lithographic printing plate, and compound
WO2018159626A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Curable composition, lithographic printing plate precursor, and method for preparing lithographic printing plate
WO2018221134A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate precursor, resin composition for producing lithographic printing plate precursor, and production method for lithographic printing plate
WO2018221618A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate original plate, and method for producing lithographic printing plate
WO2018221133A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate precursor, production method for lithographic printing plate, polymer particles, and composition
WO2018230412A1 (en) 2017-06-12 2018-12-20 富士フイルム株式会社 Lithography original plate, platemaking method for lithography plate, organic polymer particles, and photosensitive resin composition
WO2019004471A1 (en) 2017-06-30 2019-01-03 富士フイルム株式会社 Lithographic printing original plate and method for producing lithographic printing plate
WO2019013268A1 (en) 2017-07-13 2019-01-17 富士フイルム株式会社 Lithographic printing plate original plate, and method for producing lithographic printing plate
WO2019021828A1 (en) 2017-07-25 2019-01-31 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate, and chromogenic composition
WO2019039074A1 (en) 2017-08-25 2019-02-28 富士フイルム株式会社 Negative lithographic printing original plate and method for making lithographic printing plate
WO2019044483A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Lithographic printing original plate and method for producing lithographic printing plate
WO2019044566A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Lithographic printing plate original plate, method for fabricating lithographic printing plate, and lithographic printing method
WO2019045084A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Printing plate and printing plate laminate body
WO2019044087A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, and printing method
WO2019064974A1 (en) 2017-09-29 2019-04-04 富士フイルム株式会社 Lithographic printing plate precursor and lithographic printing plate fabrication method
WO2019087516A1 (en) 2017-10-31 2019-05-09 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support body
WO2019150788A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Lithographic plate original plate, and method for producing lithographic plate
WO2019151163A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Lithographic plate original plate, and method for producing lithographic plate
WO2019151361A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Planographic printing plate precursor, and production method for planographic printing plate
WO2020026956A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Original plate for planographic printing plate, laminate of original plate for planographic printing plate, method for platemaking planographic printing plate, and planographic printing method
WO2020026957A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Planographic printing plate original plate, planographic printing plate original plate laminate body, platemaking method for planographic printing plate, and planographic printing method
WO2020045586A1 (en) 2018-08-31 2020-03-05 富士フイルム株式会社 Planographic printing original plate, method for producing planographic printing plate, planographic printing method and curable composition
WO2020067374A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Original plate for printing, laminate of original plate for printing, method for manufacturing printing plate, and printing method
WO2020067373A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Original plate for printing, laminate of original plate for printing, method for platemaking printing plate, and printing method
WO2020090995A1 (en) 2018-10-31 2020-05-07 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate and lithographic printing method
WO2020090996A1 (en) 2018-10-31 2020-05-07 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate and lithographic printing method
EP3656576A1 (en) 2015-01-29 2020-05-27 Fujifilm Corporation Lithographic printing plate precursor and method of producing same
WO2020158288A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate precursor, method for manufacturing lithographic printing plate, and lithographic printing method
WO2020158139A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate precursor, method for manufacturing lithographic printing plate, and lithographic printing method
WO2020158287A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate original plate, method for fabricating lithographic printing plate, and lithographic printing method
WO2020262691A1 (en) 2019-06-28 2020-12-30 富士フイルム株式会社 On-press development type lithographic printing original plate, method for producing lithographic printing plate, and lithographic printing method
WO2020262692A1 (en) 2019-06-28 2020-12-30 富士フイルム株式会社 Original plate for on-press development type lithographic printing plate, method for fabricating lithographic printing plate, and lithographic printing method
EP3838594A1 (en) 2017-03-31 2021-06-23 FUJIFILM Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
WO2021132647A1 (en) 2019-12-27 2021-07-01 富士フイルム株式会社 Original plate for lithographic printing, method for manufacturing lithographic printing plate, and printing method
EP3854591A1 (en) 2017-03-31 2021-07-28 FUJIFILM Corporation Lithographic printing plate precursor and lithographic printing method
WO2022138880A1 (en) 2020-12-25 2022-06-30 富士フイルム株式会社 Laminate of negative lithographic printing plate original plate and method for manufacturing negative lithographic printing plate
WO2022138710A1 (en) 2020-12-25 2022-06-30 富士フイルム株式会社 Original plate for planographic printing plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support
WO2023032992A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Lithographic printing plate support, lithographic printing plate precursor, and method for producing lithographic printing plate
WO2023032868A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 On-machine development-type lithographic printing plate precursor and method for manufacturing printing plate
EP4245542A1 (en) 2022-03-18 2023-09-20 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate, and lithographic printing method
EP4360880A1 (en) 2022-10-25 2024-05-01 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing a lithographic printing plate, and lithographic printing method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE606888A (en) * 1960-08-05 1900-01-01
DE1622462A1 (en) * 1960-10-11
DE1302833B (en) * 1961-10-13 Kalle Ag
US3307951A (en) * 1963-02-01 1967-03-07 Lithoplate Inc Lithographic plate
US3275441A (en) * 1963-03-07 1966-09-27 Technilith Inc Printing plate and method of making same
US3469983A (en) * 1965-07-06 1969-09-30 Gaf Corp Preparation of photopolymer lithographic offset paper plates
US3441940A (en) * 1966-09-15 1969-04-29 Phonocopy Inc Process for electro-junction thermography
US4186250A (en) * 1975-04-07 1980-01-29 The Dow Chemical Company Method of desensitizing image-bearing lithographic plates
US4200688A (en) * 1975-04-07 1980-04-29 The Dow Chemical Company Method of treating image-bearing lithographic plates
US4266481A (en) * 1975-04-07 1981-05-12 The Dow Chemical Company Image-bearing lithographic plates with desensitizing coating
US4143021A (en) * 1976-07-23 1979-03-06 The Dow Chemical Company Composition suitable for use as desensitizing gumming solution for lithographic printing plates
DK565077A (en) * 1977-05-19 1978-11-20 Polychrome Corp WATER-PRODUCED LITHOGATHIC PRINTING PLATE
US4472494A (en) * 1980-09-15 1984-09-18 Napp Systems (Usa), Inc. Bilayer photosensitive imaging article
US4381226A (en) * 1981-12-23 1983-04-26 American Hoechst Corporation Electrochemical treatment of aluminum in non-aqueous polymeric polybasic organic acid containing electrolytes
US4388156A (en) * 1981-12-23 1983-06-14 American Hoechst Corporation Aluminum electrolysis in non-aqueous monomeric organic acid
US4467028A (en) * 1982-07-12 1984-08-21 Polychrome Corporation Acid interlayered planographic printing plate
JPS59101651A (en) * 1982-12-02 1984-06-12 Fuji Photo Film Co Ltd Photosensitive lithographic printing plate
US5704291A (en) * 1996-01-30 1998-01-06 Presstek, Inc. Lithographic printing members with deformable cushioning layers
JP4317330B2 (en) 2001-02-07 2009-08-19 富士フイルム株式会社 Method for making a photosensitive lithographic printing plate
JP2003107720A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Original plate for planographic printing plate
US6884565B2 (en) * 2002-09-03 2005-04-26 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
JP2004133125A (en) 2002-10-09 2004-04-30 Fuji Photo Film Co Ltd Photosensitive lithographic printing plate
JP4250490B2 (en) 2003-09-19 2009-04-08 富士フイルム株式会社 Aluminum alloy base plate for planographic printing plate and support for planographic printing plate
EP1642746A1 (en) * 2004-10-01 2006-04-05 Agfa-Gevaert Method of making a negative-working lithographic printing plate.
JP6586469B2 (en) 2015-05-01 2019-10-02 ノベリス・インコーポレイテッドNovelis Inc. Continuous coil pretreatment process

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191406857A (en) * 1913-03-22 Roth August Improved Process for the Manufacture of Films for Photographic Printing.
US208114A (en) * 1878-09-17 Improvement in photo-mechanical printing
US711101A (en) * 1901-11-19 1902-10-14 Universal Chromephoto Engraving Company Manufacture of printing-surfaces.
US1325890A (en) * 1919-12-23 Lithography
DE405043C (en) * 1923-02-26 1924-10-23 Paul Boehr Pretreatment of chromatic cinema films
US1574378A (en) * 1925-09-16 1926-02-23 Albert W Finlay Collotype printing plate and method of making the same
DE465381C (en) * 1924-10-02 1928-09-15 Rainbow Photo Reproductions In Process for the photochemical production of colloid printing forms in which the unexposed colloid areas are retained, preferably for printing with water colors
GB322007A (en) * 1928-09-03 1929-11-28 Hermann Weck Improvements relating to photographic process printing
DE558028C (en) * 1930-03-16 1932-08-31 Reinhold Kupfer Process for making metal tape photographic films
GB402737A (en) * 1932-03-04 1933-12-07 Kalle & Co Ag Manufacture of negative copies
GB407830A (en) * 1932-06-30 1934-03-29 Siemens Ag Photographic process for producing written characters or representations or a surface coloration, on aluminium and aluminium alloys
GB432984A (en) * 1933-02-10 1935-08-07 Siemens Ag Improvements in or relating to a photographic process for producing written characters or representations or a surface coloration, on aluminium and aluminium alloys
FR863089A (en) * 1939-01-27 1941-03-22 Philips Nv Process for producing photographic contrasts using a diazo compound
FR886716A (en) * 1941-12-13 1943-10-22 Kalle & Co Ag Light sensitive colloid layers
FR904255A (en) * 1943-01-14 1945-10-31 Kalle & Co Ag Process for the production of printing plates
US2433515A (en) * 1945-04-18 1947-12-30 H P Andrews Paper Company Method of making photographic paper
US2507134A (en) * 1948-06-02 1950-05-09 Charles S Ash Dual wheel mounting

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL35423C (en) * 1931-12-09
DE596731C (en) * 1932-05-23 1934-05-09 Kalle & Co Akt Ges Process for the preparation of higher molecular weight diazo compounds
US1981102A (en) * 1932-08-10 1934-11-20 Agfa Ansco Corp Photographic material and process of making the same
US2188707A (en) * 1938-02-19 1940-01-30 Lane Company Inc Hardware for cedar chests and the like
DE856154C (en) * 1942-08-18 1952-11-20 Boehme Fettchemie G M B H Preparations for treating the damp spots on planographic printing forms
DE925206C (en) * 1942-11-12 1955-03-14 Boehme Fettchemie G M B H Process for coating printing plates for copying purposes
US2561814A (en) * 1944-11-21 1951-07-24 Borden Co Potentially reactive curable polymers
NL150528B (en) * 1949-05-14 Hollandse Signaalapparaten Bv PROCEDURE FOR MANUFACTURE OF TWISTLESS OR ALMOST TWISTLESS YARN AND THE YARN OBTAINED BY USING THIS PROCESS.
BE507657A (en) * 1950-12-06
US2694639A (en) * 1951-06-14 1954-11-16 Eastman Kodak Co Light-sensitive metal base photographic element
US2699392A (en) * 1951-12-12 1955-01-11 Gen Aniline & Film Corp Vesicular prints and process of making same
BE516732A (en) * 1952-01-04 1900-01-01
BE557236A (en) * 1952-06-19
BE523231A (en) * 1953-05-22
US2937085A (en) * 1954-01-11 1960-05-17 Ditto Inc Composite photosensitive plate, and method of making printing plate therefrom
NL95407C (en) * 1954-08-20

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US208114A (en) * 1878-09-17 Improvement in photo-mechanical printing
US1325890A (en) * 1919-12-23 Lithography
US711101A (en) * 1901-11-19 1902-10-14 Universal Chromephoto Engraving Company Manufacture of printing-surfaces.
GB191406857A (en) * 1913-03-22 Roth August Improved Process for the Manufacture of Films for Photographic Printing.
DE405043C (en) * 1923-02-26 1924-10-23 Paul Boehr Pretreatment of chromatic cinema films
DE465381C (en) * 1924-10-02 1928-09-15 Rainbow Photo Reproductions In Process for the photochemical production of colloid printing forms in which the unexposed colloid areas are retained, preferably for printing with water colors
US1574378A (en) * 1925-09-16 1926-02-23 Albert W Finlay Collotype printing plate and method of making the same
GB322007A (en) * 1928-09-03 1929-11-28 Hermann Weck Improvements relating to photographic process printing
DE558028C (en) * 1930-03-16 1932-08-31 Reinhold Kupfer Process for making metal tape photographic films
GB402737A (en) * 1932-03-04 1933-12-07 Kalle & Co Ag Manufacture of negative copies
GB407830A (en) * 1932-06-30 1934-03-29 Siemens Ag Photographic process for producing written characters or representations or a surface coloration, on aluminium and aluminium alloys
GB432984A (en) * 1933-02-10 1935-08-07 Siemens Ag Improvements in or relating to a photographic process for producing written characters or representations or a surface coloration, on aluminium and aluminium alloys
GB433538A (en) * 1933-02-10 1935-08-12 Siemens Ag Metallic photographic film
FR863089A (en) * 1939-01-27 1941-03-22 Philips Nv Process for producing photographic contrasts using a diazo compound
FR886716A (en) * 1941-12-13 1943-10-22 Kalle & Co Ag Light sensitive colloid layers
FR904255A (en) * 1943-01-14 1945-10-31 Kalle & Co Ag Process for the production of printing plates
US2433515A (en) * 1945-04-18 1947-12-30 H P Andrews Paper Company Method of making photographic paper
US2507134A (en) * 1948-06-02 1950-05-09 Charles S Ash Dual wheel mounting

Cited By (332)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136636A (en) * 1950-12-06 1964-06-09 Minnesota Mining & Mfg Planographic printing plate comprising a polyacid organic intermediate layer
US3010389A (en) * 1953-03-09 1961-11-28 Buskes Willem Marie Photographic transfer printing plates
US2882154A (en) * 1954-02-04 1959-04-14 Polychrome Corp Planographic printing plate
US2882153A (en) * 1954-02-04 1959-04-14 Polychrome Corp Planographic printing plate
US3010391A (en) * 1954-06-29 1961-11-28 Grinten Chem L V D Light-sensitive sheets and process for producing transfer images
US3010390A (en) * 1954-06-29 1961-11-28 Buskes Willem Marie Planographic printing plates
US2871119A (en) * 1955-02-21 1959-01-27 Dietzgen Co Eugene Diazotype reproduction material and method
US2865750A (en) * 1955-03-18 1958-12-23 Eastman Kodak Co Photomechanical reproduction
US2948610A (en) * 1955-07-29 1960-08-09 Eastman Kodak Co Light-sensitive compositions and their use in photomechanical processes
US3096311A (en) * 1955-07-29 1963-07-02 Eastman Kodak Co Polymeric azides and azidophthalic anhydrides
US2922715A (en) * 1956-03-26 1960-01-26 Polychrome Corp Presensitized printing plate and method for preparing same
US2994609A (en) * 1956-09-25 1961-08-01 Azoplate Corp Development of diazotype printing plates
US3085008A (en) * 1957-01-04 1963-04-09 Minnesota Mining & Mfg Positively-acting diazo planographic printing plate
US2870011A (en) * 1957-01-18 1959-01-20 Eastman Kodak Co Photosensitization of vinylazidophthalate polymers
US3003413A (en) * 1957-03-12 1961-10-10 Eastman Kodak Co Film printing plate and method of manufacture
US3136639A (en) * 1957-11-01 1964-06-09 Lithoplate Inc Diazo presensitized lithographic plate base comprising a urea-formaldehyde intermediate layer and process for making
US3091533A (en) * 1958-05-22 1963-05-28 Developer composition for a light
US2982648A (en) * 1958-06-09 1961-05-02 Gen Aniline & Film Corp Process of producing a master plate for offset printing and the master plate so produced
US3110596A (en) * 1958-08-08 1963-11-12 Azoplate Corp Process for simultaneously developing and fixing printing plates
US2977260A (en) * 1958-10-09 1961-03-28 Ca Atomic Energy Ltd Inhibition of corrosion of aluminum alloys
US3136637A (en) * 1958-11-26 1964-06-09 Minnesota Mining & Mfg Presensitized lithographic light-sensitive sheet construction
US3064562A (en) * 1959-01-12 1962-11-20 Lithoplate Inc Acrylic acid monomer coatings for metal bases
US3030210A (en) * 1959-02-12 1962-04-17 Gen Aniline & Film Corp Treatment of metal surfaces for the manufacture of lithographic plates
US3173787A (en) * 1959-03-24 1965-03-16 Eastman Kodak Co Photosensitive element comprising a hydrophobic support, a hydrophilic layer thereonand a light-sensitive resin overcoat layer and photomechanical processes therewith
US3246984A (en) * 1961-03-09 1966-04-19 Polaroid Corp Photographic processes and products
US3163534A (en) * 1961-03-13 1964-12-29 Harris Intertype Corp Lithographic plate including a hydrophilic barrier layer comprising a silane, an acrylic compound, and an organic metal ester
US3113023A (en) * 1961-07-25 1963-12-03 Polychrome Corp Photosensitive lithographic plate comprising photosensitive diazo resins and method for preparing same
US3246986A (en) * 1961-08-07 1966-04-19 Azoplate Corp Diazo materials for screen process printing
US3259496A (en) * 1962-11-27 1966-07-05 Azoplate Corp Diazo presensitized lithographic printing plate comprising intermediate layer of hydrophilic metal ferrocyanide and process for making
US3298852A (en) * 1963-02-07 1967-01-17 Dick Co Ab Metal offset plate and method for manufacture
US3310404A (en) * 1963-02-18 1967-03-21 Dick Co Ab Offset master preparation and elements
US3952307A (en) * 1963-06-18 1976-04-20 The United States Of America As Represented By The Secretary Of The Air Force Deactivating radar chaff
US3208849A (en) * 1963-06-24 1965-09-28 Sperry Rand Corp Planographic printing plate having a fibrous alumina coating thereon
US3336163A (en) * 1963-09-24 1967-08-15 Olin Mathieson Process for activating aluminum anode
US3417055A (en) * 1964-02-27 1968-12-17 Eastman Kodak Co Process for preparation and separation of light sensitive stabilized diazo resins
US3390992A (en) * 1964-06-15 1968-07-02 North American Rockwell Non-etching circuit fabrication
US3382069A (en) * 1964-06-18 1968-05-07 Azoplate Corp Planographic printing plate
US3419394A (en) * 1964-11-18 1968-12-31 Dick Co Ab Light sensitive lithographic plate of a water soluble diazo compound and a hydrophilic filler material
US3480432A (en) * 1966-01-04 1969-11-25 Scott Paper Co Imaging of lithographic plates by gelatin transfer
JPS5013222B1 (en) * 1969-01-21 1975-05-17
US3894873A (en) * 1972-03-21 1975-07-15 Toray Industries Dry planographic printing plate
US4054094A (en) * 1972-08-25 1977-10-18 E. I. Du Pont De Nemours And Company Laser production of lithographic printing plates
US3960676A (en) * 1972-10-04 1976-06-01 Kansai Paint Company, Ltd. Coating process for aluminum and aluminum alloy
US3945830A (en) * 1972-12-20 1976-03-23 Fuji Photo Film Co., Ltd. Dry pre-sensitized azide and silicone rubber containing planographic plates and methods of preparation
US4207106A (en) * 1973-05-29 1980-06-10 Fuji Photo Film Co., Ltd. Positive working O-quinone diazide photocopying process with organic resin overlayer
US4272605A (en) * 1975-06-09 1981-06-09 Western Litho Plate & Supply Co. Base plate and lithographic plate prepared by sensitization thereof
US4272604A (en) * 1975-06-09 1981-06-09 Western Litho Plate & Supply Co. Base plate and lithographic plate prepared by sensitization thereof
US4172729A (en) * 1976-06-28 1979-10-30 Fuji Photo Film Co., Ltd. Photosensitive diazo lithographic printing plate with oxalic acid as stabilizer
US4148649A (en) * 1977-02-09 1979-04-10 Polychrome Corporation Method for producing lithographic printing plates
FR2388305A1 (en) * 1977-04-18 1978-11-17 Polychrome Corp IMPROVED PROCESSING OF LITHOGRAPHIC PRINTING PLATES BY A MID LAYER
JPS5475670U (en) * 1977-11-08 1979-05-29
US4469778A (en) * 1978-12-01 1984-09-04 Hitachi, Ltd. Pattern formation method utilizing deep UV radiation and bisazide composition
US4414315A (en) * 1979-08-06 1983-11-08 Howard A. Fromson Process for making lithographic printing plate
US4391897A (en) * 1979-10-12 1983-07-05 Howard A. Fromson Diazo lithographic printing plate developing process
FR2480676A1 (en) * 1980-04-16 1981-10-23 Nouel Jean Marie NEW OFFSET STEEL PLATES USING CHROME OXIDE SURFACES
US4410620A (en) * 1980-04-16 1983-10-18 Nouel Jean Marie Offset plates in steel, using surfaces containing chromium oxide
US4427765A (en) 1981-07-06 1984-01-24 Hoechst Aktiengesellschaft Hydrophilic coating of salt-type phosphorus or sulfur polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon
US4427766A (en) 1981-07-06 1984-01-24 Hoechst Aktiengesellschaft Hydrophilic coating of salt type nitrogen polymer on aluminum support materials for offset printing plates and process for manufacture and use with light sensitive layer thereon
US4376814A (en) * 1982-03-18 1983-03-15 American Hoechst Corporation Ceramic deposition on aluminum
US4492616A (en) * 1982-09-01 1985-01-08 Hoechst Aktiengesellschaft Process for treating aluminum oxide layers and use in the manufacture of offset-printing plates
US4483913A (en) * 1983-07-18 1984-11-20 Polychrome Corporation Planographic printing plate
US4552827A (en) * 1983-07-18 1985-11-12 Polychrome Corp. Planographic printing plate having cationic compound in interlayer
US4689272A (en) * 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
US4816333A (en) * 1985-01-25 1989-03-28 Minnesota Mining And Manufacturing Company Silica coating
US4983497A (en) * 1985-10-10 1991-01-08 Eastman Kodak Company Treated anodized aluminum support and lithographic printing plate containing same
US4935332A (en) * 1986-08-16 1990-06-19 Basf Aktiengesellschaft Photosensitive element having an aluminum base and silane intermediate layer
US4842988A (en) * 1986-08-23 1989-06-27 Hoechst Aktiengesellschaft Presensitized waterless planographic printing plate with amorphous silicic acid interlayer and process of making and using
US4842990A (en) * 1986-08-23 1989-06-27 Hoechst Aktiengesellschaft Presensitized negative working waterless planographic printing plate with amorphous silicic acid interlayer and process of making and using
US4777109A (en) * 1987-05-11 1988-10-11 Robert Gumbinner RF plasma treated photosensitive lithographic printing plates
EP0410606A2 (en) 1989-07-12 1991-01-30 Fuji Photo Film Co., Ltd. Siloxane polymers and positive working light-sensitive compositions comprising the same
US5178963A (en) * 1990-07-21 1993-01-12 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5219664A (en) * 1990-07-21 1993-06-15 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5262244A (en) * 1990-07-21 1993-11-16 Hoechst Aktiengesellschaft Hydrophilic copolymers and their use in reprography
US5302460A (en) * 1990-07-21 1994-04-12 Hoechst Aktiengesellschaft Support material for offset-printing plates in the form of a sheet, a foil or a web process for its production and offset-printing plate comprising said material
US5178961A (en) * 1990-07-21 1993-01-12 Hoechst Aktiengesellschaft Thermally crosslinkable hydrophilic copolymers and their use in reprography
US5380612A (en) * 1992-05-18 1995-01-10 Konica Corporation Process for manufacturing planographic printing plate
US5427887A (en) * 1992-08-17 1995-06-27 Konica Corporation Light-sensitive composition
US5364740A (en) * 1992-12-30 1994-11-15 Minnesota Mining And Manufacturing Company Bleaching of dyes in photosensitive systems
EP0689096A1 (en) 1994-06-16 1995-12-27 Eastman Kodak Company Lithographic printing plates utilizing an oleophilic imaging layer
US5563023A (en) * 1994-11-02 1996-10-08 Minnesota Mining And Manufacturing Co. Photoimageable elements
US5597677A (en) * 1994-11-02 1997-01-28 Minnesota Mining And Manufacturing Company Photoimageable elements
EP0772089A2 (en) 1995-10-31 1997-05-07 Minnesota Mining And Manufacturing Company Low optical dot gain color proof composites
US6105500A (en) * 1995-11-24 2000-08-22 Kodak Polychrome Graphics Llc Hydrophilized support for planographic printing plates and its preparation
EP0780730A2 (en) 1995-12-22 1997-06-25 Fuji Photo Film Co., Ltd. Positive-type light-sensitive lithographic printing plate
EP0799717A1 (en) * 1996-04-03 1997-10-08 Agfa-Gevaert N.V. A method for preparing a hydrophilic surface of a lithographic aluminum base for lithographic printing plates
US5747217A (en) * 1996-04-03 1998-05-05 Minnesota Mining And Manufacturing Company Laser-induced mass transfer imaging materials and methods utilizing colorless sublimable compounds
US5691098A (en) * 1996-04-03 1997-11-25 Minnesota Mining And Manufacturing Company Laser-Induced mass transfer imaging materials utilizing diazo compounds
US6182571B1 (en) 1996-11-21 2001-02-06 Kodak Polcyhrome Graphics Llc Planographic printing
US5846685A (en) * 1997-01-31 1998-12-08 Kodak Polychrome Graphics, Llc Radiation sensitive diazo sulfo-acrylic adducts and method for producing a printing plate
US6138568A (en) * 1997-02-07 2000-10-31 Kodak Polcyhrome Graphics Llc Planographic printing member and process for its manufacture
US6427596B1 (en) * 1997-05-23 2002-08-06 Kodak Polychrome Graphics, Llc Method for making corrections on planographic printing plates
US6357351B1 (en) 1997-05-23 2002-03-19 Kodak Polychrome Graphics Llc Substrate for planographic printing
US6014929A (en) * 1998-03-09 2000-01-18 Teng; Gary Ganghui Lithographic printing plates having a thin releasable interlayer overlying a rough substrate
EP1314552A2 (en) 1998-04-06 2003-05-28 Fuji Photo Film Co., Ltd. Photosensitive resin composition
EP1872943A2 (en) 1999-05-21 2008-01-02 FUJIFILM Corporation Photosensitive composition and planographic printing plate base using same
US6418850B2 (en) 1999-08-17 2002-07-16 Kodak Polychrome Graphics Llc Hydrophilized substrate for planographic printing
US6293197B1 (en) 1999-08-17 2001-09-25 Kodak Polychrome Graphics Hydrophilized substrate for planographic printing
US6627380B2 (en) 2000-05-23 2003-09-30 Dainippon Ink And Chemicals, Inc. Photosensitive composition, original plate using the same for lithographic printing, and method for producing images on original plate
US6458511B1 (en) 2000-06-07 2002-10-01 Kodak Polychrome Graphics Llc Thermally imageable positive-working lithographic printing plate precursor and method for imaging
US6270938B1 (en) 2000-06-09 2001-08-07 Kodak Polychrome Graphics Llc Acetal copolymers and use thereof in photosensitive compositions
EP2381312A2 (en) 2000-08-25 2011-10-26 Fujifilm Corporation Alkaline liquid developer for lithographic printing plate and method for preparing lithographic printing plate
EP1203659A2 (en) 2000-10-03 2002-05-08 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP2036721A1 (en) 2000-11-30 2009-03-18 FUJIFILM Corporation Planographic printing plate precursor
US6843175B2 (en) 2001-04-20 2005-01-18 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
EP1251014A2 (en) 2001-04-20 2002-10-23 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
US6808857B2 (en) 2001-05-21 2004-10-26 Kodak Polychrome Graphics Llc Negative-working photosensitive composition and negative-working photosensitive lithographic printing plate
EP1356929A2 (en) 2002-04-24 2003-10-29 Fuji Photo Film Co., Ltd. Method of preparation of lithographic printing plates
EP1925447A1 (en) 2002-09-17 2008-05-28 FUJIFILM Corporation Image forming material
EP2354854A1 (en) 2002-09-20 2011-08-10 FUJIFILM Corporation Method of making lithographic printing plate
US6794107B2 (en) 2002-10-28 2004-09-21 Kodak Polychrome Graphics Llc Thermal generation of a mask for flexography
EP2093055A1 (en) 2003-03-26 2009-08-26 Fujifilm Corporation Lithographic printing method and presensitized plate
EP2295247A1 (en) 2003-07-07 2011-03-16 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
EP3284599A1 (en) 2004-01-09 2018-02-21 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method using the same
EP2246741A1 (en) 2004-05-19 2010-11-03 Fujifilm Corporation Image recording method
EP2618215A1 (en) 2004-05-31 2013-07-24 Fujifilm Corporation Method for producing a lithographic printing plate
EP1602982A2 (en) 2004-05-31 2005-12-07 Fuji Photo Film Co., Ltd. method of producing a lithographic printing plate and planographic printing method
EP1614537A1 (en) 2004-07-07 2006-01-11 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1619023A2 (en) 2004-07-20 2006-01-25 Fuji Photo Film Co., Ltd. Image forming material
EP1621338A1 (en) 2004-07-27 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1621341A2 (en) 2004-07-30 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1627732A1 (en) 2004-08-18 2006-02-22 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1630618A2 (en) 2004-08-24 2006-03-01 Fuji Photo Film Co., Ltd. Production method of lithographic printing plate, lithographic printing plate precursor and lithographic printing method
EP1637324A2 (en) 2004-08-26 2006-03-22 Fuji Photo Film Co., Ltd. Color image-forming material and lithographic printing plate precursor
EP3182204A1 (en) 2004-09-10 2017-06-21 FUJIFILM Corporation Planographic printing plate precursor using a polymerizable composition
EP2109000A1 (en) 2004-09-10 2009-10-14 FUJIFILM Corporation Polymer having polymerizable group, polymerizable composition, planographic printing plate precursor, and planographic printing method using the same
EP1640173A1 (en) 2004-09-27 2006-03-29 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1669195A1 (en) 2004-12-13 2006-06-14 Fuji Photo Film Co., Ltd. Lithographic printing method
EP1685957A2 (en) 2005-01-26 2006-08-02 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor, lithographic printing method and packaged body of lithographic printing plate precursors
EP1690685A2 (en) 2005-02-09 2006-08-16 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP3086176A1 (en) 2005-02-28 2016-10-26 Fujifilm Corporation A lithographic printing method
EP3086177A1 (en) 2005-02-28 2016-10-26 Fujifilm Corporation Method for preparing a lithographic printing place precursor
EP1700890A2 (en) 2005-03-08 2006-09-13 Fuji Photo Film Co., Ltd. Ink composition, inkjet recording method, printed material, method of producing planographic printing plate, and planographic printing plate
EP1705004A1 (en) 2005-03-22 2006-09-27 Fuji Photo Film Co., Ltd. Planographic printing plate precursor
EP1710627A1 (en) 2005-03-28 2006-10-11 Fuji Photo Film Co., Ltd. Photosensitive lithographic printing plate
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP1728805A1 (en) 2005-05-31 2006-12-06 Fuji Photo Film Co., Ltd. Aspherical-polymer fine particles and production method thereof, and method for producing lithographic printing plate, ink composition and electrophoretic particle composition
EP1728838A1 (en) 2005-05-31 2006-12-06 Fuji Photo Film Co., Ltd. Ink composition for ink jet-recording and method for preparing lithographic printing plate using the same
EP2108999A1 (en) 2005-07-25 2009-10-14 Fujifilm Corporation Method for preparation of lithographic printing plate and lithographic printing plate precursor
EP1754758A2 (en) 2005-08-17 2007-02-21 Fuji Photo Film Co., Ltd. Ink composition comprising an onium salt and a cationically polymerisable compound, inkjet recording method, printed material, process for producing lithographic printing plate, and lithographic printing plate
EP1755002A2 (en) 2005-08-18 2007-02-21 Fuji Photo Film Co., Ltd. Manufacturing method of lithographic printing plate and manufacturing apparatus of lithographic printing plate
EP2306246A1 (en) 2005-08-18 2011-04-06 Fujifilm Corporation Manufacturing method of lithographic printing plate
EP1754597A2 (en) 2005-08-19 2007-02-21 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing process
EP1757635A1 (en) 2005-08-23 2007-02-28 Fuji Photo Film Co., Ltd. Curable modified oxetane compound and ink composition comprising it
EP1762599A1 (en) 2005-09-07 2007-03-14 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, process for producing lithographic plate, and lithographic printing plate
EP2103639A1 (en) 2005-11-04 2009-09-23 Fujifilm Corporation Curable polycyclic epoxy composition, ink composition and inkjet recording method therewith
EP2383314A1 (en) 2005-12-28 2011-11-02 Fujifilm Corporation Ink composition, inkjet recording method, printed material, method for producing planographic printing plate, and planographic printing plate
US20080032121A1 (en) * 2006-06-30 2008-02-07 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Silicate treatment of sealed anodized aluminum
US7851025B2 (en) 2006-06-30 2010-12-14 Henkel Ag & Co. Kgaa Silicate treatment of sealed anodized aluminum
EP1975213A1 (en) 2006-07-03 2008-10-01 FUJIFILM Corporation Ink composition, injet recording method, printed material, and process for producing lithographic printing plate
EP1939687A2 (en) 2006-12-26 2008-07-02 FUJIFILM Corporation Polymerizable composition, lithographic printing plate precursor and lithographic printing method
EP2503393A1 (en) 2006-12-28 2012-09-26 Fujifilm Corporation Method for preparation of lithographic printing plate
EP2662729A1 (en) 2006-12-28 2013-11-13 Fujifilm Corporation Method for preparation of lithographic printing plate
EP1939692A2 (en) 2006-12-28 2008-07-02 FUJIFILM Corporation Method for preparation of lithographic printing plate
EP1947514A2 (en) 2007-01-17 2008-07-23 FUJIFILM Corporation Method for preparation of lithographic printing plate
EP2447779A1 (en) 2007-01-17 2012-05-02 Fujifilm Corporation Method for preparation of lithographic printing plate
EP2447780A1 (en) 2007-01-17 2012-05-02 Fujifilm Corporation Method for preparation of lithographic printing plate
EP1952982A1 (en) 2007-02-02 2008-08-06 FUJIFILM Corporation Radiation-curable polymerizable composition, ink composition, inkjet recording method, printed material, planographic printing plate, and method for forming planographic printing plate
EP2592475A1 (en) 2007-02-06 2013-05-15 Fujifilm Corporation Photosensitive composition, lithographic printing plate precursor, lithographic printing method, and novel cyanine dyes
EP1956428A2 (en) 2007-02-06 2008-08-13 FUJIFILM Corporation Photosensitive composition, lithographic printing plate precursor, lithographic printing method, and cyanine dyes
EP1964894A2 (en) 2007-02-27 2008-09-03 FUJIFILM Corporation Ink composition, inkjetrecording method, printed material, method for producing planographic printing plate, and planographic printing plate
EP1988136A1 (en) 2007-03-01 2008-11-05 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, method for producing planographic printing plate, and planographic printing plate
EP1972438A1 (en) 2007-03-20 2008-09-24 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP1973000A2 (en) 2007-03-22 2008-09-24 FUJIFILM Corporation Dipping-type automatic developing apparatus and method for lithographic printing plates
EP1972440A2 (en) 2007-03-23 2008-09-24 FUJIFILM Corporation Negative lithographic printing plate precursor and lithographic printing method using the same
EP1974914A2 (en) 2007-03-29 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP1975706A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor
EP1975708A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Lithographic printing plate precursor
EP1975212A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Ink composition, inkjet recording method, printed material, planographic printing plate, and method for forming planographic printing plate
EP1975710A2 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Plate-making method of lithographic printing plate precursor
EP1992482A2 (en) 2007-05-18 2008-11-19 FUJIFILM Corporation Planographic printing plate precursor and printing method using the same
EP2006738A2 (en) 2007-06-21 2008-12-24 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
EP2006091A2 (en) 2007-06-22 2008-12-24 FUJIFILM Corporation Lithographic printing plate precursor and plate making method
EP2011643A2 (en) 2007-07-02 2009-01-07 FUJIFILM Corporation Planographic printing plate precursor and printing method using the same
EP2048000A2 (en) 2007-09-18 2009-04-15 FUJIFILM Corporation Plate making method of lithographic printing plate precursor
EP2042308A2 (en) 2007-09-27 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2042310A2 (en) 2007-09-27 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2045662A2 (en) 2007-09-28 2009-04-08 FUJIFILM Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP2042924A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Method for preparing lithographic printing plate
EP2042305A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Planographic printing plate precursor
EP2042312A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Processing method of lithographic printing plate precursor
EP2042311A1 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method
EP2042923A2 (en) 2007-09-28 2009-04-01 FUJIFILM Corporation Image-forming method and lithographic printing plate precursor
EP3021167A1 (en) 2007-09-28 2016-05-18 Fujifilm Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate
EP2380737A1 (en) 2007-10-29 2011-10-26 Fujifilm Corporation Lithographic printing plate precursor
EP2055476A2 (en) 2007-10-29 2009-05-06 FUJIFILM Corporation Lithographic printing plate precursor
EP2070696A1 (en) 2007-12-10 2009-06-17 FUJIFILM Corporation Method of preparing lithographic printing plate and lithographic printing plate precursor
EP2078985A1 (en) 2008-01-09 2009-07-15 Fujifilm Corporation Method for developing lithographic printing plate
EP2078984A1 (en) 2008-01-11 2009-07-15 Fujifilm Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method
EP2082875A1 (en) 2008-01-22 2009-07-29 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
WO2009093688A1 (en) 2008-01-25 2009-07-30 Fujifilm Corporation Hydrophilic composition having mildewproofing effect and hydrophilic member
WO2009096531A1 (en) 2008-02-01 2009-08-06 Fujifilm Corporation Hydrophilic members
EP2090933A1 (en) 2008-02-05 2009-08-19 FUJIFILM Corporation Lithographic printing plate precursor and printing method
EP2088468A1 (en) 2008-02-06 2009-08-12 FUJIFILM Corporation Method of preparing lithographic printing plate and lithographic printing plate precursor
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
EP2101218A1 (en) 2008-03-10 2009-09-16 FUJIFILM Corporation Method for preparing lithographic printing plate and lithographic printing plate precursor
EP2100731A2 (en) 2008-03-11 2009-09-16 Fujifilm Corporation Lithographic printing plate precursor and method of lithographic printing
EP2103993A1 (en) 2008-03-21 2009-09-23 FUJIFILM Corporation Automatic processing for making lithographic printing plate
EP2103994A1 (en) 2008-03-21 2009-09-23 FUJIFILM Corporation Automatic processing apparatus for making lithographic printing plate
EP2105297A1 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Planographic printing plate precursor and plate making method using the same
EP2105797A1 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Lithographic printing plate precursor
EP2105800A2 (en) 2008-03-25 2009-09-30 FUJIFILM Corporation Processing solution for preparing lithographic printing plate and processing method of lithographic printing plate precursor
WO2009119827A1 (en) 2008-03-27 2009-10-01 富士フイルム株式会社 Original plate for lithographic printing plate, and method for production of lithographic printing plate using the same
EP2112555A2 (en) 2008-03-27 2009-10-28 FUJIFILM Corporation Lithographic printing plate precursor
EP2105298A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
EP2105796A1 (en) 2008-03-28 2009-09-30 FUJIFILM Corporation Plate-making method of lithographic printing plate
EP2107422A1 (en) 2008-03-31 2009-10-07 FUJIFILM Corporation Method for preparing lithographic printing plate
EP2106907A2 (en) 2008-04-02 2009-10-07 FUJIFILM Corporation Planographic printing plate precursor
EP2110261A2 (en) 2008-04-18 2009-10-21 FUJIFILM Corporation Aluminum alloy plate for lithographic printing plate, ligthographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
EP2145772A2 (en) 2008-07-16 2010-01-20 FUJIFILM Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate, lithographic printing plate support and presensitized plate
EP2177357A2 (en) 2008-08-29 2010-04-21 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
EP2161129A2 (en) 2008-09-09 2010-03-10 Fujifilm Corporation Photosensitive lithographic printing plate precursor for infrared laser
EP2163949A1 (en) 2008-09-12 2010-03-17 FUJIFILM Corporation Developer for lithographic printing plate precursor and process for producing lithographic printing plate
EP2166411A2 (en) 2008-09-18 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor, process for producing lithographic printing plate, and lithographic printing plate
EP2165829A1 (en) 2008-09-22 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2165830A1 (en) 2008-09-22 2010-03-24 Fujifilm Corporation Lithographic printing plate precursor and printing method using the same
WO2010035697A1 (en) 2008-09-24 2010-04-01 富士フイルム株式会社 Process for producing lithographic printing plate
EP2168767A1 (en) 2008-09-24 2010-03-31 Fujifilm Corporation Method of preparing lithographic printing plate
EP2168765A2 (en) 2008-09-25 2010-03-31 FUJIFILM Corporation Lithographic printing plate precursor and process for producing lithographic printing plate
EP2168766A1 (en) 2008-09-26 2010-03-31 FUJIFILM Corporation Process for making lithographic printing plate
WO2010038795A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Lithographic printing original plate, method for producing lithographic printing plate, and polymerizable monomer
WO2010061869A1 (en) 2008-11-26 2010-06-03 富士フイルム株式会社 Method for manufacturing lithographic printing plate, developer for original lithographic printing plate, and replenisher for developing original lithographic printing plate
WO2010072157A1 (en) 2008-12-24 2010-07-01 Chengdu Xingraphics Co., Ltd. Thermosensitive imaging composition and lithographic plate comprising the same
EP2223804A2 (en) 2009-02-26 2010-09-01 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2236292A2 (en) 2009-03-30 2010-10-06 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2236291A1 (en) 2009-03-30 2010-10-06 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2239138A2 (en) 2009-03-30 2010-10-13 FUJIFILM Corporation Lithographic printing plate precursor and plate making method thereof
EP2236293A2 (en) 2009-03-31 2010-10-06 FUJIFILM Corporation Lithographic printing plate precursor
WO2011030645A1 (en) 2009-09-14 2011-03-17 富士フイルム株式会社 Photopolymerizable composition, color filter, method for producing same, solid-state image pickup element, liquid crystal display device, lithographic printing original plate, and novel compound
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011036923A1 (en) 2009-09-25 2011-03-31 富士フイルム株式会社 Method for processing waste solution in plate-making process of photosensitive lithographic printing plate
EP2301760A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing aluminum substrate for planographic printing plate and method of recycling planographic printing plate
WO2011040114A1 (en) 2009-09-29 2011-04-07 富士フイルム株式会社 Method for producing planographic printing plate precursor
WO2011045423A1 (en) 2009-10-16 2011-04-21 Henkel Ag & Co. Kgaa Multi-step method for producing alkali-resistant anodized aluminum surfaces
DE102009045762A1 (en) 2009-10-16 2011-04-21 Henkel Ag & Co. Kgaa Multi-stage process for the production of alkali-resistant anodized aluminum surfaces
EP2339400A2 (en) 2009-12-25 2011-06-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2011081064A1 (en) 2009-12-28 2011-07-07 富士フイルム株式会社 Support for planographic printing plate, method for producing support for planographic printing plate, and planographic printing original plate
EP2353882A1 (en) 2010-01-29 2011-08-10 Fujifilm Corporation Lithographic printing plate support, method of manufacturing the same and presensitized plate
EP2363748A1 (en) 2010-02-12 2011-09-07 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2357530A2 (en) 2010-02-17 2011-08-17 Fujifilm Corporation Method for producing a planographic printing plate
WO2011102485A1 (en) 2010-02-19 2011-08-25 富士フイルム株式会社 Process for making lithographic printing plate
EP2365389A1 (en) 2010-03-08 2011-09-14 Fujifilm Corporation Positive-working lithographic printing plate precursor for infrared laser and process for making lithographic printing plate
EP2366546A2 (en) 2010-03-18 2011-09-21 FUJIFILM Corporation Process for making lithographic printing plate and lithographic printing plate
WO2011115125A1 (en) 2010-03-19 2011-09-22 富士フイルム株式会社 Color developing photosensitive composition, lithographic printing original plate, and method for producing same
WO2011118457A1 (en) 2010-03-26 2011-09-29 富士フイルム株式会社 Master planographic printing plate and manufacturing method therefor
WO2011118456A1 (en) 2010-03-26 2011-09-29 富士フイルム株式会社 Planographic printing master plate and production method therefor
WO2011122378A1 (en) 2010-03-30 2011-10-06 富士フイルム株式会社 Method for producing lithographic printing plate
EP2383612A1 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2383118A2 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound
EP2383125A1 (en) 2010-04-30 2011-11-02 Fujifilm Corporation Lithographic printing plate support and presensitized plate
EP2447085A2 (en) 2010-07-23 2012-05-02 Fujifilm Corporation Lithographic printing plate support and presensitized plate
WO2012026265A1 (en) 2010-08-27 2012-03-01 富士フイルム株式会社 Master planographic printing plate for on-press development, and plate-making method using said master planographic printing plate
EP2423748A1 (en) 2010-08-31 2012-02-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
EP2441783A1 (en) 2010-09-24 2012-04-18 FUJIFILM Corporation Polymerizable composition and lithographic printing plate precursor including the same, and lithographic printing method
EP2471655A2 (en) 2010-12-28 2012-07-04 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
EP2471654A2 (en) 2010-12-28 2012-07-04 Fujifilm Corporation Lithographic printing plate precursor, plate making method thereof and lithographic printing method thereof
EP2481604A1 (en) 2011-01-31 2012-08-01 Fujifilm Corporation Lithographic printing plate support and presensitized plate
EP2594408A1 (en) 2011-01-31 2013-05-22 Fujifilm Corporation Lithographic printing plate support and presentsitized plate
WO2012115124A1 (en) 2011-02-24 2012-08-30 富士フイルム株式会社 Process of producing lithographic printing plate
EP2990873A1 (en) 2011-02-24 2016-03-02 Fujifilm Corporation Process for making lithographic printing plate
EP2492751A1 (en) 2011-02-28 2012-08-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2012165060A1 (en) 2011-05-31 2012-12-06 富士フイルム株式会社 Presensitized plate for lithographic printing and method for processing same
EP2565714A1 (en) 2011-08-31 2013-03-06 Fujifilm Corporation Lithographic printing plate precursor and method of preparing lithographic printing plate using the same
WO2013039235A1 (en) 2011-09-15 2013-03-21 富士フイルム株式会社 Method for recycling wastewater produced by plate-making process
WO2013046856A1 (en) 2011-09-28 2013-04-04 富士フイルム株式会社 Method for producing lithographic printing plate
WO2013046877A1 (en) 2011-09-30 2013-04-04 富士フイルム株式会社 Printing method using on press development lithograph printing plate precursor
WO2013111652A1 (en) 2012-01-24 2013-08-01 富士フイルム株式会社 Lithographic printing plate support, lithographic printing plate support manufacturing method and lithographic printing plate master
WO2013125323A1 (en) 2012-02-23 2013-08-29 富士フイルム株式会社 Chromogenic composition, chromogenic curable composition, lithographic printing plate precursor, platemaking method, and chromogenic compound
EP2641738A2 (en) 2012-03-23 2013-09-25 Fujifilm Corporation Method of producing planographic printing plate and planographic printing plate
EP2644380A2 (en) 2012-03-27 2013-10-02 Fujifilm Corporation Lithographic printing plate precursor
EP2644378A1 (en) 2012-03-30 2013-10-02 Fujifilm Corporation Method of making planographic printing plate and planographic printing plate
EP2644379A1 (en) 2012-03-30 2013-10-02 FUJIFILM Corporation Method of producing a planographic printing plate
WO2014002835A1 (en) 2012-06-29 2014-01-03 富士フイルム株式会社 Method for concentrating processing waste liquid and method for recycling processing waste liquid
WO2014017640A1 (en) 2012-07-27 2014-01-30 富士フイルム株式会社 Support for lithographic printing plate and manufacturing method therefor, as well as original lithographic printing plate
EP2690495A1 (en) 2012-07-27 2014-01-29 Fujifilm Corporation Lithographic printing plate precursor and plate making method thereof
WO2014045783A1 (en) 2012-09-20 2014-03-27 富士フイルム株式会社 Original planographic printing plate, and plate making method
WO2014050435A1 (en) 2012-09-26 2014-04-03 富士フイルム株式会社 Lithographic printing original plate and plate making method
WO2014050359A1 (en) 2012-09-26 2014-04-03 富士フイルム株式会社 Lithographic presensitized plate and method for making lithographic printing plate
WO2014132721A1 (en) 2013-02-27 2014-09-04 富士フイルム株式会社 Infrared-sensitive chromogenic composition, infrared-curable chromogenic composition, lithographic printing plate precursor, and plate formation method
WO2014141781A1 (en) 2013-03-14 2014-09-18 富士フイルム株式会社 Concentrating method for platemaking waste fluid and recycling method
WO2015115598A1 (en) 2014-01-31 2015-08-06 富士フイルム株式会社 Infrared-sensitive color developing composition, lithographic printing original plate, plate making method for lithographic printing plate, and infrared-sensitive color developer
WO2015119089A1 (en) 2014-02-04 2015-08-13 富士フイルム株式会社 Lithographic printing plate precursor, manufacturing method therefor, plate manufacturing method for lithographic printing plate, and printing method
EP3489026A1 (en) 2014-02-04 2019-05-29 FUJIFILM Corporation Lithographic printing plate precursor
EP3656576A1 (en) 2015-01-29 2020-05-27 Fujifilm Corporation Lithographic printing plate precursor and method of producing same
WO2016174122A1 (en) 2015-04-30 2016-11-03 Henkel Ag & Co. Kgaa Method for sealing oxide protective layers on metal substrates
DE102015208076A1 (en) 2015-04-30 2016-11-03 Henkel Ag & Co. Kgaa Method for sealing oxidic protective layers on metal substrates
WO2018092661A1 (en) 2016-11-16 2018-05-24 富士フイルム株式会社 Radiation sensitive composition, original plate for lithographic printing plate, and method of manufacturing lithographic printing plate
WO2018159640A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Curable composition, lithographic printing plate precursor, method for preparing lithographic printing plate, and compound
WO2018159626A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Curable composition, lithographic printing plate precursor, and method for preparing lithographic printing plate
EP3879346A1 (en) 2017-02-28 2021-09-15 FUJIFILM Corporation Method for producing lithographic printing plate
WO2018159087A1 (en) 2017-02-28 2018-09-07 富士フイルム株式会社 Method for creating planographic printing plate
EP3838594A1 (en) 2017-03-31 2021-06-23 FUJIFILM Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
EP3854591A1 (en) 2017-03-31 2021-07-28 FUJIFILM Corporation Lithographic printing plate precursor and lithographic printing method
EP4275910A2 (en) 2017-03-31 2023-11-15 FUJIFILM Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
WO2018221618A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate original plate, and method for producing lithographic printing plate
WO2018221133A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate precursor, production method for lithographic printing plate, polymer particles, and composition
WO2018221134A1 (en) 2017-05-31 2018-12-06 富士フイルム株式会社 Lithographic printing plate precursor, resin composition for producing lithographic printing plate precursor, and production method for lithographic printing plate
WO2018230412A1 (en) 2017-06-12 2018-12-20 富士フイルム株式会社 Lithography original plate, platemaking method for lithography plate, organic polymer particles, and photosensitive resin composition
WO2019004471A1 (en) 2017-06-30 2019-01-03 富士フイルム株式会社 Lithographic printing original plate and method for producing lithographic printing plate
WO2019013268A1 (en) 2017-07-13 2019-01-17 富士フイルム株式会社 Lithographic printing plate original plate, and method for producing lithographic printing plate
WO2019021828A1 (en) 2017-07-25 2019-01-31 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate, and chromogenic composition
WO2019039074A1 (en) 2017-08-25 2019-02-28 富士フイルム株式会社 Negative lithographic printing original plate and method for making lithographic printing plate
WO2019044087A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, and printing method
WO2019045084A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Printing plate and printing plate laminate body
WO2019044566A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Lithographic printing plate original plate, method for fabricating lithographic printing plate, and lithographic printing method
WO2019044483A1 (en) 2017-08-31 2019-03-07 富士フイルム株式会社 Lithographic printing original plate and method for producing lithographic printing plate
WO2019064974A1 (en) 2017-09-29 2019-04-04 富士フイルム株式会社 Lithographic printing plate precursor and lithographic printing plate fabrication method
WO2019087516A1 (en) 2017-10-31 2019-05-09 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support body
WO2019151361A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Planographic printing plate precursor, and production method for planographic printing plate
EP3960456A1 (en) 2018-01-31 2022-03-02 FUJIFILM Corporation Lithographic printing plate precursor and method of producing lithographic printing plate
WO2019150788A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Lithographic plate original plate, and method for producing lithographic plate
WO2019151163A1 (en) 2018-01-31 2019-08-08 富士フイルム株式会社 Lithographic plate original plate, and method for producing lithographic plate
WO2020026956A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Original plate for planographic printing plate, laminate of original plate for planographic printing plate, method for platemaking planographic printing plate, and planographic printing method
WO2020026957A1 (en) 2018-07-31 2020-02-06 富士フイルム株式会社 Planographic printing plate original plate, planographic printing plate original plate laminate body, platemaking method for planographic printing plate, and planographic printing method
WO2020045586A1 (en) 2018-08-31 2020-03-05 富士フイルム株式会社 Planographic printing original plate, method for producing planographic printing plate, planographic printing method and curable composition
WO2020067373A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Original plate for printing, laminate of original plate for printing, method for platemaking printing plate, and printing method
WO2020067374A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Original plate for printing, laminate of original plate for printing, method for manufacturing printing plate, and printing method
WO2020090996A1 (en) 2018-10-31 2020-05-07 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate and lithographic printing method
WO2020090995A1 (en) 2018-10-31 2020-05-07 富士フイルム株式会社 Lithographic printing plate original plate, method for producing lithographic printing plate and lithographic printing method
WO2020158288A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate precursor, method for manufacturing lithographic printing plate, and lithographic printing method
WO2020158139A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate precursor, method for manufacturing lithographic printing plate, and lithographic printing method
WO2020158287A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Lithographic printing plate original plate, method for fabricating lithographic printing plate, and lithographic printing method
WO2020262691A1 (en) 2019-06-28 2020-12-30 富士フイルム株式会社 On-press development type lithographic printing original plate, method for producing lithographic printing plate, and lithographic printing method
WO2020262692A1 (en) 2019-06-28 2020-12-30 富士フイルム株式会社 Original plate for on-press development type lithographic printing plate, method for fabricating lithographic printing plate, and lithographic printing method
EP4349602A2 (en) 2019-06-28 2024-04-10 FUJIFILM Corporation Original plate for on-press development type lithographic printing plate, method for fabricating lithographic printing plate, and lithographic printing method
WO2021132647A1 (en) 2019-12-27 2021-07-01 富士フイルム株式会社 Original plate for lithographic printing, method for manufacturing lithographic printing plate, and printing method
WO2022138880A1 (en) 2020-12-25 2022-06-30 富士フイルム株式会社 Laminate of negative lithographic printing plate original plate and method for manufacturing negative lithographic printing plate
WO2022138710A1 (en) 2020-12-25 2022-06-30 富士フイルム株式会社 Original plate for planographic printing plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support
WO2023032992A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Lithographic printing plate support, lithographic printing plate precursor, and method for producing lithographic printing plate
WO2023032868A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 On-machine development-type lithographic printing plate precursor and method for manufacturing printing plate
EP4245542A1 (en) 2022-03-18 2023-09-20 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate, and lithographic printing method
EP4360880A1 (en) 2022-10-25 2024-05-01 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing a lithographic printing plate, and lithographic printing method

Also Published As

Publication number Publication date
DE1091433B (en) 1960-10-20
GB718525A (en) 1954-11-17
US3136636A (en) 1964-06-09
CH357974A (en) 1961-10-31
BE507657A (en)
DE907147C (en) 1954-03-22
FR1051461A (en) 1954-01-15
CH309940A (en) 1955-09-30
BE540601A (en)
GB815471A (en) 1959-06-24
FR69770E (en) 1958-12-30

Similar Documents

Publication Publication Date Title
US2714066A (en) Planographic printing plate
US3313626A (en) Process of making a lithographic printing plate
US3211553A (en) Presensitized positive-acting diazotype printing plate
US3181461A (en) Photographic plate
US4063507A (en) Process for burning in planographic printing plates
US2835576A (en) Light-sensitive polyvalent metal alginate photolithographic element
CA1090189A (en) Lithographic plate finisher comprising a solvent phase and an aqueous phase containing tapioca dextrin
US3085008A (en) Positively-acting diazo planographic printing plate
US3479182A (en) Lithographic plates
US3278958A (en) Method of imaging a photolithographic plate and elements for use in the preparation of same
JPS5839495A (en) Lithographic plate
US2132443A (en) Planographic plate and method
US3615442A (en) Metal printing plate and method for preparation of same
US2772160A (en) Light-detached resists or reliefs for printing plates
US3511656A (en) Single sheet lithographic dtr master and method of use
US3010391A (en) Light-sensitive sheets and process for producing transfer images
US2311888A (en) Light-sensitive element
US3634086A (en) Solvent development of light-sensitive diazo layers
US2312854A (en) Light-sensitive element
JPS58196548A (en) Lithographic printing plate
US3552315A (en) Offset master for imaging by diffusion transfer with nucleating agent, cadium salt and a salt of zirconium, thorium or titanium
US2751294A (en) Photographic method of obtaining a film transparency
US3933499A (en) Printing plate comprising diazo-borofluoride and diazo resin layers
US3148984A (en) Presensitized diazo lithographic printing plates comprising a hydrophilic phosphate glass and fluoride layer
US2374070A (en) Plate and method of preparing the same for offset printing