US20100139466A1 - Saw device and method for sawing a workpiece - Google Patents

Saw device and method for sawing a workpiece Download PDF

Info

Publication number
US20100139466A1
US20100139466A1 US12/653,552 US65355209A US2010139466A1 US 20100139466 A1 US20100139466 A1 US 20100139466A1 US 65355209 A US65355209 A US 65355209A US 2010139466 A1 US2010139466 A1 US 2010139466A1
Authority
US
United States
Prior art keywords
saw
workpiece
transport mechanism
saw unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/653,552
Other languages
English (en)
Inventor
Christian Behringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Behringer GmbH
Original Assignee
Behringer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behringer GmbH filed Critical Behringer GmbH
Assigned to BEHRINGER GMBH reassignment BEHRINGER GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEHRINGER, CHRISTIAN
Publication of US20100139466A1 publication Critical patent/US20100139466A1/en
Priority to US14/512,522 priority Critical patent/US9561554B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D55/00Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts
    • B23D55/04Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts of devices for feeding or clamping work
    • B23D55/043Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts of devices for feeding or clamping work for conveying work to the sawing machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D53/00Machines or devices for sawing with strap saw-blades which are effectively endless in use, e.g. for contour cutting
    • B23D53/005Machines or devices for sawing with strap saw-blades which are effectively endless in use, e.g. for contour cutting with a plurality of band saw blades or band saw blades having plural cutting zones, e.g. contiguous oppositely-moving saw blade portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D55/00Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts
    • B23D55/08Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts of devices for guiding or feeding strap saw blades
    • B23D55/082Devices for guiding strap saw blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0448With subsequent handling [i.e., of product]
    • Y10T83/0467By separating products from each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0586Effecting diverse or sequential cuts in same cutting step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2074Including means to divert one portion of product from another
    • Y10T83/2087Diverging product movers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2092Means to move, guide, or permit free fall or flight of product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2092Means to move, guide, or permit free fall or flight of product
    • Y10T83/2209Guide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed
    • Y10T83/4539Means to change tool position, or length or datum position of work- or tool-feed increment
    • Y10T83/4559With means to vary magnitude or base position of tool stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed
    • Y10T83/4577Work fed successively to plural tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/707By endless band or chain knife
    • Y10T83/7158Including plural cutting zones
    • Y10T83/7164With adjustment of separation between zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/707By endless band or chain knife
    • Y10T83/7158Including plural cutting zones
    • Y10T83/7189Comprising plural bands

Definitions

  • the present disclosure relates to the subject matter disclosed in international application number PCT/EP2008/057807 of Jun. 19, 2008 and German application number 10 2007 029 292.0 of Jun. 19, 2007, which are incorporated herein by reference in their entirety and for all purposes.
  • the invention relates to a saw device with a feed axis for a workpiece to be sawed, with a first saw unit to saw the workpiece in a first sawing plane extending transversely to the feed axis and with a second saw unit to saw the workpiece in a second sawing plane extending transversely to the feed axis, with a central device region arranged between the sawing planes, with a front device region arranged in front of the first sawing plane, viewed in a feed direction, and with a rear device region arranged behind the second sawing plane, viewed in the feed direction.
  • a saw for sawing a workpiece is known from US 2005/0155475 A1, the workpiece being conveyed on a belt.
  • This saw comprises a first saw head and a second saw head, which are in each case assembled on a sawing bench.
  • a horizontal band saw machine is known from EP 1 277 536 A2, which has a saw head which ascends and descends vertically.
  • the movement of the saw head is continued in a downward stroke until a band saw blade is received in a lower receiver, the metal rod moving successively in a forward direction, pushing separated workpieces and then moving in the opposite direction and in the process providing a free space between the metal rod and the workpieces for an upward return stroke.
  • the present invention is based on the object of improving a saw device of the type mentioned at the outset in such a way that the cutting efficiency can be further increased.
  • a saw device of the type mentioned at the outset in that the saw device comprises at least two transport mechanisms arranged in different device regions for transporting different workpiece portions along the feed axis.
  • the saw device according to the invention allows simple transporting of different workpiece portions of the workpiece. These workpiece portions are produced by sawing the workpiece in the two sawing planes.
  • At least two workpiece portions can be transported independently of one another along the feed axis with the aid of the transport mechanisms. This allows the cut face of a workpiece portion produced by sawing the workpiece to be removed from a sawing plane in order to space it apart from a sawing tool of a saw unit acting in this sawing plane. As a result, the sawing tool is freed, so that after completion of a sawing process, it can be moved without wear-intensive contact with adjacent cut faces of the workpiece portions inside the sawing plane and can return to a rest position. As a result, the operating time of the sawing tool of a saw unit can be extended and the cutting efficiency of the saw device can be increased.
  • the saw device according to the invention is particularly suitable for producing very large-area sawing cuts.
  • the first sawing plane and/or the second sawing plane are advantageously perpendicular or substantially perpendicular to the feed axis. As a result, the sawing cut faces can be minimized.
  • the feed axis extends in a horizontal direction in relation to the direction of gravity. This facilitates transport of individual workpiece portions independently of one another.
  • first sawing plane and/or the second sawing plane extends or extend in a vertical direction in relation to the direction of gravity. This allows simple guidance of the sawing tools acting in the sawing planes.
  • the spacing between the first sawing plane and the second sawing plane can be adjusted. This allows a length of a workpiece portion to be produced by sawing the workpiece to be adjusted.
  • the first saw unit can be moved in a direction parallel to the feed axis. This allows positioning of the first sawing plane relative to the second sawing plane.
  • the movability of the first saw unit has the further advantage that a particularly simple freeing of a sawing tool from cut faces of the workpiece portions produced by sawing the workpiece is possible. This will be explained in more detail below, with reference to a method according to the invention for sawing a workpiece.
  • the saw device comprises a first saw unit drive for a movement of the first saw unit in a direction parallel to the feed axis. This allows the movement of the first saw unit to be automated.
  • the saw device comprises a first guide mechanism for guiding a movement of the first saw unit. This facilitates an exact positioning of the first saw unit.
  • the first saw unit can be moved in a direction parallel to the feed axis and the second saw unit is fixed relative to the feed axis. This allows the second sawing plane to be used as a reference plane for the spacing of the sawing planes with respect to one another.
  • the second saw unit can be moved in a direction parallel to the feed axis. A spacing of the second sawing plane with respect to the first sawing plane can thus be adjusted. Moreover, the freeing of a sawing tool, which is in contact with mutually adjacent workpiece portions, can be facilitated, as described below with reference to the description of a method according to the invention for sawing a workpiece.
  • the first saw unit In a saw device with a movable second saw unit, it is possible for the first saw unit to also be movable in the direction parallel to the feed axis or for the first saw unit to be fixed.
  • the saw device advantageously comprises a second saw unit drive for a movement of the second saw unit in a direction parallel to the feed axis. A movement of the second saw unit can thus be automated.
  • the saw device preferably comprises a second guide mechanism to guide a movement of the second saw unit. This facilitates the exact positioning of the second saw unit.
  • the saw device comprises a first transport mechanism arranged in the front device region. This allows the transport of a workpiece provided for sawing and/or the transport of a first workpiece portion arranged in the front device region.
  • the first transport mechanism can advantageously be moved in a direction parallel to the feed axis.
  • the workpiece or the first workpiece portion can thus be moved in that the transport mechanism grips the workpiece or the first workpiece portion and then a unit formed from the first transport mechanism and the workpiece or a unit formed from the first transport mechanism and the first workpiece portion is moved in the direction parallel to the feed axis.
  • reliable and rapid transport of the workpiece or the first workpiece portion is made possible.
  • the saw device has a first transport mechanism drive for a movement of the first transport mechanism in a direction parallel to the feed axis.
  • the saw device comprises a first transport mechanism guide for guiding a movement of the first transport mechanism. This facilitates the exact positioning of the workpiece or the first workpiece portion.
  • the first transport mechanism and the first saw unit viewed along the feed axis, can be arranged in a relative position, in which the first transport mechanism and the first saw unit overlap, at least in portions.
  • the first transport mechanism can thus be brought into the direct vicinity of the first sawing plane, so a very exact sawing cut can be produced in the first sawing plane.
  • an overlapping of the first transport mechanism and the first saw unit, at least in portions, allows a space-saving arrangement of these device parts. This reduces the space requirement of the saw device not only during operation of the saw device, but also when the saw device is at a standstill. The space saved in this manner is then available, for example, for adjacent machine tools.
  • the first saw unit delimits a free space which extends transversely to the feed axis and in which at least one portion of the first transport mechanism can be disposed. This allows the first transport mechanism to be moved at least in portions into the free space delimited by the first saw unit, so a space-saving arrangement can be provided.
  • the saw device comprises a second transport mechanism arranged in the central device region. This allows simple transport of a second workpiece portion arranged in the central device region.
  • the second transport mechanism can preferably be moved in a direction parallel to the feed axis. This allows a second workpiece portion arranged in the central device region to be gripped and the second transport mechanism to be moved together with the gripped second workpiece portion.
  • the saw device comprises a second transport mechanism drive.
  • the saw device comprises a second transport mechanism guide to guide a movement of the second transport mechanism. This facilitates the exact positioning of the second transport mechanism and therefore a second workpiece portion.
  • the second transport mechanism and the first saw unit and/or if the second transport mechanism and the second saw unit, as viewed along the feed axis, can be arranged in a relative position in which the second transport mechanism and the first saw unit and/or in which the second transport mechanism and the second saw unit overlap at least in portions.
  • This allows a very compact arrangement of the saw units and the second transport mechanism, in particular if the saw units are arranged spatially close to one another. This spatial closeness, during operation of the saw device, allows very short workpiece portions to be produced and, during a standstill of the saw device, a particularly compact overall structure.
  • the first saw unit delimits a free space extending transversely to the feed axis and/or the second saw unit delimits a free space extending transversely to the feed axis, in which space or spaces at least one portion of the second transport mechanism can be disposed.
  • the first saw unit and the second transport mechanism and/or the second saw unit and the second transport mechanism can be arranged in such a way that the saw device only takes up a small amount of installation space.
  • the saw device comprises a third transport mechanism arranged in the rear device region. This allows a third workpiece portion arranged in the rear device region to be transported.
  • the third transport mechanism can be moved in a direction parallel to the feed axis.
  • the cut face of a third workpiece portion can be moved out of the second sawing plane, so that a sawing tool of the second saw unit can be freed.
  • the saw device comprises a third transport mechanism drive.
  • the saw device comprises a third transport mechanism guide to guide a movement of the third transport mechanism, so the third transport mechanism can be positioned precisely.
  • the third transport mechanism and the second saw unit viewed along the feed axis, can be arranged in a relative position, in which the third transport mechanism and the second saw unit overlap at least in portions. This allows a space-saving arrangement of the third transport mechanism and the second saw unit.
  • the second saw unit delimits a free space extending transversely to the feed axis, in which at least one portion of the third transport mechanism can be disposed. This also allows a compact structure of the saw device.
  • the saw device comprises a guide mechanism to guide a movement of the first saw unit and to guide a movement of the second saw unit.
  • a guide mechanism of this type allows the guidance of the two saw units, so a precise positioning of the saw units relative to one another is facilitated.
  • the saw device comprises a transport mechanism guide to guide a movement of the at least two transport mechanisms. This facilitates an exact positioning of at least two transport mechanisms relative to one another. With the aid of a transport mechanism guide to guide a movement of a plurality of transport mechanisms, the number of components of the saw device can moreover be reduced.
  • this saw device comprises a guide mechanism to guide a movement of at least one saw unit and a transport mechanism guide to guide a movement of at least one transport mechanism, and the guide mechanism and the transport mechanism guide are arranged offset with respect to one another in such a way that they are at different spacings from the feed axis.
  • a movement space required for a saw unit and for a transport mechanism can thereby be increased, so the saw device is suitable to produce very short and also comparatively long workpiece portions.
  • the offset of the guide mechanism and the transport mechanism guide allows at least one saw unit and at least one transport mechanism to be able to be arranged such that they together only take up a small amount of installation space.
  • the first saw unit and/or the second saw unit is or are advantageously configured to saw metallic materials.
  • the first saw unit and/or the second saw unit is or are a band saw unit.
  • a band saw unit has the advantage that the cutting channel produced by a saw band in a workpiece is comparatively narrow. As a result the volume of removed material and therefore the material waste caused by the sawing of the workpiece is reduced. Moreover, the saw band can be driven at comparatively low drive powers.
  • the band saw unit advantageously comprises a saw frame. This allows a very rigid and robust structure of a saw unit.
  • the saw frame can advantageously be moved in a vertical direction in relation to the direction of gravity. This allows a sawing plane to be specified with a vertical course in relation to the direction of gravity.
  • the band saw unit comprises a saw band guide mechanism. This allows exact guidance of the saw band of the band saw unit.
  • the saw band guide mechanism of a saw unit extends in a plane, which extends at an angle to the sawing plane associated with this saw unit. This allows a compact structure of the saw unit and careful guidance of a saw band.
  • a saw band guide mechanism of the first saw unit and a saw band guide mechanism of the second saw unit are arranged on sides of the saw units remote from one another. This allows the spacing between the sawing planes to be reduced to such an extent that very short workpiece portions can also be produced.
  • the saw device comprises a machine frame, on which the first saw unit and/or the second saw unit is or are arranged. This increases the stability of the saw device.
  • the saw device comprises a control mechanism to coordinate a movement of at least one saw unit and at least one transport mechanism.
  • the control mechanism allows efficient and disturbance-free operation of the saw device.
  • the invention furthermore relates to a method for sawing a workpiece.
  • the invention is based on the further object of providing a method for sawing a workpiece, with which a high cutting efficiency can be produced.
  • a workpiece is positioned relative to a saw device, in that it is moved in a feed direction along a feed axis of the saw device, so that the workpiece passes through a first sawing plane extending transversely to the feed axis and a second sawing plane extending transversely to the feed axis, in that the workpiece is divided into three workpiece portions, in that a first saw unit associated with the first sawing plane and in that a second saw unit associated with the second sawing plane are in each case transferred from a rest position, in which the saw units are disengaged from the workpiece, into a working position, in which the saw units are engaged with the workpiece, in that at least two of the three workpiece portions are moved independently of one another along the feed axis, in that the first saw unit and/or the second saw unit is moved in the direction parallel to the feed axis, before at least one of the saw units is transferred from its working position into its rest position.
  • the movement of at least two of the three workpiece portions allows the cut faces of these workpiece portions to be disengaged from a sawing tool.
  • the sawing tool of a saw unit is free when this saw unit is moved from its working position into its rest position.
  • a friction-intensive contact of the sawing tool with a cut face of a workpiece portion produced with the aid of this sawing tool can be avoided. This increases the service life of the sawing tool and the cutting efficiency of the saw device.
  • the workpiece is moved by twice a spacing between the first sawing plane and the second sawing plane along the feed axis. This allows the production of workpiece portions of identical length to be introduced with only one positioning process. It is also possible for the workpiece to be moved along the feed axis by an amount, which differs from twice the spacing between the first sawing plane and the second sawing plane. As a result, the production of workpiece portions of different lengths can be introduced.
  • a first workpiece portion arranged in front of the first sawing plane, viewed in the feed direction, is moved in the direction opposing the feed direction by a first return stroke amount.
  • a cut face of the first workpiece portion can be spaced apart from a sawing tool of the first saw unit.
  • first saw unit is moved in the direction opposing the feed direction by a second return stroke amount, which is smaller than the first return stroke amount. This allows the sawing tool of the second saw unit to also be disengaged from a cut face of a second workpiece portion facing the first workpiece portion. As the second return stroke amount is smaller than the first return stroke amount mentioned above, the sawing tool of the first saw unit can be disengaged from the first workpiece portion and also disengaged from the second workpiece portion.
  • a second workpiece portion arranged between the sawing planes is moved in the direction opposing the feed direction by a third return stroke amount which is smaller than the second return stroke amount.
  • a third workpiece portion arranged behind the second sawing plane, viewed in the feed direction can be moved in the feed direction by a forward stroke amount.
  • a cut face of a third workpiece portion can also be-spaced apart from a sawing tool of the second saw unit.
  • the methods described above are particularly suitable for a saw device, in which the first saw unit can be moved in a direction parallel to the feed axis and in which the second saw unit is fixed.
  • the above-described methods can be carried out with a dynamic reversal for a saw device with a fixed first saw unit and a movable second saw unit.
  • This dynamic reversal is the subject of sub-claims 49 to 52 , with which the above-described advantages of the methods described above can also be achieved.
  • the workpiece portions are moved in the feed direction in that a first workpiece portion arranged in front of the first sawing plane, viewed in the feed direction, is moved in the feed direction and directly drives a second workpiece portion arranged between the sawing planes and drives a third workpiece portion arranged behind the second sawing plane, viewed in the feed direction, by means of the second workpiece portion.
  • the first workpiece portion produced during the first cycle of a method described above forms a workpiece to be sawn for a following cycle of a method described above, which can be divided into three workpiece portions.
  • the invention furthermore relates to the use of a device described above for carrying out a method described above.
  • FIG. 1 shows a perspective view of an embodiment of a saw device according to the invention
  • FIG. 2 shows a partially sectional perspective view of the saw device from FIG. 1 ;
  • FIG. 3 shows a perspective view of the saw device from FIG. 1 from a rear perspective
  • FIG. 4 shows a partially sectional perspective view of the saw device from FIG. 1 from a rear perspective
  • FIGS. 5 a to 5 i show schematic side views of the saw device from FIG. 1 in various phases of an embodiment of a method according to the invention for sawing a workpiece.
  • FIGS. 1 to 4 An embodiment of a saw device designated 10 is shown in FIGS. 1 to 4 .
  • the saw device 10 has a front end 12 and a rear end 14 . Extending between the front end 12 and the rear end 14 is a feed axis 16 , along which a workpiece not shown in FIGS. 1 to 4 can be moved in a feed direction 18 from the front end 12 to the rear end 14 .
  • the saw device 10 has a machine frame 20 , with which the saw device 10 can be placed on a standing surface (without reference numerals).
  • the machine frame 20 has a front frame part 22 and a rear frame part 24 .
  • the feed axis 16 extends in a horizontal direction in relation to the direction of gravity.
  • the feed axis 16 is defined by a transport path 26 , which extends between the front end 12 and the rear end 14 of the saw device 10 .
  • the transport path 26 comprises a large number of transport rollers 28 , the axes of which (without reference numerals) extend perpendicularly to the feed axis 16 and parallel to one another.
  • a first transport mechanism 30 Arranged on the front frame part 20 of the machine frame 20 is a first transport mechanism 30 , which is designated as a whole by 30 , with which a workpiece or a workpiece portion can be gripped and moved along the feed axis 16 .
  • a saw unit Arranged on the front frame part 22 of the machine frame 20 is a saw unit designated as a whole by 32 , which is configured as a band saw unit.
  • a second transport mechanism 34 (see in particular FIG. 2 ) for transporting a workpiece or a workpiece portion is arranged on the rear frame part 24 of the machine frame 20 .
  • a saw unit designated as a whole by 36 and configured as a band saw unit is arranged on the rear frame part 24 .
  • a third transport mechanism 38 (see FIGS. 3 and 4 ) for transporting a workpiece or a workpiece portion along the feed axis 16 is arranged on the rear frame part 24 of the machine frame 20 .
  • the first saw unit 32 is movably arranged on the front frame part 22 ; the second saw unit 36 is rigidly connected to the rear frame part 24 .
  • the first guide unit comprises a first rail pair 42 and a second rail pair 44 .
  • the rail pairs 42 and 44 extend parallel to the feed axis 16 and, in relation to a plane extending in the vertical direction along the feed axis 16 , are arranged on either side of this plane.
  • the first saw unit 32 has a first slide 46 , which can be displaced along the rail pair 42 . Furthermore, the saw unit 32 has a second slide 48 (cf. FIG. 4 ), which can be displaced along the rail pair 44 .
  • the first saw unit 32 has a saw unit drive 50 arranged in the slide 46 and/or in the slide 48 .
  • the slide 46 and the slide 48 are connected to one another by a reinforcement frame 52 .
  • the reinforcement frame 52 has a first side part 56 connected to the slide 46 and a second side part 56 connected to the slide 48 .
  • the side parts 54 and 56 extend in the vertical direction and are connected at their upper end with the aid of an upper frame part 58 .
  • the first saw unit 32 has two cylindrical pillars 60 and 62 extending in the vertical direction, which are connected at their lower end to one of the slides 46 , 48 .
  • the pillars 60 and 62 are connected at their upper end with the aid of an upper beam 64 .
  • the first saw unit 32 comprises a saw frame 66 , which is displaceably guided in the vertical direction on the pillars 60 and 62 .
  • the saw frame 66 can be driven in the vertical direction with the aid of a saw frame drive 68 arranged on the upper beam 64 of the first saw unit 32 .
  • the saw frame 66 is rigidly connected to a saw band guide mechanism designated as a whole by 70 . It extends in a plane designated 72 in FIG. 4 .
  • a peripherally closed saw band 74 is guided with the aid of the saw band guide mechanism 70 .
  • Said saw band extends with its upper strand on the side of the pillars 60 and 62 facing the front end 12 of the saw device 10 .
  • the saw band 74 with its lower strand, runs on the side of the columns 60 and 62 facing the rear end 14 of the saw device 10 .
  • the lower strand of the saw band 74 extends in the region of the transport path 26 within a first sawing plane 76 .
  • the first sawing plane 76 is arranged transversely and in particular perpendicularly to the feed axis 16 .
  • the first saw unit 32 furthermore comprises a saw band drive 78 , which is arranged on the side of the first saw unit 32 facing the front end 12 of the saw device.
  • the structure of the second saw unit 36 is described below with reference to FIGS. 2 and 3 .
  • the second saw unit 36 has two cylindrical pillars 80 and 82 extending in the vertical direction.
  • the pillars 80 and 82 are rigidly connected to the rear frame part 24 of the machine frame 20 .
  • the pillars 80 and 82 are connected at their upper end with the aid of an upper beam 84 .
  • the pillars 80 and 82 are used for the displaceable mounting of a saw frame 86 , which can be moved along the pillars 80 and 82 in the vertical direction.
  • a saw frame drive 88 which is arranged on the upper beam 84 , is provided for a drive of the movement of the saw frame 86 .
  • the second saw unit 36 has a saw band guide mechanism 90 , which extends in a plane 92 (see FIG. 2 ).
  • the saw band guide mechanism 90 is used to guide a saw band 94 , the upper strand of which is guided on the side of the pillars 80 , 82 facing the rear end 14 of the saw device 10 .
  • the lower strand of the saw band 94 runs on the side of the pillars 80 , 82 facing the front end 12 of the saw device 10 .
  • the lower strand of the saw band 94 runs in the region of the transport path 26 of the saw device 10 within a second sawing plane 96 , which extends in the vertical direction.
  • the first sawing plane 76 of the first saw unit 32 and the second sawing plane 96 of the second saw unit 36 extend parallel to one another.
  • the planes 76 and 72 together enclose an acute angle of 30° for example.
  • the planes 92 and 96 together enclose an acute angle of 30°, for example.
  • As the saw band guide mechanisms 70 and 90 are arranged on mutually remote sides of the first saw unit 32 and the second saw unit 36 it is possible to arrange the first sawing plane 76 and the second sawing plane 96 with a relatively small spacing with respect to one another.
  • a rail pair 102 which extends parallel to the feed axis 16 , is arranged on the upper side of the front frame part 22 of the machine frame 20 . This rail pair is shown in FIG. 1 . Furthermore, arranged on the upper side of the front frame part 22 is a rail pair 104 , which is shown in FIG. 2 and also extends parallel to the feed axis 16 . The rail pairs 102 and 104 together form a first transport mechanism guide 106 . The rail pairs 102 and 104 are arranged symmetrically to the feed axis 16 and are arranged between the rail pairs 42 and 44 of the first guide mechanism 40 of the first saw unit 32 .
  • the first transport mechanism 30 has a first wall part 108 , which is displaceably guided along the rail pair 102 .
  • the first transport mechanism 30 has a second wall part 102 , which is displaceably guided along the rail pair 104 .
  • the wall parts 108 and 110 are rigidly connected to one another by a cover part 112 and by a reinforcement element 114 .
  • a gripping element 116 Arranged in each of the wall parts 108 , 110 of the first transport mechanism 30 is a gripping element 116 , which has gripping faces 118 facing the transport path 26 , arranged in the vertical direction and parallel to one another.
  • the gripping elements 116 are movable relative to the wall parts 108 and 110 , so they can be moved in the direction of the transport path 26 to grip a workpiece or a workpiece portion.
  • the slides 46 and 48 together with the reinforcement frame 52 of the first saw unit 32 delimit a free space designated 122 in FIG. 1 .
  • This free space 122 is dimensioned such that the first transport mechanism 30 with its wall parts 108 and 110 and with its cover part 112 and its reinforcement element 114 can be introduced into this free space 122 .
  • the first transport mechanism 30 and the first saw unit 32 can be moved relative to one another along the feed axis 16 .
  • the mounting and the structure of the second transport mechanism 34 are described below with reference to FIG. 2 .
  • the second transport mechanism 34 is movably mounted in a direction parallel to the feed axis 16 on a support element 124 , which is fastened on the rear frame part 24 .
  • the second transport mechanism 34 has a second transport mechanism guide (without reference numerals) and a second transport mechanism drive (without reference numerals).
  • the second transport mechanism 34 has side parts 126 and 128 arranged on mutually opposing sides of the feed axis 16 , which extend in the vertical direction.
  • the wall parts 126 and 128 are connected at their upper ends to a frame part 130 , which extends in the horizontal direction.
  • Each wall part 126 and 128 has a gripping element 132 .
  • Each of the gripping elements 132 has a gripping face 134 facing the transport path 26 and substantially extending in the vertical direction.
  • the gripping elements 132 may be displaced in the horizontal direction in the direction of the feed axis 16 to a grip a workpiece or a workpiece portion.
  • the structure of the third transport mechanism 38 will be described below with reference to FIGS. 3 and 4 .
  • the third transport mechanism 38 is guided by a third transport mechanism guide, not shown in the drawings, so the third transport mechanism 38 is movable in the direction parallel to the feed axis 16 .
  • the third transport mechanism comprises a transport mechanism drive not shown in the drawings for a drive of the transport mechanism 38 along the feed axis 16 .
  • the third transport mechanism 38 has wall parts 136 and 138 which are arranged on mutually opposing sides of the feed axis 16 , extend in the vertical direction and are connected at their upper ends with the aid of a cover part 140 .
  • a gripping element 144 mounted in each case on the wall parts 136 and 138 is a gripping element 144 which has gripping faces 146 extending in the vertical direction.
  • the gripping elements 144 can be moved in the direction of the feed axis 16 to grip a workpiece arranged in the region of the transport path 26 or a workpiece portion arranged there.
  • the geometry of the saw frame 86 and the saw band guide mechanism 90 of the second saw unit 36 is selected such that a free space 148 surrounding the transport path 26 is produced.
  • the third transport mechanism 38 can be moved into this free space so the saw frame 86 and the saw band guide mechanism 90 surround the third transport mechanism 38 (compare also FIG. 4 ).
  • the feed axis 16 of the saw device 10 is shown in FIGS. 5 a to 5 i .
  • the sawing planes 76 and 96 extend transversely and in particular perpendicularly to the feed axis 16 .
  • the first sawing plane 76 and the second sawing plane 96 have a spacing 150 with respect to one another (compare FIG. 5 a ).
  • the sawing planes 76 and 96 between them delimit a central device region 152 .
  • the sawing plane 76 delimits a front device region 154 which is shown on the left-hand side in FIG. 5 a and is arranged in front of the first sawing plane 76 , viewed in the feed direction 18 .
  • the second sawing plane 96 delimits a rear device region 156 , which is arranged behind the second sawing plane 96 , viewed in the feed direction 18 .
  • FIG. 5 a shows a metallic, solid cylindrical workpiece 160 in a side view.
  • the latter is arranged in the front device region 154 and extends along the feed axis 16 .
  • the workpiece 160 has a front workpiece end 162 , which is arranged at the level of the first sawing plane 76 .
  • the saw belt 74 of the first saw unit 32 is shown in FIG. 5 a in a rest position, in which the saw band 74 is disengaged from the workpiece 160 .
  • the saw band 94 of the second saw unit 36 is also shown in its rest position in FIG. 5 a.
  • the workpiece is gripped with the aid of the transport mechanism 30 , in that the gripping element 116 of the first transport mechanism 30 is moved in the direction of the workpiece 160 until the gripping faces 118 are in a non-positive engagement with the workpiece 160 .
  • the first transport mechanism 30 can then be moved with the aid of the first transport mechanism drive 120 in the feed direction 18 along the feed axis 16 .
  • the first transport mechanism 30 is moved here by a movement path parallel to the feed axis 16 , the length of which is twice as long as the spacing 150 between the sawing planes 76 and 96 .
  • the workpiece 160 is thus moved from the position shown in FIG. 5 a into the position shown in FIG. 5 b , in which the workpiece 160 passes through the sawing planes 76 and 96 .
  • the saw bands 74 and 94 are moved from their rest positions shown in FIG. 5 b into their working positions shown in FIG. 5 c , in which they are engaged with the workpiece 160 .
  • the saw frame 66 of the first saw unit 32 and the saw frame 86 of the second saw unit 36 are moved downwardly in the vertical direction in the direction of the transport path 26 with the aid of the saw frame drives 68 and 88 .
  • the saw bands 74 and 94 are driven in a circulating manner, so that they divide the workpiece 160 into three workpiece portions, namely into a first workpiece portion 164 , which is arranged in the front device region 154 , into a second workpiece region 166 , which is arranged in the central device region 152 , and into a third workpiece portion 168 which is arranged in the rear device region 156 .
  • FIG. 5 d A method step following the division of the workpiece 160 into the workpiece portions 164 to 168 is shown in FIG. 5 d .
  • the first workpiece portion 164 is moved in the direction opposing the feed direction 18 by a first return stroke amount 170 , in that the first transport mechanism 30 is moved counter to the feed direction 18 by a corresponding amount.
  • the first return stroke amount 170 may be 30 mm, for example.
  • the first saw unit 32 is moved in the direction opposing the feed direction 18 with the aid of the saw unit drive 50 by a second return stroke amount 172 , for example by 20 mm.
  • the second return stroke amount 172 is smaller than the first return stroke amount 170 .
  • the second workpiece portion 166 is moved in the direction opposing the feed direction 18 along the feed axis 16 , in that the second transport mechanism 34 grips the workpiece portion 166 with the aid of the gripping elements 132 and in this state is moved by a third return stroke amount 174 in the direction opposing the feed direction 18 .
  • the third return stroke amount 174 may, for example, be 10 mm.
  • the third return stroke amount 174 is smaller than the second return stroke amount 172 .
  • the third workpiece portion 168 is moved in the feed direction 18 by a forward stroke amount 176 .
  • the third transport mechanism 38 which grips the third workpiece portion 168 , is displaced in the feed direction 18 in the direction parallel to the feed axis 16 .
  • the forward stroke amount 176 may be 10 mm, for example.
  • the method steps described with reference to FIGS. 5 d to 5 g mean that the saw bands 74 and 94 , which are in their working positions in these phases of the method, are freed, so that the saw bands 74 , 94 are no longer in contact with the cut faces of the workpiece portions 164 to 168 produced by the division of the workpiece 160 .
  • This allows the saw bands 74 and 94 to be moved from their working positions shown in FIG. 5 g into their rest positions shown in FIG. 5 h by lifting the saw frames 66 and 86 , without thereby touching the cut faces of the workpiece portions 164 to 168 .
  • the workpiece portions 166 and 168 can be pushed out of the saw device 10 , in that the first workpiece portion 164 is moved with the aid of the first transport mechanism 30 in the feed direction 18 along the feed axis 16 .
  • the cut faces produced by the division of the workpiece 160 are thereby pressed onto one another, so it is possible with the aid of only one transport mechanism 30 to transport all the workpiece portions 164 , 166 , 168 out of the saw device 10 .
  • the saw device 10 is distinguished by a high cutting efficiency, in which the first saw until 32 and the second saw unit 36 can simultaneously saw a workpiece 160 .
  • the transport mechanisms 30 , 34 and 38 it is possible to handle the workpiece portions 164 to 168 produced by dividing a workpiece 160 in such a way that the saw bands 74 and 94 can be carefully brought from their working positions back into their rest position. As a result, the operating time of the saw device 10 is increased.
  • the second transport mechanism 34 is distinguished by a comparatively flat structure, so the sawing planes 76 and 96 can be arranged close to one another if a very short second workpiece portion 166 is to be produced. Owing to the arrangement of the saw wall guide mechanism 70 and 90 on mutually remote sides of the saw units 32 and 36 , it is also possible to bring the sawing planes 76 and 96 to a small spacing apart from one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sawing (AREA)
US12/653,552 2007-06-19 2009-12-14 Saw device and method for sawing a workpiece Abandoned US20100139466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/512,522 US9561554B2 (en) 2007-06-19 2014-10-13 Saw device and method for sawing a workpiece

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200710029292 DE102007029292B4 (de) 2007-06-19 2007-06-19 Sägevorrichtung und Verfahren zur sägenden Bearbeitung eines Werkstücks
DE102007029292 2007-06-19
PCT/EP2008/057807 WO2008155392A1 (de) 2007-06-19 2008-06-19 Sägevorrichtung und verfahren zur sägenden bearbeitung eines werkstücks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057807 Continuation WO2008155392A1 (de) 2007-06-19 2008-06-19 Sägevorrichtung und verfahren zur sägenden bearbeitung eines werkstücks

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/512,522 Continuation US9561554B2 (en) 2007-06-19 2014-10-13 Saw device and method for sawing a workpiece

Publications (1)

Publication Number Publication Date
US20100139466A1 true US20100139466A1 (en) 2010-06-10

Family

ID=39737612

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/653,552 Abandoned US20100139466A1 (en) 2007-06-19 2009-12-14 Saw device and method for sawing a workpiece
US14/512,522 Active US9561554B2 (en) 2007-06-19 2014-10-13 Saw device and method for sawing a workpiece

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/512,522 Active US9561554B2 (en) 2007-06-19 2014-10-13 Saw device and method for sawing a workpiece

Country Status (11)

Country Link
US (2) US20100139466A1 (zh)
EP (1) EP2158055B1 (zh)
KR (1) KR101557015B1 (zh)
CN (1) CN101778687B (zh)
BR (1) BRPI0813160A2 (zh)
DE (1) DE102007029292B4 (zh)
ES (1) ES2677322T3 (zh)
PL (1) PL2158055T3 (zh)
SI (1) SI2158055T1 (zh)
TR (1) TR201809623T4 (zh)
WO (1) WO2008155392A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447615B (zh) * 2013-08-28 2015-09-30 襄阳远锐资源工程技术有限公司 一种切割废旧铅酸蓄电池的带锯床
US9975189B2 (en) * 2014-02-06 2018-05-22 Thaisakol Group Co., Ltd. Shaft cutting machine that is able to cut short size shaft
US9999987B2 (en) * 2014-11-12 2018-06-19 Griffin Lumber Company System and method for bucking a stem
JP2018504889A (ja) * 2014-11-28 2018-02-22 マレル エー/エス 食品を切断してより小さい食品にするためのナイフを備えるコンベヤシステム
CN108555391B (zh) * 2018-06-05 2024-07-09 浙江锯力煌工业科技股份有限公司 智能化倍尺锯切加工流水线
DE202018103299U1 (de) * 2018-06-12 2019-09-16 Keuro Besitz Gmbh & Co. Edv-Dienstleistungs Kg Sägemaschine für Gehrungsschnitte
CN109434974B (zh) * 2018-12-18 2024-05-24 蓬莱正泰木业有限公司 一种板材加工用生产线
CN113927091A (zh) 2020-06-29 2022-01-14 蒂森克虏伯罗特艾德有限公司 用于生产圆块的装置
CN113182608B (zh) * 2021-03-31 2023-12-15 杭州晨龙智能科技有限公司 多联排带锯床以及用于多联排带锯床的切割方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898669A (en) * 1957-11-14 1959-08-11 Continental Machines Machine for cutting off bar stock
US3871258A (en) * 1973-02-07 1975-03-18 Hurn Brothers Eng Ltd Wood working apparatus
US4805500A (en) * 1985-06-29 1989-02-21 Amada Company, Limited Horizontal band saw machine
US5086678A (en) * 1988-11-22 1992-02-11 Amada Company, Limited Workpiece conveying method and device for a cutting machine
US5241887A (en) * 1992-05-01 1993-09-07 Natech, Reich, Summer, Gmbh & Co. Kg Cutting device for cutting food products, in particular sausage, ham, bacon, meat, cheese and such
US6158318A (en) * 1996-09-23 2000-12-12 Niemelae; Ahti Sawing machine
US20050155475A1 (en) * 2003-05-12 2005-07-21 Jean-Francois Desrosiers Automated double saw
US20070214924A1 (en) * 2006-03-16 2007-09-20 Jourdan James K Material puller assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE390502B (sv) * 1975-03-21 1976-12-27 A & B Constructors Ab Anleggning for kapningŸav sagvirke
US4468993A (en) * 1982-06-11 1984-09-04 International Paper Company Small log bucking system
DE3621357C1 (de) * 1986-06-26 1987-08-13 Linck Masch Gatterlinck Kappsaege zum Ablaengen von Brettern
US4909112A (en) * 1987-08-17 1990-03-20 Kohler General Corp. Multiple head gang saw with simplified, accurate displacement transducer
US5301578A (en) * 1992-04-14 1994-04-12 Fromson H A Method and apparatus for cutting a continuous material to length
ES2147486B1 (es) * 1997-05-05 2001-04-01 Barberan Sa Maquina retestadora doble con desplazamiento longitudinal de perfiles.
ES2192458B1 (es) * 2001-07-19 2005-07-01 Danobat,S.Coop Metodo para la separacion de la pieza cortada con una sierra de cinta y maquina de aserrar horizontal.
FI20021207A0 (fi) * 2002-04-29 2002-06-20 Jomeks Oy Työstölaite ja menetelmä työstölaitteen ohjauksessa
DE502004011215D1 (de) * 2003-07-23 2010-07-08 Cfs Buehl Gmbh Axial verschiebbares messer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898669A (en) * 1957-11-14 1959-08-11 Continental Machines Machine for cutting off bar stock
US3871258A (en) * 1973-02-07 1975-03-18 Hurn Brothers Eng Ltd Wood working apparatus
US4805500A (en) * 1985-06-29 1989-02-21 Amada Company, Limited Horizontal band saw machine
US5086678A (en) * 1988-11-22 1992-02-11 Amada Company, Limited Workpiece conveying method and device for a cutting machine
US5241887A (en) * 1992-05-01 1993-09-07 Natech, Reich, Summer, Gmbh & Co. Kg Cutting device for cutting food products, in particular sausage, ham, bacon, meat, cheese and such
US6158318A (en) * 1996-09-23 2000-12-12 Niemelae; Ahti Sawing machine
US20050155475A1 (en) * 2003-05-12 2005-07-21 Jean-Francois Desrosiers Automated double saw
US20070214924A1 (en) * 2006-03-16 2007-09-20 Jourdan James K Material puller assembly

Also Published As

Publication number Publication date
BRPI0813160A2 (pt) 2014-12-23
CN101778687B (zh) 2013-06-05
EP2158055B1 (de) 2018-06-06
EP2158055A1 (de) 2010-03-03
KR101557015B1 (ko) 2015-10-02
KR20100049542A (ko) 2010-05-12
PL2158055T3 (pl) 2018-10-31
TR201809623T4 (tr) 2018-07-23
ES2677322T3 (es) 2018-08-01
SI2158055T1 (sl) 2018-10-30
US9561554B2 (en) 2017-02-07
DE102007029292A1 (de) 2008-12-24
DE102007029292B4 (de) 2014-12-11
WO2008155392A1 (de) 2008-12-24
US20150135918A1 (en) 2015-05-21
CN101778687A (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
US9561554B2 (en) Saw device and method for sawing a workpiece
WO2015194983A1 (en) Machine with an endless band-knife for cutting sponge panels into pieces
KR101355089B1 (ko) 라운드형 톱날가공장치
CN110722640A (zh) 一种双端横锯装置
CN112091158A (zh) 汽车上支架铆接工装
CN114346311A (zh) 一种四边锯及其切割门板的方法
US6817392B2 (en) Apparatus for shaping timbers with improved timber control
EP3639958B1 (en) Cutting machine to cut panels made of wood or the like
CN209998469U (zh) 铝型材v型切割装置
JP2008200833A (ja) 送材装置
CN217475003U (zh) 一种锯床用辅助切割装置
EP3639957B1 (en) Cutting machine to cut panels made of wood or the like
CN113118553A (zh) 一种带锯床
CN210477244U (zh) 一种木条加工***
CN114227944A (zh) 一种石墨加工全自动定长切料装置
EP3639994A1 (en) Cutting machine to cut panels made of wood or the like
CN113400021A (zh) 一种焊接装置及焊接工艺
CN221247925U (zh) 板材定长锯切设备
CN215238254U (zh) 一种带锯床
CN220259462U (zh) 一种夹持式铆钉上料机构
US8635897B2 (en) Profiling arrangement for the longitudinal shaping of a metal band or starting profile into a profile or tube
CN218050635U (zh) 一种锯条磨齿机
CN217065423U (zh) 一种简易电子烟发热片包棉进管设备
CN211638963U (zh) 切割铣削组合锯床
CN219966635U (zh) 一种裁切线条装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEHRINGER GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEHRINGER, CHRISTIAN;REEL/FRAME:023967/0205

Effective date: 20100120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION