US20110168089A1 - Cnt-infused carbon fiber materials and process therefor - Google Patents

Cnt-infused carbon fiber materials and process therefor Download PDF

Info

Publication number
US20110168089A1
US20110168089A1 US12/714,381 US71438110A US2011168089A1 US 20110168089 A1 US20110168089 A1 US 20110168089A1 US 71438110 A US71438110 A US 71438110A US 2011168089 A1 US2011168089 A1 US 2011168089A1
Authority
US
United States
Prior art keywords
carbon fiber
cnt
fiber material
station
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/714,381
Inventor
Tushar K. Shah
Slade H. Gardner
Mark R. Alberding
Harry C. Malecki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanostructured Solutions LLC
Original Assignee
Lockheed Martin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/619,327 external-priority patent/US8158217B2/en
Application filed by Lockheed Martin Corp filed Critical Lockheed Martin Corp
Priority to US12/714,381 priority Critical patent/US20110168089A1/en
Assigned to APPLIED NANOSTRUCTURED SOLUTIONS, LLC reassignment APPLIED NANOSTRUCTURED SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOCKHEED MARTIN CORPORATION
Assigned to LOCKHEED MARTIN CORPORATION reassignment LOCKHEED MARTIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBERDING, MARK R., SHAH, TUSHAR K., MALECKI, HARRY C., GARDNER, SLADE H.
Assigned to APPLIED NANOSTRUCTURED SOLUTIONS, LLC reassignment APPLIED NANOSTRUCTURED SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOCKHEED MARTIN CORPORATION
Publication of US20110168089A1 publication Critical patent/US20110168089A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/18Treating with particulate, semi-solid, or solid substances, e.g. wax
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249948Fiber is precoated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3049Including strand precoated with other than free metal or alloy
    • Y10T442/3057Multiple coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy
    • Y10T442/605Strand or fiber material is inorganic

Definitions

  • the present invention relates to fiber materials, more specifically to carbon fiber materials modified with carbon nanotubes.
  • Fiber materials are used for many different applications in a wide variety of industries, such as the commercial aviation, recreation, industrial and transportation industries. Commonly-used fiber materials for these and other applications include carbon fiber, cellulosic fiber, glass fiber, metal fiber, ceramic fiber and aramid fiber, for example.
  • Carbon fiber is routinely manufactured with sizing agents to protect the material from environmental degradation. Additionally, other physical stresses can compromise carbon fiber integrity such as compressive forces and self abrasion. Many sizing formulations used to protect carbon fibers against these vulnerabilities are proprietary in nature and are designed to interface with specific resin types. To realize the benefit of carbon fiber material properties in a composite, there must be a good interface between the carbon fibers and the matrix. The sizing employed on a carbon fiber can provide a physico-chemical link between fiber and the resin matrix and thus affects the mechanical and chemical properties of the composite.
  • embodiments disclosed here relate to a composition that includes a carbon nanotube (CNT)-infused carbon fiber material.
  • the CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material.
  • the infused CNTs are uniform in length and uniform in distribution.
  • the CNT-infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating.
  • embodiments disclosed herein relatet to a continuous CNT infusion process that includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
  • FIG. 1 shows a transmission electron microscope (TEM) image of a multi-walled CNT (MWNT) grown on AS4 carbon fiber via a continuous CVD process.
  • TEM transmission electron microscope
  • FIG. 2 shows a TEM image of a double-walled CNT (DWNT) grown on AS4 carbon fiber via a continuous CVD process.
  • DWNT double-walled CNT
  • FIG. 3 shows a scanning electron microscope (SEM) image of CNTs growing from within the barrier coating where the CNT-forming nanoparticle catalyst was mechanically infused to the carbon fiber material surface.
  • FIG. 4 shows a SEM image demonstrating the consistency in length distribution of CNTs grown on a carbon fiber material to within 20% of a targeted length of about 40 microns.
  • FIG. 5 shows an SEM image demonstrating the effect of a barrier coating on CNT growth. Dense, well aligned CNTs grew where barrier coating was applied and no CNTs grew where barrier coating was absent.
  • FIG. 6 shows a low magnification SEM of CNTs on carbon fiber demonstrating the uniformity of CNT density across the fibers within about 10%.
  • FIG. 7 shows a process for producing CNT-infused carbon fiber material in accordance with the illustrative embodiment of the present invention.
  • FIG. 8 shows how a carbon fiber material can be infused with CNTs in a continuous process to target thermal and electrical conductivity improvements.
  • FIG. 9 shows how carbon fiber material can be infused with CNTs in a continuous process using a “reverse” barrier coating process to target improvements in mechanical properties, especially interfacial characteristics such as shear strength.
  • FIG. 10 shows how carbon fiber material can be infused with CNTs in another continuous process using a “hybrid” barrier coating to target improvements in mechanical properties, especially interfacial characteristics such as shear strength and interlaminar fracture toughness.
  • FIG. 11 shows the effect of infused CNTs on IM7 carbon fiber on interlaminar fracture toughness.
  • the baseline material is an unsized IM7 carbon fiber
  • the CNT-Infused material is an unsized carbon fiber with 15 micron long CNTs infused on the fiber surface.
  • the present disclosure is directed, in part, to carbon nanotube-infused (“CNT-infused”) carbon fiber materials.
  • CNT-infused carbon nanotube-infused
  • the infusion of CNTs to the carbon fiber material can serve many functions including, for example, as a sizing agent to protect against damage from moisture, oxidation, abrasion, and compression.
  • a CNT-based sizing can also serve as an interface between the carbon fiber material and a matrix material in a composite.
  • the CNTs can also serve as one of several sizing agents coating the carbon fiber material.
  • CNTs infused on a carbon fiber material can alter various properties of the carbon fiber material, such as thermal and/or electrical conductivity, and/or tensile strength, for example.
  • the processes employed to make CNT-infused carbon fiber materials provide CNTs with substantially uniform length and distribution to impart their useful properties uniformly over the carbon fiber material that is being modified. Furthermore, the processes disclosed herein are suitable for the generation of CNT-infused carbon fiber materials of spoolable dimensions.
  • the present disclosure is also directed, in part, to processes for making CNT-infused carbon fiber materials.
  • the processes disclosed herein can be applied to nascent carbon fiber materials generated de novo before, or in lieu of, application of a typical sizing solution to the carbon fiber material.
  • the processes disclosed herein can utilize a commercial carbon fiber material, for example, a carbon tow, that already has a sizing applied to its surface.
  • the sizing can be removed to provide a direct interface between the carbon fiber material and the synthesized CNTs, although a barrier coating and/or transition metal particle can serve as an intermediate layer providing indirect infusion, as explained further below.
  • a barrier coating and/or transition metal particle can serve as an intermediate layer providing indirect infusion, as explained further below.
  • the processes described herein allow for the continuous production of carbon nanotubes of uniform length and distribution along spoolable lengths of tow, tapes, fabrics and other 3D woven structures. While various mats, woven and non-woven fabrics and the like can be functionalized by processes of the invention, it is also possible to generate such higher ordered structures from the parent tow, yarn or the like after CNT functionalization of these parent materials. For example, a CNT-infused woven fabric can be generated from a CNT-infused carbon fiber tow.
  • carbon fiber material refers to any material which has carbon fiber as its elementary structural component.
  • the term encompasses fibers, filaments, yarns, tows, tows, tapes, woven and non-woven fabrics, plies, mats, and the like.
  • spoolable dimensions refers to carbon fiber materials having at least one dimension that is not limited in length, allowing for the material to be stored on a spool or mandrel. Carbon fiber materials of “spoolable dimensions” have at least one dimension that indicates the use of either batch or continuous processing for CNT infusion as described herein.
  • spools having high weight usually a 3 k/12K tow
  • spools for example, although larger spools may require special order.
  • Processes of the invention operate readily with 5 to 20 lb. spools, although larger spools are usable.
  • a pre-process operation can be incorporated that divides very large spoolable lengths, for example 100 lb. or more, into easy to handle dimensions, such as two 50 lb spools.
  • CNT carbon nanotube
  • SWNT single-walled carbon nanotubes
  • DWNT double-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • CNTs can be capped by a fullerene-like structure or open-ended.
  • CNTs include those that encapsulate other materials.
  • uniform in length refers to length of CNTs grown in a reactor. “Uniform length” means that the CNTs have lengths with tolerances of plus or minus about 20% of the total CNT length or less, for CNT lengths varying from between about 1 micron to about 500 microns. At very short lengths, such as 1-4 microns, this error may be in a range from between about plus or minus 20% of the total CNT length up to about plus or minus 1 micron, that is, somewhat more than about 20% of the total CNT length.
  • uniform in distribution refers to the consistency of density of CNTs on a carbon fiber material. “Uniform distribution” means that the CNTs have a density on the carbon fiber material with tolerances of plus or minus about 10% coverage defined as the percentage of the surface area of the fiber covered by CNTs. This is equivalent to ⁇ 1500 CNTs/ ⁇ m 2 for an 8 nm diameter CNT with 5 walls. Such a figure assumes the space inside the CNTs as fillable.
  • the term “infused” means bonded and “infusion” means the process of bonding. Such bonding can involve direct covalent bonding, ionic bonding, pi-pi, and/or van der Waals force-mediated physisorption.
  • the CNTs can be directely bonded to the carbon fiber material. Bonding can be indirect, such as the CNT infusion to the carbon fiber material via a barrier coating and/or an intervening transition metal nanoparticle disposed between the CNTs and carbon fiber material.
  • the carbon nanotubes can be “infused” to the carbon fiber material directly or indirectly as described above. The particular manner in which a CNT is “infused” to a carbon fiber materials is referred to as a “bonding motif.”
  • transition metal refers to any element or alloy of elements in the d-block of the periodic table.
  • transition metal also includes salt forms of the base transition metal element such as oxides, carbides, nitrides, and the like.
  • nanoparticle or NP (plural NPs), or grammatical equivalents thereof refers to particles sized between about 0.1 to about 100 nanometers in equivalent spherical diameter, although the NPs need not be spherical in shape. Transition metal NPs, in particular, serve as catalysts for CNT growth on the carbon fiber materials.
  • sizing agent refers collectively to materials used in the manufacture of carbon fibers as a coating to protect the integrity of carbon fibers, provide enhanced interfacial interactions between a carbon fiber and a matrix material in a composite, and/or alter and/or enhance particular physical properties of a carbon fiber.
  • CNTs infused to carbon fiber materials behave as a sizing agent.
  • matrix material refers to a bulk material than can serve to organize sized CNT-infused carbon fiber materials in particular orientations, including random orientation.
  • the matrix material can benefit from the presence of the CNT-infused carbon fiber material by imparting some aspects of the physical and/or chemical properties of the CNT-infused carbon fiber material to the matrix material.
  • the term “material residence time” refers to the amount of time a discrete point along a glass fiber material of spoolable dimensions is exposed to CNT growth conditions during the CNT infusion processes described herein. This definition includes the residence time when employing multiple CNT growth chambers.
  • linespeed refers to the speed at which a glass fiber material of spoolable dimensions can be fed through the CNT infusion processes described herein, where linespeed is a velocity determined by dividing CNT chamber(s) length by the material residence time.
  • the present invention provides a composition that includes a carbon nanotube (CNT)-infused carbon fiber material.
  • the CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions, a barrier coating conformally disposed about the carbon fiber material, and carbon nanotubes (CNTs) infused to the carbon fiber material.
  • the infusion of CNTs to the carbon fiber material can include a bonding motif of direct bonding of individual CNTs to the carbon fiber material or indirect bonding via a transition metal NP, barrier coating, or both.
  • transition metal NPs which serve as a CNT-forming catalyst, can catalyze CNT growth by forming a CNT growth seed structure.
  • the CNT-forming catalyst can remain at the base of the carbon fiber material, locked by the barrier coating, and infused to the surface of the carbon fiber material.
  • the seed structure initially formed by the transition metal nanoparticle catalyst is sufficient for continued non-catalyzed seeded CNT growth without allowing the catalyst to move along the leading edge of CNT growth, as often observed in the art.
  • the NP serves as a point of attachment for the CNT to the carbon fiber material.
  • the presence of the barrier coating can also lead to further indirect bonding motifs.
  • the CNT forming catalyst can be locked into the barrier coating, as described above, but not in surface contact with carbon fiber material.
  • a stacked structure with the barrier coating disposed between the CNT forming catalyst and carbon fiber material results.
  • the CNTs formed are infused to the carbon fiber material.
  • some barrier coatings will still allow the CNT growth catalyst to follow the leading edge of the growing nanotube. In such cases, this can result in direct bonding of the CNTs to the carbon fiber material or, optionally, to the barrier coating.
  • the infused CNT is robust and allows the CNT-infused carbon fiber material to exhibit carbon nanotube properties and/or characteristics.
  • the elevated temperatures and/or any residual oxygen and/or moisture that can be present in the reaction chamber can damage the carbon fiber material.
  • the carbon fiber material itself can be damaged by reaction with the CNT-forming catalyst itself. That is the carbon fiber material can behave as a carbon feedstock to the catalyst at the reaction temperatures employed for CNT synthesis. Such excess carbon can disturb the controlled introduction of the carbon feedstock gas and can even serve to poison the catalyst by overloading it with carbon.
  • the barrier coating employed in the invention is designed to facilitate CNT synthesis on carbon fiber materials. Without being bound by theory, the coating can provide a thermal barrier to heat degradation and/or can be a physical barrier preventing exposure of the carbon fiber material to the environment at the elevated temperatures. Alternatively or additionally, it can minimize the surface area contact between the CNT-forming catalyst and the carbon fiber material and/or it can mitigate the exposure of the carbon fiber material to the CNT-forming catalyst at CNT growth temperatures.
  • compositions having CNT-infused carbon fiber materials are provided in which the CNTs are substantially uniform in length.
  • the residence time of the carbon fiber material in a CNT growth chamber can be modulated to control CNT growth and ultimately, CNT length. This provides a means to control specific properties of the CNTs grown.
  • CNT length can also be controlled through modulation of the carbon feedstock and carrier gas flow rates and reaction temperature. Additional control of the CNT properties can be obtained by controlling, for example, the size of the catalyst used to prepare the CNTs. For example, 1 nm transition metal nanoparticle catalysts can be used to provide SWNTs in particular. Larger catalysts can be used to prepare predominantly MWNTs.
  • the CNT growth processes employed are useful for providing a CNT-infused carbon fiber material with uniformly distributed CNTs on carbon fiber materials while avoiding bundling and/or aggregation of the CNTs that can occur in processes in which pre-formed CNTs are suspended or dispersed in a solvent solution and applied by hand to the carbon fiber material.
  • Such aggregated CNTs tend to adhere weakly to a carbon fiber material and the characteristic CNT properties are weakly expressed, if at all.
  • the maximum distribution density, expressed as percent coverage that is, the surface area of fiber covered, can be as high as about 55% assuming about 8 nm diameter CNTs with 5 walls. This coverage is calculated by considering the space inside the CNTs as being “fillable” space.
  • Various distribution/density values can be achieved by varying catalyst dispersion on the surface as well as controlling gas composition and process speed. Typically for a given set of parameters, a percent coverage within about 10% can be achieved across a fiber surface. Higher density and shorter CNTs are useful for improving mechanical properties, while longer CNTs with lower density are useful for improving thermal and electrical properties, although increased density is still favorable. A lower density can result when longer CNTs are grown. This can be the result of the higher temperatures and more rapid growth causing lower catalyst particle yields.
  • compositions of the invention having CNT-infused carbon fiber materials can include a carbon fiber material such as a carbon filament, a carbon fiber yarn, a carbon fiber tow, a carbon tape, a carbon fiber-braid, a woven carbon fabric, a non-woven carbon fiber mat, a carbon fiber ply, and other 3D woven structures.
  • Carbon filaments include high aspect ratio carbon fibers having diameters ranging in size from between about 1 micron to about 100 microns.
  • Carbon fiber tows are generally compactly associated bundles of filaments and are usually twisted together to give yarns.
  • Yarns include closely associated bundles of twisted filaments. Each filament diameter in a yarn is relatively uniform. Yarns have varying weights described by their ‘tex,’ expressed as weight in grams of 1000 linear meters, or denier, expressed as weight in pounds of 10,000 yards, with a typical tex range usually being between about 200 tex to about 2000 tex.
  • Tows include loosely associated bundles of untwisted filaments. As in yarns, filament diameter in a tow is generally uniform. Tows also have varying weights and the tex range is usually between 200 tex and 2000 tex. They are frequently characterized by the number of thousands of filaments in the tow, for example 12K tow, 24K tow, 48K tow, and the like.
  • Carbon tapes are materials that can be assembled as weaves or can represent non-woven flattened tows. Carbon tapes can vary in width and are generally two-sided structures similar to ribbon. Processes of the present invention are compatible with CNT infusion on one or both sides of a tape. CNT-infused tapes can resemble a “carpet” or “forest” on a flat substrate surface. Again, processes of the invention can be performed in a continuous mode to functionalize spools of tape.
  • Carbon fiber-braids represent rope-like structures of densely packed carbon fibers. Such structures can be assembled from carbon yarns, for example. Braided structures can include a hollow portion or a braided structure can be assembled about another core material.
  • a number of primary carbon fiber material structures can be organized into fabric or sheet-like structures. These include, for example, woven carbon fabrics, non-woven carbon fiber mat and carbon fiber ply, in addition to the tapes described above. Such higher ordered structures can be assembled from parent tows, yarns, filaments or the like, with CNTs already infused in the parent fiber. Alternatively such structures can serve as the substrate for the CNT infusion processes described herein.
  • Carbon fiber from rayon precursors which are cellulosic materials, has relatively low carbon content at about 20% and the fibers tend to have low strength and stiffness.
  • Polyacrylonitrile (PAN) precursors provide a carbon fiber with a carbon content of about 55%.
  • Carbon fiber based on a PAN precursor generally has a higher tensile strength than carbon fiber based on other carbon fiber precursors due to a minimum of surface defects.
  • Pitch precursors based on petroleum asphalt, coal tar, and polyvinyl chloride can also be used to produce carbon fiber. Although pitches are relatively low in cost and high in carbon yield, there can be issues of non-uniformity in a given batch.
  • CNTs useful for infusion to carbon fiber materials include single-walled CNTs, double-walled CNTs, multi-walled CNTs, and mixtures thereof. The exact CNTs to be used depends on the application of the CNT-infused carbon fiber. CNTs can be used for thermal and/or electrical conductivity applications, or as insulators.
  • the infused carbon nanotubes are single-wall nanotubes. In some embodiments, the infused carbon nanotubes are multi-wall nanotubes. In some embodiments, the infused carbon nanotubes are a combination of single-wall and multi-wall nanotubes.
  • single-walled nanotubes can be semi-conducting or metallic, while multi-walled nanotubes are metallic.
  • the electrical resistivity of a carbon nanotube-infused carbon fiber material is lower than the electrical resistivity of a parent carbon fiber material.
  • the extent to which the resulting CNT-infused fiber expresses these characteristics can be a function of the extent and density of coverage of the carbon fiber by the carbon nanotubes. Any amount of the fiber surface area, from 0-55% of the fiber can be covered assuming an 8 nm diameter, 5-walled MWNT (again this calculation counts the space inside the CNTs as tillable). This number is lower for smaller diameter CNTs and more for greater diameter CNTs.
  • CNTs 55% surface area coverage is equivalent to about 15,000 CNTs/micron 2 .
  • Further CNT properties can be imparted to the carbon fiber material in a manner dependent on CNT length, as described above.
  • Infused CNTs can vary in length ranging from between about 1 micron to about 500 microns, including 1 micron, 2 microns, 3 microns, 4 micron, 5, microns, 6, microns, 7 microns, 8 microns, 9 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, 150 microns, 200 microns, 250 microns, 300 microns, 350 microns, 400 microns, 450 microns, 500 microns, and all values in between.
  • CNTs can also be less than about 1 micron in length, including about 0.5 microns, for example. CNTs can also be greater than 500 microns, including for example, 510 microns, 520 microns, 550 microns, 600 microns, 700 microns and all values in between.
  • Compositions of the invention can incorporate CNTs have a length from about 1 micron to about 10 microns. Such CNT lengths can be useful in application to increase shear strength. CNTs can also have a length from about 5 to about 70 microns. Such CNT lengths can be useful in applications for increased tensile strength if the CNTs are aligned in the fiber direction. CNTs can also have a length from about 10 microns to about 100 microns. Such CNT lengths can be useful to increase electrical/thermal properties as well as mechanical properties.
  • the process used in the invention can also provide CNTs having a length from about 100 microns to about 500 microns, which can also be beneficial to increase electrical and thermal properties. Such control of CNT length is readily achieved through modulation of carbon feedstock and inert gas flow rates coupled with varying linespeeds and growth temperature.
  • compositions that include spoolable lengths of CNT-infused carbon fiber materials can have various uniform regions with different lengths of CNTs. For example, it can be desirable to have a first portion of CNT-infused carbon fiber material with uniformly shorter CNT lengths to enhance shear strength properties, and a second portion of the same spoolable material with a uniform longer CNT length to enhance electrical or thermal properties.
  • Processes of the invention for CNT infusion to carbon fiber materials allow control of the CNT lengths with uniformity and in a continuous process allowing spoolable carbon fiber materials to be functionalized with CNTs at high rates.
  • linespeeds in a continuous process for a system that is 3 feet long can be in a range anywhere from about 0.5 ft/min to about 36 ft/min and greater. The speed selected depends on various parameters as explained further below.
  • a material residence time of about 5 to about 30 seconds can produce CNTs having a length between about 1 micron to about 10 microns. In some embodiments, a material residence time of about 30 to about 180 seconds can produce CNTs having a length between about 10 microns to about 100 microns. In still further embodiments, a material residence time of about 180 to about 300 seconds can produce CNTs having a length between about 100 microns to about 500 microns.
  • CNT length can also be modulated by reaction temperatures, and carrier and carbon feedstock concentrations and flow rates.
  • CNT-infused carbon fiber materials of the invention include a barrier coating.
  • Barrier coatings can include for example an alkoxysilane, methylsiloxane, an alumoxane, alumina nanoparticles, spin on glass and glass nanoparticles.
  • the CNT-forming catalyst can be added to the uncured barrier coating material and then applied to the carbon fiber material together.
  • the barrier coating material can be added to the carbon fiber material prior to deposition of the CNT-forming catalyst.
  • the barrier coating material can be of a thickness sufficiently thin to allow exposure of the CNT-forming catalyst to the carbon feedstock for subsequent CVD growth. In some embodiments, the thickness is less than or about equal to the effective diameter of the CNT-forming catalyst.
  • the thickness of the barrier coating is in a range from between about 10 nm to about 100 nm.
  • the barrier coating can also be less than 10 nm, including 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, and any value in between.
  • the barrier coating can serve as an intermediate layer between the carbon fiber material and the CNTs and serves to mechanically infuse the CNTs to the carbon fiber material.
  • Such mechanical infusion still provides a robust system in which the carbon fiber material serves as a platform for organizing the CNTs while still imparting properties of the CNTs to the carbon fiber material.
  • the benefit of including a barrier coating is the immediate protection it provides the carbon fiber material from chemical damage due to exposure to moisture and/or any thermal damage due to heating of the carbon fiber material at the temperatures used to promote CNT growth.
  • the infused CNTs disclosed herein can effectively function as a replacement for conventional carbon fiber “sizing.”
  • the infused CNTs are more robust than conventional sizing materials and can improve the fiber-to-matrix interface in composite materials and, more generally, improve fiber-to-fiber interfaces.
  • the CNT-infused carbon fiber materials disclosed herein are themselves composite materials in the sense the CNT-infused carbon fiber material properties will be a combination of those of the carbon fiber material as well as those of the infused CNTs. Consequently, embodiments of the present invention provide a means to impart desired properties to a carbon fiber material that otherwise lack such properties or possesses them in insufficient measure.
  • Carbon fiber materials can be tailored or engineered to meet the requirements of specific applications.
  • the CNTs acting as sizing can protect carbon fiber materials from absorbing moisture due to the hydrophobic CNT structure.
  • hydrophobic matrix materials as further exemplified below, interact well with hydrophobic CNTs to provide improved fiber to matrix interactions.
  • compositions of the present invention can include further “conventional” sizing agents.
  • sizing agents vary widely in type and function and include, for example, surfactants, anti-static agents, lubricants, siloxanes, alkoxysilanes, aminosilanes, silanes, silanols, polyvinyl alcohol, starch, and mixtures thereof.
  • Such secondary sizing agents can be used to protect the CNTs themselves or provide further properties to the fiber not imparted by the presence of the infused CNTs.
  • Compositions of the present invention can further include a matrix material to form a composite with the CNT-infused carbon fiber material.
  • matrix materials can include, for example, an epoxy, a polyester, a vinylester, a polyetherimide, a polyetherketoneketone, a polyphthalamide, a polyetherketone, a polytheretherketone, a polyimide, a phenol-formaldehyde, and a bismaleimide.
  • Matrix materials useful in the present invention can include any of the known matrix materials (see Mel M. Schwartz, Composite Materials Handbook (2d ed. 1992)). Matrix materials more generally can include resins (polymers), both thermosetting and thermoplastic, metals, ceramics, and cements.
  • Thermosetting resins useful as matrix materials include phthalic/maelic type polyesters, vinyl esters, epoxies, phenolics, cyanates, bismaleimides, and nadic end-capped polyimides (e.g., PMR-15).
  • Thermoplastic resins include polysulfones, polyamides, polycarbonates, polyphenylene oxides, polysulfides, polyether ether ketones, polyether sulfones, polyamide-imides, polyetherimides, polyimides, polyarylates, and liquid crystalline polyester.
  • Metals useful as matrix materials include alloys of aluminum such as aluminum 6061, 2024, and 713 aluminum braze. Ceramics useful as matrix materials include carbon ceramics, such as lithium aluminosilicate, oxides such as alumina and mullite, nitrides such as silicon nitride, and carbides such as silicon carbide. Cements useful as matrix materials include carbide-base cermets (tungsten carbide, chromium carbide, and titanium carbide), refractory cements (tungsten-thoria and barium-carbonate-nickel), chromium-alumina, nickel-magnesia iron-zirconium carbide. Any of the above-described matrix materials can be used alone or in combination.
  • FIG. 1-6 shows TEM and SEM images of carbon fiber materials prepared by the processes described herein. The procedures for preparing these materials are further detailed below and in Examples I-III.
  • FIGS. 1 and 2 show TEM images of multi-walled and double-walled carbon nanotubes, respectively, that were prepared on an AS4 carbon fiber in a continuous process.
  • FIG. 3 shows a scanning electron microscope (SEM) image of CNTs growing from within the barrier coating after the CNT-forming nanoparticle catalyst was mechanically infused to a carbon fiber material surface.
  • FIG. 4 shows a SEM image demonstrating the consistency in length distribution of CNTs grown on a carbon fiber material to within 20% of a targeted length of about 40 microns.
  • FIG. 5 shows an SEM image demonstrating the effect of a barrier coating on CNT growth. Dense, well aligned CNTs grew where barrier coating was applied and no CNTs grew where barrier coating was absent.
  • FIG. 6 shows a low magnification SEM of CNTs on carbon fiber demonstrating the uniformity of CNT density across the fibers within about 10%.
  • CNT-infused carbon fiber materials can be used in a myriad of applications.
  • chopped CNT-infused carbon fiber can be used in propellant applications.
  • U.S. Pat. No. 4,072,546 describes the use of graphite fibers to augment propellant burning rate. The presence of CNTs infused on chopped carbon fiber can further enhance such burn rates.
  • CNT-infused carbon fiber materials can also be used in flame retardant applications as well.
  • the CNTs can form a protective char layer that retards burning of a material coated with a layer of CNT infused carbon fiber material.
  • CNT-infused conductive carbon fibers can be used in the manufacture of electrodes for superconductors.
  • it can be challenging to achieve adequate adhesion of the superconducting layer to a carrier fiber due, in part, to the different coefficients of thermal expansion of the fiber material and of the superconducting layer.
  • Another difficulty in the art arises during the coating of the fibers by the CVD process.
  • reactive gases such as hydrogen gas or ammonia, can attack the fiber surface and/or form undesired hydrocarbon compounds on the fiber surface and make good adhesion of the superconducting layer more difficult.
  • CNT-infused carbon fiber materials with barrier coating can overcome these aforementioned challenges in the art.
  • CNT infused carbon fiber materials can be used in applications requiring wear-resistance.
  • U.S. Pat. No. 6,691,393 describes wear resistance in carbon fiber friction materials. Such carbon fiber friction materials are used in, for example, automotive brake discs. Other wear resistance applications can include, for example, rubber o-rings and gasket seals.
  • CNT-infused carbon fiber materials can be used to remove organic toxins from water tables, water storage facilities, or in-line filters for home and office use.
  • the CNT-infused carbon fibers are useful in the manufacture of drilling equipment, such as pipe bearings, piping reinforcement, and rubber o-rings. Furthermore, as described above, CNT-infused carbon fibers can be used in extractive processes. Applying such extraction properties in a formation containing valuable petroleum deposits, the CNT-infused carbon fiber materials can be used to extract oil from otherwise intractable formations. For example, the CNT-infuse carbon fiber materials can be used to extract oil from formations where substantial water and/or sand is present. The CNT-infused carbon fiber material can also be useful to extract heavier oils that would otherwise be difficult to extract due to their high boiling points.
  • the wicking of such heavy oils by CNT-infused carbon materials overcoated on the perforated piping can be operatively coupled to a vacuum system, or the like, to continuously remove high boiling fractions from heavy oil and oil shale formations.
  • a vacuum system or the like
  • such processes can be used in conjunction with, or in lieu, of conventional thermal or catalyzed cracking methods, known in the art.
  • CNT-infused carbon fiber materials can enhance structural elements in aerospace and ballistics applications.
  • the structures such as nose cones in missiles, leading edge of wings, primary structural parts, such as flaps and aerofoils, propellers and air brakes, small plane fuselages, helicopter shells and rotor blades, aircraft secondary structural parts, such as floors, doors, seats, air conditioners, and secondary tanks and airplane motor parts can benefit from the structural enhancement provided by CNT-infused carbon fibers.
  • Structural enhancement in many other applications can include, for example, mine sweeper hulls, helmets, radomes, rocket nozzles, rescue stretchers, and engine components.
  • structural enhancement of exterior features include columns, pediments, domes, cornices, and formwork.
  • CNT-infused carbon fiber materials can be used in maritime industry.
  • structural enhancement can include boat hulls, stringers, and decks.
  • CNT-infused carbon fiber materials can also be used in the heavy transportation industry in large panels for trailer walls, floor panels for railcars, truck cabs, exterior body molding, bus body shells, and cargo containers, for example.
  • CNT-infused carbon fiber materials can be used in interior parts, such as trimming, seats, and instrument panels.
  • Exterior structures such as body panels, openings, underbody, and front and rear modules can all benefit from the use of CNT-infused carbon fiber materials.
  • automotive engine compartment and fuel mechanical area parts such as axles and suspensions, fuel and exhaust systems, and electrical and electronic components can all utilize CNT-infused carbon fiber materials.
  • CNT-infused carbon fiber materials include, bridge construction, reinforced concrete products, such as dowel bars, reinforcing bars, post-tensioning and pre-stressing tendons, stay-in-place framework, electric power transmission and distribution structures such as utility poles, transmission poles, and cross-arms, highway safety and roadside features such as sign supports, guardrails, posts and supports, noise barriers, and in municipal pipes and storage tanks.
  • CNT-infused carbon fiber materials can also be used in a variety of leisure equipment such as water and snow skis, kayaks, canoes and paddles, snowboards, golf club shafts, golf trolleys, fishing rods, and swimming pools.
  • Other consumer goods and business equipment include gears, pans, housings, gas pressure bottles, components for household appliances, such as washers, washing machine drums, dryers, waste disposal units, air conditioners and humidifiers.
  • CNT-infused carbon fibers can impact various energy and electrical applications.
  • CNT-infused carbon fiber materials can be used in wind turbine blades, solar structures, electronic enclosures, such as laptops, cell phones, computer cabinets, where such CNT-infused materials can be used in EMI shielding, for example.
  • Other applications include powerlines, cooling devices, light poles, circuit boards, electrical junction boxes, ladder rails, optical fiber, power built into structures such as data lines, computer terminal housings, and business equipment, such as copiers, cash registers and mailing equipment.
  • the present invention provides a continuous process for CNT infusion that includes (a) disposing a carbon nanotube-forming catalyst on a surface of a carbon fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes directly on the carbon fiber material, thereby forming a carbon nanotube-infused carbon fiber material.
  • the linespeed of the process can range from between about 1.5 ft/min to about 108 ft/min. The linespeeds achieved by the process described herein allow the formation of commercially relevant quantities of CNT-infused carbon fiber materials with short production times.
  • the quantities of CNT-infused carbon fibers can exceed over 100 pound or more of material produced per day in a system that is designed to simultaneously process 5 separate tows (20 lb/tow).
  • Systems can be made to produce more tows at once or at faster speeds by repeating growth zones.
  • some steps in the fabrication of CNTs have prohibitively slow rates preventing a continuous mode of operation.
  • a CNT-forming catalyst reduction step can take 1-12 hours to perform.
  • CNT growth itself can also be time consuming, for example requiring tens of minutes for CNT growth, precluding the rapid linespeeds realized in the present invention.
  • the process described herein overcomes such rate limiting steps.
  • the CNT-infused carbon fiber material-forming processes of the invention can avoid CNT entanglement that occurs when trying to apply suspensions of pre-formed carbon nanotubes to fiber materials. That is, because pre-formed CNTs are not fused to the carbon fiber material, the CNTs tend to bundle and entangle. The result is a poorly uniform distribution of CNTs that weakly adhere to the carbon fiber material.
  • processes of the present invention can provide, if desired, a highly uniform entangled CNT mat on the surface of the carbon fiber material by reducing the growth density.
  • the CNTs grown at low density are infused in the carbon fiber material first. In such embodiments, the fibers do not grow dense enough to induce vertical alignment, the result is entangled mats on the carbon fiber material surfaces.
  • manual application of pre-formed CNTs does not insure uniform distribution and density of a CNT mat on the carbon fiber material.
  • FIG. 7 depicts a flow diagram of process 700 for producing CNT-infused carbon fiber material in accordance with an illustrative embodiment of the present invention.
  • Process 700 includes at least the operations of:
  • step 701 the carbon fiber material is functionalized to promote surface wetting of the fibers and to improve adhesion of the barrier coating.
  • the carbon nanotubes are synthesized on the carbon fiber material which is conformally coated with a barrier coating. In one embodiment, this is accomplished by first conformally coating the carbon fiber material with a barrier coating and then disposing nanotube-forming catalyst on the barrier coating, as per operation 702 .
  • the barrier coating can be partially cured prior to catalyst deposition. This can provide a surface that is receptive to receiving the catalyst and allowing it to embed in the barrier coating, including allowing surface contact between the CNT forming catalyst and the carbon fiber material.
  • the barrier coating can be fully cured after embedding the catalyst.
  • the barrier coating is conformally coated over the carbon fiber material simultaneously with deposition of the CNT-form catalyst. Once the CNT-forming catalyst and barrier coating are in place, the barrier coating can be fully cured.
  • the barrier coating can be fully cured prior to catalyst deposition.
  • a fully cured barrier-coated carbon fiber material can be treated with a plasma to prepare the surface to accept the catalyst.
  • a plasma treated carbon fiber material having a cured barrier coating can provide a roughened surface in which the CNT-forming catalyst can be deposited.
  • the plasma process for “roughing” the surface of the barrier thus facilitates catalyst deposition.
  • the roughness is typically on the scale of nanometers.
  • craters or depressions are formed that are nanometers deep and nanometers in diameter.
  • Such surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, nitrogen, and hydrogen.
  • plasma roughing can also be performed directly in the carbon fiber material itself. This can facilitate adhesion of the barrier coating to the carbon fiber material.
  • the catalyst is prepared as a liquid solution that contains CNT-forming catalyst that comprise transition metal nanoparticles.
  • the diameters of the synthesized nanotubes are related to the size of the metal particles as described above.
  • commercial dispersions of CNT-forming transition metal nanoparticle catalyst are available and are used without dilution, in other embodiments commercial dispersions of catalyst can be diluted. Whether to dilute such solutions can depend on the desired density and length of CNT to be grown as described above.
  • carbon nanotube synthesis is shown based on a chemical vapor deposition (CVD) process and occurs at elevated temperatures.
  • the specific temperature is a function of catalyst choice, but will typically be in a range of about 500 to 1000° C.
  • operation 704 involves heating the barrier-coated carbon fiber material to a temperature in the aforementioned range to support carbon nanotube synthesis.
  • CVD-promoted nanotube growth on the catalyst-laden carbon fiber material is then performed.
  • the CVD process can be promoted by, for example, a carbon-containing feedstock gas such as acetylene, ethylene, and/or ethanol.
  • the CNT synthesis processes generally use an inert gas (nitrogen, argon, helium) as a primary carrier gas.
  • the carbon feedstock is provided in a range from between about 0% to about 15% of the total mixture.
  • a substantially inert environment for CVD growth is prepared by removal of moisture and oxygen from the growth chamber.
  • CNTs grow at the sites of a CNT-forming transition metal nanoparticle catalyst.
  • the presence of the strong plasma-creating electric field can be optionally employed to affect nanotube growth. That is, the growth tends to follow the direction of the electric field.
  • vertically-aligned CNTs i.e., perpendicular to the carbon fiber material
  • closely-spaced nanotubes will maintain a vertical growth direction resulting in a dense array of CNTs resembling a carpet or forest.
  • the presence of the barrier coating can also influence the directionality of CNT growth.
  • the operation of disposing a catalyst on the carbon fiber material can be accomplished by spraying or dip coating a solution or by gas phase deposition via, for example, a plasma process.
  • the choice of techniques can be coordinated with the mode with which the barrier coating is applied.
  • catalyst can be applied by spraying or dip coating the barrier coated carbon fiber material with the solution, or combinations of spraying and dip coating.
  • Either technique, used alone or in combination can be employed once, twice, thrice, four times, up to any number of times to provide a carbon fiber material that is sufficiently uniformly coated with CNT-forming catalyst.
  • a carbon fiber material can be placed in a first dip bath for a first residence time in the first dip bath.
  • the carbon fiber material can be placed in the second dip bath for a second residence time.
  • carbon fiber materials can be subjected to a solution of CNT-forming catalyst for between about 3 seconds to about 90 seconds depending on the dip configuration and linespeed.
  • the process of coating the CNT-forming catalyst on the carbon fiber material should produce no more than a monolayer.
  • CNT growth on a stack of CNT-forming catalyst can erode the degree of infusion of the CNT to the carbon fiber material.
  • the transition metal catalyst can be deposited on the carbon fiber material using evaporation techniques, electrolytic deposition techniques, and other processes known to those skilled in the art, such as addition of the transition metal catalyst to a plasma feedstock gas as a metal organic, metal salt or other composition promoting gas phase transport.
  • a spoolable carbon fiber material can be dip-coated in a series of baths where dip coating baths are spatially separated.
  • dip bath or spraying of CNT-forming catalyst can be the first step after applying and curing or partially curing a barrier coating to the carbon fiber material.
  • Application of the barrier coating and a CNT-forming catalyst can be performed in lieu of application of a sizing, for newly formed carbon fiber materials.
  • the CNT-forming catalyst can be applied to newly formed carbon fibers in the presence of other sizing agents after barrier coating.
  • Such simultaneous application of CNT-forming catalyst and other sizing agents can still provide the CNT-forming catalyst in surface contact with the barrier coating of the carbon fiber material to insure CNT infusion.
  • the catalyst solution employed can be a transition metal nanoparticle which can be any d-block transition metal as described above.
  • the nanoparticles can include alloys and non-alloy mixtures of d-block metals in elemental form or in salt form, and mixtures thereof.
  • Such salt forms include, without limitation, oxides, carbides, and nitrides.
  • Non-limiting exemplary transition metal NPs include Ni, Fe, Co, Mo, Cu, Pt, Au, and Ag and salts thereof and mixtures thereof.
  • such CNT-forming catalysts are disposed on the carbon fiber by applying or infusing a CNT-forming catalyst directly to the carbon fiber material simultaneously with barrier coating deposition. Many of these transition metal catalysts are readily commercially available from a variety of suppliers, including, for example, Ferrotec Corporation (Bedford, N.H.).
  • Catalyst solutions used for applying the CNT-forming catalyst to the carbon fiber material can be in any common solvent that allows the CNT-forming catalyst to be uniformly dispersed throughout.
  • solvents can include, without limitation, water, acetone, hexane, isopropyl alcohol, toluene, ethanol, methanol, tetrahydrofuran (THF), cyclohexane or any other solvent with controlled polarity to create an appropriate dispersion of the CNT-forming catalyst nanoparticles.
  • Concentrations of CNT-forming catalyst can be in a range from about 1:1 to 1:10000 catalyst to solvent. Such concentrations can be used when the barrier coating and CNT-forming catalyst is applied simultaneously as well.
  • heating of the carbon fiber material can be at a temperature that is between about 500° C. and 1000° C. to synthesize carbon nanotubes after deposition of the CNT-forming catalyst. Heating at these temperatures can be performed prior to or substantially simultaneously with introduction of a carbon feedstock for CNT growth.
  • the present invention provides a process that includes removing sizing agents from a carbon fiber material, applying a barrier coating conformally over the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber material, heating the carbon fiber material to at least 500° C., and synthesizing carbon nanotubes on the carbon fiber material.
  • operations of the CNT-infusion process include removing sizing from a carbon fiber material, applying a barrier coating to the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber, heating the fiber to CNT-synthesis temperature and CVD-promoted CNT growth the catalyst-laden carbon fiber material.
  • processes for constructing CNT-infused carbon fibers can include a discrete step of removing sizing from the carbon fiber material before disposing barrier coating and the catalyst on the carbon fiber material.
  • the step of synthesizing carbon nanotubes can include numerous techniques for forming carbon nanotubes, including those disclosed in co-pending U.S. Patent Application No. US 2004/0245088 which is incorporated herein by reference.
  • the CNTs grown on fibers of the present invention can be accomplished by techniques known in the art including, without limitation, micro-cavity, thermal or plasma-enhanced CVD techniques, laser ablation, arc discharge, and high pressure carbon monoxide (HiPCO).
  • CVD in particular, a barrier coated carbon fiber material with CNT-forming catalyst disposed thereon, can be used directly.
  • any conventional sizing agents can be removed prior CNT synthesis.
  • acetylene gas is ionized to create a jet of cold carbon plasma for CNT synthesis.
  • the plasma is directed toward the catalyst-bearing carbon fiber material.
  • synthesizing CNTs on a carbon fiber material includes (a) forming a carbon plasma; and (b) directing the carbon plasma onto the catalyst disposed on the carbon fiber material.
  • the diameters of the CNTs that are grown are dictated by the size of the CNT-forming catalyst as described above.
  • the sized fiber substrate is heated to between about 550 to about 800° C. to facilitate CNT synthesis.
  • CNTs grow at the sites of the CNT-forming catalyst.
  • a process gas such as argon, helium, or nitrogen
  • a carbon-containing gas such as acetylene, ethylene, ethanol or methane
  • the CVD growth is plasma-enhanced.
  • a plasma can be generated by providing an electric field during the growth process. CNTs grown under these conditions can follow the direction of the electric field.
  • a plasma is not required for radial growth about the fiber.
  • catalyst can be disposed on one or both sides and correspondingly, CNTs can be grown on one or both sides as well.
  • CNT-synthesis is performed at a rate sufficient to provide a continuous process for functionalizing spoolable carbon fiber materials.
  • Numerous apparatus configurations faciliate such continuous synthesis as exemplified below.
  • CNT-infused carbon fiber materials can be constructed in an “all plasma” process.
  • An all plasma process can being with roughing the carbon fiber material with a plasma as described above to improve fiber surface wetting characteristics and provide a more conformal barrier coating, as well as improve coating adhesion via mechanical interlocking and chemical adhesion through the use of functionalization of the carbon fiber material by using specific reactive gas species, such as oxygen, nitrogen, hydrogen in argon or helium based plasmas.
  • the all plasma process can include a second surface modification after the barrier coating is cured. This is a plasma process for “roughing” the surface of the barrier coating on the carbon fiber material to facilitate catalyst deposition.
  • surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, ammonia, hydrogen, and nitrogen.
  • the barrier coated carbon fiber material proceeds to catalyst application.
  • This is a plasma process for depositing the CNT-forming catalyst on the fibers.
  • the CNT-forming catalyst is typically a transition metal as described above.
  • the transition metal catalyst can be added to a plasma feedstock gas as a precursor in the form of a ferrofluid, a metal organic, metal salt or other composition for promoting gas phase transport.
  • the catalyst can be applied at room temperature in the ambient environment with neither vacuum nor an inert atmosphere being required.
  • the carbon fiber material is cooled prior to catalyst application.
  • carbon nanotube synthesis occurs in a CNT-growth reactor. This can be achieved through the use of plasma-enhanced chemical vapor deposition, wherein carbon plasma is sprayed onto the catalyst-laden fibers. Since carbon nanotube growth occurs at elevated temperatures (typically in a range of about 500 to 1000° C. depending on the catalyst), the catalyst-laden fibers can be heated prior to exposing to the carbon plasma. For the infusion process, the carbon fiber material can be optionally heated until it softens. After heating, the carbon fiber material is ready to receive the carbon plasma.
  • plasma-enhanced chemical vapor deposition wherein carbon plasma is sprayed onto the catalyst-laden fibers. Since carbon nanotube growth occurs at elevated temperatures (typically in a range of about 500 to 1000° C. depending on the catalyst), the catalyst-laden fibers can be heated prior to exposing to the carbon plasma. For the infusion process, the carbon fiber material can be optionally heated until it softens. After heating, the carbon fiber material is ready to receive the carbon plasma.
  • the carbon plasma is generated, for example, by passing a carbon containing gas such as acetylene, ethylene, ethanol, and the like, through an electric field that is capable of ionizing the gas.
  • This cold carbon plasma is directed, via spray nozzles, to the carbon fiber material.
  • the carbon fiber material can be in close proximity to the spray nozzles, such as within about 1 centimeter of the spray nozzles, to receive the plasma.
  • heaters are disposed above the carbon fiber material at the plasma sprayers to maintain the elevated temperature of the carbon fiber material.
  • CNTs are grown via a chemical vapor deposition (“CVD”) process at atmospheric pressure and at elevated temperature in the range of about 550° C. to about 800° C. in a multi-zone reactor.
  • CVD chemical vapor deposition
  • the fact that the synthesis occurs at atmospheric pressure is one factor that facilitates the incorporation of the reactor into a continuous processing line for CNT-on-fiber synthesis.
  • Another advantage consistent with in-line continuous processing using such a zone reactor is that CNT growth occurs in a seconds, as opposed to minutes (or longer) as in other procedures and apparatus configurations typical in the art.
  • Rectangular Configured Synthesis Reactors The cross section of a typical CNT synthesis reactor known in the art is circular. There are a number of reasons for this including, for example, historical reasons (cylindrical reactors are often used in laboratories) and convenience (flow dynamics are easy to model in cylindrical reactors, heater systems readily accept circular tubes (quartz, etc.), and ease of manufacturing. Departing from the cylindrical convention, the present invention provides a CNT synthesis reactor having a rectangular cross section. The reasons for the departure are as follows: 1. Since many carbon fiber materials that can be processed by the reactor are relatively planar such as flat tape or sheet-like in form, a circular cross section is an inefficient use of the reactor volume.
  • an equivalent growth cylindrical reactor i.e., a cylindrical reactor that has a width that accommodates the same planarized carbon fiber material as the rectangular cross-section reactor
  • the volume of the carbon fiber material is 17,500 times less than the volume of the chamber.
  • gas deposition processes such as CVD
  • CVD are typically governed by pressure and temperature alone
  • volume has a significant impact on the efficiency of deposition.
  • the reactor volume can be decreased by using a small height for the rectangular chamber to make this volume ratio better and reactions more efficient.
  • the total volume of a rectangular synthesis reactor is no more than about 3000 times greater than the total volume of a carbon fiber material being passed through the synthesis reactor. In some further embodiments, the total volume of the rectangular synthesis reactor is no more than about 4000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor. In some still further embodiments, the total volume of the rectangular synthesis reactor is less than about 10,000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor.
  • the synthesis reactor has a cross section that is described by polygonal forms that are not rectangular, but are relatively similar thereto and provide a similar reduction in reactor volume relative to a reactor having a circular cross section; c) problematic temperature distribution; when a relatively small-diameter reactor is used, the temperature gradient from the center of the chamber to the walls thereof is minimal. But with increased size, such as would be used for commercial-scale production, the temperature gradient increases.
  • gas can be introduced at the center of the reactor or within a target growth zone, symmetrically, either through the sides or through the top and bottom plates of the reactor. This improves the overall CNT growth rate because the incoming feedstock gas is continuously replenishing at the hottest portion of the system, which is where CNT growth is most active. This constant gas replenishment is an important aspect to the increased growth rate exhibited by the rectangular CNT reactors.
  • Chambers that provide a relatively cool purge zone depend from both ends of the rectangular synthesis reactor. Applicants have determined that if hot gas were to mix with the external environment (i.e., outside of the reactor), there would be an increase in degradation of the carbon fiber material.
  • the cool purge zones provide a buffer between the internal system and external environments. Typical CNT synthesis reactor configurations known in the art typically require that the substrate is carefully (and slowly) cooled.
  • the cool purge zone at the exit of the present rectangular CNT growth reactor achieves the cooling in a short period of time, as required for the continuous in-line processing.
  • Non-contact, hot-walled, metallic reactor In some embodiments, a hot-walled reactor is made of metal is employed, in particular stainless steel. This may appear counterintuitive because metal, and stainless steel in particular, is more susceptible to carbon deposition (i.e., soot and by-product formation). Thus, most CNT reactor configurations use quartz reactors because there is less carbon deposited, quartz is easier to clean, and quartz facilitates sample observation. However, Applicants have observed that the increased soot and carbon deposition on stainless steel results in more consistent, faster, more efficient, and more stable CNT growth. Without being bound by theory it has been indicated that, in conjunction with atmospheric operation, the CVD process occurring in the reactor is diffusion limited.
  • the catalyst is “overfed;” too much carbon is available in the reactor system due to its relatively higher partial pressure (than if the reactor was operating under partial vacuum).
  • the rectangular reactor is intentionally run when the reactor is “dirty,” that is with soot deposited on the metallic reactor walls. Once carbon deposits to a monolayer on the walls of the reactor, carbon will readily deposit over itself Since some of the available carbon is “withdrawn” due to this mechanism, the remaining carbon feedstock, in the form of radicals, react with the catalyst at a rate that does not poison the catalyst.
  • Existing systems run “cleanly” which, if they were open for continuous processing, would produced a much lower yield of CNTs at reduced growth rates.
  • soot inhibiting coatings such as silica, alumina, or MgO.
  • these portions of the apparatus can be dip-coated in these soot inhibiting coatings.
  • Metals such as INVAR® can be used with these coatings as INVAR has a similar CTE (coefficient of thermal expansion) ensuring proper adhesion of the coating at higher temperatures, preventing the soot from significantly building up in critical zones.
  • the reduction process occurs as the fibers enter the heated zone; by this point, the gas has had time to react with the walls and cool off prior to reacting with the catalyst and causing the oxidation reduction (via hydrogen radical interactions). It is this transition region where the reduction occurs.
  • the CNT growth occurs, with the greatest growth rate occurring proximal to the gas inlets near the center of the reactor.
  • the continuous process can include steps that spreads out the strands and/or filaments of the tow.
  • steps that spreads out the strands and/or filaments of the tow.
  • a tow can be spread using a vacuum-based fiber spreading system, for example.
  • additional heating can be employed in order to “soften” the tow to facilitate fiber spreading.
  • the spread fibers which comprise individual filaments can be spread apart sufficiently to expose an entire surface area of the filaments, thus allowing the tow to more efficiently react in subsequent process steps. Such spreading can approach between about 4 inches to about 6 inches across for a 3 k tow.
  • the spread carbon tow can pass through a surface treatment step that is composed of a plasma system as described above. After a barrier coating is applied and roughened, spread fibers then can pass through a CNT-forming catalyst dip bath. The result is fibers of the carbon tow that have catalyst particles distributed radially on their surface.
  • the catalyzed-laden fibers of the tow then enter an appropriate CNT growth chamber, such as the rectangular chamber described above, where a flow through atmospheric pressure CVD or PE-CVD process is used to synthesize the CNTs at rates as high as several microns per second.
  • CNT-infused carbon fiber materials can pass through yet another treatment process that, in some embodiments is a plasma process used to functionalize the CNTs. Additional functionalization of CNTs can be used to promote their adhesion to particular resins.
  • the present invention provides CNT-infused carbon fiber materials having functionalized CNTs.
  • the a CNT-infused carbon fiber material can further pass through a sizing dip bath to apply any additional sizing agents which can be beneficial in a final product.
  • the CNT-infused carbon fiber materials can be passed through a resin bath and wound on a mandrel or spool.
  • the resulting carbon fiber material/resin combination locks the CNTs on the carbon fiber material allowing for easier handling and composite fabrication.
  • CNT infusion is used to provide improved filament winding.
  • CNTs formed on carbon fibers such as carbon tow are passed through a resin bath to produce resin-impregnated, CNT-infused carbon tow. After resin impregnation, the carbon tow can be positioned on the surface of a rotating mandrel by a delivery head. The tow can then be wound onto the mandrel in a precise geometric pattern in known fashion.
  • the winding process described above provides pipes, tubes, or other forms as are characteristically produced via a male mold. But the forms made from the winding process disclosed herein differ from those produced via conventional filament winding processes. Specifically, in the process disclosed herein, the forms are made from composite materials that include CNT-infused tow. Such forms will therefore benefit from enhanced strength and the like, as provided by the CNT-infused tow.
  • a continuous process for infusion of CNTs on spoolable carbon fiber materials can achieve a linespeed between about 0.5 ft/min to about 36 ft/min.
  • the process can be run with a linespeed of about 6 ft/min to about 36 ft/min to produce, for example, CNTs having a length between about 1 micron to about 10 microns.
  • the process can also be run with a linespeed of about 1 ft/min to about 6 ft/min to produce, for example, CNTs having a length between about 10 microns to about 100 microns.
  • the process can be run with a linespeed of about 0.5 ft/min to about 1 ft/min to produce, for example, CNTs having a length between about 100 microns to about 200 microns.
  • the CNT length is not tied only to linespeed and growth temperature, however, the flow rate of both the carbon feedstock and the inert carrier gases can also influence CNT length.
  • a flow rate consisting of less than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having a length between 1 micron to about 5 microns.
  • a flow rate consisting of more than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having length between 5 microns to about 10 microns.
  • more than one carbon material can be run simultaneously through the process.
  • multiple tapes tows, filaments, strand and the like can be run through the process in parallel.
  • any number of pre-fabricated spools of carbon fiber material can be run in parallel through the process and re-spooled at the end of the process.
  • the number of spooled carbon fiber materials that can be run in parallel can include one, two, three, four, five, six, up to any number that can be accommodated by the width of the CNT-growth reaction chamber.
  • the number of collection spools can be less than the number of spools at the start of the process.
  • carbon strands, tows, or the like can be sent through a further process of combining such carbon fiber materials into higher ordered carbon fiber materials such as woven fabrics or the like.
  • the continuous process can also incorporate a post processing chopper that facilitates the formation CNT-infused chopped fiber mats, for example.
  • processes of the invention allow for synthesizing a first amount of a first type of carbon nanotube on the carbon fiber material, in which the first type of carbon nanotube is selected to alter at least one first property of the carbon fiber material. Subsequently, process of the invention allow for synthesizing a second amount of a second type of carbon nanotube on the carbon fiber material, in which the second type of carbon nanotube is selected to alter at least one second property of the carbon fiber material.
  • the first amount and second amount of CNTs are different. This can be accompanied by a change in the CNT type or not. Thus, varying the density of CNTs can be used to alter the properties of the original carbon fiber material, even if the CNT type remains unchanged.
  • CNT type can include CNT length and the number of walls, for example.
  • the first amount and the second amount are the same. If different properties are desirable in this case along the two different stretches of the spoolable material, then the CNT type can be changed, such as the CNT length. For example, longer CNTs can be useful in electrical/thermal applications, while shorter CNTs can be useful in mechanical strengthening applications.
  • the first type of carbon nanotube and the second type of carbon nanotube can be the same, in some embodiments, while the first type of carbon nanotube and the second type of carbon nanotube can be different, in other embodiments.
  • the first property and the second property can be the same, in some embodiments.
  • the EMI shielding property can be the property of interest addressed by the first amount and type of CNTs and the 2 nd amount and type of CNTs, but the degree of change in this property can be different, as reflected by differing amounts, and/or types of CNTs employed.
  • the first property and the second property can be different. Again this may reflect a change in CNT type.
  • the first property can be mechanical strength with shorter CNTs
  • the second property can be electrical/thermal properties with longer CNTs.
  • One skilled in the art will recognize the ability to tailor the properties of the carbon fiber material through the use of different CNT densities, CNT lengths, and the number of walls in the CNTs, such as single-walled, double-walled, and multi-walled, for example.
  • processes of the present invention provides synthesizing a first amount of carbon nanotubes on a carbon fiber material, such that this first amount allows the carbon nanotube-infused carbon fiber material to exhibit a second group of properties that differ from a first group of properties exhibited by the carbon fiber material itself. That is, selecting an amount that can alter one or more properties of the carbon fiber material, such as tensile strength.
  • the first group of properties and second group of properties can include at least one of the same properties, thus representing enhancing an already existing property of the carbon fiber material.
  • CNT infusion can impart a second group of properties to the carbon nanotube-infused carbon fiber material that is not included among the first group of properties exhibited by the carbon fiber material itself.
  • a first amount of carbon nanotubes is selected such that the value of at least one property selected from the group consisting of tensile strength, Young's Modulus, shear strength, shear modulus, toughness, compression strength, compression modulus, density, EM wave absorptivity/reflectivity, acoustic transmittance, electrical conductivity, and thermal conductivity of the carbon nanotube-infused carbon fiber material differs from the value of the same property of the carbon fiber material itself.
  • Tensile strength can include three different measurements: 1) Yield strength which evaluates the stress at which material strain changes from elastic deformation to plastic deformation, causing the material to deform permanently; 2) Ultimate strength which evaluates the maximum stress a material can withstand when subjected to tension, compression or shearing; and 3) Breaking strength which evaluates the stress coordinate on a stress-strain curve at the point of rupture.
  • Composite shear strength evaluates the stress at which a material fails when a load is applied perpendicular to the fiber direction.
  • Compression strength evaluates the stress at which a material fails when a compressive load is applied.
  • Multiwalled carbon nanotubes in particular, have the highest tensile strength of any material yet measured, with a tensile strength of 63 GPa having been achieved. Moreover, theoretical calculations have indicated possible tensile strengths of CNTs of about 300 GPa. Thus, CNT-infused carbon fiber materials are expected to have substantially higher ultimate strength compared to the parent carbon fiber material. As described above, the increase in tensile strength will depend on the exact nature of the CNTs used as well as the density and distribution on the carbon fiber material. CNT-infused carbon fiber materials can exhibit a tow to three times increase in tensile properties, for example. Exemplary CNT-infused carbon fiber materials can have as high as three times the shear strength as the parent unfunctionalized carbon fiber material and as high as 2.5 times the compression strength.
  • Young's modulus is a measure of the stiffness of an isotropic elastic material. It is defined as the ratio of the uniaxial stress over the uniaxial strain in the range of stress in which Hooke's Law holds. This can be experimentally determined from the slope of a stress-strain curve created during tensile tests conducted on a sample of the material.
  • Electrical conductivity or specific conductance is a measure of a material's ability to conduct an electric current.
  • CNTs with particular structural parameters such as the degree of twist, which relates to CNT chirality can be highly conducting, thus exhibiting metallic properties.
  • a recognized system of nomenclature M. S. Dresselhaus, et al. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, Calif. pp. 756-760, (1996) has been formalized and is recognized by those skilled in the art with respect to CNT chirality.
  • CNTs are distinguished from each other by a double index (n,m) where n and m are integers that describe the cut and wrapping of hexagonal graphite so that it makes a tube when it is wrapped onto the surface of a cylinder and the edges are sealed together.
  • n and m are integers that describe the cut and wrapping of hexagonal graphite so that it makes a tube when it is wrapped onto the surface of a cylinder and the edges are sealed together.
  • CNT diameter In addition to the degree of twist CNT diameter also effects electrical conductivity.
  • CNT diameter can be controlled by use of controlled size CNT-forming catalyst nanoparticles.
  • CNTs can also be formed as semi-conducting materials.
  • Conductivity in multi-walled CNTs (MWNTs) can be more complex. Interwall reactions within MWNTs can redistribute current over individual tubes non-uniformly. By contrast, there is no change in current across different parts of metallic single-walled nanotubes (SWNTs).
  • SWNTs metallic single-walled nanotubes
  • Carbon nanotubes also have very high thermal conductivity, comparable to diamond crystal and in-plane graphite sheet.
  • the CNT-infused carbon fiber materials can benefit from the presence of CNTs not only in the properties described above, but can also provide lighter materials in the process. Thus, such lower density and higher strength materials translates to greater strength to weight ratio. It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.
  • This example shows how a carbon fiber material can be infused with CNTs in a continuous process to target thermal and electrical conductivity improvements.
  • the maximum loading of CNTs on fibers is targeted.
  • 34-700 12 k carbon fiber tow with a tex value of 800 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate.
  • the individual filaments in this carbon fiber tow have a diameter of approximately 7 ⁇ m.
  • FIG. 8 depicts system 800 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention.
  • System 800 includes a carbon fiber material payout and tensioner station 805 , sizing removal and fiber spreader station 810 , plasma treatment station 815 , barrier coating application station 820 , air dry station 825 , catalyst application station 830 , solvent flash-off station 835 , CNT-infusion station 840 , fiber bundler station 845 , and carbon fiber material uptake bobbin 850 , interrelated as shown.
  • Payout and tension station 805 includes payout bobbin 806 and tensioner 807 .
  • the payout bobbin delivers carbon fiber material 860 to the process; the fiber is tensioned via tensioner 807 .
  • the carbon fiber is processed at a linespeed of 2 ft/min.
  • Fiber material 860 is delivered to sizing removal and fiber spreader station 810 which includes sizing removal heaters 865 and fiber spreader 870 .
  • any “sizing” that is on fiber 860 is removed.
  • removal is accomplished by burning the sizing off of the fiber.
  • Any of a variety of heating means can be used for this purpose, including, for example, an infrared heater, a muffle furnace, and other non-contact heating processes. Sizing removal can also be accomplished chemically.
  • the fiber spreader separates the individual elements of the fiber.
  • Various techniques and apparatuses can be used to spread fiber, such as pulling the fiber over and under flat, uniform-diameter bars, or over and under variable-diameter bars, or over bars with radially-expanding grooves and a kneading roller, over a vibratory bar, etc.
  • Spreading the fiber enhances the effectiveness of downstream operations, such as plasma application, barrier coating application, and catalyst application, by exposing more fiber surface area.
  • sizing removal heaters 865 can be placed throughout the fiber spreader 870 which allows for gradual, simultaneous desizing and spreading of the fibers.
  • Payout and tension station 805 and sizing removal and fiber spreader station 810 are routinely used in the fiber industry; those skilled in the art will be familiar with their design and use.
  • the temperature and time required for burning off the sizing vary as a function of (1) the sizing material and (2) the commercial source/identity of carbon fiber material 860 .
  • a conventional sizing on a carbon fiber material can be removed at about 650° C. At this temperature, it can take as long as 15 minutes to ensure a complete burn off of the sizing. Increasing the temperature above this burn temperature can reduce burn-off time.
  • Thermogravimetric analysis is used to determine minimum burn-off temperature for sizing for a particular commercial product.
  • sizing removal heaters may not necessarily be included in the CNT-infusion process proper; rather, removal can be performed separately (e.g., in parallel, etc.).
  • an inventory of sizing-free carbon fiber material can be accumulated and spooled for use in a CNT-infused fiber production line that does not include fiber removal heaters.
  • the sizing-free fiber is then spooled in payout and tension station 805 .
  • This production line can be operated at higher speed than one that includes sizing removal.
  • Unsized fiber 880 is delivered to plasma treatment station 815 .
  • atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 1 mm from the spread carbon fiber material.
  • the gaseous feedstock is comprised of 100 % helium.
  • Plasma enhanced fiber 885 is delivered to barrier coating station 820 .
  • a siloxane-based barrier coating solution is employed in a dip coating configuration.
  • the solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume.
  • the resulting barrier coating thickness on the carbon fiber material is approximately 40 nm.
  • the barrier coating can be applied at room temperature in the ambient environment.
  • Barrier coated carbon fiber 890 is delivered to air dry station 825 for partial curing of the nanoscale barrier coating.
  • the air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • barrier coated carbon fiber 890 is delivered to catalyst application station 830 .
  • an iron oxide-based CNT forming catalyst solution is employed in a dip coating configuration.
  • the solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume.
  • a monolayer of catalyst coating is achieved on the carbon fiber material.
  • ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume.
  • the iron oxide nanoparticles are of composition Fe 2 O 3 and Fe 3 O 4 and are approximately 8 nm in diameter.
  • Catalyst-laden carbon fiber material 895 is delivered to solvent flash-off station 835 .
  • the solvent flash-off station sends a stream of air across the entire carbon fiber spread.
  • room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
  • catalyst-laden fiber 895 is finally advanced to CNT-infusion station 840 .
  • a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.0% of the total gas flow is inert gas (Nitrogen) and the other 2.0% is the carbon feedstock (acetylene).
  • the growth zone is held at 750° C.
  • 750° C. is a relatively high growth temperature, which allows for the highest growth rates possible.
  • CNT-infused fiber 897 is re-bundled at fiber bundler station 845 . This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 810 .
  • the bundled, CNT-infused fiber 897 is wound about uptake fiber bobbin 850 for storage.
  • CNT-infused fiber 897 is loaded with CNTs approximately 50 ⁇ m in length and is then ready for use in composite materials with enhanced thermal and electrical conductivity.
  • This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as shear strength. In this case, loading of shorter CNTs on fibers is targeted.
  • 34-700 12 k unsized carbon fiber tow with a tex value of 793 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate.
  • the individual filaments in this carbon fiber tow have a diameter of approximately 7 ⁇ m.
  • FIG. 9 depicts system 900 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention, and involves many of the same stations and processes described in system 800 .
  • System 900 includes a carbon fiber material payout and tensioner station 902 , fiber spreader station 908 , plasma treatment station 910 , catalyst application station 912 , solvent flash-off station 914 , a second catalyst application station 916 , a second solvent flash-off station 918 , barrier coating application station 920 , air dry station 922 , a second barrier coating application station 924 , a second air dry station 926 , CNT-infusion station 928 , fiber bundler station 930 , and carbon fiber material uptake bobbin 932 , interrelated as shown.
  • Payout and tension station 902 includes payout bobbin 904 and tensioner 906 .
  • the payout bobbin delivers carbon fiber material 901 to the process; the fiber is tensioned via tensioner 906 .
  • the carbon fiber is processed at a linespeed of 2 ft/min.
  • Fiber material 901 is delivered to fiber spreader station 908 . As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 908 .
  • the fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870 .
  • Fiber material 901 is delivered to plasma treatment station 910 .
  • atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material.
  • the gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
  • Plasma enhanced fiber 911 is delivered to catalyst application station 912 .
  • an iron oxide based CNT forming catalyst solution is employed in a dip coating configuration.
  • the solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume.
  • a monolayer of catalyst coating is achieved on the carbon fiber material.
  • ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume.
  • the iron oxide nanoparticles are of composition Fe 2 O 3 and Fe 3 O 4 and are approximately 8 nm in diameter.
  • Catalyst-laden carbon fiber material 913 is delivered to solvent flash-off station 914 .
  • the solvent flash-off station sends a stream of air across the entire carbon fiber spread.
  • room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
  • catalyst laden fiber 913 is delivered to catalyst application station 916 , which is identical to catalyst application station 912 .
  • the solution is ‘EFH-1’ diluted in hexane by a dilution rate of 800 to 1 by volume.
  • a configuration which includes multiple catalyst application stations is utilized to optimize the coverage of the catalyst on the plasma enhanced fiber 911 .
  • Catalyst-laden carbon fiber material 917 is delivered to solvent flash-off station 918 , which is identical to solvent flash-off station 914 .
  • catalyst-laden carbon fiber material 917 is delivered to barrier coating application station 920 .
  • a siloxane-based barrier coating solution is employed in a dip coating configuration.
  • the solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume.
  • the resulting barrier coating thickness on the carbon fiber material is approximately 40 nm.
  • the barrier coating can be applied at room temperature in the ambient environment.
  • Barrier coated carbon fiber 921 is delivered to air dry station 922 for partial curing of the barrier coating.
  • the air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • barrier coated carbon fiber 921 is delivered to barrier coating application station 924 , which is identical to barrier coating application station 820 .
  • the solution is ‘Accuglass T-11 Spin-On Glass’ diluted in isopropyl alcohol by a dilution rate of 120 to 1 by volume.
  • a configuration which includes multiple barrier coating application stations is utilized to optimize the coverage of the barrier coating on the catalyst-laden fiber 917 .
  • Barrier coated carbon fiber 925 is delivered to air dry station 926 for partial curing of the barrier coating, and is identical to air dry station 922 .
  • barrier coated carbon fiber 925 is finally advanced to CNT-infusion station 928 .
  • a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 97.75% of the total gas flow is inert gas (Nitrogen) and the other 2.25% is the carbon feedstock (acetylene).
  • the growth zone is held at 650° C.
  • 650° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
  • CNT-infused fiber 929 is re-bundled at fiber bundler 930 . This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 908 .
  • the bundled, CNT-infused fiber 931 is wound about uptake fiber bobbin 932 for storage.
  • CNT-infused fiber 929 is loaded with CNTs approximately 5 ⁇ m in length and is then ready for use in composite materials with enhanced mechanical properties.
  • the carbon fiber material passes through catalyst application stations 912 and 916 prior to barrier coating application stations 920 and 924 .
  • This ordering of coatings is in the ‘reverse’ order as illustrated in Example I, which can improve anchoring of the CNTs to the carbon fiber substrate.
  • the barrier coating layer is lifted off of the substrate by the CNTs, which allows for more direct contact with the carbon fiber material (via catalyst NP interface). Because increases in mechanical properties, and not thermal/electrical properties, are being targeted, a ‘reverse’ order coating configuration is desirable.
  • This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as interlaminar shear.
  • FIG. 10 depicts system 1000 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention, and involves many of the same stations and processes described in system 800 .
  • System 1000 includes a carbon fiber material payout and tensioner station 1002 , fiber spreader station 1008 , plasma treatment station 1010 , coating application station 1012 , air dry station 1014 , a second coating application station 1016 , a second air dry station 1018 , CNT-infusion station 1020 , fiber bundler station 1022 , and carbon fiber material uptake bobbin 1024 , interrelated as shown.
  • Payout and tension station 1002 includes payout bobbin 1004 and tensioner 1006 .
  • the payout bobbin delivers carbon fiber material 1001 to the process; the fiber is tensioned via tensioner 1006 .
  • the carbon fiber is processed at a linespeed of 5 ft/min.
  • Fiber material 1001 is delivered to fiber spreader station 1008 . As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 1008 .
  • the fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870 .
  • Fiber material 1001 is delivered to plasma treatment station 1010 .
  • atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material.
  • the gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
  • Plasma enhanced fiber 1011 is delivered to coating application station 1012 .
  • an iron oxide based catalyst and a barrier coating material is combined into a single ‘hybrid’ solution and is employed in a dip coating configuration.
  • the ‘hybrid’ solution is 1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran.
  • the benefit of employing such a ‘hybrid’ coating is that it marginalizes the effect of fiber degradation at high temperatures.
  • Catalyst-laden and barrier coated carbon fiber material 1013 is delivered to air dry station 1014 for partial curing of the barrier coating.
  • the air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • the catalyst and barrier coating-laden carbon fiber 1013 is delivered to coating application station 1016 , which is identical to coating application station 1012 .
  • the same ‘hybrid’ solution is used (1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran).
  • a configuration which includes multiple coating application stations is utilized to optimized the coverage of the ‘hybrid’ coating on the plasma enhanced fiber 1011 .
  • Catalyst and barrier coating-laden carbon fiber 1017 is delivered to air dry station 1018 for partial curing of the barrier coating, and is identical to air dry station 1014 .
  • catalyst and barrier coating-laden carbon fiber 1017 is finally advanced to CNT-infusion station 1020 .
  • a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.7% of the total gas flow is inert gas (Nitrogen) and the other 1.3% is the carbon feedstock (acetylene).
  • the growth zone is held at 675° C.
  • 675° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
  • CNT-infused fiber 1021 is re-bundled at fiber bundler 1022 . This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 1008 .
  • the bundled, CNT-infused fiber 1021 is wound about uptake fiber bobbin 1024 for storage.
  • CNT-infused fiber 1021 is loaded with CNTs approximately 2 ⁇ m in length and is then ready for use in composite materials with enhanced mechanical properties.

Abstract

A composition includes a carbon nanotube (CNT)-infused carbon fiber material that includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating. A continuous CNT infusion process includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.

Description

    STATEMENT OF RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/611,101 filed Nov. 2, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 11/619,327 filed Jan. 3, 2007. This application claims priority to U.S. Provisional Application Nos. 61/168,516, filed Apr. 10, 2009, 61/169,055 filed Apr. 14, 2009, 61/155,935 filed Feb. 27, 2009, 61/157,096 filed Mar. 3, 2009, and 61/182,153 filed May 29, 2009, all of which are incorporated herein by reference in their entirety.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • FIELD OF THE INVENTION
  • The present invention relates to fiber materials, more specifically to carbon fiber materials modified with carbon nanotubes.
  • BACKGROUND OF THE INVENTION
  • Fiber materials are used for many different applications in a wide variety of industries, such as the commercial aviation, recreation, industrial and transportation industries. Commonly-used fiber materials for these and other applications include carbon fiber, cellulosic fiber, glass fiber, metal fiber, ceramic fiber and aramid fiber, for example.
  • Carbon fiber is routinely manufactured with sizing agents to protect the material from environmental degradation. Additionally, other physical stresses can compromise carbon fiber integrity such as compressive forces and self abrasion. Many sizing formulations used to protect carbon fibers against these vulnerabilities are proprietary in nature and are designed to interface with specific resin types. To realize the benefit of carbon fiber material properties in a composite, there must be a good interface between the carbon fibers and the matrix. The sizing employed on a carbon fiber can provide a physico-chemical link between fiber and the resin matrix and thus affects the mechanical and chemical properties of the composite.
  • However, most conventional sizing agents have a lower interfacial strength than the carbon fiber material to which they are applied. As a consequence, the strength of the sizing and its ability to withstand interfacial stress ultimately determines the strength of the overall composite. Thus, using conventional sizing, the resulting composite will generally have a strength less than that of the carbon fiber material.
  • It would be useful to develop sizing agents and processes of coating the same on carbon fiber materials to address some of the issues described above as well as to impart desirable characteristics to the carbon fiber materials. The present invention satisfies this need and provides related advantages as well.
  • SUMMARY OF THE INVENTION
  • In some aspects, embodiments disclosed here relate to a composition that includes a carbon nanotube (CNT)-infused carbon fiber material. The CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT-infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating.
  • In some aspects, embodiments disclosed herein relatet to a continuous CNT infusion process that includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a transmission electron microscope (TEM) image of a multi-walled CNT (MWNT) grown on AS4 carbon fiber via a continuous CVD process.
  • FIG. 2 shows a TEM image of a double-walled CNT (DWNT) grown on AS4 carbon fiber via a continuous CVD process.
  • FIG. 3 shows a scanning electron microscope (SEM) image of CNTs growing from within the barrier coating where the CNT-forming nanoparticle catalyst was mechanically infused to the carbon fiber material surface.
  • FIG. 4 shows a SEM image demonstrating the consistency in length distribution of CNTs grown on a carbon fiber material to within 20% of a targeted length of about 40 microns.
  • FIG. 5 shows an SEM image demonstrating the effect of a barrier coating on CNT growth. Dense, well aligned CNTs grew where barrier coating was applied and no CNTs grew where barrier coating was absent.
  • FIG. 6 shows a low magnification SEM of CNTs on carbon fiber demonstrating the uniformity of CNT density across the fibers within about 10%.
  • FIG. 7 shows a process for producing CNT-infused carbon fiber material in accordance with the illustrative embodiment of the present invention.
  • FIG. 8 shows how a carbon fiber material can be infused with CNTs in a continuous process to target thermal and electrical conductivity improvements.
  • FIG. 9 shows how carbon fiber material can be infused with CNTs in a continuous process using a “reverse” barrier coating process to target improvements in mechanical properties, especially interfacial characteristics such as shear strength.
  • FIG. 10 shows how carbon fiber material can be infused with CNTs in another continuous process using a “hybrid” barrier coating to target improvements in mechanical properties, especially interfacial characteristics such as shear strength and interlaminar fracture toughness.
  • FIG. 11 shows the effect of infused CNTs on IM7 carbon fiber on interlaminar fracture toughness. The baseline material is an unsized IM7 carbon fiber, while the CNT-Infused material is an unsized carbon fiber with 15 micron long CNTs infused on the fiber surface.
  • DETAILED DESCRIPTION
  • The present disclosure is directed, in part, to carbon nanotube-infused (“CNT-infused”) carbon fiber materials. The infusion of CNTs to the carbon fiber material can serve many functions including, for example, as a sizing agent to protect against damage from moisture, oxidation, abrasion, and compression. A CNT-based sizing can also serve as an interface between the carbon fiber material and a matrix material in a composite. The CNTs can also serve as one of several sizing agents coating the carbon fiber material.
  • Moreover, CNTs infused on a carbon fiber material can alter various properties of the carbon fiber material, such as thermal and/or electrical conductivity, and/or tensile strength, for example. The processes employed to make CNT-infused carbon fiber materials provide CNTs with substantially uniform length and distribution to impart their useful properties uniformly over the carbon fiber material that is being modified. Furthermore, the processes disclosed herein are suitable for the generation of CNT-infused carbon fiber materials of spoolable dimensions.
  • The present disclosure is also directed, in part, to processes for making CNT-infused carbon fiber materials. The processes disclosed herein can be applied to nascent carbon fiber materials generated de novo before, or in lieu of, application of a typical sizing solution to the carbon fiber material. Alternatively, the processes disclosed herein can utilize a commercial carbon fiber material, for example, a carbon tow, that already has a sizing applied to its surface. In such embodiments, the sizing can be removed to provide a direct interface between the carbon fiber material and the synthesized CNTs, although a barrier coating and/or transition metal particle can serve as an intermediate layer providing indirect infusion, as explained further below. After CNT synthesis further sizing agents can be applied to the carbon fiber material as desired.
  • The processes described herein allow for the continuous production of carbon nanotubes of uniform length and distribution along spoolable lengths of tow, tapes, fabrics and other 3D woven structures. While various mats, woven and non-woven fabrics and the like can be functionalized by processes of the invention, it is also possible to generate such higher ordered structures from the parent tow, yarn or the like after CNT functionalization of these parent materials. For example, a CNT-infused woven fabric can be generated from a CNT-infused carbon fiber tow.
  • As used herein the term “carbon fiber material” refers to any material which has carbon fiber as its elementary structural component. The term encompasses fibers, filaments, yarns, tows, tows, tapes, woven and non-woven fabrics, plies, mats, and the like.
  • As used herein the term “spoolable dimensions” refers to carbon fiber materials having at least one dimension that is not limited in length, allowing for the material to be stored on a spool or mandrel. Carbon fiber materials of “spoolable dimensions” have at least one dimension that indicates the use of either batch or continuous processing for CNT infusion as described herein. One carbon fiber material of spoolable dimensions that is commercially available is exemplified by AS4 12 k carbon fiber tow with a tex value of 800 (1 tex=1 g/1,000 m) or 620 yard/lb (Grafil, Inc., Sacramento, Calif.). Commercial carbon fiber tow, in particular, can be obtained in 5, 10, 20, 50, and 100 lb. (for spools having high weight, usually a 3 k/12K tow) spools, for example, although larger spools may require special order. Processes of the invention operate readily with 5 to 20 lb. spools, although larger spools are usable. Moreover, a pre-process operation can be incorporated that divides very large spoolable lengths, for example 100 lb. or more, into easy to handle dimensions, such as two 50 lb spools.
  • As used herein, the term “carbon nanotube” (CNT, plural CNTs) refers to any of a number of cylindrically-shaped allotropes of carbon of the fullerene family including single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multi-walled carbon nanotubes (MWNTs). CNTs can be capped by a fullerene-like structure or open-ended. CNTs include those that encapsulate other materials.
  • As used herein “uniform in length” refers to length of CNTs grown in a reactor. “Uniform length” means that the CNTs have lengths with tolerances of plus or minus about 20% of the total CNT length or less, for CNT lengths varying from between about 1 micron to about 500 microns. At very short lengths, such as 1-4 microns, this error may be in a range from between about plus or minus 20% of the total CNT length up to about plus or minus 1 micron, that is, somewhat more than about 20% of the total CNT length.
  • As used herein “uniform in distribution” refers to the consistency of density of CNTs on a carbon fiber material. “Uniform distribution” means that the CNTs have a density on the carbon fiber material with tolerances of plus or minus about 10% coverage defined as the percentage of the surface area of the fiber covered by CNTs. This is equivalent to ±1500 CNTs/μm2 for an 8 nm diameter CNT with 5 walls. Such a figure assumes the space inside the CNTs as fillable.
  • As used herein, the term “infused” means bonded and “infusion” means the process of bonding. Such bonding can involve direct covalent bonding, ionic bonding, pi-pi, and/or van der Waals force-mediated physisorption. For example, in some embodiments, the CNTs can be directely bonded to the carbon fiber material. Bonding can be indirect, such as the CNT infusion to the carbon fiber material via a barrier coating and/or an intervening transition metal nanoparticle disposed between the CNTs and carbon fiber material. In the CNT-infused carbon fiber materials disclosed herein, the carbon nanotubes can be “infused” to the carbon fiber material directly or indirectly as described above. The particular manner in which a CNT is “infused” to a carbon fiber materials is referred to as a “bonding motif.”
  • As used herein, the term “transition metal” refers to any element or alloy of elements in the d-block of the periodic table. The term “transition metal” also includes salt forms of the base transition metal element such as oxides, carbides, nitrides, and the like.
  • As used herein, the term “nanoparticle” or NP (plural NPs), or grammatical equivalents thereof refers to particles sized between about 0.1 to about 100 nanometers in equivalent spherical diameter, although the NPs need not be spherical in shape. Transition metal NPs, in particular, serve as catalysts for CNT growth on the carbon fiber materials.
  • As used herein, the term “sizing agent,” “fiber sizing agent,” or just “sizing,” refers collectively to materials used in the manufacture of carbon fibers as a coating to protect the integrity of carbon fibers, provide enhanced interfacial interactions between a carbon fiber and a matrix material in a composite, and/or alter and/or enhance particular physical properties of a carbon fiber. In some embodiments, CNTs infused to carbon fiber materials behave as a sizing agent.
  • As used herein, the term “matrix material” refers to a bulk material than can serve to organize sized CNT-infused carbon fiber materials in particular orientations, including random orientation. The matrix material can benefit from the presence of the CNT-infused carbon fiber material by imparting some aspects of the physical and/or chemical properties of the CNT-infused carbon fiber material to the matrix material.
  • As used herein, the term “material residence time” refers to the amount of time a discrete point along a glass fiber material of spoolable dimensions is exposed to CNT growth conditions during the CNT infusion processes described herein. This definition includes the residence time when employing multiple CNT growth chambers.
  • As used herein, the term “linespeed” refers to the speed at which a glass fiber material of spoolable dimensions can be fed through the CNT infusion processes described herein, where linespeed is a velocity determined by dividing CNT chamber(s) length by the material residence time.
  • In some embodiments, the present invention provides a composition that includes a carbon nanotube (CNT)-infused carbon fiber material. The CNT-infused carbon fiber material includes a carbon fiber material of spoolable dimensions, a barrier coating conformally disposed about the carbon fiber material, and carbon nanotubes (CNTs) infused to the carbon fiber material. The infusion of CNTs to the carbon fiber material can include a bonding motif of direct bonding of individual CNTs to the carbon fiber material or indirect bonding via a transition metal NP, barrier coating, or both.
  • Without being bound by theory, transition metal NPs, which serve as a CNT-forming catalyst, can catalyze CNT growth by forming a CNT growth seed structure. In one embodiment, the CNT-forming catalyst can remain at the base of the carbon fiber material, locked by the barrier coating, and infused to the surface of the carbon fiber material. In such a case, the seed structure initially formed by the transition metal nanoparticle catalyst is sufficient for continued non-catalyzed seeded CNT growth without allowing the catalyst to move along the leading edge of CNT growth, as often observed in the art. In such a case, the NP serves as a point of attachment for the CNT to the carbon fiber material. The presence of the barrier coating can also lead to further indirect bonding motifs. For example, the CNT forming catalyst can be locked into the barrier coating, as described above, but not in surface contact with carbon fiber material. In such a case a stacked structure with the barrier coating disposed between the CNT forming catalyst and carbon fiber material results. In either case, the CNTs formed are infused to the carbon fiber material. In some embodiments, some barrier coatings will still allow the CNT growth catalyst to follow the leading edge of the growing nanotube. In such cases, this can result in direct bonding of the CNTs to the carbon fiber material or, optionally, to the barrier coating. Regardless of the nature of the actual bonding motif formed between the carbon nanotubes and the carbon fiber material, the infused CNT is robust and allows the CNT-infused carbon fiber material to exhibit carbon nanotube properties and/or characteristics.
  • Again, without being bound by theory, when growing CNTs on carbon fiber materials, the elevated temperatures and/or any residual oxygen and/or moisture that can be present in the reaction chamber can damage the carbon fiber material. Moreover, the carbon fiber material itself can be damaged by reaction with the CNT-forming catalyst itself. That is the carbon fiber material can behave as a carbon feedstock to the catalyst at the reaction temperatures employed for CNT synthesis. Such excess carbon can disturb the controlled introduction of the carbon feedstock gas and can even serve to poison the catalyst by overloading it with carbon. The barrier coating employed in the invention is designed to facilitate CNT synthesis on carbon fiber materials. Without being bound by theory, the coating can provide a thermal barrier to heat degradation and/or can be a physical barrier preventing exposure of the carbon fiber material to the environment at the elevated temperatures. Alternatively or additionally, it can minimize the surface area contact between the CNT-forming catalyst and the carbon fiber material and/or it can mitigate the exposure of the carbon fiber material to the CNT-forming catalyst at CNT growth temperatures.
  • Compositions having CNT-infused carbon fiber materials are provided in which the CNTs are substantially uniform in length. In the continuous process described herein, the residence time of the carbon fiber material in a CNT growth chamber can be modulated to control CNT growth and ultimately, CNT length. This provides a means to control specific properties of the CNTs grown. CNT length can also be controlled through modulation of the carbon feedstock and carrier gas flow rates and reaction temperature. Additional control of the CNT properties can be obtained by controlling, for example, the size of the catalyst used to prepare the CNTs. For example, 1 nm transition metal nanoparticle catalysts can be used to provide SWNTs in particular. Larger catalysts can be used to prepare predominantly MWNTs.
  • Additionally, the CNT growth processes employed are useful for providing a CNT-infused carbon fiber material with uniformly distributed CNTs on carbon fiber materials while avoiding bundling and/or aggregation of the CNTs that can occur in processes in which pre-formed CNTs are suspended or dispersed in a solvent solution and applied by hand to the carbon fiber material. Such aggregated CNTs tend to adhere weakly to a carbon fiber material and the characteristic CNT properties are weakly expressed, if at all. In some embodiments, the maximum distribution density, expressed as percent coverage, that is, the surface area of fiber covered, can be as high as about 55% assuming about 8 nm diameter CNTs with 5 walls. This coverage is calculated by considering the space inside the CNTs as being “fillable” space. Various distribution/density values can be achieved by varying catalyst dispersion on the surface as well as controlling gas composition and process speed. Typically for a given set of parameters, a percent coverage within about 10% can be achieved across a fiber surface. Higher density and shorter CNTs are useful for improving mechanical properties, while longer CNTs with lower density are useful for improving thermal and electrical properties, although increased density is still favorable. A lower density can result when longer CNTs are grown. This can be the result of the higher temperatures and more rapid growth causing lower catalyst particle yields.
  • The compositions of the invention having CNT-infused carbon fiber materials can include a carbon fiber material such as a carbon filament, a carbon fiber yarn, a carbon fiber tow, a carbon tape, a carbon fiber-braid, a woven carbon fabric, a non-woven carbon fiber mat, a carbon fiber ply, and other 3D woven structures. Carbon filaments include high aspect ratio carbon fibers having diameters ranging in size from between about 1 micron to about 100 microns. Carbon fiber tows are generally compactly associated bundles of filaments and are usually twisted together to give yarns.
  • Yarns include closely associated bundles of twisted filaments. Each filament diameter in a yarn is relatively uniform. Yarns have varying weights described by their ‘tex,’ expressed as weight in grams of 1000 linear meters, or denier, expressed as weight in pounds of 10,000 yards, with a typical tex range usually being between about 200 tex to about 2000 tex.
  • Tows include loosely associated bundles of untwisted filaments. As in yarns, filament diameter in a tow is generally uniform. Tows also have varying weights and the tex range is usually between 200 tex and 2000 tex. They are frequently characterized by the number of thousands of filaments in the tow, for example 12K tow, 24K tow, 48K tow, and the like.
  • Carbon tapes are materials that can be assembled as weaves or can represent non-woven flattened tows. Carbon tapes can vary in width and are generally two-sided structures similar to ribbon. Processes of the present invention are compatible with CNT infusion on one or both sides of a tape. CNT-infused tapes can resemble a “carpet” or “forest” on a flat substrate surface. Again, processes of the invention can be performed in a continuous mode to functionalize spools of tape.
  • Carbon fiber-braids represent rope-like structures of densely packed carbon fibers. Such structures can be assembled from carbon yarns, for example. Braided structures can include a hollow portion or a braided structure can be assembled about another core material.
  • In some embodiments a number of primary carbon fiber material structures can be organized into fabric or sheet-like structures. These include, for example, woven carbon fabrics, non-woven carbon fiber mat and carbon fiber ply, in addition to the tapes described above. Such higher ordered structures can be assembled from parent tows, yarns, filaments or the like, with CNTs already infused in the parent fiber. Alternatively such structures can serve as the substrate for the CNT infusion processes described herein.
  • There are three types of carbon fiber which are categorized based on the precursors used to generate the fibers, any of which can be used in the invention: Rayon, Polyacrylonitrile (PAN) and Pitch. Carbon fiber from rayon precursors, which are cellulosic materials, has relatively low carbon content at about 20% and the fibers tend to have low strength and stiffness. Polyacrylonitrile (PAN) precursors provide a carbon fiber with a carbon content of about 55%. Carbon fiber based on a PAN precursor generally has a higher tensile strength than carbon fiber based on other carbon fiber precursors due to a minimum of surface defects.
  • Pitch precursors based on petroleum asphalt, coal tar, and polyvinyl chloride can also be used to produce carbon fiber. Although pitches are relatively low in cost and high in carbon yield, there can be issues of non-uniformity in a given batch.
  • CNTs useful for infusion to carbon fiber materials include single-walled CNTs, double-walled CNTs, multi-walled CNTs, and mixtures thereof. The exact CNTs to be used depends on the application of the CNT-infused carbon fiber. CNTs can be used for thermal and/or electrical conductivity applications, or as insulators. In some embodiments, the infused carbon nanotubes are single-wall nanotubes. In some embodiments, the infused carbon nanotubes are multi-wall nanotubes. In some embodiments, the infused carbon nanotubes are a combination of single-wall and multi-wall nanotubes. There are some differences in the characteristic properties of single-wall and multi-wall nanotubes that, for some end uses of the fiber, dictate the synthesis of one or the other type of nanotube. For example, single-walled nanotubes can be semi-conducting or metallic, while multi-walled nanotubes are metallic.
  • CNTs lend their characteristic properties such as mechanical strength, low to moderate electrical resistivity, high thermal conductivity, and the like to the CNT-infused carbon fiber material. For example, in some embodiments, the electrical resistivity of a carbon nanotube-infused carbon fiber material is lower than the electrical resistivity of a parent carbon fiber material. More generally, the extent to which the resulting CNT-infused fiber expresses these characteristics can be a function of the extent and density of coverage of the carbon fiber by the carbon nanotubes. Any amount of the fiber surface area, from 0-55% of the fiber can be covered assuming an 8 nm diameter, 5-walled MWNT (again this calculation counts the space inside the CNTs as tillable). This number is lower for smaller diameter CNTs and more for greater diameter CNTs. 55% surface area coverage is equivalent to about 15,000 CNTs/micron2. Further CNT properties can be imparted to the carbon fiber material in a manner dependent on CNT length, as described above. Infused CNTs can vary in length ranging from between about 1 micron to about 500 microns, including 1 micron, 2 microns, 3 microns, 4 micron, 5, microns, 6, microns, 7 microns, 8 microns, 9 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, 150 microns, 200 microns, 250 microns, 300 microns, 350 microns, 400 microns, 450 microns, 500 microns, and all values in between. CNTs can also be less than about 1 micron in length, including about 0.5 microns, for example. CNTs can also be greater than 500 microns, including for example, 510 microns, 520 microns, 550 microns, 600 microns, 700 microns and all values in between.
  • Compositions of the invention can incorporate CNTs have a length from about 1 micron to about 10 microns. Such CNT lengths can be useful in application to increase shear strength. CNTs can also have a length from about 5 to about 70 microns. Such CNT lengths can be useful in applications for increased tensile strength if the CNTs are aligned in the fiber direction. CNTs can also have a length from about 10 microns to about 100 microns. Such CNT lengths can be useful to increase electrical/thermal properties as well as mechanical properties. The process used in the invention can also provide CNTs having a length from about 100 microns to about 500 microns, which can also be beneficial to increase electrical and thermal properties. Such control of CNT length is readily achieved through modulation of carbon feedstock and inert gas flow rates coupled with varying linespeeds and growth temperature.
  • In some embodiments, compositions that include spoolable lengths of CNT-infused carbon fiber materials can have various uniform regions with different lengths of CNTs. For example, it can be desirable to have a first portion of CNT-infused carbon fiber material with uniformly shorter CNT lengths to enhance shear strength properties, and a second portion of the same spoolable material with a uniform longer CNT length to enhance electrical or thermal properties.
  • Processes of the invention for CNT infusion to carbon fiber materials allow control of the CNT lengths with uniformity and in a continuous process allowing spoolable carbon fiber materials to be functionalized with CNTs at high rates. With material residence times between 5 to 300 seconds, linespeeds in a continuous process for a system that is 3 feet long can be in a range anywhere from about 0.5 ft/min to about 36 ft/min and greater. The speed selected depends on various parameters as explained further below.
  • In some embodiments, a material residence time of about 5 to about 30 seconds can produce CNTs having a length between about 1 micron to about 10 microns. In some embodiments, a material residence time of about 30 to about 180 seconds can produce CNTs having a length between about 10 microns to about 100 microns. In still further embodiments, a material residence time of about 180 to about 300 seconds can produce CNTs having a length between about 100 microns to about 500 microns. One skilled in the art will recognize that these ranges are approximate and that CNT length can also be modulated by reaction temperatures, and carrier and carbon feedstock concentrations and flow rates.
  • CNT-infused carbon fiber materials of the invention include a barrier coating. Barrier coatings can include for example an alkoxysilane, methylsiloxane, an alumoxane, alumina nanoparticles, spin on glass and glass nanoparticles. As described below, the CNT-forming catalyst can be added to the uncured barrier coating material and then applied to the carbon fiber material together. In other embodiments the barrier coating material can be added to the carbon fiber material prior to deposition of the CNT-forming catalyst. The barrier coating material can be of a thickness sufficiently thin to allow exposure of the CNT-forming catalyst to the carbon feedstock for subsequent CVD growth. In some embodiments, the thickness is less than or about equal to the effective diameter of the CNT-forming catalyst. In some embodiments, the thickness of the barrier coating is in a range from between about 10 nm to about 100 nm. The barrier coating can also be less than 10 nm, including 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, and any value in between.
  • Without being bound by theory, the barrier coating can serve as an intermediate layer between the carbon fiber material and the CNTs and serves to mechanically infuse the CNTs to the carbon fiber material. Such mechanical infusion still provides a robust system in which the carbon fiber material serves as a platform for organizing the CNTs while still imparting properties of the CNTs to the carbon fiber material. Moreover, the benefit of including a barrier coating is the immediate protection it provides the carbon fiber material from chemical damage due to exposure to moisture and/or any thermal damage due to heating of the carbon fiber material at the temperatures used to promote CNT growth.
  • The infused CNTs disclosed herein can effectively function as a replacement for conventional carbon fiber “sizing.” The infused CNTs are more robust than conventional sizing materials and can improve the fiber-to-matrix interface in composite materials and, more generally, improve fiber-to-fiber interfaces. Indeed, the CNT-infused carbon fiber materials disclosed herein are themselves composite materials in the sense the CNT-infused carbon fiber material properties will be a combination of those of the carbon fiber material as well as those of the infused CNTs. Consequently, embodiments of the present invention provide a means to impart desired properties to a carbon fiber material that otherwise lack such properties or possesses them in insufficient measure. Carbon fiber materials can be tailored or engineered to meet the requirements of specific applications. The CNTs acting as sizing can protect carbon fiber materials from absorbing moisture due to the hydrophobic CNT structure. Moreover, hydrophobic matrix materials, as further exemplified below, interact well with hydrophobic CNTs to provide improved fiber to matrix interactions.
  • Despite the beneficial properties imparted to a carbon fiber material having infused CNTs described above, the compositions of the present invention can include further “conventional” sizing agents. Such sizing agents vary widely in type and function and include, for example, surfactants, anti-static agents, lubricants, siloxanes, alkoxysilanes, aminosilanes, silanes, silanols, polyvinyl alcohol, starch, and mixtures thereof. Such secondary sizing agents can be used to protect the CNTs themselves or provide further properties to the fiber not imparted by the presence of the infused CNTs.
  • Compositions of the present invention can further include a matrix material to form a composite with the CNT-infused carbon fiber material. Such matrix materials can include, for example, an epoxy, a polyester, a vinylester, a polyetherimide, a polyetherketoneketone, a polyphthalamide, a polyetherketone, a polytheretherketone, a polyimide, a phenol-formaldehyde, and a bismaleimide. Matrix materials useful in the present invention can include any of the known matrix materials (see Mel M. Schwartz, Composite Materials Handbook (2d ed. 1992)). Matrix materials more generally can include resins (polymers), both thermosetting and thermoplastic, metals, ceramics, and cements.
  • Thermosetting resins useful as matrix materials include phthalic/maelic type polyesters, vinyl esters, epoxies, phenolics, cyanates, bismaleimides, and nadic end-capped polyimides (e.g., PMR-15). Thermoplastic resins include polysulfones, polyamides, polycarbonates, polyphenylene oxides, polysulfides, polyether ether ketones, polyether sulfones, polyamide-imides, polyetherimides, polyimides, polyarylates, and liquid crystalline polyester.
  • Metals useful as matrix materials include alloys of aluminum such as aluminum 6061, 2024, and 713 aluminum braze. Ceramics useful as matrix materials include carbon ceramics, such as lithium aluminosilicate, oxides such as alumina and mullite, nitrides such as silicon nitride, and carbides such as silicon carbide. Cements useful as matrix materials include carbide-base cermets (tungsten carbide, chromium carbide, and titanium carbide), refractory cements (tungsten-thoria and barium-carbonate-nickel), chromium-alumina, nickel-magnesia iron-zirconium carbide. Any of the above-described matrix materials can be used alone or in combination.
  • FIG. 1-6 shows TEM and SEM images of carbon fiber materials prepared by the processes described herein. The procedures for preparing these materials are further detailed below and in Examples I-III. FIGS. 1 and 2 show TEM images of multi-walled and double-walled carbon nanotubes, respectively, that were prepared on an AS4 carbon fiber in a continuous process. FIG. 3 shows a scanning electron microscope (SEM) image of CNTs growing from within the barrier coating after the CNT-forming nanoparticle catalyst was mechanically infused to a carbon fiber material surface. FIG. 4 shows a SEM image demonstrating the consistency in length distribution of CNTs grown on a carbon fiber material to within 20% of a targeted length of about 40 microns. FIG. 5 shows an SEM image demonstrating the effect of a barrier coating on CNT growth. Dense, well aligned CNTs grew where barrier coating was applied and no CNTs grew where barrier coating was absent. FIG. 6 shows a low magnification SEM of CNTs on carbon fiber demonstrating the uniformity of CNT density across the fibers within about 10%.
  • CNT-infused carbon fiber materials can be used in a myriad of applications. For example, chopped CNT-infused carbon fiber can be used in propellant applications. U.S. Pat. No. 4,072,546 describes the use of graphite fibers to augment propellant burning rate. The presence of CNTs infused on chopped carbon fiber can further enhance such burn rates. CNT-infused carbon fiber materials can also be used in flame retardant applications as well. For example, the CNTs can form a protective char layer that retards burning of a material coated with a layer of CNT infused carbon fiber material.
  • CNT-infused conductive carbon fibers can be used in the manufacture of electrodes for superconductors. In the production of superconducting fibers, it can be challenging to achieve adequate adhesion of the superconducting layer to a carrier fiber due, in part, to the different coefficients of thermal expansion of the fiber material and of the superconducting layer. Another difficulty in the art arises during the coating of the fibers by the CVD process. For example, reactive gases, such as hydrogen gas or ammonia, can attack the fiber surface and/or form undesired hydrocarbon compounds on the fiber surface and make good adhesion of the superconducting layer more difficult. CNT-infused carbon fiber materials with barrier coating can overcome these aforementioned challenges in the art.
  • CNT infused carbon fiber materials can be used in applications requiring wear-resistance. U.S. Pat. No. 6,691,393 describes wear resistance in carbon fiber friction materials. Such carbon fiber friction materials are used in, for example, automotive brake discs. Other wear resistance applications can include, for example, rubber o-rings and gasket seals.
  • The large effective surface area of CNTs makes the CNT-infused carbon fiber materials effective for water filtration applications and other extractive processes, such as separation of organic oils from water. CNT-infused carbon fiber materials can be used to remove organic toxins from water tables, water storage facilities, or in-line filters for home and office use.
  • In oilfield technologies, the CNT-infused carbon fibers are useful in the manufacture of drilling equipment, such as pipe bearings, piping reinforcement, and rubber o-rings. Furthermore, as described above, CNT-infused carbon fibers can be used in extractive processes. Applying such extraction properties in a formation containing valuable petroleum deposits, the CNT-infused carbon fiber materials can be used to extract oil from otherwise intractable formations. For example, the CNT-infuse carbon fiber materials can be used to extract oil from formations where substantial water and/or sand is present. The CNT-infused carbon fiber material can also be useful to extract heavier oils that would otherwise be difficult to extract due to their high boiling points. In conjunction with a perforated piping system, for example, the wicking of such heavy oils by CNT-infused carbon materials overcoated on the perforated piping can be operatively coupled to a vacuum system, or the like, to continuously remove high boiling fractions from heavy oil and oil shale formations. Moreover, such processes can be used in conjunction with, or in lieu, of conventional thermal or catalyzed cracking methods, known in the art.
  • CNT-infused carbon fiber materials can enhance structural elements in aerospace and ballistics applications. For example, the structures such as nose cones in missiles, leading edge of wings, primary structural parts, such as flaps and aerofoils, propellers and air brakes, small plane fuselages, helicopter shells and rotor blades, aircraft secondary structural parts, such as floors, doors, seats, air conditioners, and secondary tanks and airplane motor parts can benefit from the structural enhancement provided by CNT-infused carbon fibers. Structural enhancement in many other applications can include, for example, mine sweeper hulls, helmets, radomes, rocket nozzles, rescue stretchers, and engine components. In building and construction, structural enhancement of exterior features include columns, pediments, domes, cornices, and formwork. Likewise, in interior building structures such as blinds, sanitary-ware, window profiles, and the like can all benefit from the use of CNT-infused carbon fiber materials. In maritime industry, structural enhancement can include boat hulls, stringers, and decks. CNT-infused carbon fiber materials can also be used in the heavy transportation industry in large panels for trailer walls, floor panels for railcars, truck cabs, exterior body molding, bus body shells, and cargo containers, for example. In automotive applications, CNT-infused carbon fiber materials can be used in interior parts, such as trimming, seats, and instrument panels. Exterior structures such as body panels, openings, underbody, and front and rear modules can all benefit from the use of CNT-infused carbon fiber materials. Even automotive engine compartment and fuel mechanical area parts, such as axles and suspensions, fuel and exhaust systems, and electrical and electronic components can all utilize CNT-infused carbon fiber materials.
  • Other applications of CNT-infused carbon fiber materials include, bridge construction, reinforced concrete products, such as dowel bars, reinforcing bars, post-tensioning and pre-stressing tendons, stay-in-place framework, electric power transmission and distribution structures such as utility poles, transmission poles, and cross-arms, highway safety and roadside features such as sign supports, guardrails, posts and supports, noise barriers, and in municipal pipes and storage tanks.
  • CNT-infused carbon fiber materials can also be used in a variety of leisure equipment such as water and snow skis, kayaks, canoes and paddles, snowboards, golf club shafts, golf trolleys, fishing rods, and swimming pools. Other consumer goods and business equipment include gears, pans, housings, gas pressure bottles, components for household appliances, such as washers, washing machine drums, dryers, waste disposal units, air conditioners and humidifiers.
  • The electrical properties of CNT-infused carbon fibers also can impact various energy and electrical applications. For example, CNT-infused carbon fiber materials can be used in wind turbine blades, solar structures, electronic enclosures, such as laptops, cell phones, computer cabinets, where such CNT-infused materials can be used in EMI shielding, for example. Other applications include powerlines, cooling devices, light poles, circuit boards, electrical junction boxes, ladder rails, optical fiber, power built into structures such as data lines, computer terminal housings, and business equipment, such as copiers, cash registers and mailing equipment.
  • In some embodiments the present invention provides a continuous process for CNT infusion that includes (a) disposing a carbon nanotube-forming catalyst on a surface of a carbon fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes directly on the carbon fiber material, thereby forming a carbon nanotube-infused carbon fiber material. For a 9 foot long system, the linespeed of the process can range from between about 1.5 ft/min to about 108 ft/min. The linespeeds achieved by the process described herein allow the formation of commercially relevant quantities of CNT-infused carbon fiber materials with short production times. For example, at 36 ft/min linespeed, the quantities of CNT-infused carbon fibers (over 5% infused CNTs on fiber by weight) can exceed over 100 pound or more of material produced per day in a system that is designed to simultaneously process 5 separate tows (20 lb/tow). Systems can be made to produce more tows at once or at faster speeds by repeating growth zones. Moreover, some steps in the fabrication of CNTs, as known in the art, have prohibitively slow rates preventing a continuous mode of operation. For example, in a typical process known in the art, a CNT-forming catalyst reduction step can take 1-12 hours to perform. CNT growth itself can also be time consuming, for example requiring tens of minutes for CNT growth, precluding the rapid linespeeds realized in the present invention. The process described herein overcomes such rate limiting steps.
  • The CNT-infused carbon fiber material-forming processes of the invention can avoid CNT entanglement that occurs when trying to apply suspensions of pre-formed carbon nanotubes to fiber materials. That is, because pre-formed CNTs are not fused to the carbon fiber material, the CNTs tend to bundle and entangle. The result is a poorly uniform distribution of CNTs that weakly adhere to the carbon fiber material. However, processes of the present invention can provide, if desired, a highly uniform entangled CNT mat on the surface of the carbon fiber material by reducing the growth density. The CNTs grown at low density are infused in the carbon fiber material first. In such embodiments, the fibers do not grow dense enough to induce vertical alignment, the result is entangled mats on the carbon fiber material surfaces. By contrast, manual application of pre-formed CNTs does not insure uniform distribution and density of a CNT mat on the carbon fiber material.
  • FIG. 7 depicts a flow diagram of process 700 for producing CNT-infused carbon fiber material in accordance with an illustrative embodiment of the present invention.
  • Process 700 includes at least the operations of:
      • 701: Functionalizing the carbon fiber material.
      • 702: Applying a barrier coating and a CNT-forming catalyst to the functionalized carbon fiber material.
      • 704: Heating the carbon fiber material to a temperature that is sufficient for carbon nanotube synthesis.
  • 706: Promoting CVD-mediated CNT growth on the catalyst-laden carbon fiber.
  • In step 701, the carbon fiber material is functionalized to promote surface wetting of the fibers and to improve adhesion of the barrier coating.
  • To infuse carbon nanotubes into a carbon fiber material, the carbon nanotubes are synthesized on the carbon fiber material which is conformally coated with a barrier coating. In one embodiment, this is accomplished by first conformally coating the carbon fiber material with a barrier coating and then disposing nanotube-forming catalyst on the barrier coating, as per operation 702. In some embodiments, the barrier coating can be partially cured prior to catalyst deposition. This can provide a surface that is receptive to receiving the catalyst and allowing it to embed in the barrier coating, including allowing surface contact between the CNT forming catalyst and the carbon fiber material. In such embodiments, the barrier coating can be fully cured after embedding the catalyst. In some embodiments, the barrier coating is conformally coated over the carbon fiber material simultaneously with deposition of the CNT-form catalyst. Once the CNT-forming catalyst and barrier coating are in place, the barrier coating can be fully cured.
  • In some embodiments, the barrier coating can be fully cured prior to catalyst deposition. In such embodiments, a fully cured barrier-coated carbon fiber material can be treated with a plasma to prepare the surface to accept the catalyst. For example, a plasma treated carbon fiber material having a cured barrier coating can provide a roughened surface in which the CNT-forming catalyst can be deposited. The plasma process for “roughing” the surface of the barrier thus facilitates catalyst deposition. The roughness is typically on the scale of nanometers. In the plasma treatment process craters or depressions are formed that are nanometers deep and nanometers in diameter. Such surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, nitrogen, and hydrogen. In some embodiments, plasma roughing can also be performed directly in the carbon fiber material itself. This can facilitate adhesion of the barrier coating to the carbon fiber material.
  • As described further below and in conjunction with FIG. 7, the catalyst is prepared as a liquid solution that contains CNT-forming catalyst that comprise transition metal nanoparticles. The diameters of the synthesized nanotubes are related to the size of the metal particles as described above. In some embodiments, commercial dispersions of CNT-forming transition metal nanoparticle catalyst are available and are used without dilution, in other embodiments commercial dispersions of catalyst can be diluted. Whether to dilute such solutions can depend on the desired density and length of CNT to be grown as described above.
  • With reference to the illustrative embodiment of FIG. 7, carbon nanotube synthesis is shown based on a chemical vapor deposition (CVD) process and occurs at elevated temperatures. The specific temperature is a function of catalyst choice, but will typically be in a range of about 500 to 1000° C. Accordingly, operation 704 involves heating the barrier-coated carbon fiber material to a temperature in the aforementioned range to support carbon nanotube synthesis.
  • In operation 706, CVD-promoted nanotube growth on the catalyst-laden carbon fiber material is then performed. The CVD process can be promoted by, for example, a carbon-containing feedstock gas such as acetylene, ethylene, and/or ethanol. The CNT synthesis processes generally use an inert gas (nitrogen, argon, helium) as a primary carrier gas. The carbon feedstock is provided in a range from between about 0% to about 15% of the total mixture. A substantially inert environment for CVD growth is prepared by removal of moisture and oxygen from the growth chamber.
  • In the CNT synthesis process, CNTs grow at the sites of a CNT-forming transition metal nanoparticle catalyst. The presence of the strong plasma-creating electric field can be optionally employed to affect nanotube growth. That is, the growth tends to follow the direction of the electric field. By properly adjusting the geometry of the plasma spray and electric field, vertically-aligned CNTs (i.e., perpendicular to the carbon fiber material) can be synthesized. Under certain conditions, even in the absence of a plasma, closely-spaced nanotubes will maintain a vertical growth direction resulting in a dense array of CNTs resembling a carpet or forest. The presence of the barrier coating can also influence the directionality of CNT growth.
  • The operation of disposing a catalyst on the carbon fiber material can be accomplished by spraying or dip coating a solution or by gas phase deposition via, for example, a plasma process. The choice of techniques can be coordinated with the mode with which the barrier coating is applied. Thus, in some embodiments, after forming a solution of a catalyst in a solvent, catalyst can be applied by spraying or dip coating the barrier coated carbon fiber material with the solution, or combinations of spraying and dip coating. Either technique, used alone or in combination, can be employed once, twice, thrice, four times, up to any number of times to provide a carbon fiber material that is sufficiently uniformly coated with CNT-forming catalyst. When dip coating is employed, for example, a carbon fiber material can be placed in a first dip bath for a first residence time in the first dip bath. When employing a second dip bath, the carbon fiber material can be placed in the second dip bath for a second residence time. For example, carbon fiber materials can be subjected to a solution of CNT-forming catalyst for between about 3 seconds to about 90 seconds depending on the dip configuration and linespeed. Employing spraying or dip coating processes, a carbon fiber material with a surface density of catalyst of less than about 5% surface coverage to as high as about 80% coverage, in which the CNT-forming catalyst nanoparticles are nearly monolayer. In some embodiments, the process of coating the CNT-forming catalyst on the carbon fiber material should produce no more than a monolayer. For example, CNT growth on a stack of CNT-forming catalyst can erode the degree of infusion of the CNT to the carbon fiber material. In other embodiments, the transition metal catalyst can be deposited on the carbon fiber material using evaporation techniques, electrolytic deposition techniques, and other processes known to those skilled in the art, such as addition of the transition metal catalyst to a plasma feedstock gas as a metal organic, metal salt or other composition promoting gas phase transport.
  • Because processes of the invention are designed to be continuous, a spoolable carbon fiber material can be dip-coated in a series of baths where dip coating baths are spatially separated. In a continuous process in which nascent carbon fibers are being generated de novo, dip bath or spraying of CNT-forming catalyst can be the first step after applying and curing or partially curing a barrier coating to the carbon fiber material. Application of the barrier coating and a CNT-forming catalyst can be performed in lieu of application of a sizing, for newly formed carbon fiber materials. In other embodiments, the CNT-forming catalyst can be applied to newly formed carbon fibers in the presence of other sizing agents after barrier coating. Such simultaneous application of CNT-forming catalyst and other sizing agents can still provide the CNT-forming catalyst in surface contact with the barrier coating of the carbon fiber material to insure CNT infusion.
  • The catalyst solution employed can be a transition metal nanoparticle which can be any d-block transition metal as described above. In addition, the nanoparticles can include alloys and non-alloy mixtures of d-block metals in elemental form or in salt form, and mixtures thereof. Such salt forms include, without limitation, oxides, carbides, and nitrides. Non-limiting exemplary transition metal NPs include Ni, Fe, Co, Mo, Cu, Pt, Au, and Ag and salts thereof and mixtures thereof. In some embodiments, such CNT-forming catalysts are disposed on the carbon fiber by applying or infusing a CNT-forming catalyst directly to the carbon fiber material simultaneously with barrier coating deposition. Many of these transition metal catalysts are readily commercially available from a variety of suppliers, including, for example, Ferrotec Corporation (Bedford, N.H.).
  • Catalyst solutions used for applying the CNT-forming catalyst to the carbon fiber material can be in any common solvent that allows the CNT-forming catalyst to be uniformly dispersed throughout. Such solvents can include, without limitation, water, acetone, hexane, isopropyl alcohol, toluene, ethanol, methanol, tetrahydrofuran (THF), cyclohexane or any other solvent with controlled polarity to create an appropriate dispersion of the CNT-forming catalyst nanoparticles. Concentrations of CNT-forming catalyst can be in a range from about 1:1 to 1:10000 catalyst to solvent. Such concentrations can be used when the barrier coating and CNT-forming catalyst is applied simultaneously as well.
  • In some embodiments heating of the carbon fiber material can be at a temperature that is between about 500° C. and 1000° C. to synthesize carbon nanotubes after deposition of the CNT-forming catalyst. Heating at these temperatures can be performed prior to or substantially simultaneously with introduction of a carbon feedstock for CNT growth.
  • In some embodiments, the present invention provides a process that includes removing sizing agents from a carbon fiber material, applying a barrier coating conformally over the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber material, heating the carbon fiber material to at least 500° C., and synthesizing carbon nanotubes on the carbon fiber material. In some embodiments, operations of the CNT-infusion process include removing sizing from a carbon fiber material, applying a barrier coating to the carbon fiber material, applying a CNT-forming catalyst to the carbon fiber, heating the fiber to CNT-synthesis temperature and CVD-promoted CNT growth the catalyst-laden carbon fiber material. Thus, where commercial carbon fiber materials are employed, processes for constructing CNT-infused carbon fibers can include a discrete step of removing sizing from the carbon fiber material before disposing barrier coating and the catalyst on the carbon fiber material.
  • The step of synthesizing carbon nanotubes can include numerous techniques for forming carbon nanotubes, including those disclosed in co-pending U.S. Patent Application No. US 2004/0245088 which is incorporated herein by reference. The CNTs grown on fibers of the present invention can be accomplished by techniques known in the art including, without limitation, micro-cavity, thermal or plasma-enhanced CVD techniques, laser ablation, arc discharge, and high pressure carbon monoxide (HiPCO). During CVD, in particular, a barrier coated carbon fiber material with CNT-forming catalyst disposed thereon, can be used directly. In some embodiments, any conventional sizing agents can be removed prior CNT synthesis. In some embodiments, acetylene gas is ionized to create a jet of cold carbon plasma for CNT synthesis. The plasma is directed toward the catalyst-bearing carbon fiber material. Thus, in some embodiments synthesizing CNTs on a carbon fiber material includes (a) forming a carbon plasma; and (b) directing the carbon plasma onto the catalyst disposed on the carbon fiber material. The diameters of the CNTs that are grown are dictated by the size of the CNT-forming catalyst as described above. In some embodiments, the sized fiber substrate is heated to between about 550 to about 800° C. to facilitate CNT synthesis. To initiate the growth of CNTs, two gases are bled into the reactor: a process gas such as argon, helium, or nitrogen, and a carbon-containing gas, such as acetylene, ethylene, ethanol or methane. CNTs grow at the sites of the CNT-forming catalyst.
  • In some embodiments, the CVD growth is plasma-enhanced. A plasma can be generated by providing an electric field during the growth process. CNTs grown under these conditions can follow the direction of the electric field. Thus, by adjusting the geometry of the reactor vertically aligned carbon nanotubes can be grown radially about a cylindrical fiber. In some embodiments, a plasma is not required for radial growth about the fiber. For carbon fiber materials that have distinct sides such as tapes, mats, fabrics, plies, and the like, catalyst can be disposed on one or both sides and correspondingly, CNTs can be grown on one or both sides as well.
  • As described above, CNT-synthesis is performed at a rate sufficient to provide a continuous process for functionalizing spoolable carbon fiber materials. Numerous apparatus configurations faciliate such continuous synthesis as exemplified below.
  • In some embodiments, CNT-infused carbon fiber materials can be constructed in an “all plasma” process. An all plasma process can being with roughing the carbon fiber material with a plasma as described above to improve fiber surface wetting characteristics and provide a more conformal barrier coating, as well as improve coating adhesion via mechanical interlocking and chemical adhesion through the use of functionalization of the carbon fiber material by using specific reactive gas species, such as oxygen, nitrogen, hydrogen in argon or helium based plasmas.
  • Barrier coated carbon fiber materials pass through numerous further plasma-mediated steps to form the final CNT-infused product. In some embodiments, the all plasma process can include a second surface modification after the barrier coating is cured. This is a plasma process for “roughing” the surface of the barrier coating on the carbon fiber material to facilitate catalyst deposition. As described above, surface modification can be achieved using a plasma of any one or more of a variety of different gases, including, without limitation, argon, helium, oxygen, ammonia, hydrogen, and nitrogen.
  • After surface modification, the barrier coated carbon fiber material proceeds to catalyst application. This is a plasma process for depositing the CNT-forming catalyst on the fibers. The CNT-forming catalyst is typically a transition metal as described above. The transition metal catalyst can be added to a plasma feedstock gas as a precursor in the form of a ferrofluid, a metal organic, metal salt or other composition for promoting gas phase transport. The catalyst can be applied at room temperature in the ambient environment with neither vacuum nor an inert atmosphere being required. In some embodiments, the carbon fiber material is cooled prior to catalyst application.
  • Continuing the all-plasma process, carbon nanotube synthesis occurs in a CNT-growth reactor. This can be achieved through the use of plasma-enhanced chemical vapor deposition, wherein carbon plasma is sprayed onto the catalyst-laden fibers. Since carbon nanotube growth occurs at elevated temperatures (typically in a range of about 500 to 1000° C. depending on the catalyst), the catalyst-laden fibers can be heated prior to exposing to the carbon plasma. For the infusion process, the carbon fiber material can be optionally heated until it softens. After heating, the carbon fiber material is ready to receive the carbon plasma. The carbon plasma is generated, for example, by passing a carbon containing gas such as acetylene, ethylene, ethanol, and the like, through an electric field that is capable of ionizing the gas. This cold carbon plasma is directed, via spray nozzles, to the carbon fiber material. The carbon fiber material can be in close proximity to the spray nozzles, such as within about 1 centimeter of the spray nozzles, to receive the plasma. In some embodiments, heaters are disposed above the carbon fiber material at the plasma sprayers to maintain the elevated temperature of the carbon fiber material.
  • Another configuration for continuous carbon nanotube synthesis involves a special rectangular reactor for the synthesis and growth of carbon nanotubes directly on carbon fiber materials. The reactor can be designed for use in a continuous in-line process for producing carbon-nanotube bearing fibers. In some embodiments, CNTs are grown via a chemical vapor deposition (“CVD”) process at atmospheric pressure and at elevated temperature in the range of about 550° C. to about 800° C. in a multi-zone reactor. The fact that the synthesis occurs at atmospheric pressure is one factor that facilitates the incorporation of the reactor into a continuous processing line for CNT-on-fiber synthesis. Another advantage consistent with in-line continuous processing using such a zone reactor is that CNT growth occurs in a seconds, as opposed to minutes (or longer) as in other procedures and apparatus configurations typical in the art.
  • CNT synthesis reactors in accordance with the various embodiments include the following features:
  • Rectangular Configured Synthesis Reactors: The cross section of a typical CNT synthesis reactor known in the art is circular. There are a number of reasons for this including, for example, historical reasons (cylindrical reactors are often used in laboratories) and convenience (flow dynamics are easy to model in cylindrical reactors, heater systems readily accept circular tubes (quartz, etc.), and ease of manufacturing. Departing from the cylindrical convention, the present invention provides a CNT synthesis reactor having a rectangular cross section. The reasons for the departure are as follows: 1. Since many carbon fiber materials that can be processed by the reactor are relatively planar such as flat tape or sheet-like in form, a circular cross section is an inefficient use of the reactor volume. This inefficiency results in several drawbacks for cylindrical CNT synthesis reactors including, for example, a) maintaining a sufficient system purge; increased reactor volume requires increased gas flow rates to maintain the same level of gas purge. This results in a system that is inefficient for high volume production of CNTs in an open environment; b) increased carbon feedstock gas flow; the relative increase in inert gas flow, as per a) above, requires increased carbon feedstock gas flows. Consider that the volume of a 12K carbon fiber tow is 2000 times less than the total volume of a synthesis reactor having a rectangular cross section. In an equivalent growth cylindrical reactor (i.e., a cylindrical reactor that has a width that accommodates the same planarized carbon fiber material as the rectangular cross-section reactor), the volume of the carbon fiber material is 17,500 times less than the volume of the chamber. Although gas deposition processes, such as CVD, are typically governed by pressure and temperature alone, volume has a significant impact on the efficiency of deposition. With a rectangular reactor there is a still excess volume. This excess volume facilitates unwanted reactions; yet a cylindrical reactor has about eight times that volume. Due to this greater opportunity for competing reactions to occur, the desired reactions effectively occur more slowly in a cylindrical reactor chamber. Such a slow down in CNT growth, is problematic for the development of a continuous process. One benefit of a rectangular reactor configuration is that the reactor volume can be decreased by using a small height for the rectangular chamber to make this volume ratio better and reactions more efficient. In some embodiments of the present invention, the total volume of a rectangular synthesis reactor is no more than about 3000 times greater than the total volume of a carbon fiber material being passed through the synthesis reactor. In some further embodiments, the total volume of the rectangular synthesis reactor is no more than about 4000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor. In some still further embodiments, the total volume of the rectangular synthesis reactor is less than about 10,000 times greater than the total volume of the carbon fiber material being passed through the synthesis reactor. Additionally, it is notable that when using a cylindrical reactor, more carbon feedstock gas is required to provide the same flow percent as compared to reactors having a rectangular cross section. It should be appreciated that in some other embodiments, the synthesis reactor has a cross section that is described by polygonal forms that are not rectangular, but are relatively similar thereto and provide a similar reduction in reactor volume relative to a reactor having a circular cross section; c) problematic temperature distribution; when a relatively small-diameter reactor is used, the temperature gradient from the center of the chamber to the walls thereof is minimal. But with increased size, such as would be used for commercial-scale production, the temperature gradient increases. Such temperature gradients result in product quality variations across a carbon fiber material substrate (i.e., product quality varies as a function of radial position). This problem is substantially avoided when using a reactor having a rectangular cross section. In particular, when a planar substrate is used, reactor height can be maintained constant as the size of the substrate scales upward. Temperature gradients between the top and bottom of the reactor are essentially negligible and, as a consequence, thermal issues and the product-quality variations that result are avoided. 2. Gas introduction: Because tubular furnaces are normally employed in the art, typical CNT synthesis reactors introduce gas at one end and draw it through the reactor to the other end. In some embodiments disclosed herein, gas can be introduced at the center of the reactor or within a target growth zone, symmetrically, either through the sides or through the top and bottom plates of the reactor. This improves the overall CNT growth rate because the incoming feedstock gas is continuously replenishing at the hottest portion of the system, which is where CNT growth is most active. This constant gas replenishment is an important aspect to the increased growth rate exhibited by the rectangular CNT reactors.
  • Zoning. Chambers that provide a relatively cool purge zone depend from both ends of the rectangular synthesis reactor. Applicants have determined that if hot gas were to mix with the external environment (i.e., outside of the reactor), there would be an increase in degradation of the carbon fiber material. The cool purge zones provide a buffer between the internal system and external environments. Typical CNT synthesis reactor configurations known in the art typically require that the substrate is carefully (and slowly) cooled. The cool purge zone at the exit of the present rectangular CNT growth reactor achieves the cooling in a short period of time, as required for the continuous in-line processing.
  • Non-contact, hot-walled, metallic reactor. In some embodiments, a hot-walled reactor is made of metal is employed, in particular stainless steel. This may appear counterintuitive because metal, and stainless steel in particular, is more susceptible to carbon deposition (i.e., soot and by-product formation). Thus, most CNT reactor configurations use quartz reactors because there is less carbon deposited, quartz is easier to clean, and quartz facilitates sample observation. However, Applicants have observed that the increased soot and carbon deposition on stainless steel results in more consistent, faster, more efficient, and more stable CNT growth. Without being bound by theory it has been indicated that, in conjunction with atmospheric operation, the CVD process occurring in the reactor is diffusion limited. That is, the catalyst is “overfed;” too much carbon is available in the reactor system due to its relatively higher partial pressure (than if the reactor was operating under partial vacuum). As a consequence, in an open system—especially a clean one—too much carbon can adhere to catalyst particles, compromising their ability to synthesize CNTs. In some embodiments, the rectangular reactor is intentionally run when the reactor is “dirty,” that is with soot deposited on the metallic reactor walls. Once carbon deposits to a monolayer on the walls of the reactor, carbon will readily deposit over itself Since some of the available carbon is “withdrawn” due to this mechanism, the remaining carbon feedstock, in the form of radicals, react with the catalyst at a rate that does not poison the catalyst. Existing systems run “cleanly” which, if they were open for continuous processing, would produced a much lower yield of CNTs at reduced growth rates.
  • Although it is generally beneficial to perform CNT synthesis “dirty” as described above, certain portions of the apparatus, such as gas manifolds and inlets, can nonetheless negatively impact the CNT growth process when soot created blockages. In order to combat this problem, such areas of the CNT growth reaction chamber can be protected with soot inhibiting coatings such as silica, alumina, or MgO. In practice, these portions of the apparatus can be dip-coated in these soot inhibiting coatings. Metals such as INVAR® can be used with these coatings as INVAR has a similar CTE (coefficient of thermal expansion) ensuring proper adhesion of the coating at higher temperatures, preventing the soot from significantly building up in critical zones.
  • Combined Catalyst Reduction and CNT Synthesis. In the CNT synthesis reactor disclosed herein, both catalyst reduction and CNT growth occur within the reactor. This is significant because the reduction step cannot be accomplished timely enough for use in a continuous process if performed as a discrete operation. In a typical process known in the art, a reduction step typically takes 1-12 hours to perform. Both operations occur in a reactor in accordance with the present invention due, at least in part, to the fact that carbon feedstock gas is introduced at the center of the reactor, not the end as would be typical in the art using cylindrical reactors. The reduction process occurs as the fibers enter the heated zone; by this point, the gas has had time to react with the walls and cool off prior to reacting with the catalyst and causing the oxidation reduction (via hydrogen radical interactions). It is this transition region where the reduction occurs. At the hottest isothermal zone in the system, the CNT growth occurs, with the greatest growth rate occurring proximal to the gas inlets near the center of the reactor.
  • In some embodiments, when loosely affiliated carbon fiber materials, such as carbon tow are employed, the continuous process can include steps that spreads out the strands and/or filaments of the tow. Thus, as a tow is unspooled it can be spread using a vacuum-based fiber spreading system, for example. When employing sized carbon fibers, which can be relatively stiff, additional heating can be employed in order to “soften” the tow to facilitate fiber spreading. The spread fibers which comprise individual filaments can be spread apart sufficiently to expose an entire surface area of the filaments, thus allowing the tow to more efficiently react in subsequent process steps. Such spreading can approach between about 4 inches to about 6 inches across for a 3 k tow. The spread carbon tow can pass through a surface treatment step that is composed of a plasma system as described above. After a barrier coating is applied and roughened, spread fibers then can pass through a CNT-forming catalyst dip bath. The result is fibers of the carbon tow that have catalyst particles distributed radially on their surface. The catalyzed-laden fibers of the tow then enter an appropriate CNT growth chamber, such as the rectangular chamber described above, where a flow through atmospheric pressure CVD or PE-CVD process is used to synthesize the CNTs at rates as high as several microns per second. The fibers of the tow, now with radially aligned CNTs, exit the CNT growth reactor.
  • In some embodiments, CNT-infused carbon fiber materials can pass through yet another treatment process that, in some embodiments is a plasma process used to functionalize the CNTs. Additional functionalization of CNTs can be used to promote their adhesion to particular resins. Thus, in some embodiments, the present invention provides CNT-infused carbon fiber materials having functionalized CNTs.
  • As part of the continuous processing of spoolable carbon fiber materials, the a CNT-infused carbon fiber material can further pass through a sizing dip bath to apply any additional sizing agents which can be beneficial in a final product. Finally if wet winding is desired, the CNT-infused carbon fiber materials can be passed through a resin bath and wound on a mandrel or spool. The resulting carbon fiber material/resin combination locks the CNTs on the carbon fiber material allowing for easier handling and composite fabrication. In some embodiments, CNT infusion is used to provide improved filament winding. Thus, CNTs formed on carbon fibers such as carbon tow, are passed through a resin bath to produce resin-impregnated, CNT-infused carbon tow. After resin impregnation, the carbon tow can be positioned on the surface of a rotating mandrel by a delivery head. The tow can then be wound onto the mandrel in a precise geometric pattern in known fashion.
  • The winding process described above provides pipes, tubes, or other forms as are characteristically produced via a male mold. But the forms made from the winding process disclosed herein differ from those produced via conventional filament winding processes. Specifically, in the process disclosed herein, the forms are made from composite materials that include CNT-infused tow. Such forms will therefore benefit from enhanced strength and the like, as provided by the CNT-infused tow.
  • In some embodiments, a continuous process for infusion of CNTs on spoolable carbon fiber materials can achieve a linespeed between about 0.5 ft/min to about 36 ft/min. In this embodiment where the CNT growth chamber is 3 feet long and operating at a 750° C. growth temperature, the process can be run with a linespeed of about 6 ft/min to about 36 ft/min to produce, for example, CNTs having a length between about 1 micron to about 10 microns. The process can also be run with a linespeed of about 1 ft/min to about 6 ft/min to produce, for example, CNTs having a length between about 10 microns to about 100 microns. The process can be run with a linespeed of about 0.5 ft/min to about 1 ft/min to produce, for example, CNTs having a length between about 100 microns to about 200 microns. The CNT length is not tied only to linespeed and growth temperature, however, the flow rate of both the carbon feedstock and the inert carrier gases can also influence CNT length. For example, a flow rate consisting of less than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having a length between 1 micron to about 5 microns. A flow rate consisting of more than 1% carbon feedstock in inert gas at high linespeeds (6 ft/min to 36 ft/min) will result in CNTs having length between 5 microns to about 10 microns.
  • In some embodiments, more than one carbon material can be run simultaneously through the process. For example, multiple tapes tows, filaments, strand and the like can be run through the process in parallel. Thus, any number of pre-fabricated spools of carbon fiber material can be run in parallel through the process and re-spooled at the end of the process. The number of spooled carbon fiber materials that can be run in parallel can include one, two, three, four, five, six, up to any number that can be accommodated by the width of the CNT-growth reaction chamber. Moreover, when multiple carbon fiber materials are run through the process, the number of collection spools can be less than the number of spools at the start of the process. In such embodiments, carbon strands, tows, or the like can be sent through a further process of combining such carbon fiber materials into higher ordered carbon fiber materials such as woven fabrics or the like. The continuous process can also incorporate a post processing chopper that facilitates the formation CNT-infused chopped fiber mats, for example.
  • In some embodiments, processes of the invention allow for synthesizing a first amount of a first type of carbon nanotube on the carbon fiber material, in which the first type of carbon nanotube is selected to alter at least one first property of the carbon fiber material. Subsequently, process of the invention allow for synthesizing a second amount of a second type of carbon nanotube on the carbon fiber material, in which the second type of carbon nanotube is selected to alter at least one second property of the carbon fiber material.
  • In some embodiments, the first amount and second amount of CNTs are different. This can be accompanied by a change in the CNT type or not. Thus, varying the density of CNTs can be used to alter the properties of the original carbon fiber material, even if the CNT type remains unchanged. CNT type can include CNT length and the number of walls, for example. In some embodiments the first amount and the second amount are the same. If different properties are desirable in this case along the two different stretches of the spoolable material, then the CNT type can be changed, such as the CNT length. For example, longer CNTs can be useful in electrical/thermal applications, while shorter CNTs can be useful in mechanical strengthening applications.
  • In light of the aforementioned discussion regarding altering the properties of the carbon fiber materials, the first type of carbon nanotube and the second type of carbon nanotube can be the same, in some embodiments, while the first type of carbon nanotube and the second type of carbon nanotube can be different, in other embodiments. Likewise, the first property and the second property can be the same, in some embodiments. For example, the EMI shielding property can be the property of interest addressed by the first amount and type of CNTs and the 2nd amount and type of CNTs, but the degree of change in this property can be different, as reflected by differing amounts, and/or types of CNTs employed. Finally, in some embodiments, the first property and the second property can be different. Again this may reflect a change in CNT type. For example the first property can be mechanical strength with shorter CNTs, while the second property can be electrical/thermal properties with longer CNTs. One skilled in the art will recognize the ability to tailor the properties of the carbon fiber material through the use of different CNT densities, CNT lengths, and the number of walls in the CNTs, such as single-walled, double-walled, and multi-walled, for example.
  • In some embodiments, processes of the present invention provides synthesizing a first amount of carbon nanotubes on a carbon fiber material, such that this first amount allows the carbon nanotube-infused carbon fiber material to exhibit a second group of properties that differ from a first group of properties exhibited by the carbon fiber material itself. That is, selecting an amount that can alter one or more properties of the carbon fiber material, such as tensile strength. The first group of properties and second group of properties can include at least one of the same properties, thus representing enhancing an already existing property of the carbon fiber material. In some embodiments, CNT infusion can impart a second group of properties to the carbon nanotube-infused carbon fiber material that is not included among the first group of properties exhibited by the carbon fiber material itself.
  • In some embodiments, a first amount of carbon nanotubes is selected such that the value of at least one property selected from the group consisting of tensile strength, Young's Modulus, shear strength, shear modulus, toughness, compression strength, compression modulus, density, EM wave absorptivity/reflectivity, acoustic transmittance, electrical conductivity, and thermal conductivity of the carbon nanotube-infused carbon fiber material differs from the value of the same property of the carbon fiber material itself.
  • Tensile strength can include three different measurements: 1) Yield strength which evaluates the stress at which material strain changes from elastic deformation to plastic deformation, causing the material to deform permanently; 2) Ultimate strength which evaluates the maximum stress a material can withstand when subjected to tension, compression or shearing; and 3) Breaking strength which evaluates the stress coordinate on a stress-strain curve at the point of rupture. Composite shear strength evaluates the stress at which a material fails when a load is applied perpendicular to the fiber direction. Compression strength evaluates the stress at which a material fails when a compressive load is applied.
  • Multiwalled carbon nanotubes, in particular, have the highest tensile strength of any material yet measured, with a tensile strength of 63 GPa having been achieved. Moreover, theoretical calculations have indicated possible tensile strengths of CNTs of about 300 GPa. Thus, CNT-infused carbon fiber materials are expected to have substantially higher ultimate strength compared to the parent carbon fiber material. As described above, the increase in tensile strength will depend on the exact nature of the CNTs used as well as the density and distribution on the carbon fiber material. CNT-infused carbon fiber materials can exhibit a tow to three times increase in tensile properties, for example. Exemplary CNT-infused carbon fiber materials can have as high as three times the shear strength as the parent unfunctionalized carbon fiber material and as high as 2.5 times the compression strength.
  • Young's modulus is a measure of the stiffness of an isotropic elastic material. It is defined as the ratio of the uniaxial stress over the uniaxial strain in the range of stress in which Hooke's Law holds. This can be experimentally determined from the slope of a stress-strain curve created during tensile tests conducted on a sample of the material.
  • Electrical conductivity or specific conductance is a measure of a material's ability to conduct an electric current. CNTs with particular structural parameters such as the degree of twist, which relates to CNT chirality, can be highly conducting, thus exhibiting metallic properties. A recognized system of nomenclature (M. S. Dresselhaus, et al. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, Calif. pp. 756-760, (1996)) has been formalized and is recognized by those skilled in the art with respect to CNT chirality. Thus, for example, CNTs are distinguished from each other by a double index (n,m) where n and m are integers that describe the cut and wrapping of hexagonal graphite so that it makes a tube when it is wrapped onto the surface of a cylinder and the edges are sealed together. When the two indices are the same, m=n, the resultant tube is said to be of the “arm-chair” (or n,n) type, since when the tube is cut perpendicular to the CNT axis only the sides of the hexagons are exposed and their pattern around the periphery of the tube edge resembles the arm and seat of an arm chair repeated n times. Arm-chair CNTs, in particular SWNTs, are metallic, and have extremely high electrical and thermal conductivity. In addition, such SWNTs have-extremely high tensile strength.
  • In addition to the degree of twist CNT diameter also effects electrical conductivity. As described above, CNT diameter can be controlled by use of controlled size CNT-forming catalyst nanoparticles. CNTs can also be formed as semi-conducting materials. Conductivity in multi-walled CNTs (MWNTs) can be more complex. Interwall reactions within MWNTs can redistribute current over individual tubes non-uniformly. By contrast, there is no change in current across different parts of metallic single-walled nanotubes (SWNTs). Carbon nanotubes also have very high thermal conductivity, comparable to diamond crystal and in-plane graphite sheet.
  • The CNT-infused carbon fiber materials can benefit from the presence of CNTs not only in the properties described above, but can also provide lighter materials in the process. Thus, such lower density and higher strength materials translates to greater strength to weight ratio. It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.
  • EXAMPLE I
  • This example shows how a carbon fiber material can be infused with CNTs in a continuous process to target thermal and electrical conductivity improvements.
  • In this example, the maximum loading of CNTs on fibers is targeted. 34-700 12 k carbon fiber tow with a tex value of 800 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
  • FIG. 8 depicts system 800 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention. System 800 includes a carbon fiber material payout and tensioner station 805, sizing removal and fiber spreader station 810, plasma treatment station 815, barrier coating application station 820, air dry station 825, catalyst application station 830, solvent flash-off station 835, CNT-infusion station 840, fiber bundler station 845, and carbon fiber material uptake bobbin 850, interrelated as shown.
  • Payout and tension station 805 includes payout bobbin 806 and tensioner 807. The payout bobbin delivers carbon fiber material 860 to the process; the fiber is tensioned via tensioner 807. For this example, the carbon fiber is processed at a linespeed of 2 ft/min.
  • Fiber material 860 is delivered to sizing removal and fiber spreader station 810 which includes sizing removal heaters 865 and fiber spreader 870. At this station, any “sizing” that is on fiber 860 is removed. Typically, removal is accomplished by burning the sizing off of the fiber. Any of a variety of heating means can be used for this purpose, including, for example, an infrared heater, a muffle furnace, and other non-contact heating processes. Sizing removal can also be accomplished chemically. The fiber spreader separates the individual elements of the fiber. Various techniques and apparatuses can be used to spread fiber, such as pulling the fiber over and under flat, uniform-diameter bars, or over and under variable-diameter bars, or over bars with radially-expanding grooves and a kneading roller, over a vibratory bar, etc. Spreading the fiber enhances the effectiveness of downstream operations, such as plasma application, barrier coating application, and catalyst application, by exposing more fiber surface area.
  • Multiple sizing removal heaters 865 can be placed throughout the fiber spreader 870 which allows for gradual, simultaneous desizing and spreading of the fibers. Payout and tension station 805 and sizing removal and fiber spreader station 810 are routinely used in the fiber industry; those skilled in the art will be familiar with their design and use.
  • The temperature and time required for burning off the sizing vary as a function of (1) the sizing material and (2) the commercial source/identity of carbon fiber material 860. A conventional sizing on a carbon fiber material can be removed at about 650° C. At this temperature, it can take as long as 15 minutes to ensure a complete burn off of the sizing. Increasing the temperature above this burn temperature can reduce burn-off time. Thermogravimetric analysis is used to determine minimum burn-off temperature for sizing for a particular commercial product.
  • Depending on the timing required for sizing removal, sizing removal heaters may not necessarily be included in the CNT-infusion process proper; rather, removal can be performed separately (e.g., in parallel, etc.). In this way, an inventory of sizing-free carbon fiber material can be accumulated and spooled for use in a CNT-infused fiber production line that does not include fiber removal heaters. The sizing-free fiber is then spooled in payout and tension station 805. This production line can be operated at higher speed than one that includes sizing removal.
  • Unsized fiber 880 is delivered to plasma treatment station 815. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 1mm from the spread carbon fiber material. The gaseous feedstock is comprised of 100% helium.
  • Plasma enhanced fiber 885 is delivered to barrier coating station 820. In this illustrative example, a siloxane-based barrier coating solution is employed in a dip coating configuration. The solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume. The resulting barrier coating thickness on the carbon fiber material is approximately 40 nm. The barrier coating can be applied at room temperature in the ambient environment.
  • Barrier coated carbon fiber 890 is delivered to air dry station 825 for partial curing of the nanoscale barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • After air drying, barrier coated carbon fiber 890 is delivered to catalyst application station 830. In this example, an iron oxide-based CNT forming catalyst solution is employed in a dip coating configuration. The solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume. A monolayer of catalyst coating is achieved on the carbon fiber material. ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume. The iron oxide nanoparticles are of composition Fe2O3 and Fe3O4 and are approximately 8 nm in diameter.
  • Catalyst-laden carbon fiber material 895 is delivered to solvent flash-off station 835. The solvent flash-off station sends a stream of air across the entire carbon fiber spread. In this example, room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
  • After solvent flash-off, catalyst-laden fiber 895 is finally advanced to CNT-infusion station 840. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.0% of the total gas flow is inert gas (Nitrogen) and the other 2.0% is the carbon feedstock (acetylene). The growth zone is held at 750° C. For the rectangular reactor mentioned above, 750° C. is a relatively high growth temperature, which allows for the highest growth rates possible.
  • After CNT-infusion, CNT-infused fiber 897 is re-bundled at fiber bundler station 845. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 810.
  • The bundled, CNT-infused fiber 897 is wound about uptake fiber bobbin 850 for storage. CNT-infused fiber 897 is loaded with CNTs approximately 50 μm in length and is then ready for use in composite materials with enhanced thermal and electrical conductivity.
  • It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For example, if sizing is being burned off of a carbon fiber material, the fiber can be environmentally isolated to contain off-gassing and prevent damage from moisture. For convenience, in system 800, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
  • EXAMPLE II
  • This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as shear strength. In this case, loading of shorter CNTs on fibers is targeted. In this example, 34-700 12 k unsized carbon fiber tow with a tex value of 793 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
  • FIG. 9 depicts system 900 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention, and involves many of the same stations and processes described in system 800. System 900 includes a carbon fiber material payout and tensioner station 902, fiber spreader station 908, plasma treatment station 910, catalyst application station 912, solvent flash-off station 914, a second catalyst application station 916, a second solvent flash-off station 918, barrier coating application station 920, air dry station 922, a second barrier coating application station 924, a second air dry station 926, CNT-infusion station 928, fiber bundler station 930, and carbon fiber material uptake bobbin 932, interrelated as shown.
  • Payout and tension station 902 includes payout bobbin 904 and tensioner 906. The payout bobbin delivers carbon fiber material 901 to the process; the fiber is tensioned via tensioner 906. For this example, the carbon fiber is processed at a linespeed of 2 ft/min.
  • Fiber material 901 is delivered to fiber spreader station 908. As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 908. The fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870.
  • Fiber material 901 is delivered to plasma treatment station 910. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material. The gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
  • Plasma enhanced fiber 911 is delivered to catalyst application station 912. In this example, an iron oxide based CNT forming catalyst solution is employed in a dip coating configuration. The solution is ‘EFH-1’ (Ferrotec Corporation, Bedford, N.H.) diluted in hexane by a dilution rate of 200 to 1 by volume. A monolayer of catalyst coating is achieved on the carbon fiber material. ‘EFH-1’ prior to dilution has a nanoparticle concentration ranging from 3-15% by volume. The iron oxide nanoparticles are of composition Fe2O3 and Fe3O4 and are approximately 8 nm in diameter.
  • Catalyst-laden carbon fiber material 913 is delivered to solvent flash-off station 914. The solvent flash-off station sends a stream of air across the entire carbon fiber spread. In this example, room temperature air can be employed in order to flash-off all hexane left on the catalyst-laden carbon fiber material.
  • After solvent flash-off, catalyst laden fiber 913 is delivered to catalyst application station 916, which is identical to catalyst application station 912. The solution is ‘EFH-1’ diluted in hexane by a dilution rate of 800 to 1 by volume. For this example, a configuration which includes multiple catalyst application stations is utilized to optimize the coverage of the catalyst on the plasma enhanced fiber 911.
  • Catalyst-laden carbon fiber material 917 is delivered to solvent flash-off station 918, which is identical to solvent flash-off station 914.
  • After solvent flash-off, catalyst-laden carbon fiber material 917 is delivered to barrier coating application station 920. In this example, a siloxane-based barrier coating solution is employed in a dip coating configuration. The solution is ‘Accuglass T-11 Spin-On Glass’ (Honeywell International Inc., Morristown, N.J.) diluted in isopropyl alcohol by a dilution rate of 40 to 1 by volume. The resulting barrier coating thickness on the carbon fiber material is approximately 40 nm. The barrier coating can be applied at room temperature in the ambient environment.
  • Barrier coated carbon fiber 921 is delivered to air dry station 922 for partial curing of the barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • After air drying, barrier coated carbon fiber 921 is delivered to barrier coating application station 924, which is identical to barrier coating application station 820. The solution is ‘Accuglass T-11 Spin-On Glass’ diluted in isopropyl alcohol by a dilution rate of 120 to 1 by volume. For this example, a configuration which includes multiple barrier coating application stations is utilized to optimize the coverage of the barrier coating on the catalyst-laden fiber 917.
  • Barrier coated carbon fiber 925 is delivered to air dry station 926 for partial curing of the barrier coating, and is identical to air dry station 922.
  • After air drying, barrier coated carbon fiber 925 is finally advanced to CNT-infusion station 928. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 97.75% of the total gas flow is inert gas (Nitrogen) and the other 2.25% is the carbon feedstock (acetylene). The growth zone is held at 650° C. For the rectangular reactor mentioned above, 650° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
  • After CNT-infusion, CNT-infused fiber 929 is re-bundled at fiber bundler 930. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 908.
  • The bundled, CNT-infused fiber 931 is wound about uptake fiber bobbin 932 for storage. CNT-infused fiber 929 is loaded with CNTs approximately 5 μm in length and is then ready for use in composite materials with enhanced mechanical properties.
  • In this example, the carbon fiber material passes through catalyst application stations 912 and 916 prior to barrier coating application stations 920 and 924. This ordering of coatings is in the ‘reverse’ order as illustrated in Example I, which can improve anchoring of the CNTs to the carbon fiber substrate. During the CNT growth process, the barrier coating layer is lifted off of the substrate by the CNTs, which allows for more direct contact with the carbon fiber material (via catalyst NP interface). Because increases in mechanical properties, and not thermal/electrical properties, are being targeted, a ‘reverse’ order coating configuration is desirable.
  • It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For convenience, in system 900, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
  • EXAMPLE III
  • This example shows how carbon fiber material can be infused with CNTs in a continuous process to target improvements in mechanical properties, especially interfacial characteristics such as interlaminar shear.
  • In this example, loading of shorter CNTs on fibers is targeted. In this example, 34-700 12 k unsized carbon fiber tow with a tex value of 793 (Grafil Inc., Sacramento, Calif.) is implemented as the carbon fiber substrate. The individual filaments in this carbon fiber tow have a diameter of approximately 7 μm.
  • FIG. 10 depicts system 1000 for producing CNT-infused fiber in accordance with the illustrative embodiment of the present invention, and involves many of the same stations and processes described in system 800. System 1000 includes a carbon fiber material payout and tensioner station 1002, fiber spreader station 1008, plasma treatment station 1010, coating application station 1012, air dry station 1014, a second coating application station 1016, a second air dry station 1018, CNT-infusion station 1020, fiber bundler station 1022, and carbon fiber material uptake bobbin 1024, interrelated as shown.
  • Payout and tension station 1002 includes payout bobbin 1004 and tensioner 1006. The payout bobbin delivers carbon fiber material 1001 to the process; the fiber is tensioned via tensioner 1006. For this example, the carbon fiber is processed at a linespeed of 5 ft/min.
  • Fiber material 1001 is delivered to fiber spreader station 1008. As this fiber is manufactured without sizing, a sizing removal process is not incorporated as part of fiber spreader station 1008. The fiber spreader separates the individual elements of the fiber in a similar manner as described in fiber spreader 870.
  • Fiber material 1001 is delivered to plasma treatment station 1010. For this example, atmospheric plasma treatment is utilized in a ‘downstream’ manner from a distance of 12 mm from the spread carbon fiber material. The gaseous feedstock is comprised of oxygen in the amount of 1.1% of the total inert gas flow (helium). Controlling the oxygen content on the surface of carbon fiber material is an effective way of enhancing the adherence of subsequent coatings, and is therefore desirable for enhancing mechanical properties of a carbon fiber composite.
  • Plasma enhanced fiber 1011 is delivered to coating application station 1012. In this example, an iron oxide based catalyst and a barrier coating material is combined into a single ‘hybrid’ solution and is employed in a dip coating configuration. The ‘hybrid’ solution is 1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran. The benefit of employing such a ‘hybrid’ coating is that it marginalizes the effect of fiber degradation at high temperatures. Without being bound by theory, degradation to carbon fiber materials is intensified by the sintering of catalyst NPs at high temperatures (the same temperatures vital to the growth of CNTs). By encapsulating each catalyst NP with its own barrier coating, it is possible to control this effect. Because increases in mechanical properties, and not thermal/electrical properties, is being targeted, it is desirable to maintain the integrity of the carbon fiber base-material, therefore a ‘hybrid’ coating can be employed.
  • Catalyst-laden and barrier coated carbon fiber material 1013 is delivered to air dry station 1014 for partial curing of the barrier coating. The air dry station sends a stream of heated air across the entire carbon fiber spread. Temperatures employed can be in the range of 100° C. to about 500° C.
  • After air drying, the catalyst and barrier coating-laden carbon fiber 1013 is delivered to coating application station 1016, which is identical to coating application station 1012. The same ‘hybrid’ solution is used (1-part-by-volume ‘EFH-1’, 5-parts ‘Accuglass T-11 Spin-On Glass’, 24-parts hexane, 24-parts isopropyl alcohol, and 146-parts tetrahydrofuran). For this example, a configuration which includes multiple coating application stations is utilized to optimized the coverage of the ‘hybrid’ coating on the plasma enhanced fiber 1011.
  • Catalyst and barrier coating-laden carbon fiber 1017 is delivered to air dry station 1018 for partial curing of the barrier coating, and is identical to air dry station 1014.
  • After air drying, catalyst and barrier coating-laden carbon fiber 1017 is finally advanced to CNT-infusion station 1020. In this example, a rectangular reactor with a 12 inch growth zone is used to employ CVD growth at atmospheric pressure. 98.7% of the total gas flow is inert gas (Nitrogen) and the other 1.3% is the carbon feedstock (acetylene). The growth zone is held at 675° C. For the rectangular reactor mentioned above, 675° C. is a relatively low growth temperature, which allows for the control of shorter CNT growth.
  • After CNT-infusion, CNT-infused fiber 1021 is re-bundled at fiber bundler 1022. This operation recombines the individual strands of the fiber, effectively reversing the spreading operation that was conducted at station 1008.
  • The bundled, CNT-infused fiber 1021 is wound about uptake fiber bobbin 1024 for storage. CNT-infused fiber 1021 is loaded with CNTs approximately 2 μm in length and is then ready for use in composite materials with enhanced mechanical properties.
  • It is noteworthy that some of the operations described above can be conducted under inert atmosphere or vacuum for environmental isolation. For convenience, in system 1000, environmental isolation is provided for all operations, with the exception of carbon fiber material payout and tensioning, at the beginning of the production line, and fiber uptake, at the end of the production line.
  • It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Specification, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the present invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other processes , materials, components, etc.
  • Furthermore, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the illustrative embodiments. It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Consequently, the appearances of the phrase “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout the Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.

Claims (16)

1. A system for the continuous production of carbon nanotubes on a carbon fiber material comprising:
a catalyst application station comprising a colloidal solution of CNT growth catalyst nanoparticles;
a barrier coating station; and
a CNT growth station comprising at least one purge zone and a growth chamber; said growth station adapted for CNT growth on the carbon fiber material by continuously feeding the carbon fiber material through the growth station;
said system being capable of reel to reel growth of CNTs on the carbon fiber material continuously by providing a payout bobbin and an uptake bobbin; said carbon fiber material being provided in spoolable form.
2. The system of claim 1, wherein said CNT growth station is open to, but separated from the outside environment by the use of an inert gas flow.
3. The system of claim 1 further comprising a payout and tensioner station.
4. The system of claim 1 further comprising a fiber spreading station.
5. The system of claim 1 further comprising a plasma station adapted to roughen the surface of the carbon fiber material.
6. The system of claim 1 further comprising a barrier coating station adapted to conformally deposit a barrier coating on said carbon fiber material; said barrier coating having CNT growth catalyst embedded therein.
7. The system of claim 5, wherein the catalyst application station and barrier coating station are combined.
8. The system of claim 5, wherein said barrier coating station comprises at least one of spin-on glass, an alumina, a silane, an alkoxysilane, and a liquid ceramic.
9. The system of claim 1 further comprising a fiber sizing removal station.
10. The system of claim 1 further comprising a resin application station downstream of said CNT growth station.
11. The system of claim 1 which is capable of operating speeds in a range from between about 0.5 ft/min to about 36 ft/min.
12. The system of claim 1 further comprising a controller station; said controller station capable of controlling at least one of linespeed, an inert gas flow rate, a carbon feedstock flowrate, temperature in the CNT growth chamber, temperature of the inert gas, and temperature of the carbon feedstock gas.
13. The system of claim 1, wherein a material residence time in the growth chamber between about 5 to about 30 seconds produces CNTs having a length between about 1 micron to about 10 microns.
14. The system of claim 1, wherein a material residence time in the growth chamber of about 30 to about 180 seconds produces CNTs having a length between about 10 microns to about 100 microns.
15. The system of claim 1, wherein a material residence time in the growth chamber of about 180 to about 300 seconds produces CNTs having a length between about 100 microns to about 500 microns.
16. A system for the continuous production of carbon nanotubes on a fiber material comprising:
a catalyst application station comprising a colloidal solution of CNT growth catalyst nanoparticles;
a barrier coating station; and
a CNT growth station comprising at least one purge zone and a growth chamber; said growth station adapted for CNT growth on the fiber material by continuously feeding the fiber material through the growth station;
said system being capable of reel to reel growth of CNTs on the fiber material continuously by providing a payout bobbin and an uptake bobbin; said fiber material being provided in spoolable form.
US12/714,381 2007-01-03 2010-02-26 Cnt-infused carbon fiber materials and process therefor Abandoned US20110168089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/714,381 US20110168089A1 (en) 2007-01-03 2010-02-26 Cnt-infused carbon fiber materials and process therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US11/619,327 US8158217B2 (en) 2007-01-03 2007-01-03 CNT-infused fiber and method therefor
US15593509P 2009-02-27 2009-02-27
US15709609P 2009-03-03 2009-03-03
US16851609P 2009-04-10 2009-04-10
US16905509P 2009-04-14 2009-04-14
US18215309P 2009-05-29 2009-05-29
US12/611,101 US8951632B2 (en) 2007-01-03 2009-11-02 CNT-infused carbon fiber materials and process therefor
US12/714,381 US20110168089A1 (en) 2007-01-03 2010-02-26 Cnt-infused carbon fiber materials and process therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/611,101 Continuation US8951632B2 (en) 2007-01-03 2009-11-02 CNT-infused carbon fiber materials and process therefor

Publications (1)

Publication Number Publication Date
US20110168089A1 true US20110168089A1 (en) 2011-07-14

Family

ID=43922452

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/611,101 Active 2028-10-09 US8951632B2 (en) 2007-01-03 2009-11-02 CNT-infused carbon fiber materials and process therefor
US12/714,381 Abandoned US20110168089A1 (en) 2007-01-03 2010-02-26 Cnt-infused carbon fiber materials and process therefor
US14/581,908 Active 2027-12-15 US9574300B2 (en) 2007-01-03 2014-12-23 CNT-infused carbon fiber materials and process therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/611,101 Active 2028-10-09 US8951632B2 (en) 2007-01-03 2009-11-02 CNT-infused carbon fiber materials and process therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/581,908 Active 2027-12-15 US9574300B2 (en) 2007-01-03 2014-12-23 CNT-infused carbon fiber materials and process therefor

Country Status (10)

Country Link
US (3) US8951632B2 (en)
EP (1) EP2497342A4 (en)
JP (1) JP5823403B2 (en)
KR (1) KR101770196B1 (en)
CN (1) CN102640573A (en)
AU (1) AU2010313614A1 (en)
BR (1) BR112012011606A2 (en)
CA (1) CA2778607A1 (en)
WO (1) WO2011053458A1 (en)
ZA (1) ZA201202972B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016738A1 (en) * 2011-07-22 2013-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
US9255003B2 (en) 2004-12-22 2016-02-09 The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
CN107337197A (en) * 2016-04-28 2017-11-10 香港理工大学深圳研究院 The method that CNT is scattered in cement matrix
US20210230386A1 (en) * 2018-06-11 2021-07-29 Nitta Corporation Composite material, prepreg, carbon fiber reinforced molded product, and method for producing composite material

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
WO2010144161A2 (en) 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
CA2752525C (en) 2009-02-27 2017-05-16 Applied Nanostructured Solutions, Llc Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
BRPI1016244A2 (en) 2009-04-24 2016-04-26 Applied Nanostructured Sols cnt infused EMI protection composite and coating.
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
KR101696207B1 (en) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-based resistive heating for deicing composite structures
AU2010279709A1 (en) 2009-08-03 2012-01-19 Applied Nanostructured Solutions, Llc. Incorporation of nanoparticles in composite fibers
JP2013511429A (en) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-based space-based composite structure
KR20120117978A (en) 2009-11-23 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
EP2513250A4 (en) 2009-12-14 2015-05-27 Applied Nanostructured Sols Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (en) 2010-02-02 2016-05-03 Applied Nanostructured Sols carbon nanotube infused fiber materials containing parallel aligned carbon nanotubes, methods for producing them and composite materials derived therefrom
TWI410275B (en) * 2010-02-06 2013-10-01 Nat Univ Tsing Hua Method of fabricating visible light absorbed tio/cnt photocatalysts and photocatalytic filters
BR112012021968A2 (en) 2010-03-02 2016-06-07 Applied Nanostructured Sols spiral-wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatus for their production
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2012019819A1 (en) * 2010-08-13 2012-02-16 Huntsman Advanced Materials (Switzerland) Gmbh Process to grow carbon nanotubes onto fibers
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN104475313B (en) 2010-09-14 2017-05-17 应用奈米结构公司 Glass substrates having carbon nanotubes grown thereon and methods for production thereof
AU2011305809A1 (en) * 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
CN103443870A (en) * 2010-09-23 2013-12-11 应用纳米结构方案公司 CNT-infused fiber as a self shielding wire for enhanced power transmission line
WO2012074800A1 (en) * 2010-12-02 2012-06-07 Applied Nanostructured Solutions, Llc Ionically conductive polymers, methods for production thereof and electrical devices made therefrom
US9605376B2 (en) 2011-06-28 2017-03-28 Mtix Ltd. Treating materials with combined energy sources
US9309619B2 (en) * 2011-06-28 2016-04-12 Mtix Ltd. Method and apparatus for surface treatment of materials utilizing multiple combined energy sources
US9909505B2 (en) 2011-07-05 2018-03-06 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
US9506422B2 (en) 2011-07-05 2016-11-29 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
RU2475463C1 (en) * 2011-11-23 2013-02-20 Закрытое акционерное общество "ГрАВИОНИКС-К" (ЗАО "ГрАВИОНИКС-К") Method of modifying surface of inorganic fibre, modified fibre and composite material
KR101951320B1 (en) * 2012-02-07 2019-02-22 삼성전자주식회사 Varifocal lens
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
TWI509119B (en) 2012-12-03 2015-11-21 Ind Tech Res Inst Carbon fiber composite and manufacturing method thereof
CN103896244B (en) * 2012-12-29 2016-08-10 清华大学 Reactor and the method for growth CNT
CN103088648B (en) * 2013-01-25 2015-01-07 中国科学院新疆生态与地理研究所 Preparation method for carbon fiber material with composite nano structure
JP6063562B2 (en) 2013-04-24 2017-01-18 ニッタ株式会社 COMPOSITE MATERIAL, MOLDED ARTICLE AND COMPOSITE MATERIAL MANUFACTURING METHOD
CN105081490B (en) * 2014-04-23 2017-09-12 北京富纳特创新科技有限公司 Line cutting electrode silk and wire-electrode cutting device
MY187574A (en) * 2014-06-17 2021-09-30 Ocv Intellectual Capital Llc Anti-sulphation pasting mats for lead-acid batteries
PL3158601T3 (en) 2014-06-17 2021-08-16 Ocv Intellectual Capital, Llc Water loss reducing pasting mats for lead-acid batteries
DE102014212241A1 (en) * 2014-06-25 2015-12-31 Siemens Aktiengesellschaft Modified surface carbon fibers and methods of modifying a carbon fiber surface and using the carbon fiber
GB201412656D0 (en) * 2014-07-16 2014-08-27 Imp Innovations Ltd Process
JP2018012741A (en) * 2014-11-25 2018-01-25 学校法人同志社 Carbon fiber-reinforced plastic
KR101698361B1 (en) * 2015-07-15 2017-01-23 주식회사 진명프리텍 Wet paper friction material
US9994741B2 (en) 2015-12-13 2018-06-12 International Business Machines Corporation Enhanced adhesive materials and processes for 3D applications
US10920085B2 (en) * 2016-01-20 2021-02-16 Honda Motor Co., Ltd. Alteration of carbon fiber surface properties via growing of carbon nanotubes
JP6703427B2 (en) * 2016-03-25 2020-06-03 ニッタ株式会社 Method for manufacturing composite fabric
WO2017214480A1 (en) * 2016-06-09 2017-12-14 Board Of Regents, The University Of Texas System Functional regenerated cellulose fibers
US9688827B1 (en) * 2016-08-29 2017-06-27 Northrop Grumman Systems Corporation Method for preparing high quality tendrillar carbon non-woven pre-impregnated and composite materials
EP3348685A1 (en) * 2017-01-12 2018-07-18 UHT Unitech Co., Ltd Carbon fiber surface oiling agent changing method and carbon fiber surface oiling agent changing apparatus
JP6393348B2 (en) * 2017-01-16 2018-09-19 永虹先進材料股▲ふん▼有限公司 Replacing oil on the surface of carbon fiber
US10584418B1 (en) * 2017-02-23 2020-03-10 Northrop Grumman Systems Corporation Plasma treatment of carbon nanotube sheet materials to reduce optical reflectance
US20190055677A1 (en) * 2017-08-17 2019-02-21 Lintec Of America, Inc. Selective infiltration of nanofiber yarns
JP7084706B2 (en) 2017-09-27 2022-06-15 ニッタ株式会社 Manufacturing method of composite material, prepreg, carbon fiber reinforced molded body, and composite material
US10272651B1 (en) 2017-10-18 2019-04-30 Industrial Technology Research Institute Fiber composite and manufacturing method thereof
CN109676951B (en) 2017-10-18 2021-03-09 财团法人工业技术研究院 Fiber composite material and method for producing the same
JP6993176B2 (en) 2017-10-31 2022-01-13 住友化学株式会社 Liquid crystal polyester resin composition and injection molded product
US11827757B2 (en) 2018-02-20 2023-11-28 Ut-Battelle, Llc Carbon fiber-nanoparticle composites with electromechanical properties
CN109055914A (en) * 2018-06-28 2018-12-21 华南理工大学 The compound fento material of carbon nanotube and its method of a kind of preparation of CVD method and application
CN109402816A (en) * 2018-12-11 2019-03-01 苏州璟珮新材料科技有限公司 A kind of nonmetallic electric heating function yarn
CN111805935B (en) 2019-04-11 2022-01-07 财团法人工业技术研究院 Fiber composite structure
CN110435239B (en) * 2019-06-28 2021-11-09 东华大学 Multi-scale toughened epoxy resin-based carbon fiber composite material and preparation method thereof
CN114278691B (en) * 2019-07-03 2023-11-24 福建省晋江凯燕新材料研究院有限公司 Method for preparing organic friction material by using spiral micro carbon fiber
US11293507B2 (en) 2019-10-08 2022-04-05 Honeywell International Inc. Composite fiber preform for disc brakes
US11655870B2 (en) 2019-10-08 2023-05-23 Honeywell International Inc. Method for manufacturing composite fiber preform for disc brakes
CN111394991A (en) * 2020-03-25 2020-07-10 深圳市富恒新材料股份有限公司 Method for grafting carbon nano tube on surface of carbon fiber based on plasma technology
JP7205667B2 (en) 2020-05-21 2023-01-17 株式会社村田製作所 signal transmission line
TWI789722B (en) * 2021-03-16 2023-01-11 國立中正大學 Catalyst structure, use thereof and electrochemical device
CN114045037B (en) * 2021-12-29 2023-01-20 北京化工大学 Interface reinforced carbon fiber composite material and preparation method thereof

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304855A (en) * 1963-05-15 1967-02-21 H G Molenaar & Company Proprie Extractor means for extracting liquid from a liquids containing mass
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
US4566969A (en) * 1981-09-29 1986-01-28 Crane & Co., Inc. Rolling filter apparatus
US4797378A (en) * 1986-02-18 1989-01-10 Minnesota Mining And Manufacturing Company Internally modified ceramic fiber
US4920917A (en) * 1987-03-18 1990-05-01 Teijin Limited Reactor for depositing a layer on a moving substrate
US5310687A (en) * 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
US5514217A (en) * 1990-11-16 1996-05-07 Canon Kabushiki Kaisha Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
US5595750A (en) * 1991-08-09 1997-01-21 E. I. Du Pont De Nemours And Company Antimicrobial particles of silver and barium sulfate or zinc oxide
US6184280B1 (en) * 1995-10-23 2001-02-06 Mitsubishi Materials Corporation Electrically conductive polymer composition
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US20030024884A1 (en) * 2001-04-02 2003-02-06 Petrik Viktor Ivanovich Method for removing oil, petroleum products and/or chemical, pollutants from liquid and/or gas and/or surface
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US20030042147A1 (en) * 2001-08-29 2003-03-06 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
US20030068432A1 (en) * 1998-08-14 2003-04-10 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US6564744B2 (en) * 1995-09-13 2003-05-20 Nissin Electric Co., Ltd. Plasma CVD method and apparatus
US6673392B2 (en) * 2000-03-15 2004-01-06 Samsung Sdi Co., Ltd. Method of vertically aligning carbon nanotubes on substrates at low pressure using thermal chemical vapor deposition with DC bias
US20040009115A1 (en) * 2002-06-13 2004-01-15 Wee Thye Shen Andrew Selective area growth of aligned carbon nanotubes on a modified catalytic surface
US20040026234A1 (en) * 2000-08-23 2004-02-12 Pierre Vanden Brande Method and device for continuous cold plasma deposition of metal coatings
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US20040037767A1 (en) * 2002-08-21 2004-02-26 First Nano, Inc. Method and apparatus of carbon nanotube fabrication
US20040079278A1 (en) * 2002-10-28 2004-04-29 Kamins Theodore I. Method of forming three-dimensional nanocrystal array
US20040089237A1 (en) * 2002-07-17 2004-05-13 Pruett James Gary Continuous chemical vapor deposition process and process furnace
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US20050009694A1 (en) * 2003-06-30 2005-01-13 Watts Daniel J. Catalysts and methods for making same
US20050026778A1 (en) * 2002-02-25 2005-02-03 Axtell Holly C. Multi-functional protective fiber and methods for use
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US6863942B2 (en) * 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US20050090176A1 (en) * 2001-08-29 2005-04-28 Dean Kenneth A. Field emission display and methods of forming a field emission display
US20050093458A1 (en) * 1999-05-14 2005-05-05 Steven E. Babayan Method of processing a substrate
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US20060002844A1 (en) * 2004-07-02 2006-01-05 Kabushiki Kaisha Toshiba Manufacturing methods of catalysts for carbon fiber composition and carbon material compound, manufacturing methods of carbon fiber and catalyst material for fuel cell, and catalyst material for fuel cell
US6986853B2 (en) * 2001-03-26 2006-01-17 Eikos, Inc. Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection
US6986877B2 (en) * 2002-01-08 2006-01-17 Futaba Corporation Method for preparing nano-carbon fiber and nano-carbon fiber
US6994907B2 (en) * 1999-06-02 2006-02-07 The Board Of Regents Of The University Of Oklahoma Carbon nanotube product comprising single-walled carbon nanotubes
US7011760B2 (en) * 2001-12-21 2006-03-14 Battelle Memorial Institute Carbon nanotube-containing structures, methods of making, and processes using same
US20060062944A1 (en) * 2004-09-20 2006-03-23 Gardner Slade H Ballistic fabrics with improved antiballistic properties
US20060067871A1 (en) * 2004-05-26 2006-03-30 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
US20060083674A1 (en) * 2003-02-14 2006-04-20 Shigeo Maruyama Method for forming catalyst metal particles for production of single-walled carbon nanotube
US20060239894A1 (en) * 2005-02-07 2006-10-26 Noritake Co., Ltd. Carbon nanotube cathode and method of manufacturing the same
US7157068B2 (en) * 2001-05-21 2007-01-02 The Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
US7160532B2 (en) * 2003-03-19 2007-01-09 Tsinghua University Carbon nanotube array and method for forming same
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
US20070009421A1 (en) * 2004-12-01 2007-01-11 William Marsh Rice University Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
US20070020167A1 (en) * 2004-06-22 2007-01-25 Han In-Taek Method of preparing catalyst for manufacturing carbon nanotubes
US20070035226A1 (en) * 2002-02-11 2007-02-15 Rensselaer Polytechnic Institute Carbon nanotube hybrid structures
US20070054105A1 (en) * 2005-09-05 2007-03-08 Hon Hai Precision Industry Co., Ltd. Thermal interface material and method for making same
US20070053824A1 (en) * 2005-08-12 2007-03-08 Samsung Electronics Co., Ltd. Method of forming carbon nanotubes
US20070090489A1 (en) * 2005-10-25 2007-04-26 Hart Anastasios J Shape controlled growth of nanostructured films and objects
US20070092431A1 (en) * 2005-06-28 2007-04-26 Resasco Daniel E Methods for growing and harvesting carbon nanotubes
US20080014431A1 (en) * 2004-01-15 2008-01-17 Nanocomp Technologies, Inc. Systems and methods of synthesis of extended length nanostructures
US20080017845A1 (en) * 2004-05-25 2008-01-24 The Trustees Of The University Of Pennsylvania Nanostructure Assemblies, Methods And Devices Thereof
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US20080023396A1 (en) * 2004-05-13 2008-01-31 Hokkaido Technology Licensing Office Co., Ltd. Fine Carbon Dispesion
US7329698B2 (en) * 2001-08-06 2008-02-12 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
US20080048364A1 (en) * 2004-07-22 2008-02-28 William Marsh Rice University Polymer / Carbon-Nanotube Interpenetrating Networks and Process for Making Same
US7338684B1 (en) * 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US20080069760A1 (en) * 2004-06-04 2008-03-20 The Trustees Of Columbia University In The City Of New York Methods For Preparing Single -Walled Carbon Nanoturbes
US20080075954A1 (en) * 2006-05-19 2008-03-27 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US7354881B2 (en) * 1999-06-02 2008-04-08 The Board Of Regents Of The University Of Oklahoma Method and catalyst for producing single walled carbon nanotubes
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
US20090017301A1 (en) * 2005-12-23 2009-01-15 Ssint-Gobain Technical Fabrics Europe Glass fibres and glass fibre structures provided with a coating containing nanoparticles
US7479052B2 (en) * 2005-12-13 2009-01-20 Samsung Sdi Co., Ltd. Method of growing carbon nanotubes and method of manufacturing field emission device using the same
US20090021136A1 (en) * 2005-05-31 2009-01-22 Coll Bernard F Emitting device having electron emitting nanostructures and method of operation
US7488455B2 (en) * 2001-04-04 2009-02-10 Commonwealth Scientific And Industrial Research Organisation Apparatus for the production of carbon nanotubes
US20090047502A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced modularly constructed composite panel
US20090047453A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
US7494639B2 (en) * 2004-12-28 2009-02-24 William Marsh Rice University Purification of carbon nanotubes based on the chemistry of fenton's reagent
US20090052509A1 (en) * 1998-08-28 2009-02-26 Agazzi Oscar E Phy control module for a multi-pair gigabit transceiver
US20090068387A1 (en) * 2006-07-31 2009-03-12 Matthew Panzer Composite thermal interface material including aligned nanofiber with low melting temperature binder
US20090068461A1 (en) * 2003-10-16 2009-03-12 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
US20090072222A1 (en) * 2007-07-06 2009-03-19 Interuniversitair Microelektronica Centrum Vzw (Imec) Method for forming catalyst nanoparticles for growing elongated nanostructures
US7510695B2 (en) * 1997-03-07 2009-03-31 William Marsh Rice University Method for forming a patterned array of fullerene nanotubes
US20090092832A1 (en) * 2005-12-23 2009-04-09 Saint-Gobain Technical Fabrics Europe Glass fibres coated with size containing nanoparticles
US20090099016A1 (en) * 2005-12-19 2009-04-16 Advanced Technology Materials, Inc. Production of carbon nanotubes
US20090325377A1 (en) * 2008-06-27 2009-12-31 Commissariat A L'energie Atomique Procedure for Obtaining Nanotube Layers of Carbon with Conductor or Semiconductor Substrate
US20100000770A1 (en) * 2005-12-19 2010-01-07 University Of Virginia Patent Foundation Conducting Nanotubes or Nanostructures Based Composites, Method of Making Them and Applications
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7666915B2 (en) * 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US20100059243A1 (en) * 2008-09-09 2010-03-11 Jin-Hong Chang Anti-electromagnetic interference material arrangement
US20100074834A1 (en) * 2008-09-22 2010-03-25 Samsung Electronics Co., Ltd. Apparatus and method for surface-treating carbon fiber by resistive heating
US7687981B2 (en) * 2006-05-05 2010-03-30 Brother International Corporation Method for controlled density growth of carbon nanotubes
US20100081769A1 (en) * 2008-09-26 2010-04-01 E.I.Du Pont De Nemours And Company Process for producing block copolymer pigment dispersants
US20100092841A1 (en) * 2006-08-30 2010-04-15 Umicore Ag & Co. Kg Core / shell-type catalyst particles comprising metal or ceramic core materials and methods for their preparation
US7700943B2 (en) * 2005-12-14 2010-04-20 Intel Corporation In-situ functionalization of carbon nanotubes
US7862795B2 (en) * 2004-11-16 2011-01-04 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
US7867468B1 (en) * 2008-02-28 2011-01-11 Carbon Solutions, Inc. Multiscale carbon nanotube-fiber reinforcements for composites
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
US20110014446A1 (en) * 2007-07-06 2011-01-20 Takeshi Saito Method for forming carbon nanotube film, film-forming apparatus, and carbon nanotube film
US7880376B2 (en) * 2001-06-14 2011-02-01 Hyperion Catalysis International, Inc. Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks
US20110024694A1 (en) * 2009-02-17 2011-02-03 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
US20110024409A1 (en) * 2009-04-27 2011-02-03 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
US20120065300A1 (en) * 2007-01-03 2012-03-15 Applied Nanostructured Solutions, Llc. Cnt-infused fiber and method therefor
US20120070667A1 (en) * 2010-09-22 2012-03-22 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
US8148276B2 (en) * 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites

Family Cites Families (315)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412707A (en) 1943-06-07 1946-12-17 Harold M Barnett Process for carotene extraction
FR2450469A1 (en) 1979-02-28 1980-09-26 Essilor Int PHOTOCHROMIC OPHTHALMIC LENS IN ORGANIC MATTER
US4530750A (en) 1981-03-20 1985-07-23 A. S. Laboratories, Inc. Apparatus for coating optical fibers
JPS6027700Y2 (en) 1981-04-20 1985-08-21 池田物産株式会社 Vehicle seat back and forth movement device
EP0098315A1 (en) 1982-07-02 1984-01-18 Ppg Industries, Inc. Aqueous treating composition for glass fiber strands used to produce mats for thermoplastic polymers
JPS6027700U (en) 1983-07-25 1985-02-25 日東電工株式会社 enzyme reaction device
US5221605A (en) 1984-10-31 1993-06-22 Igen, Inc. Luminescent metal chelate labels and means for detection
US5238808A (en) 1984-10-31 1993-08-24 Igen, Inc. Luminescent metal chelate labels and means for detection
US4707349A (en) 1986-02-28 1987-11-17 Hjersted Norman B Process of preparing a preferred ferric sulfate solution, and product
US4759950A (en) 1986-09-26 1988-07-26 Advance Technology Materials, Inc. Method for metallizing filaments
US4834020A (en) 1987-12-04 1989-05-30 Watkins-Johnson Company Atmospheric pressure chemical vapor deposition apparatus
US5130194A (en) 1988-02-22 1992-07-14 The Boeing Company Coated ceramic fiber
CA2004076A1 (en) 1988-11-29 1990-05-29 Makoto Miyazaki Sulfone compounds, process for surface-treating reinforcing fibers using same and surface-treated reinforcing fibers obtained thereby
US5173367A (en) 1991-01-15 1992-12-22 Ethyl Corporation Ceramic composites
US5246794A (en) 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
JP3206095B2 (en) 1991-04-12 2001-09-04 株式会社ブリヂストン Surface treatment method and apparatus
JPH04334823A (en) 1991-05-09 1992-11-20 Sumitomo Electric Ind Ltd Insulating member
US20020085974A1 (en) 1992-01-15 2002-07-04 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US5946587A (en) 1992-08-06 1999-08-31 Canon Kabushiki Kaisha Continuous forming method for functional deposited films
EP0609104B1 (en) 1993-01-29 1998-05-20 Canon Kabushiki Kaisha Process for the formation of functional deposited films
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US5470408A (en) 1993-10-22 1995-11-28 Thiokol Corporation Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants
JP3571785B2 (en) 1993-12-28 2004-09-29 キヤノン株式会社 Method and apparatus for forming deposited film
JP3136951B2 (en) 1994-06-28 2001-02-19 松下電工株式会社 Surface treatment method for glass cloth
JP3593168B2 (en) 1995-01-13 2004-11-24 積水化学工業株式会社 Continuous surface treatment method and apparatus for sheet
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
AU4898296A (en) 1995-03-14 1996-10-08 Thiokol Corporation Infrared tracer compositions
JPH09115334A (en) 1995-10-23 1997-05-02 Mitsubishi Materiais Corp Transparent conductive film and composition for film formation
US5697827A (en) 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
EP0927331B1 (en) 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
JP3740295B2 (en) 1997-10-30 2006-02-01 キヤノン株式会社 Carbon nanotube device, manufacturing method thereof, and electron-emitting device
JP3363759B2 (en) 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same
DE69908990T2 (en) 1998-01-29 2004-05-19 Coi Ceramics, Inc., San Diego Process for the production of sized coated ceramic fibers
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
AU3892899A (en) 1998-05-08 1999-11-29 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6146462A (en) 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
FR2779751B1 (en) 1998-06-10 2003-11-14 Saint Gobain Isover SUBSTRATE WITH PHOTOCATALYTIC COATING
US6455021B1 (en) 1998-07-21 2002-09-24 Showa Denko K.K. Method for producing carbon nanotubes
US6344232B1 (en) 1998-07-30 2002-02-05 The United States Of America As Represented By The Secretary Of The Air Force Computer controlled temperature and oxygen maintenance for fiber coating CVD
JP2000058158A (en) 1998-08-05 2000-02-25 Jsr Corp Connector, its manufacture and circuit device inspecting adaptor device
US6146642A (en) 1998-09-14 2000-11-14 Mount Sinai School Of Medicine, Of The City University Of New York Recombinant new castle disease virus RNA expression systems and vaccines
US7150864B1 (en) 1998-09-18 2006-12-19 William Marsh Rice University Ropes comprised of single-walled and double-walled carbon nanotubes
US6072930A (en) 1998-11-04 2000-06-06 Syracuse University Method of fabricating a cylindrical optical fiber containing a particulate optically active film
US6265466B1 (en) 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6221154B1 (en) 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
WO2000053423A1 (en) 1999-03-10 2000-09-14 American Bank Note Holographics, Inc. Techniques of printing micro-structure patterns such as holograms directly onto final documents or other substrates in discrete areas thereof
US6331209B1 (en) 1999-04-21 2001-12-18 Jin Jang Method of forming carbon nanotubes
JP3357315B2 (en) 1999-04-26 2002-12-16 積水化学工業株式会社 Discharge plasma processing equipment
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6913075B1 (en) 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
TW539763B (en) 1999-06-18 2003-07-01 Ibm Method for printing a catalyst on substrates for electroless deposition
US6270897B1 (en) 1999-07-29 2001-08-07 Owens Corning Fiberglas Technology, Inc. Coupling-agent system for composite fibers
EP1240113A2 (en) 1999-10-18 2002-09-18 Corning Incorporated Method for making nanocrystalline glass-ceramic fibers
CA2368043A1 (en) 1999-10-27 2001-05-03 William Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
AU1808001A (en) 1999-11-30 2001-06-12 University Of Nebraska-Lincoln Debonding resistant toughened composites prepared by small particle reinforcement of the fiber-matrix interface
DE19958473A1 (en) 1999-12-04 2001-06-07 Bosch Gmbh Robert Process for the production of composite layers with a plasma beam source
WO2001049599A2 (en) 2000-01-07 2001-07-12 Duke University High yield vapor phase deposition method for large scale single walled carbon nanotube preparation
FR2805179B1 (en) 2000-02-23 2002-09-27 Centre Nat Rech Scient PROCESS FOR OBTAINING MACROSCOPIC FIBERS AND TAPES FROM COLLOIDAL PARTICLES, IN PARTICULAR CARBON NANOTUBES
WO2001067821A1 (en) 2000-03-07 2001-09-13 Chang Robert P H Carbon nanostructures and methods of preparation
US6479028B1 (en) 2000-04-03 2002-11-12 The Regents Of The University Of California Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction
US6653005B1 (en) 2000-05-10 2003-11-25 University Of Central Florida Portable hydrogen generator-fuel cell apparatus
US6884295B2 (en) 2000-05-29 2005-04-26 Tokyo Electron Limited Method of forming oxynitride film or the like and system for carrying out the same
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6908572B1 (en) 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
US6420293B1 (en) 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
US6653619B2 (en) 2000-09-15 2003-11-25 Agilent Technologies, Inc. Optical motion encoder with a reflective member allowing the light source and sensor to be on the same side
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
KR100382879B1 (en) 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
JP4644347B2 (en) 2000-10-06 2011-03-02 株式会社アルバック Method for forming graphite nanofiber thin film by thermal CVD
US7491634B2 (en) 2006-04-28 2009-02-17 Asm International N.V. Methods for forming roughened surfaces and applications thereof
JP3912583B2 (en) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 Method for producing oriented carbon nanotube film
JP3981566B2 (en) 2001-03-21 2007-09-26 守信 遠藤 Method for producing expanded carbon fiber body
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
WO2002100154A2 (en) 2001-06-06 2002-12-19 Reytech Corporation Functionalized fullerenes, their method of manufacture and uses thereof
US6783702B2 (en) 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US7118693B2 (en) 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003011755A1 (en) 2001-07-27 2003-02-13 University Of Surrey Production of carbon nanotubes
JP2008063718A (en) 2001-08-23 2008-03-21 Nikkiso Co Ltd Carbonaceous nanofibers
US6900264B2 (en) 2001-08-29 2005-05-31 Georgia Tech Research Corporation Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
JP3768867B2 (en) 2001-12-03 2006-04-19 株式会社リコー Method for producing carbon nanotube
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
TWI236505B (en) 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
US20050119105A1 (en) 2002-01-18 2005-06-02 Schott Ag Glass-ceramic composite containing nanoparticles
JP3972674B2 (en) 2002-02-14 2007-09-05 東レ株式会社 Carbon fiber manufacturing method and carbon fiber reinforced resin composition
JP3922039B2 (en) 2002-02-15 2007-05-30 株式会社日立製作所 Electromagnetic wave absorbing material and various products using the same
JP4168676B2 (en) 2002-02-15 2008-10-22 コニカミノルタホールディングス株式会社 Film forming method
JP4107475B2 (en) * 2002-02-22 2008-06-25 三菱レイヨン株式会社 Reinforcing fibers for fiber reinforced composites
CN1176014C (en) 2002-02-22 2004-11-17 清华大学 Process for directly synthesizing ultra-long single-wall continuous nano carbon tube
EP1370489B1 (en) 2002-03-14 2014-03-12 Samsung Electronics Co., Ltd. Composite materials comprising polycarbonate and single-wall carbon nanotubes
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
FR2837287B1 (en) 2002-03-18 2004-07-16 Cit Alcatel OPTICAL GUIDE COMPRISING AN AMPLIFIER MEDIUM, AND A METHOD FOR MANUFACTURING SUCH A GUIDE
US7405854B2 (en) 2002-03-21 2008-07-29 Cornell Research Foundation, Inc. Fibrous micro-composite material
JP2004002182A (en) 2002-03-25 2004-01-08 Mitsubishi Gas Chem Co Inc Oriented carbon nanotube film and its manufacturing method
US20060165914A1 (en) 2002-04-03 2006-07-27 John Abrahamson Continuous method for producing inorganic nanotubes
US6887451B2 (en) 2002-04-30 2005-05-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Process for preparing carbon nanotubes
ITBO20020258A1 (en) * 2002-05-03 2003-11-03 Gd Spa METHOD AND DEVICE FOR THE TILTING OF STACKS OF PRODUCTS IN A STICKING MACHINE
AU2003230267A1 (en) 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted enhanced coating
US7445817B2 (en) 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
US6870311B2 (en) 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
JP2004015600A (en) 2002-06-10 2004-01-15 Hitachi Advanced Digital Inc System for storing/distributing image and method for controlling server device of the system
FR2841233B1 (en) 2002-06-24 2004-07-30 Commissariat Energie Atomique METHOD AND DEVICE FOR PYROLYSIS DEPOSITION OF CARBON NANOTUBES
US6979947B2 (en) 2002-07-09 2005-12-27 Si Diamond Technology, Inc. Nanotriode utilizing carbon nanotubes and fibers
KR100759547B1 (en) 2002-07-29 2007-09-18 삼성에스디아이 주식회사 Carbon nanotube for fuel cell, method for preparing the same and fuel cell using the carbon nanotube
FR2844510B1 (en) 2002-09-12 2006-06-16 Snecma Propulsion Solide THREE-DIMENSIONAL FIBROUS STRUCTURE OF REFRACTORY FIBERS, PROCESS FOR THE PRODUCTION THEREOF AND APPLICATION TO THERMOSTRUCTURAL COMPOSITE MATERIALS
US7153452B2 (en) 2002-09-12 2006-12-26 Clemson University Mesophase pitch-based carbon fibers with carbon nanotube reinforcements
CN100411979C (en) 2002-09-16 2008-08-20 清华大学 Carbon nano pipe rpoe and preparation method thereof
WO2004027336A1 (en) 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
JP3735651B2 (en) 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 Carbon nanofiber dispersed resin fiber reinforced composite material
KR100720628B1 (en) 2002-11-01 2007-05-21 미츠비시 레이온 가부시키가이샤 Composition containing carbon nanotubes, composite having coating thereof and process for producing them
US7431965B2 (en) 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
US7125533B2 (en) 2002-11-15 2006-10-24 William Marsh Rice University Method for functionalizing carbon nanotubes utilizing peroxides
JP3969650B2 (en) 2002-11-19 2007-09-05 日精樹脂工業株式会社 Method for controlling skin layer thickness in composite resin molded products
CN1239387C (en) 2002-11-21 2006-02-01 清华大学 Carbon nano transistor array and grwoth method thereof
CA2450150C (en) 2002-11-22 2012-01-24 Minh-Tan Ton-That Polymeric nanocomposites
EP2258763A1 (en) 2002-11-27 2010-12-08 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
CN1290763C (en) 2002-11-29 2006-12-20 清华大学 Process for preparing nano-carbon tubes
JP3962773B2 (en) 2002-12-05 2007-08-22 独立行政法人科学技術振興機構 Raw material spray type carbon nanostructure manufacturing method and apparatus
EP1586146A4 (en) 2002-12-20 2006-02-01 Alnaire Laboratoires Corp Optical pulse lasers
TWI304321B (en) 2002-12-27 2008-12-11 Toray Industries Layered products, electromagnetic wave shielding molded articles and method for production thereof
JP2004261875A (en) 2003-01-09 2004-09-24 Sony Corp Original board for transference and manufacturing method thereof, and substrate and manufacturing method thereof
JP4161191B2 (en) 2003-01-09 2008-10-08 ソニー株式会社 Method for manufacturing field electron emission device
EP1582501A4 (en) 2003-01-09 2009-01-28 Sony Corp Production method for tubular carbon molecule and tubular carbon molecule, production method for recording device and recording device, production method for field electron emission element and field electron emission element, and production method for display unit and display unit
JP4004973B2 (en) 2003-02-19 2007-11-07 双葉電子工業株式会社 Carbon material, method for producing the same, electron-emitting device, and composite material
GB2399092B (en) 2003-03-03 2005-02-16 Morgan Crucible Co Nanotube and/or nanofibre synthesis
US7641863B2 (en) 2003-03-06 2010-01-05 Ut-Battelle Llc Nanoengineered membranes for controlled transport
DE602004007898T2 (en) 2003-03-07 2008-04-17 SeldonTechnologies, LLC, Windsor CLEANING FLUID MEDIA WITH NANOMATERIALS
US7419601B2 (en) 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
DE10312494A1 (en) 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures
JP2004284919A (en) 2003-03-25 2004-10-14 Mitsubishi Electric Corp Method of producing substrate for forming carbon nanotube, and method of producing carbon nanotube using the substrate
JP3837392B2 (en) 2003-03-25 2006-10-25 憲治郎 尾浦 Carbon nanotube manufacturing method, carbon nanotube device, and electric double layer capacitor
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7074294B2 (en) 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
JP2004327085A (en) 2003-04-21 2004-11-18 Hitachi Zosen Corp Manufacturing method for electron emitter using carbon nanotubes
FR2854409B1 (en) 2003-04-30 2005-06-17 Centre Nat Rech Scient PROCESS FOR OBTAINING FIBERS HAVING A HIGH CONTENT OF COLLOIDAL PARTICLES AND COMPOSITE FIBERS OBTAINED
WO2005047181A2 (en) 2003-06-03 2005-05-26 Seldon Technologies, Llc Fused nanostructure material
US7261779B2 (en) 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
ATE519712T1 (en) 2003-06-16 2011-08-15 Univ Rice William M SIDEWALL FUNCTIONALIZATION OF CARBON NANOTUBE WITH HYDROXY-TERMINATED MOLECULE UNITS
CN1219125C (en) 2003-07-07 2005-09-14 哈尔滨工业大学 Carbon fibre surface organic high-molecule=inorganic nano slurry and its preparationg method
WO2005007564A1 (en) 2003-07-18 2005-01-27 Nec Corporation Method for fixing metal particle, and method for producing metal particle-containing substrate, method for producing carbon nanotube-containing substrate and method for producing semiconductor crystalline rod-containing substrate respectively using such fixing method
EP1660405B1 (en) 2003-07-28 2012-11-28 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
US8211593B2 (en) 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7704754B2 (en) 2004-01-27 2010-04-27 American Environmental Systems, Inc. Method of plasmon-enhanced properties of materials and applications thereof
US7235159B2 (en) 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050065238A1 (en) 2003-09-23 2005-03-24 Lark John C. Encapsulated nanoparticles, products containing the same, and methods for using the same
WO2005047370A2 (en) 2003-10-15 2005-05-26 Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
KR100570634B1 (en) 2003-10-16 2006-04-12 한국전자통신연구원 Electromagnetic shielding materials manufactured by filling carbon tube and metallic powder as electrical conductor
US7265175B2 (en) 2003-10-30 2007-09-04 The Trustees Of The University Of Pennsylvania Flame retardant nanocomposite
US7122165B2 (en) 2003-11-03 2006-10-17 The Research Foundation Of State University Of New York Sidewall-functionalized carbon nanotubes, and methods for making the same
ATE372959T1 (en) 2003-11-07 2007-09-15 Bae Systems Plc PRODUCTION OF METAL NANOWIRES
JP4432478B2 (en) 2003-12-05 2010-03-17 ソニー株式会社 Cylindrical molecule manufacturing method, cylindrical molecular structure, display device, and electronic element
CN100395857C (en) 2004-01-16 2008-06-18 清华大学 Method for preparing carbon nanotube on glass substrates
JP2005213700A (en) 2004-01-30 2005-08-11 National Institute For Materials Science Diameter-different composite type fibrous carbon and method for producing the same
US20070189953A1 (en) 2004-01-30 2007-08-16 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same
US7628041B2 (en) 2004-02-27 2009-12-08 Alcatel-Lucent Usa Inc. Carbon particle fiber assembly technique
US7534486B2 (en) 2004-03-20 2009-05-19 Teijin Aramid B.V. Composite materials comprising PPTA and nanotubes
CN100383213C (en) 2004-04-02 2008-04-23 清华大学 Thermal interface material and its manufacturing method
US8632699B2 (en) * 2004-04-07 2014-01-21 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
US7144563B2 (en) 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
WO2006073454A2 (en) 2004-04-28 2006-07-13 University Of South Florida Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof
US7361626B2 (en) 2004-04-30 2008-04-22 Engelhard Corporation Supported catalyst
KR101190136B1 (en) 2004-05-10 2012-10-12 가부시키가이샤 알박 A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
US20050260412A1 (en) 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes
CN1705059B (en) 2004-05-26 2012-08-29 清华大学 Carbon nano tube field emission device and preparation method thereof
FR2872826B1 (en) 2004-07-07 2006-09-15 Commissariat Energie Atomique LOW-TEMPERATURE GROWTH OF CARBON NANOTUBES ORIENTED
JP4722423B2 (en) 2004-07-15 2011-07-13 電源開発株式会社 Method for preparing catalyst for synthesis of single-walled carbon nanotubes and method for producing single-walled carbon nanotubes using this catalyst
CN100552102C (en) 2004-07-15 2009-10-21 住友金属矿山株式会社 Contain the fiber of boride microparticle and the fibre of this fiber of use
JP4693105B2 (en) 2004-07-23 2011-06-01 昭和電工株式会社 Method and apparatus for producing vapor grown carbon fiber
US7854991B2 (en) 2004-07-27 2010-12-21 National Institute Of Advanced Industrial Science And Technology Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use
JP4786156B2 (en) 2004-08-31 2011-10-05 美根男 平松 Method for producing carbon nanowall
FR2877262B1 (en) 2004-10-29 2007-04-27 Centre Nat Rech Scient Cnrse COMPOSITE FIBERS AND DISSYMETRIC FIBERS FROM CARBON NANOTUBES AND COLLOIDAL PARTICLES
TW200631111A (en) 2004-11-04 2006-09-01 Koninkl Philips Electronics Nv Nanotube-based circuit connection approach
KR101536669B1 (en) 2004-11-09 2015-07-15 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US7485600B2 (en) 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
CN100579900C (en) 2004-12-13 2010-01-13 日机装株式会社 Process for producing monolayer carbon nanotube
US7431964B2 (en) 2004-12-17 2008-10-07 Motorola, Inc. Method of forming a porous metal catalyst on a substrate for nanotube growth
US7407901B2 (en) 2005-01-12 2008-08-05 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
US7811632B2 (en) 2005-01-21 2010-10-12 Ut-Battelle Llc Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays
US20060198956A1 (en) 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
KR100664545B1 (en) 2005-03-08 2007-01-03 (주)씨엔티 Carbon nano tubes mass fabrication device and mass fabrication method
JP4993642B2 (en) 2005-03-10 2012-08-08 マテリアルズ アンド エレクトロケミカル リサーチ (エムイーアール) コーポレイション Thin film manufacturing method and apparatus
JP2006255817A (en) 2005-03-16 2006-09-28 Sonac Kk Metal structure and its manufacturing method
EP1712522A1 (en) 2005-04-14 2006-10-18 Robert Prof. Dr. Schlögl Nanosized carbon material-activated carbon composite
CN100500555C (en) 2005-04-15 2009-06-17 清华大学 Carbon nanotube array structure and its preparation process
CN101198542A (en) 2005-04-22 2008-06-11 塞尔顿技术公司 Product including carbon nano-tube and method for purifying fluid with the carbon nano-tube
CN100376478C (en) 2005-04-22 2008-03-26 清华大学 Apparatus for preparing carbon nano tube array structure
JP2006342011A (en) 2005-06-08 2006-12-21 Bridgestone Corp Carbon nanotube-carbon fiber composite and method for producing the same
US7278324B2 (en) 2005-06-15 2007-10-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for detection of crack growth in a structure
US20080274036A1 (en) 2005-06-28 2008-11-06 Resasco Daniel E Microstructured catalysts and methods of use for producing carbon nanotubes
WO2008054349A2 (en) 2005-07-07 2008-05-08 The University Of Maryland Carbon nanotube structures formed on large free floating substrates
FR2889876B1 (en) 2005-08-17 2008-02-22 Alcatel Sa OPTICAL GUIDE COMPRISING NANOPARTICLES AND METHOD FOR MANUFACTURING A PREFORM FOR FORMING SUCH AN OPTICAL GUIDE
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
CN100445202C (en) 2005-08-26 2008-12-24 鸿富锦精密工业(深圳)有限公司 Preparing method for carbon nano-tube
EP1919826B1 (en) 2005-08-29 2015-10-07 University Of The Witwatersrand Johannesburg Process and reactor for producing carbon nanotubes
US20070110977A1 (en) 2005-08-29 2007-05-17 Al-Haik Marwan S Methods for processing multifunctional, radiation tolerant nanotube-polymer structure composites
KR101433703B1 (en) 2005-09-01 2014-08-27 셀던 테크놀로지, 인코포레이티드. Large scale manufacturing of nanostructured material
JP2007091556A (en) 2005-09-30 2007-04-12 Hitachi Zosen Corp Continuous production apparatus for carbon-based thin film
CN100482580C (en) 2005-10-13 2009-04-29 鸿富锦精密工业(深圳)有限公司 Preparation device of carbon nano-tube and its method
US8372470B2 (en) 2005-10-25 2013-02-12 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
JP5131616B2 (en) 2005-10-27 2013-01-30 ニッタ株式会社 Catalyst supporting substrate for carbon fiber manufacturing and method for manufacturing catalyst supporting substrate for carbon fiber manufacturing
US20070099527A1 (en) 2005-11-01 2007-05-03 General Electric Company Method and reactor to coat fiber tows and article
CN1959896B (en) 2005-11-04 2011-03-30 鸿富锦精密工业(深圳)有限公司 Field emission of Nano carbon tube, and preparation method
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
DE602006018188D1 (en) 2005-11-30 2010-12-23 Shimane Prefectural Government METAL-BASED COMPOSITE, CONTAINING BOTH MICROSCALE CARBON FIBER AND NANOSCAL CARBON FIBER
US7592248B2 (en) 2005-12-09 2009-09-22 Freescale Semiconductor, Inc. Method of forming semiconductor device having nanotube structures
WO2007070649A2 (en) 2005-12-14 2007-06-21 3M Innovative Properties Company Antimicrobial coating system
US20070141114A1 (en) 2005-12-15 2007-06-21 Essilor International Compagnie Generale D'optique Article coated with an ultra high hydrophobic film and process for obtaining same
US20070148429A1 (en) 2005-12-19 2007-06-28 Mcgrath Ralph D Tri-excluded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US7595107B2 (en) 2005-12-22 2009-09-29 Certainteed Corporation Algae resistant roofing system containing silver compounds, algae resistant shingles, and process for producing same
WO2007072584A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Vapor-grown carbon fiber and production process thereof
WO2008016388A2 (en) 2006-01-30 2008-02-07 Honda Motor Co., Ltd. Method and apparatus for growth of high quality carbon single-walled nanotubes
KR20080092934A (en) 2006-02-01 2008-10-16 오츠카 가가쿠 가부시키가이샤 Process and apparatus for producing carbon nanotube
KR100749886B1 (en) 2006-02-03 2007-08-21 (주) 나노텍 Heating element using Carbon Nano tube
JP4743520B2 (en) 2006-03-02 2011-08-10 三洋電機株式会社 Carbon nanotube electrode and manufacturing method thereof
US8124503B2 (en) 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
US7556743B2 (en) 2006-03-06 2009-07-07 Southwest Research Institute Nanocomposites and methods for synthesis and use thereof
US20100117764A1 (en) 2006-04-17 2010-05-13 Board Of Regents, The University Of Texas System Assisted selective growth of highly dense and vertically aligned carbon nanotubes
EP2013408B2 (en) 2006-05-02 2016-09-28 Rohr, Inc. Nacelles and components thereof using nanoreinforcements
US20080280031A1 (en) 2006-05-16 2008-11-13 Board Of Trustees Of Michigan State University Conductive coatings produced by monolayer deposition on surfaces
US20080213498A1 (en) 2006-05-16 2008-09-04 Board Of Trustees Of Michigan State University Reinforced composite with a tow of fibers and process for the preparation thereof
US20090186214A1 (en) 2006-05-17 2009-07-23 University Of Dayton Method of growing carbon nanomaterials on various substrates
JP2009537339A (en) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanostructure reinforced composite and nanostructure strengthening method
US7534648B2 (en) 2006-06-29 2009-05-19 Intel Corporation Aligned nanotube bearing composite material
US9095639B2 (en) 2006-06-30 2015-08-04 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
WO2008027530A1 (en) 2006-09-01 2008-03-06 Seldon Technologies, Llc Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same
JP2008056546A (en) 2006-09-01 2008-03-13 Ihi Corp Production device and production method for carbon structure
JP5309317B2 (en) 2006-09-08 2013-10-09 古河電気工業株式会社 Method and apparatus for producing carbon nanostructure
US9115285B2 (en) 2006-09-18 2015-08-25 Dow Corning Corporation Fillers, pigments and mineral powders treated with organopolysiloxanes
CN101595251B (en) 2006-10-05 2014-06-11 技术研究及发展基金有限公司 Microtubes and methods of producing same
US8088614B2 (en) 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
US20080287598A1 (en) 2006-11-29 2008-11-20 Kiu-Seung Lee Method of preparing aramid polymers incorporating carbon nanotubes
KR100829001B1 (en) 2006-12-07 2008-05-14 한국에너지기술연구원 The manufacturing method of reinforced composite using the method of synthesizing carbon nanowire directly on the glass fiber or the carbon fiber
WO2008140504A2 (en) 2006-12-15 2008-11-20 Los Alamos National Security, Llc Preparation of array of long carbon nanotubes and fibers therefrom
US20080160302A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process
US20080160286A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified discontinuous glass fibers for use in the formation of thermoplastic fiber-reinforced composite articles
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US20100279569A1 (en) 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
KR101281168B1 (en) 2007-01-05 2013-07-02 삼성전자주식회사 Field emission electrode, method for preparing the same and field emission device comprising the same
WO2008094517A1 (en) 2007-01-30 2008-08-07 Solasta, Inc. Photovoltaic cell and method of making thereof
CN101012621A (en) 2007-01-30 2007-08-08 东华大学 Preparation method of zinc oxide nano-rod film on fibre product
TW200833861A (en) 2007-02-05 2008-08-16 Nat Univ Tsing Hua Method for growing carbon nanotubes directly on the carbon fiber
WO2008153609A1 (en) 2007-02-07 2008-12-18 Seldon Technologies, Inc. Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
CA2679401A1 (en) 2007-02-27 2008-09-04 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
CN100506751C (en) 2007-03-19 2009-07-01 华东理工大学 Integrated nano carbon-fiber composite porous material and preparing method
US20080247938A1 (en) 2007-04-05 2008-10-09 Ming-Chi Tsai Process of growing carbon nanotubes directly on carbon fiber
CN101286384B (en) 2007-04-11 2010-12-29 清华大学 Electromagnetic shielding cable
JP5122855B2 (en) 2007-04-18 2013-01-16 田中貴金属工業株式会社 Glass fiber production equipment
CN101049927B (en) 2007-04-18 2010-11-10 清华大学 Method for producing Nano carbon tubes continuously and equipment
US8388795B2 (en) 2007-05-17 2013-03-05 The Boeing Company Nanotube-enhanced interlayers for composite structures
US7722422B2 (en) 2007-05-21 2010-05-25 Global Oled Technology Llc Device and method for improved power distribution for a transparent electrode
JP2008296338A (en) 2007-05-31 2008-12-11 National Univ Corp Shizuoka Univ Covered structure
US7718220B2 (en) 2007-06-05 2010-05-18 Johns Manville Method and system for forming reinforcing fibers and reinforcing fibers having particulate protuberances directly attached to the surfaces
GB0712806D0 (en) 2007-07-02 2007-08-08 Grace W R & Co Slump retention-enhanced cement dispersants
GB0712820D0 (en) 2007-07-03 2007-08-08 Dunlop Aerospace Ltd Carbon-carbon composite
JP2009021038A (en) 2007-07-10 2009-01-29 Sumitomo Electric Ind Ltd Wire rod, conductor, connection structure and method for producing the wire rod
US7785498B2 (en) 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
JP2010534579A (en) 2007-07-27 2010-11-11 ダウ・コーニング・コーポレイション Fiber structure and manufacturing method thereof
EP2020502A1 (en) * 2007-08-01 2009-02-04 Prüfrex-Elektro-Apparatebau Method for electrical ignition of combustion engines
EP2176348B1 (en) 2007-08-02 2017-01-18 Dow Global Technologies LLC Amphiphilic block copolymers and inorganic nanofillers to enhance performance of thermosetting polymers
KR100916330B1 (en) 2007-08-21 2009-09-11 세메스 주식회사 Method and apparatus of collecting carbon nano tube
US20090062417A1 (en) 2007-08-31 2009-03-05 Momentive Performance Materials Gmbh Process For The Continuous Manufacturing Of Shaped Articles And Use Of Silicone Rubber Compositions In That Process
US7985394B2 (en) 2007-09-19 2011-07-26 Gideon Duvall System and method for manufacturing carbon nanotubes
US20090081441A1 (en) 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US20090081383A1 (en) 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US8919428B2 (en) 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US7815820B2 (en) 2007-10-18 2010-10-19 General Electric Company Electromagnetic interference shielding polymer composites and methods of manufacture
US20100206504A1 (en) 2007-10-23 2010-08-19 Tokushu Paper Mfg. Co., Ltd. Sheet-like article and method for making the same
KR20090041765A (en) 2007-10-24 2009-04-29 삼성모바일디스플레이주식회사 Carbon nanotubes and method of growing the same, hybrid structure and method of growing the same and light emitting device
CN100567602C (en) 2007-10-26 2009-12-09 哈尔滨工业大学 Carbon nano-tube connecting carbon fiber multi-scale reinforcing body and preparation method thereof
US20090126783A1 (en) 2007-11-15 2009-05-21 Rensselaer Polytechnic Institute Use of vertical aligned carbon nanotube as a super dark absorber for pv, tpv, radar and infrared absorber application
CN101177803A (en) 2007-11-21 2008-05-14 中南大学 Method for preparing nano carbon fiber
US8146861B2 (en) 2007-11-29 2012-04-03 Airbus Deutschland Gmbh Component with carbon nanotubes
CN101450798A (en) 2007-11-29 2009-06-10 索尼株式会社 Method for processing carbon nanotube, carbon nanotube and carbon nanotube element
KR100878751B1 (en) 2008-01-03 2009-01-14 한국에너지기술연구원 Catalyst support using cellulose fiber, preparation method thereof, supported catalyst supporting nano metal catalyst on carbon nanotubes directly grown on surface of the catalyst support, and preparation method of the supported catalyst
US20090191352A1 (en) 2008-01-24 2009-07-30 Nanodynamics, Inc. Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JP2009184892A (en) 2008-02-08 2009-08-20 Dainippon Screen Mfg Co Ltd Carbon nanotube forming device, and carbon nanotube forming method
WO2009110885A1 (en) 2008-03-03 2009-09-11 Performance Polymer Solutions, Inc. Continuous process for the production of carbon nanotube reinforced continuous fiber preforms and composites made therefrom
US9725314B2 (en) 2008-03-03 2017-08-08 Performancy Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom
JP2009215146A (en) 2008-03-13 2009-09-24 Panasonic Corp Metal-containing nanoparticle, carbon nanotube structure grown by using the same, electronic device using the carbon nanotube structure, and method for manufacturing the device
GB0805837D0 (en) 2008-03-31 2008-06-04 Qinetiq Ltd Chemical Vapour Deposition Process
US7837905B2 (en) 2008-05-16 2010-11-23 Raytheon Company Method of making reinforced filament with doubly-embedded nanotubes
US20110159270A9 (en) 2008-06-02 2011-06-30 Texas A & M University System Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof
JP2011528056A (en) 2008-07-17 2011-11-10 ナノシル エス.エー. Method for producing reinforced thermosetting polymer composite
DE102008042116B4 (en) 2008-09-15 2019-12-24 Robert Bosch Gmbh Valve for atomizing fluid
CN101372327B (en) 2008-09-26 2011-03-23 厦门大学 Growth method of carbon nano-tube array
US8632671B2 (en) 2008-10-03 2014-01-21 Board Of Regents, University Of Texas System Method for measuring carbon nanotubes taken-up by a plurality of living cells
KR101486750B1 (en) 2008-12-01 2015-01-28 삼성전자주식회사 Method of Forming horizontal carbon nano tubes
JP2012512118A (en) 2008-12-11 2012-05-31 ウィリアム・マーシュ・ライス・ユニバーシティ Tightly bonded carbon nanotube array grown directly on a substrate and method for producing the same
JP5318120B2 (en) 2008-12-22 2013-10-16 アイシン精機株式会社 Hybrid carbon and method for producing the same
US20100178568A1 (en) 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US8351220B2 (en) 2009-01-28 2013-01-08 Florida State University Research Foundation Electromagnetic interference shielding structure including carbon nanotube or nanofiber films and methods
CA2752525C (en) 2009-02-27 2017-05-16 Applied Nanostructured Solutions, Llc Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
JP5407080B2 (en) * 2009-03-31 2014-02-05 ドンファ ユニバーシティー Carbon fiber, its yarn, and preoxidized fiber manufacturing method
US8052951B2 (en) 2009-04-03 2011-11-08 Ut-Battelle, Llc Carbon nanotubes grown on bulk materials and methods for fabrication
US20100260933A1 (en) 2009-04-10 2010-10-14 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100260998A1 (en) 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
CA2757474A1 (en) 2009-04-10 2010-10-14 Applied Nanostructured Solutions, Llc Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
US20100272891A1 (en) 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
CN102414875A (en) 2009-04-13 2012-04-11 应用材料公司 Metallized fibers for electrochemical energy storage
BRPI1016244A2 (en) 2009-04-24 2016-04-26 Applied Nanostructured Sols cnt infused EMI protection composite and coating.
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
US20100311866A1 (en) 2009-06-05 2010-12-09 University Of Massachusetts Heirarchial polymer-based nanocomposites for emi shielding
CN101698975B (en) 2009-09-23 2011-12-28 北京航空航天大学 Method for modifying carbonized pre-oxidized fiber preform interface by carbon nanotube
JP5365450B2 (en) 2009-09-28 2013-12-11 凸版印刷株式会社 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP2013511429A (en) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-based space-based composite structure
KR20120117978A (en) 2009-11-23 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
BR112012018244A2 (en) 2010-02-02 2016-05-03 Applied Nanostructured Sols carbon nanotube infused fiber materials containing parallel aligned carbon nanotubes, methods for producing them and composite materials derived therefrom
CN102781828B (en) 2010-03-01 2015-09-09 日本瑞翁株式会社 The manufacture method of carbon nanotube orientation aggregate
BR112012021968A2 (en) 2010-03-02 2016-06-07 Applied Nanostructured Sols spiral-wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatus for their production
CN101837968B (en) 2010-04-02 2012-12-19 北京富纳特创新科技有限公司 Method for preparing carbon nano-tube film
TW201217827A (en) 2010-10-29 2012-05-01 Cheng Uei Prec Ind Co Ltd Anti-fingerprint coating, product having anti-fingerprint coating and manufacture method thereof

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304855A (en) * 1963-05-15 1967-02-21 H G Molenaar & Company Proprie Extractor means for extracting liquid from a liquids containing mass
US4566969A (en) * 1981-09-29 1986-01-28 Crane & Co., Inc. Rolling filter apparatus
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
US5731147A (en) * 1984-10-31 1998-03-24 Igen International, Inc. Luminescent metal chelate labels and means for detection
US5714089A (en) * 1984-10-31 1998-02-03 Igen International, Inc. Luminescent metal chelatte labels and means for detection
US5310687A (en) * 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
US4797378A (en) * 1986-02-18 1989-01-10 Minnesota Mining And Manufacturing Company Internally modified ceramic fiber
US4920917A (en) * 1987-03-18 1990-05-01 Teijin Limited Reactor for depositing a layer on a moving substrate
US5514217A (en) * 1990-11-16 1996-05-07 Canon Kabushiki Kaisha Microwave plasma CVD apparatus with a deposition chamber having a circumferential wall comprising a curved moving substrate web and a microwave applicator means having a specific dielectric member on the exterior thereof
US5595750A (en) * 1991-08-09 1997-01-21 E. I. Du Pont De Nemours And Company Antimicrobial particles of silver and barium sulfate or zinc oxide
US6564744B2 (en) * 1995-09-13 2003-05-20 Nissin Electric Co., Ltd. Plasma CVD method and apparatus
US6184280B1 (en) * 1995-10-23 2001-02-06 Mitsubishi Materials Corporation Electrically conductive polymer composition
US7510695B2 (en) * 1997-03-07 2009-03-31 William Marsh Rice University Method for forming a patterned array of fullerene nanotubes
US6863942B2 (en) * 1998-06-19 2005-03-08 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US20030068432A1 (en) * 1998-08-14 2003-04-10 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US20090052509A1 (en) * 1998-08-28 2009-02-26 Agazzi Oscar E Phy control module for a multi-pair gigabit transceiver
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US20050093458A1 (en) * 1999-05-14 2005-05-05 Steven E. Babayan Method of processing a substrate
US7354881B2 (en) * 1999-06-02 2008-04-08 The Board Of Regents Of The University Of Oklahoma Method and catalyst for producing single walled carbon nanotubes
US6994907B2 (en) * 1999-06-02 2006-02-07 The Board Of Regents Of The University Of Oklahoma Carbon nanotube product comprising single-walled carbon nanotubes
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US6673392B2 (en) * 2000-03-15 2004-01-06 Samsung Sdi Co., Ltd. Method of vertically aligning carbon nanotubes on substrates at low pressure using thermal chemical vapor deposition with DC bias
US20040026234A1 (en) * 2000-08-23 2004-02-12 Pierre Vanden Brande Method and device for continuous cold plasma deposition of metal coatings
US6986853B2 (en) * 2001-03-26 2006-01-17 Eikos, Inc. Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection
US20030024884A1 (en) * 2001-04-02 2003-02-06 Petrik Viktor Ivanovich Method for removing oil, petroleum products and/or chemical, pollutants from liquid and/or gas and/or surface
US7488455B2 (en) * 2001-04-04 2009-02-10 Commonwealth Scientific And Industrial Research Organisation Apparatus for the production of carbon nanotubes
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
US7504078B1 (en) * 2001-05-08 2009-03-17 University Of Kentucky Research Foundation Continuous production of aligned carbon nanotubes
US7157068B2 (en) * 2001-05-21 2007-01-02 The Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
US7880376B2 (en) * 2001-06-14 2011-02-01 Hyperion Catalysis International, Inc. Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks
US7329698B2 (en) * 2001-08-06 2008-02-12 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
US20030042147A1 (en) * 2001-08-29 2003-03-06 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
US20050090176A1 (en) * 2001-08-29 2005-04-28 Dean Kenneth A. Field emission display and methods of forming a field emission display
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US7011760B2 (en) * 2001-12-21 2006-03-14 Battelle Memorial Institute Carbon nanotube-containing structures, methods of making, and processes using same
US6986877B2 (en) * 2002-01-08 2006-01-17 Futaba Corporation Method for preparing nano-carbon fiber and nano-carbon fiber
US20070035226A1 (en) * 2002-02-11 2007-02-15 Rensselaer Polytechnic Institute Carbon nanotube hybrid structures
US20050026778A1 (en) * 2002-02-25 2005-02-03 Axtell Holly C. Multi-functional protective fiber and methods for use
US20040009115A1 (en) * 2002-06-13 2004-01-15 Wee Thye Shen Andrew Selective area growth of aligned carbon nanotubes on a modified catalytic surface
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US20040089237A1 (en) * 2002-07-17 2004-05-13 Pruett James Gary Continuous chemical vapor deposition process and process furnace
US20040037767A1 (en) * 2002-08-21 2004-02-26 First Nano, Inc. Method and apparatus of carbon nanotube fabrication
US20040079278A1 (en) * 2002-10-28 2004-04-29 Kamins Theodore I. Method of forming three-dimensional nanocrystal array
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US20060083674A1 (en) * 2003-02-14 2006-04-20 Shigeo Maruyama Method for forming catalyst metal particles for production of single-walled carbon nanotube
US7160532B2 (en) * 2003-03-19 2007-01-09 Tsinghua University Carbon nanotube array and method for forming same
US20050009694A1 (en) * 2003-06-30 2005-01-13 Watts Daniel J. Catalysts and methods for making same
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
US20090068461A1 (en) * 2003-10-16 2009-03-12 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
US20100099319A1 (en) * 2004-01-15 2010-04-22 Nanocomp Technologies, Inc. Systems and Methods for Synthesis of Extended Length Nanostructures
US20080014431A1 (en) * 2004-01-15 2008-01-17 Nanocomp Technologies, Inc. Systems and methods of synthesis of extended length nanostructures
US7338684B1 (en) * 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US7927701B2 (en) * 2004-02-12 2011-04-19 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US20080023396A1 (en) * 2004-05-13 2008-01-31 Hokkaido Technology Licensing Office Co., Ltd. Fine Carbon Dispesion
US20080017845A1 (en) * 2004-05-25 2008-01-24 The Trustees Of The University Of Pennsylvania Nanostructure Assemblies, Methods And Devices Thereof
US20060067871A1 (en) * 2004-05-26 2006-03-30 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US20080069760A1 (en) * 2004-06-04 2008-03-20 The Trustees Of Columbia University In The City Of New York Methods For Preparing Single -Walled Carbon Nanoturbes
US20070020167A1 (en) * 2004-06-22 2007-01-25 Han In-Taek Method of preparing catalyst for manufacturing carbon nanotubes
US20060002844A1 (en) * 2004-07-02 2006-01-05 Kabushiki Kaisha Toshiba Manufacturing methods of catalysts for carbon fiber composition and carbon material compound, manufacturing methods of carbon fiber and catalyst material for fuel cell, and catalyst material for fuel cell
US20080048364A1 (en) * 2004-07-22 2008-02-28 William Marsh Rice University Polymer / Carbon-Nanotube Interpenetrating Networks and Process for Making Same
US20060062944A1 (en) * 2004-09-20 2006-03-23 Gardner Slade H Ballistic fabrics with improved antiballistic properties
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
US7862795B2 (en) * 2004-11-16 2011-01-04 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
US20070009421A1 (en) * 2004-12-01 2007-01-11 William Marsh Rice University Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
US7494639B2 (en) * 2004-12-28 2009-02-24 William Marsh Rice University Purification of carbon nanotubes based on the chemistry of fenton's reagent
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
US20060239894A1 (en) * 2005-02-07 2006-10-26 Noritake Co., Ltd. Carbon nanotube cathode and method of manufacturing the same
US20090021136A1 (en) * 2005-05-31 2009-01-22 Coll Bernard F Emitting device having electron emitting nanostructures and method of operation
US20070092431A1 (en) * 2005-06-28 2007-04-26 Resasco Daniel E Methods for growing and harvesting carbon nanotubes
US20070053824A1 (en) * 2005-08-12 2007-03-08 Samsung Electronics Co., Ltd. Method of forming carbon nanotubes
US20070054105A1 (en) * 2005-09-05 2007-03-08 Hon Hai Precision Industry Co., Ltd. Thermal interface material and method for making same
US20070090489A1 (en) * 2005-10-25 2007-04-26 Hart Anastasios J Shape controlled growth of nanostructured films and objects
US8148276B2 (en) * 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
US7479052B2 (en) * 2005-12-13 2009-01-20 Samsung Sdi Co., Ltd. Method of growing carbon nanotubes and method of manufacturing field emission device using the same
US7700943B2 (en) * 2005-12-14 2010-04-20 Intel Corporation In-situ functionalization of carbon nanotubes
US20100000770A1 (en) * 2005-12-19 2010-01-07 University Of Virginia Patent Foundation Conducting Nanotubes or Nanostructures Based Composites, Method of Making Them and Applications
US20090099016A1 (en) * 2005-12-19 2009-04-16 Advanced Technology Materials, Inc. Production of carbon nanotubes
US20090017301A1 (en) * 2005-12-23 2009-01-15 Ssint-Gobain Technical Fabrics Europe Glass fibres and glass fibre structures provided with a coating containing nanoparticles
US20090092832A1 (en) * 2005-12-23 2009-04-09 Saint-Gobain Technical Fabrics Europe Glass fibres coated with size containing nanoparticles
US7687981B2 (en) * 2006-05-05 2010-03-30 Brother International Corporation Method for controlled density growth of carbon nanotubes
US20080075954A1 (en) * 2006-05-19 2008-03-27 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US20090068387A1 (en) * 2006-07-31 2009-03-12 Matthew Panzer Composite thermal interface material including aligned nanofiber with low melting temperature binder
US20100092841A1 (en) * 2006-08-30 2010-04-15 Umicore Ag & Co. Kg Core / shell-type catalyst particles comprising metal or ceramic core materials and methods for their preparation
US20120065300A1 (en) * 2007-01-03 2012-03-15 Applied Nanostructured Solutions, Llc. Cnt-infused fiber and method therefor
US20090072222A1 (en) * 2007-07-06 2009-03-19 Interuniversitair Microelektronica Centrum Vzw (Imec) Method for forming catalyst nanoparticles for growing elongated nanostructures
US20110014446A1 (en) * 2007-07-06 2011-01-20 Takeshi Saito Method for forming carbon nanotube film, film-forming apparatus, and carbon nanotube film
US20090047453A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
US20090047502A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced modularly constructed composite panel
US7666915B2 (en) * 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US7867468B1 (en) * 2008-02-28 2011-01-11 Carbon Solutions, Inc. Multiscale carbon nanotube-fiber reinforcements for composites
US20090325377A1 (en) * 2008-06-27 2009-12-31 Commissariat A L'energie Atomique Procedure for Obtaining Nanotube Layers of Carbon with Conductor or Semiconductor Substrate
US20100059243A1 (en) * 2008-09-09 2010-03-11 Jin-Hong Chang Anti-electromagnetic interference material arrangement
US20100074834A1 (en) * 2008-09-22 2010-03-25 Samsung Electronics Co., Ltd. Apparatus and method for surface-treating carbon fiber by resistive heating
US20100081769A1 (en) * 2008-09-26 2010-04-01 E.I.Du Pont De Nemours And Company Process for producing block copolymer pigment dispersants
US20110024694A1 (en) * 2009-02-17 2011-02-03 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
US20110024409A1 (en) * 2009-04-27 2011-02-03 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
US20120070667A1 (en) * 2010-09-22 2012-03-22 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Guofang Zhong et al., "Growth Kinetics of 0.5cm Vertically Aligned Single-Walled Carbon Nanotubes", Chem. B. (Letters), 111(8), pages 1907-1910 (February 6, 2007). *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255003B2 (en) 2004-12-22 2016-02-09 The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
WO2013016738A1 (en) * 2011-07-22 2013-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
US10283694B2 (en) 2013-10-07 2019-05-07 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
CN107337197A (en) * 2016-04-28 2017-11-10 香港理工大学深圳研究院 The method that CNT is scattered in cement matrix
US20210230386A1 (en) * 2018-06-11 2021-07-29 Nitta Corporation Composite material, prepreg, carbon fiber reinforced molded product, and method for producing composite material

Also Published As

Publication number Publication date
WO2011053458A1 (en) 2011-05-05
US8951632B2 (en) 2015-02-10
ZA201202972B (en) 2013-09-25
CN102640573A (en) 2012-08-15
CA2778607A1 (en) 2011-05-05
AU2010313614A1 (en) 2012-05-17
KR101770196B1 (en) 2017-08-22
EP2497342A1 (en) 2012-09-12
EP2497342A4 (en) 2013-08-28
JP5823403B2 (en) 2015-11-25
JP2013509503A (en) 2013-03-14
KR20120099710A (en) 2012-09-11
US20100178825A1 (en) 2010-07-15
US9574300B2 (en) 2017-02-21
BR112012011606A2 (en) 2016-06-28
US20160130744A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US9574300B2 (en) CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) CNS-infused carbon nanomaterials and process therefor
US8585934B2 (en) Composites comprising carbon nanotubes on fiber
US9163354B2 (en) CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) CNT-infused fiber as a self shielding wire for enhanced power transmission line
EP2401145B1 (en) Cnt-infused glass fiber materials and process therefor
JP2013509503A5 (en)
AU2013272202A1 (en) CNS-infused carbon nanomaterials and process therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED NANOSTRUCTURED SOLUTIONS, LLC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCKHEED MARTIN CORPORATION;REEL/FRAME:024349/0133

Effective date: 20100429

AS Assignment

Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, TUSHAR K.;GARDNER, SLADE H.;ALBERDING, MARK R.;AND OTHERS;SIGNING DATES FROM 20100406 TO 20100503;REEL/FRAME:024439/0454

AS Assignment

Owner name: APPLIED NANOSTRUCTURED SOLUTIONS, LLC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCKHEED MARTIN CORPORATION;REEL/FRAME:025913/0473

Effective date: 20110302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION