TWM366761U - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
TWM366761U
TWM366761U TW98208672U TW98208672U TWM366761U TW M366761 U TWM366761 U TW M366761U TW 98208672 U TW98208672 U TW 98208672U TW 98208672 U TW98208672 U TW 98208672U TW M366761 U TWM366761 U TW M366761U
Authority
TW
Taiwan
Prior art keywords
solar cell
substrate
layer
cell module
light
Prior art date
Application number
TW98208672U
Other languages
Chinese (zh)
Inventor
Yi-lin TANG
Ying-Cheng Lu
Jing-Wen Chen
ya-long Xu
hui-hong Wang
xin-jia Huang
Hong-Yi Zeng
Jia-Xi Xiao
Original Assignee
Beyondpv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beyondpv Co Ltd filed Critical Beyondpv Co Ltd
Priority to TW98208672U priority Critical patent/TWM366761U/en
Publication of TWM366761U publication Critical patent/TWM366761U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

M366761 五、新型說明: 【新型所屬之技術領域】 本新型是有關於-種電池模組,特別是指一種用於將 光能轉換成電能的太陽能電池模組。 【先前技術】 太陽能為目前備受重視的綠色能源,舉凡建築物、交 ^ 包子產σ口…等都可見其應用,然而,太陽能技術 仍有其限制而有待突破,例如太陽能電池模組之光電轉換 效率偏低,無法將入射於模組的光線作最有效率的運用, 因此,如何提升光電轉換效率為許多廠商之研發重點。目 前一般作法,有將模組的照光面作成金字塔狀以增加入射 光線,有的疋在照光面上設置一層抗反射層以減少入射光 向外反射。當然,還有其它多種不同結構設計與方式,在 此不再--詳述。 另外,也有在太陽能模組之背板作改良設計,例如日 本專利第JP2006319250號專利案所揭示的一種背板,包含 :一第一基板、一披覆在該第一基板的表面且内部具有多 數個微珠的光擴散層,以及依序設置的一反射層、一黏著 層與一弟一基板。所述第一基板包括反向間隔的一第—表 面與一第二表面,該第一表面與該太陽能電池模組之—光 電轉換單元結合,所述光電轉換單元用於將光能轉換成電 能’並包含ρ型與η型半導體層、封裝層、透明基板等元 件。當光線通過該光電轉換單元而朝該背板射入時,光線 通過該光擴散層,並受到微珠的作用而擴散光線與增加光 M366761 線行進亂度’光線再受該反射層反射而再度朝該光電轉換 單元射入’如此可以增加光線的利用率,以提升光電轉換 效率。 雖然利用該等微珠可以擴散光線,但是由於微珠之大 小不一、形狀不同’並且是利用摻雜製程添加於膜層中, 在摻雜過程中,微珠之排列難以控制,致使微珠為凌亂而 隨機分布’其微珠的結構一致性與規則性極低,造成擴散 、散亂光線的效果難以控制,其光線擴散後的射出方向是 隨機而凌亂的’而光線過度凌亂地擴散容易造成能量損失 ’再者’太陽移動軌跡與太陽光線入射路徑有一定的方向 ’因此應考量光線主要的入射方向再將其散亂即可,並不 需要用到大小、形狀與排列亂度如此高之微珠設計。 另一方面,添加玻璃微珠的製程較為複雜,而且此種 製程使彳政珠隨意分布排列,因此當背板大量生產時,每片 背板之微珠分布及光擴散效果皆不相同,如此將難以控制 每片奇板之品質與效果,造成量產之後的檢測與使用相當 不便。 【新型内容】 因此’本新型之目的’即在提供一種結構規則性較高 、可重複製作,且製作簡單的太陽能電池模組。 於是,本新型太陽能電池模組,包含:一光電轉換單* 元,以及—背板單元。 該光電轉換單元用於將光能轉換成電能,並包括一個 接受外界光線的入光面,以及一個與該入光面反向間隔的M366761 V. New Description: [New Technology Field] This new type is related to a battery module, especially a solar battery module for converting light energy into electrical energy. [Prior Art] Solar energy is currently the most important green energy source. It can be seen in the construction of buildings, tongkou, etc. However, solar energy technology still has its limitations and needs to be broken, such as photovoltaics of solar cell modules. The conversion efficiency is low, and the light incident on the module cannot be used most efficiently. Therefore, how to improve the photoelectric conversion efficiency is the research and development focus of many manufacturers. In the current practice, the illumination surface of the module is pyramid-shaped to increase the incident light, and some of the enamel is provided with an anti-reflection layer on the illumination surface to reduce the outward reflection of the incident light. Of course, there are many other different structural designs and methods that are no longer detailed here. In addition, there is also a modified design of a back panel of a solar module, such as a backplane disclosed in Japanese Patent No. JP2006319250, comprising: a first substrate, a surface coated on the surface of the first substrate and having a majority inside a light diffusing layer of the microbeads, and a reflective layer, an adhesive layer and a substrate. The first substrate includes a first surface and a second surface that are oppositely spaced, the first surface is combined with a photoelectric conversion unit of the solar cell module, and the photoelectric conversion unit is configured to convert light energy into electrical energy. 'And includes elements such as p-type and n-type semiconductor layers, encapsulation layers, transparent substrates, and the like. When light passes through the photoelectric conversion unit and is incident on the backing plate, the light passes through the light diffusion layer, and is subjected to the action of the microbeads to diffuse the light and increase the light M366761. The line travels and the light is reflected by the reflective layer again. Injecting into the photoelectric conversion unit can increase the utilization of light to improve the photoelectric conversion efficiency. Although the microbeads can be used to diffuse light, since the beads are different in size and shape, and are added to the film by a doping process, the arrangement of the beads is difficult to control during the doping process, resulting in microbeads. Randomly distributed for messyness' The structural consistency and regularity of the microbeads are extremely low, and the effect of diffusing and scattered light is difficult to control. The direction of light after the diffusion of light is random and messy, and the light is too diffused to spread easily. Causing energy loss 'again' the sun's moving trajectory has a certain direction with the incident path of the sun's rays. Therefore, the main incident direction of the light should be considered and then scattered, and the size, shape and arrangement are not so high. The bead design. On the other hand, the process of adding glass microbeads is complicated, and the process allows the arsenal beads to be randomly distributed. Therefore, when the backsheet is mass-produced, the microbead distribution and light diffusion effect of each backsheet are different. It will be difficult to control the quality and effect of each odd board, which makes the detection and use after mass production quite inconvenient. [New content] Therefore, the object of the present invention is to provide a solar cell module having a high structural regularity, reproducible production, and simple fabrication. Therefore, the novel solar cell module comprises: a photoelectric conversion unit*, and a backplane unit. The photoelectric conversion unit is configured to convert light energy into electrical energy, and includes a light incident surface that receives external light, and a reverse interval from the light incident surface.

M366761 背面。該背板單元設置在該光電轉換單元之背面,並包括 由^近而遠離該光電轉換單元而依序設置的—個可透光的 土材自可透光的結構層,以及—第二基材,前述 結構層包括數個相鄰並且利用固化製程成型的微結構,而 該第二基材包括-層具有光反射作用的反射層。 所述微、.、。構可以為左右相鄰排列的棱柱狀結構或是表 面弧犬的球柱狀結構’而且可以為直線延伸或彎曲延伸。 微結構也可以為多個前後左右相鄰排列,並且可以為金字 袼狀、球狀、島狀’或紡垂狀,每一個微結構的突起大小 可以相同也可以為不相同。 而用於成型该結構層的固化製程可以選用下列任一種 方式: ()务外光(uv光)固化:將一結構層材料塗佈於該第一 基材的表面,結構層材料為可受紫外光照射而固化之紫外 光固化材料’接著㈣—個具有預定形狀之滾輪滾壓該結 曰材料而t成該等微結構,最後使用紫外光照射而使該 結構層固化成型。 ⑺電子束⑽別化:將第⑴種方式中的結構層材料改 用電子束固化材料,並利用電子束照射而固化成型。 、(3)壓印成型:將結構層材料塗佈於第—基材的表面, 並利用具有對應形狀之模具壓印該結構層材料,進而形成 該等微結構。或者先將結構層#料利用壓印成型而形成該 結構層之後,再將結構層貼合於第一基材的表面。 ⑷射出成型·將結構層材料通過—模具並利用射出方 5 M366761 式成型該結構層,再將結構層貼合於該第—基材的表面。 藉由固化製程來成型該結構層,製作出的微結構之規 則性較高,而且上述製程簡單而易於實行,製程具有重複 性,使大量生產出的產品具有高度相似之微結構與光擴散 效果。而該等微結構之型態並不需要嚴格限定,因為利用 本新型固化製程製作出的微結構,亂度適當且可以提供適 當的散亂光線之效果。 【實施方式】 有關本新型之前述及其他技術内容、特點與功效,在 以下配σ參考圖式之六個較佳實施例的詳細說明中,將可 清楚的呈現。在本新型被詳細描述之前,要注意的是,在 以下的說明内容中,類似的元件是以相同的編號來表示。 參閱圖1與圖2,本新型太陽能電池模組之第一較佳實 施例包含:-光電轉換單元i,以及一設置在該光電轉換單 元1之表面的背板單元2。 該光電轉換單元1包括—個接受外界光線的人光面U ,以及一個與該入光面u反向間隔的背面12。該光電轉換 單7〇。1用於將外界入射而來的光線轉換成電&,且該光電 轉換單元1實際上包括數個上下堆疊的層體,_ 1僅是簡 5以單-層體示意m電轉換單元1可以為石夕晶太 電 銅銦鎵砸(CIGS)薄膜太陽能電池、鑛碲(CdTe)薄 膜f陽能電池、㈣膜太陽能電池、染料敏化太陽能電池 、、員以矽Βθ太陽能電池為例,包括複數個連接排列 成串並且形財ρ_η接面㈣晶片,碎晶片外周受到題 M366761 封裝膜之包覆,而EVA封裝膜之上表面設有一可透光並具 有該入光面11的基板,封裝膜之下表面則與本新型之背板 單元2連結。由於該光電轉換單元1非本新型之改良重點 ,在此不再詳細說明。 本實施例之背板單元2設置在該光電轉換單元1之背 面12,並包括:一第一基材21、一結構層22,以及一第二 基材23,所述第一基材21、結構層22及第二基材23是依 序遠離該光電轉換單元1。該第一基材21之材質除了需要 具有透光性之外,並無其他特殊限制,其材料例如:聚對 苯二甲酸乙二酷(polyethylene terephthalate,PET)、聚石炭酸 酯(polycarbonate, PC)、聚甲基丙烯酸曱酯(polymethyl methacrylate, PMMA)···等,但不限於上述材質。本實施例 之第一基材21是由PET製成,其厚度約為100〜250/z m。 該結構層22包括數個相鄰而直線長向延伸的微結構 221,本實施例之微結構221為直線延伸的球柱狀,其截面 約呈表面向下弧突之半球形,每一微結構221皆具有一個 位於最高點而朝該第二基材23突出的突部222。所述結構 層22之厚度約為20〜100//m,該結構層22具有透光性, 並且可以由丙烯酸酯系樹脂製成,例如:丙烯酸酯 (acrylate)、胺甲酸乙醋丙浠酸醋(urethane acrylate)、聚酉旨丙 稀酸醋(polyester acrylate)···等材料皆可。 本新型結構層22是利用固化製程成型,所述固化製程 可以為:紫外光固化、電子束固化、壓印成型、射出成型 …等方式,本實施例是以紫外光(UV光)固化膠合技術為例 7 M366761 製作時先於該第-基材21的表面塗佈—結構層材料,結 構層材料為紫外光固化材料,接著利用—個具有預定形狀 之滾輪隸該結構層材料而形成該等微結構221,最後使用 紫外光照射而使該結構層22固化成型。 該第二基材23是藉由黏膠黏固於該結構層22的下方 ,該第二基材23包括-與該結構層22間隔的基材層232, 以及-位於該基材層232與該結構層22之間的反射層231 。該基材層232用於保護該結構層22,避免結構層22之微 ’口構221又到磨知 '到傷,而且該基材層说包括一朝向 該結構層22的第-面233,以及一與該第一面233反向間 隔的第二面234,所述基材層232之厚度約為刚〜2脚^ ’其材料例如PET、PC..·等材料。 前述反射層231位於基材層232的第—面加,並且可 以利用蒸鍍、濺鑛、塗佈等方式而形成。該反射層231之 厚度約為10/zm’並且可以由鋁⑽、鈦(Ti)、鉛_、錫 (Sn)、金㈣、錄⑽、銀(Ag)、銘⑼、纪㈣.·等可用於 反射光線之金屬或其它材質製成。實施時該反射層231也 可以位於基材層232的第二面234,只要能將通過該結構層 22入射而來的光線反射回去即可。 本新型使㈣’光線由該光f轉換單元丨之人光面Η 射入,部分光線於該光電轉換單元!中作用而產生電流輪 出’而通過縣電轉換單元1的光線往該背板單元2射入 ,當光線通過該第-基材21而進人結構層22時,該等微 結構221將部分光線全反射而回到光電轉換單元!,部分光 •M366761 線受到微結構221擴散而朝多個方向射出,當多方向發散 的光線向下穿出該結構層22時,馬上受到該反射層231反 射’並再度回到該光電轉換單元1中。 太陽光光線射入該光電轉換單元1時,其行進方向較 為一致、散亂程度較低,而光線進入該背板單元2並受到 結構層22之略微擴散,並且再受該反射層231反射而反射 回該光電轉換單元1時’已成為朝多個方向行進的散亂光 線,如此可以增加反射光線行進於該光電轉換單元i中的 路住’以k升光電轉換單元1吸收的光量,進而提升光電 轉換效率。 綜上所述,藉由固化製程來成型該結構層22,製作出 的微結構221之規則性較高,而且該製程簡單、易於實行 ,製程具有重複性,使大量生產出的產品具有高度相似之 微結構221與光擴散效果。此外,利用固化製程製作出的 微結構221,無論在形狀或排列上皆比先前技術所提供之微 珠設計更具有規則性,因此該等微結構221 一方面具有擴 散光線而使光線朝多方向行進的功能,一方面其擴散程度 又可透過較有規則性的設計而達到所需要求,使擴散光線 的亂度適中。 參閱圖1、3,本新型太陽能電池模組之第二較佳實施 例,與該第一較佳實施例的不同之處在於;本實施例之該 等微結構221為彎曲延伸。 參閱圖4,本新型太陽能電池模組之第三較佳實施例, 與該第-較佳實施例的不同之處在於:本實施例之該等微 9 M366761 結構221 A多數個前後左右排列的旅突球狀。當然,實施 時不限於此’微結# 221之型態還可以例如圖5所示的纺 垂狀、如目6所示的規則稜柱狀、如圖7朝中央集中的不 規則稜柱狀’如圖8之頂角為圓弧的島狀,或者圖未示出 的金字塔& .等形狀’只要可以利用本新型固化製程製作 出’並且具有適當之散亂光線效果之微結構221,皆為本新 型所保護之範圍。 參閱圖9 ’本新型太陽能電池模組之第四較佳實施例, 與該第-較佳實施例不同之處在於:本實施例之結構層Μ 之結構形狀是朝向該第—基材21 ’因此該等微結構221之 最高處的突部222皆朝向該第—基材21。該反射層231則 披覆在該基材層232的第二面234。本實施例在製作時,是 先於該基材層232的第一面233製作該結構層22,於其第 二面234鑛著該反射層23卜再將該形成有結構層22與反 射層231的基材層232,藉由黏膠與該第一基材2ι固定結 合。 當光線通過該光電轉換單元1而射入時,部分光線會 受到結構層22之弧形表面反射,進而以較為散亂的路徑回 到該光電轉換單元丨,部分光線則通過該結構層22、基材 層232後再找反射層231反射。所以本實施例同樣可以 利用固化製程製作該結構層22,並使光線擴散以及增進光 電轉換效率。 參閱圖10,本新型太陽能電池模組之第五較佳實施例 ’與談第四較佳實施例(圖9)不同之處在於··該反射層231 •M366761 因此該反射層231位 是設置在該基材層232的第一面233 於基材層232與該結構層22之間。 參閱圖U,本新型太陽能電池模組之第六較佳實施例 ’與該第四較佳實施例(圖9)不同之處在於:該結構層22之 該等微結構221為多數個大小不同之突起的_^生㈣ 惟以上所述者,僅為本新型之較佳實施例而已,當不 能以此限定本新型實施之範圍,即大凡依本新型申請^利 範圍及新型說明内容所作之簡單的等效變化與修飾,皆仍 屬本新型專利涵蓋之範圍内。 【圖式簡單說明】 圖1 I本新型太陽能t池模組之—第一較佳實施例的 示意圖; 圖2是該第一較佳實施例之一結構層的仰視圖; 圖3是一仰視圖,顯示本新型太陽能電池模組之一第 二較佳實施例之一結構層; 圖4疋一立體圖,主要顯示本新型太陽能電池模組之 第二較佳實施例之一結構層; 圖5是一仰視圖,主要顯示該結構層的另一種型態; 圖6是一示意圖,主要顯示一種規則排列的稜柱狀結 構層; τ 圖7是一示意圖,主要顯示一種不規則排列的稜柱狀 結構層; 圖8是一示意圖,主要顯示一種島狀的結構層; 11 M366761 圖9是一示意圖,顯示本新型太陽能電池模組之一第 四較佳實施例; 圖10是一示意圖,顯示本新型太陽能電池模組之一第 五較佳實施例;及 圖11是一示意圖,顯示本新型太陽能電池模組之一第 六較佳實施例。M366761 back. The backplane unit is disposed on the back surface of the photoelectric conversion unit, and includes a light transmissive soil material self-transmissive structural layer disposed in close proximity to the photoelectric conversion unit, and a second base The structural layer comprises a plurality of microstructures adjacent to each other and formed by a curing process, and the second substrate comprises a layer of a reflective layer having a light reflecting effect. The micro, ., . The structure may be a prismatic structure arranged adjacent to the left and right or a columnar structure of the surface arc dog' and may extend in a straight line or in a curved shape. The microstructure may also be arranged adjacent to a plurality of front, back, left and right sides, and may be in the shape of a gold, a ball, an island, or a spiral, and the size of the protrusions of each of the microstructures may be the same or different. The curing process for molding the structural layer may be selected from any of the following methods: () external light (uv light) curing: a structural layer material is coated on the surface of the first substrate, and the structural layer material is acceptable. The ultraviolet curable material cured by ultraviolet light irradiation is followed by (four) a roller having a predetermined shape to press the crucible material to form the microstructures, and finally the structural layer is cured by irradiation with ultraviolet light. (7) Electron beam (10) is different: The structural layer material in the above (1) mode is changed to an electron beam curing material, and solidified by electron beam irradiation. (3) Imprint molding: the structural layer material is coated on the surface of the first substrate, and the structural layer material is imprinted by a mold having a corresponding shape to form the microstructure. Alternatively, the structural layer is first formed by embossing to form the structural layer, and then the structural layer is bonded to the surface of the first substrate. (4) Injection molding: The structural layer material was passed through a mold, and the structural layer was molded by the injection method 5 M366761, and the structural layer was bonded to the surface of the first substrate. The structural layer is formed by a curing process, and the microstructure is made to have high regularity, and the above process is simple and easy to implement, and the process is repetitive, so that a large number of products have a highly similar microstructure and light diffusion effect. . The shape of the microstructures does not need to be strictly limited, because the microstructures produced by the novel curing process are appropriate and provide appropriate scattered light effects. [Embodiment] The foregoing and other technical contents, features, and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 1 and 2, a first preferred embodiment of the novel solar cell module comprises: - a photoelectric conversion unit i, and a backplane unit 2 disposed on the surface of the photoelectric conversion unit 1. The photoelectric conversion unit 1 includes a human light surface U that receives external light, and a back surface 12 that is oppositely spaced from the light incident surface u. The photoelectric conversion is 7 〇. 1 for converting the incident light from the outside into electric & and the photoelectric conversion unit 1 actually comprises a plurality of layers stacked on top of each other, _ 1 is only a simple 5 to indicate a single-layer body m electrical conversion unit 1 It can be used for the case of Shi Xijing Taidian Copper Indium Gallium Niobium (CIGS) thin film solar cell, CdTe film, solar cell, (4) film solar cell, dye-sensitized solar cell, and 矽Βθ solar cell. The invention comprises a plurality of connections arranged in a string and shaped by a pn_n junction (4) wafer, the outer periphery of the chip is covered by the M366761 encapsulation film, and the upper surface of the EVA encapsulation film is provided with a substrate which is transparent and has the light entrance surface 11. The lower surface of the encapsulation film is joined to the backplane unit 2 of the present invention. Since the photoelectric conversion unit 1 is not a modification of the present invention, it will not be described in detail herein. The backplane unit 2 of the embodiment is disposed on the back surface 12 of the photoelectric conversion unit 1 and includes a first substrate 21, a structural layer 22, and a second substrate 23, the first substrate 21, The structural layer 22 and the second substrate 23 are sequentially separated from the photoelectric conversion unit 1. The material of the first substrate 21 is not particularly limited except that it needs to have light transmissivity, and the material thereof is, for example, polyethylene terephthalate (PET) or polycarbonate (PC). ), polymethyl methacrylate (PMMA), etc., but not limited to the above materials. The first substrate 21 of this embodiment is made of PET and has a thickness of about 100 to 250 / z m. The structural layer 22 includes a plurality of adjacent and linearly extending microstructures 221. The microstructures 221 of the present embodiment are spherical columns extending in a straight line, and the cross section thereof is about a hemispherical shape with a surface downward arc, each micro The structures 221 each have a protrusion 222 that is located at the highest point and protrudes toward the second substrate 23. The structural layer 22 has a thickness of about 20 to 100 / / m, and the structural layer 22 is light transmissive and can be made of an acrylate resin, for example, acrylate or urethane acetoacetate. Uranium acrylate, polyester acrylate, etc. can be used. The novel structural layer 22 is formed by a curing process, and the curing process can be: ultraviolet curing, electron beam curing, imprint molding, injection molding, etc., and the embodiment is an ultraviolet light (UV light) curing bonding technology. For example, the M366761 is prepared by coating the surface of the first substrate 21 with a structural layer material, and the structural layer material is an ultraviolet curing material, and then forming the material by using a roller having a predetermined shape. The microstructure 221 is finally cured by ultraviolet light irradiation to form the structural layer 22. The second substrate 23 is adhered to the underside of the structural layer 22 by an adhesive. The second substrate 23 includes a substrate layer 232 spaced apart from the structural layer 22, and - located on the substrate layer 232 A reflective layer 231 between the structural layers 22. The substrate layer 232 is used to protect the structural layer 22, and the micro-portion 221 of the structural layer 22 is prevented from being scratched, and the substrate layer includes a first surface 233 facing the structural layer 22. And a second surface 234 spaced apart from the first surface 233, the substrate layer 232 having a thickness of about 〜2 feet ^' material such as PET, PC.. The reflective layer 231 is located on the first surface of the base material layer 232, and may be formed by vapor deposition, sputtering, coating, or the like. The reflective layer 231 has a thickness of about 10/zm' and may be made of aluminum (10), titanium (Ti), lead-, tin (Sn), gold (four), recorded (10), silver (Ag), Ming (9), Ji (four), etc. Can be used to reflect light in metal or other materials. In practice, the reflective layer 231 may also be located on the second side 234 of the substrate layer 232 as long as the light incident through the structural layer 22 can be reflected back. The present invention causes (4)' light to be incident on the light surface of the light conversion unit, and part of the light is applied to the photoelectric conversion unit! When the light is passed through the first substrate 21 and enters the structural layer 22, the microstructures 221 will be partially The light is totally reflected back to the photoelectric conversion unit! The partial light M366761 line is diffused by the microstructure 221 and is emitted in multiple directions. When the light diverging in multiple directions passes downwardly out of the structural layer 22, it is immediately reflected by the reflective layer 231 and returns to the photoelectric conversion unit. 1 in. When the sunlight light is incident on the photoelectric conversion unit 1, the traveling direction is relatively uniform and the degree of scattering is low, and the light enters the backplane unit 2 and is slightly diffused by the structural layer 22, and is further reflected by the reflective layer 231. When reflected back to the photoelectric conversion unit 1, 'has become scattered light traveling in a plurality of directions, so that the amount of light absorbed by the reflected light in the photoelectric conversion unit i can be increased, and the amount of light absorbed by the k-liter photoelectric conversion unit 1 is further increased. Improve photoelectric conversion efficiency. In summary, the structural layer 22 is formed by a curing process, and the microstructure 221 is made to have high regularity, and the process is simple, easy to implement, and the process is repetitive, so that the products produced in a large amount are highly similar. The microstructure 221 has a light diffusion effect. In addition, the microstructures 221 fabricated by the curing process are more regular in shape or arrangement than the microbead design provided by the prior art, and thus the microstructures 221 have diffused light on one hand and light in multiple directions. The function of travel, on the one hand, can achieve the required requirements through the more regular design, so that the diffused light is moderately disordered. Referring to Figures 1 and 3, a second preferred embodiment of the solar cell module of the present invention differs from the first preferred embodiment in that the microstructures 221 of the present embodiment are curved extensions. Referring to FIG. 4, a third preferred embodiment of the solar cell module of the present invention is different from the first preferred embodiment in that a plurality of the micro 9 M366761 structures 221 A of the present embodiment are arranged one behind the other. The brigade is spherical. Of course, the embodiment is not limited to the 'micro-junction # 221 type, and may be, for example, a spun-like shape as shown in FIG. 5, a regular prismatic shape as shown in FIG. 6, and an irregular prismatic shape as shown in FIG. The apex angle of Fig. 8 is an island shape of a circular arc, or a shape such as a pyramid & not shown, as long as the microstructure 221 can be produced by the present curing process and has appropriate scattered light effects, The scope of protection of this new type. Referring to FIG. 9 'the fourth preferred embodiment of the solar cell module of the present invention, the difference from the first preferred embodiment is that the structural layer of the embodiment has a structural shape facing the first substrate 21 ' Therefore, the protrusion 222 at the highest point of the microstructures 221 faces the first substrate 21 . The reflective layer 231 is overlaid on the second side 234 of the substrate layer 232. In the embodiment, the structural layer 22 is formed on the first surface 233 of the substrate layer 232, and the reflective layer 23 is deposited on the second surface 234. The structural layer 22 and the reflective layer are formed. The substrate layer 232 of 231 is fixedly bonded to the first substrate 2 by adhesive. When light is incident through the photoelectric conversion unit 1, part of the light is reflected by the curved surface of the structural layer 22, and then returns to the photoelectric conversion unit 较为 in a relatively scattered path, and part of the light passes through the structural layer 22, The substrate layer 232 is then reflected by the reflective layer 231. Therefore, in this embodiment, the structural layer 22 can be formed by a curing process, and the light is diffused and the photoelectric conversion efficiency is improved. Referring to FIG. 10, a fifth preferred embodiment of the solar cell module of the present invention differs from the fourth preferred embodiment (FIG. 9) in that the reflective layer 231 • M366761 is thus provided with the reflective layer 231. A first side 233 of the substrate layer 232 is between the substrate layer 232 and the structural layer 22. Referring to FIG. U, the sixth preferred embodiment of the solar cell module of the present invention is different from the fourth preferred embodiment (FIG. 9) in that the microstructures 221 of the structural layer 22 are different in size. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, it is based on the scope of the novel application and the new description. Simple equivalent changes and modifications are still within the scope of this new patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a first preferred embodiment of the present invention; FIG. 2 is a bottom view of a structural layer of the first preferred embodiment; FIG. The figure shows a structural layer of a second preferred embodiment of the solar cell module of the present invention; FIG. 4 is a perspective view showing a structural layer of a second preferred embodiment of the solar cell module of the present invention; Is a bottom view, mainly showing another type of the structural layer; FIG. 6 is a schematic view mainly showing a regularly arranged prismatic structural layer; τ FIG. 7 is a schematic view mainly showing an irregularly arranged prismatic structure Figure 8 is a schematic view showing an island-shaped structural layer; 11 M366761 Figure 9 is a schematic view showing a fourth preferred embodiment of the novel solar cell module; Figure 10 is a schematic view showing the novel A fifth preferred embodiment of a solar cell module; and FIG. 11 is a schematic view showing a sixth preferred embodiment of the novel solar cell module.

12 M366761 【主要元件符號說明】 卜…·, ……光電轉換單元 222 · -…突部 11"… -…入光面 23 · · * * ……第二基材 12 …' μ p背面 231 ·* ……反射層 2…… …。背板單元 232 ·· …。Β基材層 1 »*>·** 。…第一基材 233 - ** 4 f * 第一 面 22*"“ ……結構層 234 ·· -……第面 2 21……。微結構12 M366761 [Description of main component symbols] Bu...·, ... photoelectric conversion unit 222 · -... protrusion 11"... -...lighting surface 23 · · * * ... second substrate 12 ...' μ p back surface 231 · * ......reflective layer 2...... Backplane unit 232 ··. ΒSubstrate layer 1 »*>·**. ...first substrate 233 - ** 4 f * first surface 22*"" ......structural layer 234 ·· -... first surface 2 21.... microstructure

Claims (1)

M366761 v、、申晴專利範圍: 1. 種太知能電池模組,包含: 一光電轉換單元,用於將光能轉換成電能,並包括 =接文外界光線的人光面,以及—個與該人光面反向 間隔的背面;及 -背板單元,設置在該光電轉換單元之背面,並包 由鄰近而遠離該光電轉換單元而依序設置的一個可透 :第一基材、-個可透光的結構層,以及-第二基材 社:述結構層包括數個相鄰並且利用固化製程成型的微 、:巾該第二基材包括-層具有光反射作用的反射層 2. 依據中請專利範圍第1項所述之太陽能電池模組,其中 所述微…構為稜柱狀結構或是表面孤突的球柱狀結構 其 3·依據申請專利範圍第2項所述之太陽能電池模組 所述微結構為直線延伸。 其M366761 v, Shen Qing patent range: 1. A kind of Tai Chi energy battery module, comprising: a photoelectric conversion unit for converting light energy into electrical energy, and including = the light surface of the person receiving the external light, and - and The back surface of the person is oppositely spaced; and the backplane unit is disposed on the back side of the photoelectric conversion unit, and is provided by a first substrate which is disposed adjacent to and away from the photoelectric conversion unit. a light transmissive structural layer, and a second substrate: the structural layer comprises a plurality of micros that are adjacent and formed by a curing process, and the second substrate comprises a layer of reflective layer 2 having a light reflecting effect The solar cell module according to the first aspect of the invention, wherein the micro-... is configured as a prismatic structure or a spherical columnar structure having a surface, and is according to the second aspect of the patent application scope. The microstructure of the solar cell module extends in a straight line. its 依據申請專利範圍第2項所述之太陽能電池模組 ,所述微結構為彎曲延伸。 ± 依據申叫專利範圍第1項所述之太陽能電池模組,兴 二述微結構為前後左右相鄰排列,該等微結構為金 口狀、球狀、島狀,或紡垂狀。 6. 依:二請專利範圍$ 1項所述之太陽能電池模組,其 一微結構皆具有一個朝 7. 依據申喑衰. 朝該第-基材大出的突部。 申4專利範圍第1項所述之太陽能電池模組,其 14 M366761 ,每-微結構皆具有-個朝該第一基材突出的突部。 8.依射請專利範圍第丨項所述之太陽能電池模組,其中 ,該第二基材更包括一個連接該反射層的基材層,所述 基材層具有一個朝向該結構層的第一面,以及一個與第 一面反向間隔的第二面。 9_依據申請專利範圍第8項所述之太陽能電池模組,其中 ,該反射層是位於該基材層之第一面與該結構層之間。 10.依據申請專利範圍第8項所述之太陽能電池模組,其中 ,該反射層是位於該基材層之第二面。According to the solar cell module of claim 2, the microstructure is curved and extended. ± According to the solar cell module described in claim 1, the microstructure is arranged adjacent to the front, back, left and right, and the microstructures are gold-plated, spherical, island-shaped, or spun-shaped. 6. According to the second solar cell module of the patent scope, the microstructure of the solar cell module has a protrusion which is larger toward the first substrate. The solar cell module according to claim 1, wherein the 14 M366761 has a protrusion protruding toward the first substrate. The solar cell module according to the above aspect of the invention, wherein the second substrate further comprises a substrate layer connecting the reflective layer, the substrate layer having a first layer facing the structural layer One side, and a second side that is opposite to the first side. The solar cell module according to claim 8, wherein the reflective layer is located between the first side of the substrate layer and the structural layer. 10. The solar cell module of claim 8, wherein the reflective layer is on a second side of the substrate layer. 1515
TW98208672U 2009-05-19 2009-05-19 Solar cell module TWM366761U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98208672U TWM366761U (en) 2009-05-19 2009-05-19 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98208672U TWM366761U (en) 2009-05-19 2009-05-19 Solar cell module

Publications (1)

Publication Number Publication Date
TWM366761U true TWM366761U (en) 2009-10-11

Family

ID=44388573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98208672U TWM366761U (en) 2009-05-19 2009-05-19 Solar cell module

Country Status (1)

Country Link
TW (1) TWM366761U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165711A (en) * 2011-12-14 2013-06-19 财团法人工业技术研究院 Packaging structure and solar cell with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165711A (en) * 2011-12-14 2013-06-19 财团法人工业技术研究院 Packaging structure and solar cell with same
TWI463675B (en) * 2011-12-14 2014-12-01 Ind Tech Res Inst Package structure and solar cell with the same
US9136413B2 (en) 2011-12-14 2015-09-15 Industrial Technology Research Institute Package structure and solar cell with the same
CN103165711B (en) * 2011-12-14 2016-02-03 财团法人工业技术研究院 Packaging structure and solar cell with same

Similar Documents

Publication Publication Date Title
TWI472047B (en) Photovoltaic device
CN205428963U (en) Solar module and backplate thereof
TW201037847A (en) Anti-reflective and light-trapping solar module package structure
CN107026210B (en) A kind of reflectance coating, its manufacturing method and its application
TW201019485A (en) Solar concentrating module
JP2016525707A (en) Reflective film with circular microstructure for use in solar modules
KR101208931B1 (en) High efficiency light condenser for solar cell
JPH11135817A (en) Photoelectric conversion element and its manufacture
US20190305165A1 (en) Photovoltaic module
CN111725342A (en) High-absorptivity photovoltaic module
TWM366761U (en) Solar cell module
JP2007073774A (en) Solar battery
JP2010074057A (en) Solar cell backside sheet and solar cell module using the same
JP2003086823A (en) Thin film solar battery
TW201034208A (en) Solar cell module
CN208315577U (en) Multistage enhancing gain film for photovoltaic module string spacing, piece spacing and welding
CN208315576U (en) Multistage enhancing gain film for photovoltaic module string spacing, piece spacing and welding
TWM441933U (en) Solar cell module
CN209641668U (en) Solar cell module
CN210040222U (en) Solar cell module
JP2000208793A (en) Solar cell module and its manufacture
CN208507699U (en) Photovoltaic module
CN206789555U (en) A kind of reflectance coating
CN208848914U (en) Solar cell module
CN202307977U (en) Solar battery

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees