TWI826649B - 製造有機過氧化物之方法 - Google Patents

製造有機過氧化物之方法 Download PDF

Info

Publication number
TWI826649B
TWI826649B TW109104969A TW109104969A TWI826649B TW I826649 B TWI826649 B TW I826649B TW 109104969 A TW109104969 A TW 109104969A TW 109104969 A TW109104969 A TW 109104969A TW I826649 B TWI826649 B TW I826649B
Authority
TW
Taiwan
Prior art keywords
peroxide
ketone
aqueous phase
methyl
organic
Prior art date
Application number
TW109104969A
Other languages
English (en)
Other versions
TW202041497A (zh
Inventor
馬丁努斯 卡沙利那斯 塔莫
德 林登 約案 亨德利克 雅各 范
帕塔瑪 賽薩哈
瑪麗亞 史丁斯麥
Original Assignee
荷蘭商諾力昂化學國際股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商諾力昂化學國際股份有限公司 filed Critical 荷蘭商諾力昂化學國際股份有限公司
Publication of TW202041497A publication Critical patent/TW202041497A/zh
Application granted granted Critical
Publication of TWI826649B publication Critical patent/TWI826649B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • C07C407/003Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明係關於一種用於製造有機過氧化物及自該有機過氧化物製造方法之水性流出物中分離、純化並濃縮硫酸之方法。

Description

製造有機過氧化物之方法
本發明係關於一種用於製造有機過氧化物之酸催化方法。若干種有機過氧化物製造方法為酸催化的且需要使用大量強酸。待使用之較佳酸為硫酸。大量硫酸之使用致使形成大量含有硫酸鹽之廢料流。
本發明之一目標為減少此等含有硫酸鹽之廢料流。
自CN 101857563及CN 108658824已知在由醇或酮製造有機過氧化物之方法中的料流回收。CN101857563及CN 108658824揭示一種藉由使第三丁醇與過氧化氫在硫酸之存在下反應來製備第三丁基氫過氧化物之方法,其中母液之部分經回收以再用作新添加之反應物的溶劑。為避免製程料流之不定稀釋,僅部分地回收母液。因為僅母液之部分回收至製程中,因此僅重複使用硫酸之部分以及未反應之過氧化氫及第三丁醇。實際上,所採用之大部分硫酸將在如所揭示之方法中作為廢料流結束。
本發明之方法滿足進一步減少含有硫酸鹽之廢料流之此目標,該方法包括用於純化、濃縮且重複使用源自有機過氧化物製造方法之硫酸料流的步驟。
硫酸料流含有過氧化物:過氧化氫、所製造之有機過氧化物之殘餘物,或其組合。其將亦含有其他有機物種。為重複使用,自有機殘餘物純化硫酸為必需的。將硫酸濃縮至其重複使用所需之濃度亦為必需的此外,過氧化物殘餘物必須自料流移除,此係因為並非所有將使用經純化及經回收料流之方法步驟允許過氧化物殘餘物之存在。
根據本發明之有機過氧化物製造方法包含以下步驟: a. 使醇或酮與過氧化氫反應,藉此形成包含以下之反應混合物: -有機相,其包含有機過氧化物;及 -水相,其包含(i)至少5 wt% H2 SO4 ,及(ii) H2 O2 及/或有機過氧化物殘餘物, b.     將該水相自該有機相分離, c. 視情況將H2 O2 添加至該水相及/或自該水相移除任何殘餘有機化合物, d.     獲得包含5-60 wt% H2 SO4 及0.3-35 wt% H2 O2 之水相,以及 e. 在0.001至1巴之壓力下,在20-300℃範圍內之溫度下加熱步驟d.之該水相,藉此分解至少部分之該H2 O2 ,移除部分之水,且使水性混合物之H2 SO4 濃度增加至少7個重量百分比點,達至12-95 wt%範圍內之濃度。
非常意外地,含有硫酸之料流可藉由簡單步驟(上文步驟e.)濃縮,其中水經蒸發。如熟習此項技術者所已知,當使醇或酮與過氧化氫在硫酸之存在下反應時,無法防止丙酮過氧化物之形成。丙酮過氧化物在水蒸發步驟(諸如上文步驟e.)中具有固化之風險,且丙酮過氧化物晶體已知為摩擦敏感***物。然而,在本發明之方法中,丙酮過氧化物積聚及有色產物之形成係藉由本發明之方法之步驟c.、d.及e.之組合來出乎意料地抑制,且丙酮過氧化物之量保持低於其可產生安全性問題的水準。
應注意,US 4,168,274及GB1501356揭示一種涉及回收硫酸廢料流之方法,其中存在硫酸溶液之濃縮步驟。然而,此等文件係關於藉由使有機酸與過氧化氫在硫酸之存在下反應來製備過酸。如熟習此項技術者所知曉,當藉由使酸與過氧化氫反應來製備過酸時,與使醇或酮與過氧化氫反應時相反,將不會形成丙酮過氧化物。
由步驟e.產生之水相可用於任何適合之目的,諸如自磷酸鹽岩產生磷酸、自焦化植物產生硫酸銨、自鋁礬土產生硫酸鋁、染料溶液之製造、經由硫-碘循環(本生反應(Bunsen reaction))產生氫、作為工業清潔溶液或作為例如鉛酸電池中之電解質。
在一較佳實施例中,在有機過氧化物製造方法中重複使用由步驟e.產生之水相之至少部分。對於相同有機過氧化物,此可為相同方法(因為由其產生),但亦可為用於製造另一種有機過氧化物之方法。
本方法之優勢為其不需要添加污染材料(諸如金屬),此使得所回收之硫酸適合重複用於過氧化物製造方法中。
在一更佳實施例中,將由步驟e.產生之水相之至少部分再循環至步驟a.。
步驟c.、d.及e.中處理之水相可由一種特定有機過氧化物製造方法產生,但亦可為由兩種或更多種不同有機過氧化物製造方法產生的水相之混合物。
藉由加熱水相來增加步驟e.中之H2 SO4 濃度不如同其可能看起來那麼簡單。存在於該相中之H2 O2 將分解,此可引起大量氧氣形成且因此壓力積聚。此外,此氧與揮發性有機物一起可形成可燃的及潛在***性混合物。
在實施例中,步驟a.中所採用之醇選自由以下組成之群:第三丁基醇、第三戊基醇、1,1,3,3-四甲基丁醇、2,5-二甲基-2,5-己二醇、2-甲基-2,4-戊二醇、2,5-二甲基-2,5-二羥基-己炔-3、1,3-雙(異丙醇)苯及1,4-雙(異丙醇)苯。
在實施例中,步驟a.中所採用之酮選自由以下組成之群:丙酮、乙醯基丙酮、甲基乙基酮、甲基丙基酮、甲基異丙基酮、甲基丁基酮、甲基異丁基酮、甲基戊基酮、甲基異戊基酮、甲基己基酮、甲基庚基酮、二乙基酮、乙基丙基酮、乙基戊基酮、甲基辛基酮、甲基壬基酮、環戊酮、環己酮、2-甲基環己酮、3,3,5-三甲基環己酮。
在H2 SO4 之存在下進行步驟a.之反應。
可根據本發明之方法製造的適合有機過氧化物為二烷基過氧化物、環酮過氧化物、三氧雜環庚烷及脂族氫過氧化物。
二烷基過氧化物之特定實例為2,2-二(第三丁基過氧基)丁烷、二異丙苯基過氧化物、二(第三丁基過氧基異丙基)苯、2,5-二甲基-2,5-二(第三丁基過氧基)己烷、二-第三丁基過氧化物、二-第三戊基過氧化物、2,5-二甲基-2,5-二(第三丁基過氧基)己炔-3及第三丁基異丙苯基過氧化物。
較佳的二烷基過氧化物為2,5-二甲基-2,5-二(第三丁基過氧基)己烷、2,5-二甲基-2,5-二(第三丁基過氧基)己炔-3、二-第三戊基過氧化物及二-第三丁基過氧化物。此等過氧化物之產生需要相對濃縮之硫酸溶液(30 wt%或更高)。
術語「環酮過氧化物」包括二聚環酮過氧化物及三聚環酮過氧化物。此等過氧化物具有以下結構: 其中R1 -R6 獨立地選自由以下組成之群:氫、C1 -C20 烷基、C3 -C20 環烷基、C6 -C20 芳基、C7 -C20 芳烷基及C7 -C20 烷芳基,該等基團可包括直鏈或分支鏈烷基部分;且R1 -R6 中之每一者可視情況經一或多個選自以下之基團取代:羥基、烷氧基、直鏈或分支鏈烷基、芳氧基、酯、羧基、腈及醯胺基。
較佳的環酮過氧化物為3,6,9-三乙基-3,6,9-三甲基-1,4,7-三過氧壬烷(3MEK-cp)以及包含3MEK-cp及符合下式之至少一種過氧化物之混合物 其中R1 至R3 獨立地選自烷基及烷氧基烷基,該等基團具有2至5個碳原子,R1 +R2 +R3 之碳原子加氧原子之總數在7-15之範圍內。術語烷氧基烷基係指具有式-Cn H2n -O-Cm H2m+1 之基團,其中n及m二者為至少1。
三氧雜環庚烷具有下式 其中R1 、R2 及R3 獨立地選自氫及經取代或未經取代之烴基,且視情況R1 、R2 及R3 之基團中之兩者經連接以形成環結構。較佳地,R1 、R2 及R3 獨立地選自由以下組成之群:氫及經取代或未經取代之C1 -C20 烷基、C3 -C20 環烷基、C6 -C20 芳基、C7 -C20 芳烷基及C7 -C20 烷芳基,該等基團可包括直鏈或分支鏈烷基部分,而R1 、R2 及R3 中之兩者可經連接以形成(經取代之)環烷基環;R1 至R3 中之每一者上的視情況選用之一或多個取代基選自由以下組成之群:羥基、烷氧基、直鏈或分支鏈烷基(烯基)、芳氧基、鹵素、羧酸、酯、羧基、腈及醯胺基。
較佳地,R1 及R3 選自低碳數烷基,更佳為C1 -C6 烷基,諸如甲基、乙基及異丙基,甲基及乙基為最佳的。R2 較佳選自氫、甲基、乙基、異丙基、異丁基、第三丁基、戊基、異戊基、環己基、苯基、CH3 C(O)CH2 -、C2 H5 OC(O)CH2 -、HOC(CH3 )2 CH2 -及 其中R4 獨立地選自針對R1-3 給出的化合物之群中之任一者。另一較佳的三氧雜環庚烷為:
脂族氫過氧化物之特定實例為第三丁基氫過氧化物、第三戊基氫過氧化物、己二醇氫過氧化物、2,5-二甲基-2,5-二氫過氧基己烷、2,5-二甲基-2,5-二氫過氧基-3-己炔及1,1,3,3-四甲基丁基氫過氧化物以及1,1-二甲基丁基氫過氧化物。
若單醇用於方法之步驟a.中,則產生二烷基過氧化物或氫過氧化物,此視過氧化氫之量及硫酸濃度而定。對於二烷基過氧化物製造,通常需要具有至少30 wt%之濃度的硫酸水溶液;對於氫過氧化物,通常使用10 wt%與30 wt%之間的濃度。
適合單醇之實例為第三丁基醇、第三戊基醇及1,1,3,3-四甲基丁醇。
若二醇用於方法之步驟a.中,則產生二-氫過氧化物,其可進一步與單醇在硫酸之存在下反應,生成雙-二烷基過氧化物。具有至少10 wt%之濃度的硫酸水溶液較佳地用於後者反應中。
二醇之實例為2,5-二甲基-2,5-己二醇、2,5-二甲基-2,5-二羥基-己炔-3、1,3-雙(異丙醇)苯及1,4-雙(異丙醇)苯。
為獲得二聚或三聚環酮過氧化物,使酮與過氧化氫在20-75 wt%硫酸水溶液及惰性稀釋劑(阻遏劑)之存在下反應。適合酮之實例為直鏈、分支鏈或環狀C3 -C13 酮,最佳為C3 -C7 酮。適合酮之實例為丙酮、乙醯基丙酮、甲基乙基酮、甲基丙基酮、甲基異丙基酮、甲基丁基酮、甲基異丁基酮、甲基戊基酮、甲基異戊基酮、甲基己基酮、甲基庚基酮、二乙基酮、乙基丙基酮、乙基戊基酮、甲基辛基酮、甲基壬基酮、環戊酮、環己酮、2-甲基環己酮、3,3,5-三甲基環己酮,及其混合物。
三氧雜環庚烷係藉由使二醇(glycol/dialcohol)與過氧化氫在20-60 wt%硫酸水溶液之存在下反應來獲得,以便形成二醇氫過氧化物。使二醇氫過氧化物隨後與酮或醛再次在硫酸(10-60 wt%水溶液)之存在下反應,以形成三氧雜環庚烷(trioxepan)。此方法描述於WO 2006/066984中。
二醇之適合實例為2-甲基-2,4-戊二醇。
所形成之有機過氧化物將存在於所得雙相反應混合物之有機層中且可藉由習知技術分離,該等習知技術諸如重力、液體/液體分離器、離心機或連續(板式)分離器(步驟b.)。
有機過氧化物通常用水或鹼性水溶液洗滌。
水相將含有(i) H2 SO4 ,及(ii) H2 O2 及/或剩餘有機過氧化物。其亦可含有額外有機物。在較佳的實施例中,需要實質上移除及/或破壞此等有機物,以便防止其使水性混合物變黑或積聚至非所需水準。
在較佳的實施例中,藉由(真空)蒸餾(步驟e.)或藉由將(額外)量之過氧化氫添加至水性混合物(步驟c.)來更完全地移除及/或破壞此等有機物。
步驟d.之水相較佳地含有至少5 wt%、較佳至少10 wt%、更佳至少20 wt%且最佳至少30 wt% H2 SO4 。其較佳地含有不超過60 wt% H2 SO4
除H2 SO4 以外,其他酸可存在於水相中。
步驟d.之水相包含0.3-35 wt%、較佳0.5-35 wt%、更佳1-35 wt%、甚至更佳2-35 wt%且最佳2-25 wt% H2 O2
為分解H2 O2 之至少部分,移除水之部分且使H2 SO4 濃度升高至少7個重量百分比點,達至12-95 wt%、較佳50-95 wt%、更佳70-95 wt%且最佳75-85 wt%範圍內之濃度,使水性混合物在0.001-1巴、較佳0.01-1巴之壓力下加熱至20-300℃、較佳30-250℃、甚至更佳50-200℃且最佳100-200℃範圍內之溫度(步驟e.)。
應注意,步驟b.中形成之水相之溫度通常在0-20℃、較佳0-10℃範圍內,因為通常在低溫下執行過氧化物製造方法。
不希望濃縮至≥96 wt% H2 SO4 ,因為此需要蒸餾SO3 及其後續溶解。
較佳地在一或多個蒸餾及/或加熱步驟中進行加熱。
在一較佳實施例中,加熱步驟涉及在低於H2 O2 之分解溫度的溫度下汽提揮發性有機組分。適合溫度在30-120℃範圍內。壓力可為大氣壓,但較佳低於大氣壓,以便在製程期間避免***性氛圍。
若水性混合物之過氧化氫濃度相對較高(約2 wt%或更大),則其分解將產生實質性氧氣流。隨後,鑒於安全性問題,大氣壓下之蒸餾為較佳的。
若過氧化物濃度較低或在製程期間降低,則應考慮在減壓下進行蒸餾。亦有可能首先應用常壓蒸餾,隨後在減壓下蒸餾。
使步驟e.期間移除之水性餾出物凝聚於冷凝器中且隨後收集於容器中。
由於過氧化氫之分解,餾出物將含有大量氧。氧將不會在冷凝器中凝聚,且為確保安全處理,需要保持餾出物之氧濃度低於閃點(flashpoint)。較佳地,氣相中之氧濃度保持低於30 vol%、較佳低於8 vol%。
此可藉由將氮氣或空氣引入系統中,藉此稀釋氧來實現。更佳地,將氮氣流或空氣流在進入冷凝器之前或存在於冷凝器中時添加至餾出物。
可分批地、半連續地或連續地進行步驟e.。在具有較高體積之分批製程中,應小心地控制溫度以防止危險情形。此外,在分批製程中,大部分氣體在製程開始時形成,此可造成建立極濃之氧氣流。隨著濃縮氧氣流,難以控制氮氣流以使得混合物保持低於閃點。然而,在(半)連續操作中,氧及CO2 形成之速率將更趨於幾乎完全恆定且氧濃度將更易於控制。在半連續模式中,將水相之第一部分在分批反應器中加熱至沸點溫度;接著將含有H2 SO4 及H2 O2 之水相之剩餘部分給與至該分批反應器且間歇地取出經濃縮之酸(之部分)。以此方式,氧形成及有機物汽提之速率亦為更高效的且可更好地控制的。連續操作或半連續操作為較佳的。
在一特定實施例中,方法係關於2,5-二-第三丁基過氧基-2,5-二甲基己烷或2,5-二-第三丁基過氧基-2,5-二(第三丁基過氧)己炔-3之製造。在兩個步驟中習知地製備此等過氧化物。在第一步驟中,使2,5-二甲基-2,5-己二醇(各別地,2,5-二甲基-2,5-二羥基-己炔-3)與過氧化氫在硫酸之存在下反應,生成2,5-二氫過氧基-2,5-二甲基己烷(各別地,2,5-二氫過氧基-2,5-二甲基己炔-3)。通常需要過量之高濃度之過氧化氫(例如,70 wt%水溶液),包括相對較大量之高度濃縮之硫酸(例如,70-95 wt%水溶液)。可藉由過濾或離心將二氫過氧化物自水性流出物分離且含有大量的硫酸、過氧化氫、少量二醇及各種有機副產物。
使二氫過氧化物接著與第三丁醇反應,由高度濃縮之硫酸(例如,60-90 wt%水溶液)再次催化,以形成所需過氧化物。來自此步驟之水性流出物(其亦可藉由重力分離或離心獲得)將含有硫酸及有機副產物。
經合併之水性流出物包含約10-50 wt% H2 SO4 及約5-20 wt% H2 O2 。可藉由用空氣流進行汽提,隨後蒸餾以破壞大部分H2 O2 且增加H2 SO4 濃度而自所得水相移除有機物。可在其之後執行減壓下之進一步蒸餾以進一步增加H2 SO4 濃度。
所得經純化及經濃縮之H2 SO4 可用於各種方法中。在一較佳實施例中,其再用於此過氧化物製造方法之第一及/或第二步驟中。
在另一特定實施例中,方法係關於二-第三丁基過氧化物或二-第三戊基過氧化物之製造。根據此實施例,使第三丁基醇或第三戊基醇與過氧化氫在30-78 wt%硫酸水溶液之存在下反應,以分別形成二-第三丁基過氧化物或二-第三戊基過氧化物。
可藉由重力、離心、液體/液體分離器或連續(板式)分離器來分離有機相及水相。
水相含有5-70 wt% H2 SO4 、0.1-10 wt%第三丁醇或第三戊基醇及0.1-5 wt%有機過氧化物。
接著將過氧化氫給與至水相,從而產生具有0.3-20 wt%、較佳0.3-10 wt%且最佳0.3-5 wt%之過氧化氫濃度的水相。接著較佳地將此混合物視情況在減壓下,在50-250℃、更佳80-220℃、最佳100-210℃範圍內之溫度下攪拌,以便破壞及/或移除有機殘餘物且增加硫酸濃度。
在另一實施例中,方法係關於氫過氧化物之製造。根據此實施例,使三級醇或經取代之烯烴與過氧化氫在硫酸(5-95 wt%水溶液)之存在下反應,以形成第三烷基氫過氧化物。
可藉由重力、離心、液體/液體分離器或連續(板式)分離器來分離有機相及水相。
水相含有5-60 wt% H2 SO4 、1-25 wt% H2 O2 、0.1-20 wt%三級醇及0.1-5 wt%有機過氧化物。
接著視情況將過氧化氫給與至水相,接著較佳地將其視情況在減壓下,在50-250℃、更佳80-220℃、最佳100-210℃範圍內之溫度下攪拌,以便破壞及/或移除有機殘餘物且增加硫酸濃度。
在另一實施例中,方法係關於三聚環酮過氧化物之製造。
根據此實施例,使酮與過氧化氫在20-95 wt%硫酸水溶液之存在下反應,以形成三聚環酮過氧化物。
可藉由重力、離心、液體/液體分離器或連續(板式)分離器來分離有機相及水相。
水相含有20-70 wt% H2 SO4 、1-25 wt% H2 O2 、0.1-20 wt%酮及0.1-10 wt%有機過氧化物。
視情況接著將過氧化氫給與至水相,接著較佳地將其視情況在減壓下,在50-250℃、更佳80-220℃、最佳100-210℃範圍內之溫度下攪拌,以便破壞及/或移除有機殘餘物且增加硫酸濃度。
在另一實施例中,方法係關於三氧雜環庚烷之製造。
根據此實施例,使酮與羥基氫過氧化物在20-95 wt%硫酸水溶液之存在下反應,以形成三氧雜環庚烷。
可藉由重力、離心、液體/液體分離器或連續(板式)分離器來分離有機相及水相。
水相含有10-70 wt% H2 SO4 、0.1-20 wt%酮及0.1-20 wt%有機過氧化物。
接著視情況將過氧化氫給與至水相,接著較佳地將其視情況在減壓下,在50-250℃、更佳80-220℃、最佳100-210℃範圍內之溫度下攪拌,以便破壞及/或移除有機殘餘物且增加硫酸濃度。
實例實例 1 將70 wt%過氧化氫水溶液(121.6 g)添加至夾套反應器。將反應器冷卻至5℃。接著,將78 wt%硫酸水溶液(157.5 g)在20分鐘內給與至反應器,同時將混合物之溫度控制低於10℃。在添加硫酸之後,將混合物冷卻至5℃。將固體2,5-二甲基-2,5-二羥基己烷(36.6公克,0.25莫耳)以使溫度保持低於10℃之此速率添加至混合物。
在添加2,5-二甲基-2,5-二羥基己烷之後,使溫度升高至25℃且在此溫度下保持一個小時。隨後將溫度降低至5℃且添加200 mL水。在攪動2分鐘之後,將反應混合物過濾且用冷水洗滌。獲得呈78%產率之固體2,5-二甲基-2,5-二氫過氧基己烷。將含有26% H2 SO4 之471 g水相與下一步驟之酸層合併。
在保持處於15℃下之夾套反應器中將第三丁醇(88 wt%於水中,143公克,1.7莫耳)逐滴添加(20 min)至硫酸(78 wt%,104.7公克,0.83莫耳)之經攪拌溶液中。在20分鐘內添加前一步驟中獲得之2,5-二甲基己烷-2,5-二氫過氧化物(54 g,0.20莫耳),隨後使溫度升高至40℃且在此溫度下保持至多四小時。
反應產生兩層混合物;該等層藉由瀝掉水層而分離。有機層含有呈70%產率之2,5-二甲基-2,5-二-第三丁基過氧基己烷。
水層用150 g水稀釋且將第三丁醇在100毫巴下藉由蒸餾移除。將含有30 wt% H2 SO4 之所得276 g水相與第一步驟之水相合併,藉此形成含有27 wt% H2 SO4 及9 wt% H2 O2 之水相。
僅在安裝於三頸玻璃容器上之玻璃維格婁分餾柱(glass vigreux column)之頂部下方給與該水相。攪拌容器且藉由在大氣壓下用外部油浴加熱來將溫度維持處於135-140℃。將維格婁分餾柱連接至冷凝器(在20℃下)及收集冷凝物之容器。將空氣饋送至冷凝器以便將氣相中之氧含量稀釋至25 vol%。將水相以5公克/分鐘之速率給與至維格婁分餾柱,從而使得以2.65公克/分鐘之速率形成冷凝物。在設備、酸或餾出物中未觀測到固體(任何化合物,諸如二丙酮過氧化物)。在穩定狀態下,自三頸容器泵出2.35公克/分鐘之無色濃酸。濃酸具有58.3%之H2 SO4 含量及1.8%之H2 O2 含量。
在第2濃縮步驟中,將前一步驟之濃酸給與至三頸玻璃容器。攪拌容器且藉由用外部油浴加熱來將溫度維持處於約162℃且將容器連接至在70-120毫巴壓力下之真空系統。將三頸玻璃容器連接至冷凝器及收集冷凝物之容器。以2公克/分鐘之速率給與濃酸且獲得0.6公克/分鐘之冷凝物。在穩定狀態下,自三頸容器泵出1.4公克/分鐘之無色濃酸。在設備、酸或餾出物中未觀測到固體(任何化合物,諸如二丙酮過氧化物)。濃酸具有83 wt%之H2 SO4 含量及<0.5%之H2 O2 含量。將酸用水稀釋至78 wt%且可重複使用以製得如上文所解釋之2,5-二甲基己烷-2,5-二氫過氧化物。
實例 2 向裝備有3個隔板、渦輪機葉輪、溫度計及冷卻表層之2.5公升反應器中添加900公克70 wt% H2 SO4 及600公克30 wt% H2 O2 。在1小時內給與第三丁基醇(700公克),藉此使溫度保持在35-40℃範圍內。將混合物加熱至45℃且在此溫度下攪拌1小時。此後,將混合物冷卻至30℃且使其分離。1.520 g水層具有41 wt%之硫酸濃度。將有機層用碳酸氫鹽溶液洗滌且含有668 g呈96%產率之純度為99.4%的二-第三丁基過氧化物。
將H2 O2 (102 g,30 wt%)添加至水層。將所得混合物給與(速率:500毫升/小時)至在93℃及100-150毫巴下操作的100 ml加熱容器。將水蒸氣傳送至冷凝器。將自容器流出之酸傳送至多隔室蒸發器,其中在100-150毫巴之壓力下將溫度增加至157℃。將來自最後隔室之無色酸冷卻至室溫且具有74 wt%之H2 SO4 含量。在設備、酸或餾出物中未觀測到固體(任何化合物,諸如二丙酮過氧化物)。
在用水稀釋至70 wt% H2 SO4 之後,酸可再次用於根據上述程序製備二-第三丁基過氧化物中。

Claims (24)

  1. 一種用於製造有機過氧化物之方法,其包含以下步驟:a.在H2SO4之存在下使醇或酮與過氧化氫反應,藉此形成包含以下之反應混合物:有機相,其包含有機過氧化物;及水相,其包含(i)至少5wt% H2SO4,及(ii)H2O2及/或有機過氧化物殘餘物,b.將該水相自該有機相分離,c.視情況將H2O2添加至該水相及/或自該水相移除任何殘餘有機化合物,d.獲得包含5-60wt% H2SO4及0.3-35wt% H2O2之水相,以及e.在0.001至1巴之壓力下,在20-300℃範圍內之溫度下加熱步驟d.之該水相,藉此分解至少部分之該H2O2,移除部分之水,且使水性混合物之H2SO4濃度增加至少7個重量百分比點,達至12-95wt%範圍內之濃度。
  2. 如請求項1之方法,其中使由步驟e.產生之該水相之至少部分再循環至步驟a.。
  3. 如請求項1之方法,其中步驟d.之該水相包含0.5-35wt%H2O2
  4. 如請求項3之方法,其中步驟d.之該水相包含1-35wt%H2O2
  5. 如請求項3之方法,其中步驟d.之該水相包含2-35wt% H2O2
  6. 如請求項3之方法,其中步驟d.之該水相包含2-25wt% H2O2
  7. 如請求項1之方法,其中步驟d.之該水相包含10-60wt%H2SO4
  8. 如請求項7之方法,其中步驟d.之該水相包含20-55wt% H2SO4
  9. 如請求項7之方法,其中步驟d.之該水相包含30-50wt% H2SO4
  10. 如請求項1之方法,其中由步驟e.產生之該水性混合物之該H2SO4濃度具有50-95wt%之H2SO4濃度。
  11. 如請求項10之方法,其中由步驟e.產生之該水性混合物之該H2SO4濃度具有70-95wt%之H2SO4濃度。
  12. 如請求項10之方法,其中由步驟e.產生之該水性混合物之該H2SO4濃度具有75-85wt%之H2SO4濃度。
  13. 如請求項1至12中任一項之方法,其中步驟e.包含在30-120℃範圍內之溫度下汽提揮發性有機組分。
  14. 如請求項1至12中任一項之方法,其中步驟e.包含在大氣壓下蒸餾, 隨後在低於大氣壓之壓力下蒸餾。
  15. 如請求項1至12中任一項之方法,其中步驟e.包含蒸餾且其中藉由添加氮氣或空氣使餾出物之氣相中之氧含量保持低於30vol%。
  16. 如請求項1至12中任一項之方法,其中步驟e.包含蒸餾且其中藉由添加氮氣或空氣使餾出物之氣相中之氧含量保持低於8vol%。
  17. 如請求項1至12中任一項之方法,其中以半連續或連續模式進行步驟e.。
  18. 如請求項1至12中任一項之方法,其中所製造之該有機過氧化物係選自二烷基過氧化物、環酮過氧化物、三氧雜環庚烷及脂族氫過氧化物。
  19. 如請求項18之方法,其中該有機過氧化物為選自由以下組成之群的二烷基過氧化物:2,2-二(第三丁基過氧基)丁烷、二異丙苯基過氧化物、二(第三丁基過氧基異丙基)苯、2,5-二甲基-2,5-二(第三丁基過氧基)己烷、二-第三丁基過氧化物、二-第三戊基過氧化物、2,5-二甲基-2,5-二(第三丁基過氧基)己炔-3及第三丁基異丙苯基過氧化物。
  20. 如請求項18之方法,其中該有機過氧化物為選自由以下組成之群的二烷基過氧化物:2,5-二甲基-2,5-二(第三丁基過氧基)己烷、2,5-二甲基-2,5-二(第三丁基過氧基)己炔-3、二-第三戊基過氧化物及二-第三丁基過 氧化物。
  21. 如請求項18之方法,其中該有機過氧化物為選自由以下組成之群的脂族氫過氧化物:第三丁基氫過氧化物、第三戊基氫過氧化物、己二醇氫過氧化物、2,5-二甲基-2,5-二氫過氧基己烷、2,5-二甲基-2,5-二氫過氧基-3-己炔、1,1,3,3-四甲基丁基氫過氧化物及1,1-二甲基丁基氫過氧化物。
  22. 如請求項18之方法,其中該有機過氧化物為3,6,9-三乙基-3,6,9-三甲基-1,4,7-三過氧壬烷或包含3,6,9-三乙基-3,6,9-三甲基-1,4,7-三過氧壬烷之環酮過氧化物之混合物。
  23. 如請求項1至12中任一項之方法,其中在步驟a.中使醇與過氧化氫反應,該醇選自由以下組成之群:第三丁基醇、第三戊基醇及1,1,3,3-四甲基丁醇、2,5-二甲基-2,5-己二醇、2,5-二甲基-2,5-二羥基-己炔-3、1,3-雙(異丙醇)苯及1,4-雙(異丙醇)苯。
  24. 如請求項1至12中任一項之方法,其中在步驟a.中使酮與過氧化氫反應,該酮選自由以下組成之群:丙酮、乙醯基丙酮、甲基乙基酮、甲基丙基酮、甲基異丙基酮、甲基丁基酮、甲基異丁基酮、甲基戊基酮、甲基異戊基酮、甲基己基酮、甲基庚基酮、二乙基酮、乙基丙基酮、乙基戊基酮、甲基辛基酮、甲基壬基酮、環戊酮、環己酮、2-甲基環己酮、3,3,5-三甲基環己酮及其混合物。
TW109104969A 2019-02-22 2020-02-17 製造有機過氧化物之方法 TWI826649B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19158837.5 2019-02-22
EP19158837 2019-02-22

Publications (2)

Publication Number Publication Date
TW202041497A TW202041497A (zh) 2020-11-16
TWI826649B true TWI826649B (zh) 2023-12-21

Family

ID=65766781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104969A TWI826649B (zh) 2019-02-22 2020-02-17 製造有機過氧化物之方法

Country Status (6)

Country Link
US (1) US11407714B2 (zh)
EP (1) EP3927687A1 (zh)
JP (2) JP2022522277A (zh)
BR (1) BR112021016525A2 (zh)
TW (1) TWI826649B (zh)
WO (1) WO2020169322A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1501356A (en) * 1975-04-30 1978-02-15 Bayer Ag Process for the continuous preparation of organic solutions of percarboxylic acids
CN101857563A (zh) * 2010-06-13 2010-10-13 江苏强盛化工有限公司 一种含叔丁基过氧化氢的混合物的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535313A (en) * 1975-02-04 1978-12-13 Interox Chemicals Ltd Production of peracids and of epoxides
US4168274A (en) 1975-02-04 1979-09-18 Interox Chemicals Limited Production of a peracid and an oxirane
DE4232500A1 (de) * 1992-09-28 1994-03-31 Peroxid Chemie Gmbh Verfahren zum Herstellen von wasserarmen oder wasserfreien Lösungen von Alkylhydroperoxiden
ATE508158T1 (de) 2004-12-23 2011-05-15 Akzo Nobel Nv Verfahren zur herstellung einer trioxepanzusammensetzung und verwendung davon bei der vernetzung von polymeren
CN108658824A (zh) 2018-07-23 2018-10-16 常熟市滨江化工有限公司 一种利用回收叔丁醇溶液制备含叔丁基过氧化氢的混合物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1501356A (en) * 1975-04-30 1978-02-15 Bayer Ag Process for the continuous preparation of organic solutions of percarboxylic acids
CN101857563A (zh) * 2010-06-13 2010-10-13 江苏强盛化工有限公司 一种含叔丁基过氧化氢的混合物的制备方法

Also Published As

Publication number Publication date
JP2023116519A (ja) 2023-08-22
WO2020169322A1 (en) 2020-08-27
BR112021016525A2 (pt) 2021-10-26
TW202041497A (zh) 2020-11-16
EP3927687A1 (en) 2021-12-29
US11407714B2 (en) 2022-08-09
JP2022522277A (ja) 2022-04-15
US20220106269A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
KR100690034B1 (ko) 아크릴산의 제조 방법
EP1122249A1 (fr) Procédé de fabrication d'un oxiranne
JP4635644B2 (ja) シクロヘキサノンオキシムの製造方法
FR2742150A1 (fr) Procede de production d'oxyde de propylene a partir d'hydroperoxyde d'ethylbenzene et de propylene
CN113454064B (zh) 用于生产有机过氧化物的方法
EP0061393B1 (fr) Procédé continu de préparation de l'oxyde de propylène
TWI343370B (en) Method for producing ditrimethylolpropane
KR101276996B1 (ko) 프로필렌 옥시드의 제조 방법
TWI826649B (zh) 製造有機過氧化物之方法
CA1186323A (fr) PROCEDE PERFECTIONNE DE FABRICATION DE L'.epsilon.- CAPROLACTONE
US8975444B2 (en) Cumene oxidation
KR102489404B1 (ko) 페놀계 부산물 분해 방법
JP4580151B2 (ja) アクリル酸の製造方法
JP6655646B2 (ja) タール酸の製造方法
US2799715A (en) Preparation of dihydric phenols
EP0974581A1 (en) Process for preparing equilibrium peroxy acid and process for producing lactone
EP0083894A1 (fr) Perfectionnement aux procédés de synthèse des acides percarboxyliques
CN114555551B (zh) 环十二酮及其制造方法
JP5558581B2 (ja) 脱過酸化触媒の製造方法
FR2499986A1 (fr) Procede de production du peroxyde de dicumyle
US20220073457A1 (en) Method for purifying alkyl hydroperoxide by extraction with water and separation of the aqueous phase
JP2004359613A (ja) アクリル酸の製造方法
JP2007284445A (ja) アクリル酸の製造方法
CN112979446A (zh) 制备3,3′,4,4′-二苯甲酮四羧酸的方法
CN116621750A (zh) 环己基苯氧化生成液中氧化副产物的去除方法及其应用