TWI747718B - Displacement compensation method and equipment and speed compensation method and equipment - Google Patents

Displacement compensation method and equipment and speed compensation method and equipment Download PDF

Info

Publication number
TWI747718B
TWI747718B TW110101837A TW110101837A TWI747718B TW I747718 B TWI747718 B TW I747718B TW 110101837 A TW110101837 A TW 110101837A TW 110101837 A TW110101837 A TW 110101837A TW I747718 B TWI747718 B TW I747718B
Authority
TW
Taiwan
Prior art keywords
displacement
time
real
relative
compensation
Prior art date
Application number
TW110101837A
Other languages
Chinese (zh)
Other versions
TW202223339A (en
Inventor
明亮 陳
趙梓明
廖益木
洪梅華
志樑 陳
Original Assignee
大陸商廣州昂寶電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廣州昂寶電子有限公司 filed Critical 大陸商廣州昂寶電子有限公司
Application granted granted Critical
Publication of TWI747718B publication Critical patent/TWI747718B/en
Publication of TW202223339A publication Critical patent/TW202223339A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/005Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/38Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

提供了一種位移補償方法和設備及速度補償方法和設備。該位移補償方法包括:利用光流感測器獲取多旋翼無人機在每個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並利用多旋翼無人機在每個單位時間內相對於被感測平面的實時高度對多旋翼無人機在相應單位時間內的第一和第二實時位移進行高度補償;利用多旋翼無人機在每個單位時間內的經過高度補償的第一和第二實時位移,獲取多旋翼無人機在預定時刻的第一和第二相對位移;以及利用多旋翼無人機在預定時刻相對於被感測平面的相對高度、第一歐拉角、以及第二歐拉角,對第一和第二相對位移進行角度補償。 A displacement compensation method and equipment and a speed compensation method and equipment are provided. The displacement compensation method includes: obtaining the first real-time displacement in the first direction and the second direction of the multi-rotor UAV relative to the initial position on the sensed plane in each unit time by using an optical flue sensor. The second real-time displacement, and the real-time height of the multi-rotor drone relative to the sensed plane in each unit time is used to compensate the first and second real-time displacements of the multi-rotor drone in the corresponding unit time; The first and second height-compensated real-time displacements of the rotary-wing UAV in each unit time to obtain the first and second relative displacements of the multi-rotor UAV at a predetermined time; and the use of the multi-rotor UAV relative to the predetermined time The relative height of the sensed plane, the first Euler angle, and the second Euler angle perform angular compensation for the first and second relative displacements.

Description

位移補償方法和設備及速度補償方法和設備 Displacement compensation method and equipment and speed compensation method and equipment

本發明涉及無人機領域,尤其涉及一種用於多旋翼無人機的位移補償方法和設備及速度補償方法和設備。 The invention relates to the field of unmanned aerial vehicles, and in particular to a displacement compensation method and equipment for multi-rotor unmanned aerial vehicles and a speed compensation method and equipment.

隨著多旋翼無人機技術的發展,多旋翼無人機的使用範圍更加廣泛,多旋翼無人機的飛行及懸停穩定性需求也更加強烈。當前,在室外的全球定位系統(Global Positioning System,GPS)訊號較弱或室內沒有GPS訊號的情況下,光流感測器可用於實現多旋翼無人機的懸停。 With the development of multi-rotor UAV technology, the use of multi-rotor UAV has become more extensive, and the demand for flight and hovering stability of multi-rotor UAV has become stronger. At present, when the outdoor Global Positioning System (GPS) signal is weak or there is no GPS signal indoors, the optical flu detector can be used to realize the hovering of the multi-rotor UAV.

光流感測器可以感測多旋翼無人機相對於被感測平面上的起始位置(即,多旋翼無人機在起飛時刻所在的位置)的位移(下面簡稱為多旋翼無人機的相對位移)和移動速度(下面簡稱為多旋翼無人機的相對移動速度)。但是,由於光流感測器為固定在多旋翼無人機底部的感測器,由其測得的多旋翼無人機的相對位移和相對移動速度容易受多旋翼無人機的姿態的影響。另外,由於光流感測器屬於單目攝像頭感測器,具有無法感知高度的缺點,由其測得的多旋翼無人機的相對位移和相對移動速度存在一定程度的失真。 The optical flu sensor can sense the displacement of the multi-rotor drone relative to the starting position on the sensed plane (that is, the position of the multi-rotor drone at the moment of take-off) (hereinafter referred to as the relative displacement of the multi-rotor drone) And the moving speed (hereinafter referred to as the relative moving speed of the multi-rotor drone). However, because the optical flue sensor is a sensor fixed on the bottom of the multi-rotor UAV, the relative displacement and relative moving speed of the multi-rotor UAV measured by it are easily affected by the attitude of the multi-rotor UAV. In addition, since the optical flue sensor is a monocular camera sensor, it has the disadvantage of not being able to sense the height, and the relative displacement and relative movement speed of the multi-rotor UAV measured by it are distorted to a certain extent.

同時,光流感測器存在距離被感測平面越遠針對被感測平面的解析度越低的情況,該情況會導致隨著光流感測器相對於被感測平面的距離的增加,由其測得的多旋翼無人機的相對位移和相對移動速度的準確度降低。 At the same time, the optical flu sensor has a situation that the farther away from the sensed plane, the lower the resolution of the sensed plane. This situation will lead to the increase of the distance of the optical flu sensor relative to the sensed plane. The accuracy of the measured relative displacement and relative speed of the multi-rotor drone is reduced.

鑒於以上所述的一個或多個問題,本發明提供了一種用於多旋翼無人機的位移補償方法和設備及速度補償方法和設備。 In view of one or more of the above-mentioned problems, the present invention provides a displacement compensation method and device and a speed compensation method and device for a multi-rotor drone.

根據本發明實施例的用於多旋翼無人機的位移補償方法, 包括:從多旋翼無人機從被感測平面上的起始位置的起飛時刻開始,利用光流感測器獲取多旋翼無人機在每個單位時間內相對於起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並且利用多旋翼無人機在每個單位時間內相對於被感測平面的實時高度,對多旋翼無人機在相應單位時間內的第一實時位移和第二實時位移進行高度補償;利用多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移,獲取多旋翼無人機在預定時刻相對於起始位置在第一方向上的第一相對位移和在第二方向上的第二相對位移;以及利用多旋翼無人機在預定時刻相對於被感測平面的相對高度以及多旋翼無人機在預定時刻的第一歐拉角和第二歐拉角,對第一相對位移和第二相對位移進行角度補償。 According to the displacement compensation method for a multi-rotor unmanned aerial vehicle according to an embodiment of the present invention, Including: starting from the take-off time of the multi-rotor drone from the starting position on the sensed plane, the optical flue detector is used to obtain the first direction of the multi-rotor drone relative to the starting position in each unit time. A real-time displacement and a second real-time displacement in the second direction, and the real-time height of the multi-rotor UAV relative to the sensed plane in each unit time is used to determine the first position of the multi-rotor UAV in the corresponding unit time. The real-time displacement and the second real-time displacement are used for height compensation; the first real-time displacement after height compensation and the second real-time displacement after height compensation in each unit time between the take-off time and the predetermined time of the multi-rotor UAV are used to obtain The first relative displacement of the multi-rotor drone in the first direction and the second relative displacement in the second direction relative to the starting position at a predetermined time; and the use of the multi-rotor drone relative to the sensed plane at the predetermined time The relative height and the first Euler angle and the second Euler angle of the multi-rotor UAV at a predetermined time are used for angular compensation of the first relative displacement and the second relative displacement.

根據本發明實施例的用於多旋翼無人機的位移補償設備,包括:高度補償裝置,被配置為從多旋翼無人機從被感測平面上的起始位置的起飛時刻開始,利用光流感測器獲取多旋翼無人機在每個單位時間內相對於起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並且利用多旋翼無人機在每個單位時間內相對於被感測平面的實時高度,對多旋翼無人機在相應單位時間內的第一實時位移和第二實時位移進行高度補償;位移獲取單元,被配置為利用多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移,獲取多旋翼無人機在預定時刻相對於起始位置在第一方向上的第一相對位移和在第二方向上的第二相對位移;以及角度補償裝置,被配置為利用多旋翼無人機在預定時刻相對於被感測平面的相對高度以及多旋翼無人機在預定時刻的第一歐拉角和第二歐拉角,對第一相對位移和第二相對位移進行角度補償。 The displacement compensation device for a multi-rotor drone according to an embodiment of the present invention includes: a height compensation device configured to start from the moment of take-off of the multi-rotor drone from a starting position on the sensed plane, using optical flue measurement The device obtains the first real-time displacement of the multi-rotor drone in the first direction and the second real-time displacement in the second direction relative to the starting position in each unit time, and uses the multi-rotor drone in each unit time The height compensation of the first real-time displacement and the second real-time displacement of the multi-rotor UAV in the corresponding unit time is performed with respect to the real-time height of the plane to be sensed; the displacement acquisition unit is configured to use the multi-rotor UAV from the moment of take-off The first height-compensated real-time displacement and the height-compensated second real-time displacement in each unit time between the predetermined time and the predetermined time are obtained to obtain the first position of the multi-rotor drone in the first direction relative to the starting position at the predetermined time. A relative displacement and a second relative displacement in the second direction; and an angle compensation device configured to use the relative height of the multi-rotor drone with respect to the sensed plane at a predetermined time and the first of the multi-rotor drone at the predetermined time An Euler angle and a second Euler angle are used for angular compensation of the first relative displacement and the second relative displacement.

根據本發明實施例的用於多旋翼無人機的位移補償方法和設備,通過利用多旋翼無人機在每個單位時間內的實時高度對光流感測器在相應單位時間內測得的多旋翼無人機的第一和第二實時位移進行高度補償,利用多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的 經過高度補償的第一和第二實時位移獲取多旋翼無人機在預定時刻的第一和第二相對位移,並利用多旋翼無人機在預定時刻的相對高度、第一歐拉角、和第二歐拉角對多旋翼無人機在預定時刻的第一和第二相對位移進行角度補償,可以得到多旋翼無人機在預定時刻在第一和第二方向的更為準確的第一和第二實際相對位移。 According to the displacement compensation method and device for multi-rotor drones according to the embodiments of the present invention, the real-time height of the multi-rotor drones in each unit time is used to compare the multi-rotor drones measured by the optical flu detector in the corresponding unit time. The first and second real-time displacements of the aircraft are used for height compensation, using the multi-rotor UAV from the time of take-off to the scheduled time in each unit time The first and second real-time displacements after height compensation are used to obtain the first and second relative displacements of the multi-rotor drone at a predetermined time, and use the relative height, the first Euler angle, and the second of the multi-rotor drone at the predetermined time. Euler angle compensates for the first and second relative displacements of the multi-rotor UAV at the predetermined time, and can obtain the more accurate first and second actuals of the multi-rotor UAV in the first and second directions at the predetermined time. Relative displacement.

根據本發明實施例的用於多旋翼無人機的速度補償方法,包括:利用光流感測器獲取多旋翼無人機在最接近預定時刻的一個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移;利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第一旋轉軸的第一轉動角速度對第一實時位移進行角速度補償,並利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第二旋轉軸的第二轉動角速度對第二實時位移進行角速度補償;以及利用多旋翼無人機在預定時刻相對於被感測平面的相對高度,對經過角速度補償的第一實時位移和經過角速度補償的第二實時位移進行高度補償,其中將經過角速度和高度補償的第一實時位移作為多旋翼無人機在預定時刻相對於起始位置在第一方向上的第一相對移動速度,並將經過角速度和高度補償的第二實時位移作為多旋翼無人機在預定時刻相對於起始位置在第二方向上的第二相對移動速度。 The speed compensation method for a multi-rotor drone according to an embodiment of the present invention includes: using an optical flue sensor to obtain the starting position of the multi-rotor drone relative to the sensed plane in a unit time closest to a predetermined time The first real-time displacement in the first direction and the second real-time displacement in the second direction; the first rotation of the multi-rotor drone relative to its own first rotation axis within a unit time closest to the predetermined time Angular velocity performs angular velocity compensation on the first real-time displacement, and uses the second rotation angular velocity of the multi-rotor drone relative to its own second rotation axis within a unit time closest to the predetermined time to perform angular velocity compensation on the second real-time displacement; and Utilizing the relative height of the multi-rotor UAV relative to the sensed plane at a predetermined time, the first real-time displacement after angular velocity compensation and the second real-time displacement after angular velocity compensation are highly compensated. The real-time displacement is taken as the first relative movement speed of the multi-rotor drone in the first direction with respect to the starting position at a predetermined time, and the second real-time displacement after angular velocity and height compensation is taken as the multi-rotor drone relative to the starting position at the predetermined time. The second relative moving speed of the starting position in the second direction.

根據本發明實施例的用於多旋翼無人機的速度補償設備,包括:速度獲取裝置,被配置為利用光流感測器獲取多旋翼無人機在最接近預定時刻的一個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移;角速度補償裝置,被配置為利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第一旋轉軸的第一轉動角速度對第一實時位移進行角速度補償,並利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第二旋轉軸的第二轉動角速度對第二實時位移進行角速度補償;以及高度補償裝置,利用多旋翼無人機在預定時刻相對於被感測平面的相對高度,對經過角速度補償的第一實時位移和經過角速度補償的第二實時位移進行高度 補償,其中經過角速度和高度補償的第一實時位移被作為多旋翼無人機在預定時刻相對於起始位置在第一方向上的第一相對移動速度,經過角速度和高度補償的第二實時位移被作為多旋翼無人機在預定時刻相對於起始位置在第二方向上的第二相對移動速度。 The speed compensation device for a multi-rotor drone according to an embodiment of the present invention includes: a speed acquisition device configured to use an optical flue sensor to acquire the relative sensing of the multi-rotor drone within a unit time closest to the predetermined time. The first real-time displacement of the starting position on the survey plane in the first direction and the second real-time displacement in the second direction; the angular velocity compensation device is configured to use a unit time of the multi-rotor drone closest to the predetermined moment The first rotation angular velocity relative to its own first rotation axis is used to compensate the first real-time displacement by angular velocity, and the multi-rotor UAV is used to perform angular velocity compensation relative to its own second rotation axis within a unit time closest to the predetermined time. The second angular velocity of rotation performs angular velocity compensation for the second real-time displacement; and a height compensation device that uses the relative height of the multi-rotor UAV at a predetermined time with respect to the plane to be sensed to perform angular velocity compensation on the first real-time displacement and the angular velocity compensated The second real-time displacement carries on the height Compensation, where the first real-time displacement after angular velocity and height compensation is taken as the first relative movement speed of the multi-rotor drone in the first direction with respect to the starting position at a predetermined time, and the second real-time displacement after angular velocity and height compensation is taken as As the second relative moving speed of the multi-rotor drone in the second direction with respect to the starting position at a predetermined time.

根據本發明實施例的速度補償方法和設備,通過利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第一和第二旋轉軸的第一和第二轉動角速度分別對光流感測器在該單位時間內測得的多旋翼無人機的第一實時位移和第二實時位移進行角速度補償,並利用多旋翼無人機在預定時刻的相對高度對經過角速度補償的第一和第二實時位移進行高度補償,可以得到多旋翼無人機在預定時刻在第一和第二方向的更為準確的第一和第二實際相對移動速度。 According to the speed compensation method and device of the embodiments of the present invention, the first and second rotation angular velocities of the multi-rotor drone relative to its own first and second rotation axes in a unit time closest to the predetermined time are respectively aligned with each other. The first real-time displacement and the second real-time displacement of the multi-rotor UAV measured by the optical flu detector in the unit time are used for angular velocity compensation, and the relative height of the multi-rotor UAV at a predetermined time is used to compensate the first sum of the angular velocity. The height compensation of the second real-time displacement can obtain the more accurate first and second actual relative moving speeds of the multi-rotor drone in the first and second directions at the predetermined time.

100:位移補償設備 100: Displacement compensation equipment

102:第一高度補償裝置 102: The first height compensation device

104:位移獲取裝置 104: displacement acquisition device

106:角度補償裝置 106: Angle compensation device

108:第一低通濾波裝置 108: The first low-pass filter device

200:位移補償方法 200: Displacement compensation method

300:速度補償設備 300: Speed compensation equipment

302:速度獲取裝置 302: Speed Obtaining Device

304:角速度補償裝置 304: Angular velocity compensation device

306:第二高度補償裝置 306: second height compensation device

308:第二低通濾波裝置 308: The second low-pass filter device

400:速度補償方法 400: Speed compensation method

600:電腦系統 600: computer system

601:處理裝置 601: Processing Device

602:唯讀記憶體(ROM) 602: Read Only Memory (ROM)

603:隨機存取記憶體(RAM) 603: Random Access Memory (RAM)

604:匯流排 604: Bus

605:輸入/輸出(I/O)介面 605: input/output (I/O) interface

606:輸入裝置 606: input device

607:輸出裝置 607: output device

608:存儲裝置 608: storage device

609:通訊裝置 609: Communication Device

S202,S204,S206,S208,S402,S404,S406,S408:步驟 S202, S204, S206, S208, S402, S404, S406, S408: steps

A:角速度限幅 A: Angular velocity limit

Angle roll :橫滾角 Angle roll : roll angle

f c :截止頻率 f c : cutoff frequency

H rela :相對高度 H rela : relative height

h rela :實時高度 h rela : real-time height

K 1 ,K 2 ,K 3 ,K 4 ,λ:係數 K 1 , K 2 , K 3 , K 4 , λ : coefficient

opt x :第一實時位移 opt x : first real-time displacement

opt y :第二實時位移 opt y : second real-time displacement

P:低通濾波係數 P : Low-pass filter coefficient

R cpi :解析度 R cpi : resolution

S offseth_x :第一相對位移 S offseth_x : the first relative displacement

S offseth_y :第二相對位移 S offseth_y : second relative displacement

S opt_x :第一實際相對位移 S opt_x : the first actual relative displacement

S opt_y :第二實際相對位移 S opt_y : the second actual relative displacement

S(n),S(n-1),S opt (n):第一或第二實際相對位移 S ( n ), S ( n -1), S opt ( n ): the first or second actual relative displacement

T:採樣週期 T : sampling period

V opt_x :第一相對移動速度 V opt_x : the first relative movement speed

V opt_y :第二相對移動速度 V opt_y : second relative movement speed

V(n),V(n-1),V opt (n):第一或第二相對移動速度 V ( n ), V ( n -1), V opt ( n ): the first or second relative moving speed

α,β:解析度特性參數 α , β : Resolution characteristic parameters

ω roll :橫滾軸的轉動角速度 ω roll : the angular velocity of the roll axis

ω pitch :俯仰軸的轉動角速度 ω pitch : the angular velocity of the pitch axis

從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明,其中: The present invention can be better understood from the following description of the specific embodiments of the present invention in conjunction with the drawings, in which:

圖1示出了示出了根據本發明實施例的用於多旋翼無人機的位移補償設備的框圖; Figure 1 shows a block diagram showing a displacement compensation device for a multi-rotor drone according to an embodiment of the present invention;

圖2示出了根據本發明實施例的用於多旋翼無人機的位移補償方法的流程圖; Figure 2 shows a flowchart of a displacement compensation method for a multi-rotor unmanned aerial vehicle according to an embodiment of the present invention;

圖3示出了根據本發明實施例的用於多旋翼無人機的速度補償設備的框圖; Figure 3 shows a block diagram of a speed compensation device for a multi-rotor drone according to an embodiment of the present invention;

圖4示出了根據本發明實施例的用於多旋翼無人機的速度補償方法的流程圖; Figure 4 shows a flowchart of a speed compensation method for a multi-rotor drone according to an embodiment of the present invention;

圖5示出了光流感測器相對於被感測平面的相對高度與光流感測器針對被感測平面的解析度之間的關係的曲線圖;以及 FIG. 5 shows a graph of the relationship between the relative height of the optical flu sensor relative to the sensed plane and the resolution of the optical flu sensor with respect to the sensed plane; and

圖6示出了可以實現根據本發明實施例的用於多旋翼無人機的位移補償方法和裝置的電腦系統的示意圖。 Fig. 6 shows a schematic diagram of a computer system that can implement a displacement compensation method and device for a multi-rotor unmanned aerial vehicle according to an embodiment of the present invention.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明絕不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 The features and exemplary embodiments of various aspects of the present invention will be described in detail below. In the following detailed description, many specific details are proposed in order to provide a comprehensive understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention. The present invention is by no means limited to any specific configuration and algorithm proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the present invention. In the drawings and the following description, well-known structures and technologies are not shown in order to avoid unnecessary obscurity of the present invention.

鑒於使用光流感測器測得的多旋翼無人機相對於被感測平面上的起始位置(即,多旋翼無人機在起飛時刻所在的位置)的位移和移動速度存在的上述問題,本發明提出了一種用於多旋翼無人機的位移補償方法和設備及速度補償方法和設備,其中,由於考慮了多旋翼無人機的姿態及其相對於被感測平面的高度的影響,可以得到多旋翼無人機的更為準確的相對位移和相對移動速度。 In view of the above-mentioned problems in the displacement and moving speed of the multi-rotor drone relative to the initial position on the sensed plane (that is, the position of the multi-rotor drone at the take-off time) measured by the optical flu sensor, the present invention A displacement compensation method and equipment and speed compensation method and equipment for a multi-rotor UAV are proposed. Among them, the attitude of the multi-rotor UAV and the influence of its height relative to the sensed plane are considered, and the multi-rotor UAV can be obtained. The more accurate relative displacement and relative speed of the drone.

這裡,需要說明的是,多旋翼無人機的實時位移是指多旋翼無人機在某個單位時間內相對於被感測平面上的起始位置的實時位移;多旋翼無人機的相對位移是指多旋翼無人機在某個時刻相對於被感測平面上的起始位置的位移;多旋翼無人機的實時高度是指多旋翼無人機在某個單位時間內相對於被感測平面的平均高度;多旋翼無人機的相對高度是指多旋翼無人機在某個時刻相對於被感測平面的高度;多旋翼無人機的相對移動速度是指多旋翼無人機在某個時刻相對於被感測平面上的起始位置的移動速度。 Here, it should be noted that the real-time displacement of the multi-rotor UAV refers to the real-time displacement of the multi-rotor UAV relative to the starting position on the sensed plane in a certain unit time; the relative displacement of the multi-rotor UAV refers to The displacement of the multi-rotor drone relative to the starting position on the sensed plane at a certain moment; the real-time height of the multi-rotor drone refers to the average height of the multi-rotor drone relative to the sensed plane in a certain unit time ; The relative height of the multi-rotor drone refers to the height of the multi-rotor drone relative to the sensed plane at a certain moment; the relative movement speed of the multi-rotor drone refers to the multi-rotor drone relative to the sensed plane at a certain moment The moving speed of the starting position on the plane.

圖1示出了根據本發明實施例的用於多旋翼無人機的位移補償設備100的框圖。圖2示出了根據本發明實施例的用於多旋翼無人機的位移補償方法200的流程圖。下面,結合圖1和圖2,詳細描述根據本發明實施例的用於多旋翼無人機的位移補償設備100和方法200。 Fig. 1 shows a block diagram of a displacement compensation device 100 for a multi-rotor drone according to an embodiment of the present invention. Fig. 2 shows a flowchart of a displacement compensation method 200 for a multi-rotor drone according to an embodiment of the present invention. Hereinafter, in conjunction with FIG. 1 and FIG. 2, a displacement compensation device 100 and method 200 for a multi-rotor drone according to an embodiment of the present invention will be described in detail.

如圖1所示,根據本發明實施例的用於多旋翼無人機的位移補償設備100包括第一高度補償裝置102、位移獲取裝置104、以及角度補償裝置106,其中:第一高度補償裝置102被配置為從多旋翼無人機從被感測平面上的起始位置的起飛時刻開始,利用光流感測器獲取多旋翼無人機在每個單位時間內相對於起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並且利用多旋翼無人機在每個單位時間內相對於被感測平面的實時高度,對多旋翼無人機在相應單位時間內的第一實時位移和第二實時位移進行高度補償(即,執行步驟S202)。位移獲取裝置104被配置為利用多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移,獲取多旋翼無人機在預定時刻相對於起始位置在第一方向上的第一相對位移和在第二方向上的第二相對位移(即,執行步驟S204)。角度補償裝置106被配置為利用多旋翼無人機在預定時刻相對於被感測平面的相對高度以及多旋翼無人機在預定時刻的第一歐拉角和第二歐拉角,對多旋翼無人機在預定時刻的第一相對位移和第二相對位移進行角度補償(即,執行步驟S206)。 As shown in FIG. 1, a displacement compensation device 100 for a multi-rotor drone according to an embodiment of the present invention includes a first height compensation device 102, a displacement acquisition device 104, and an angle compensation device 106, wherein: the first height compensation device 102 It is configured to start from the take-off time of the multi-rotor drone from the starting position on the sensed plane, and use the optical flu sensor to obtain the first direction of the multi-rotor drone relative to the starting position in each unit time. The first real-time displacement and the second real-time displacement in the second direction, and the real-time height of the multi-rotor drone relative to the sensed plane in each unit time is used to determine the first real-time displacement of the multi-rotor drone in the corresponding unit time. A real-time displacement and a second real-time displacement are subjected to height compensation (that is, step S202 is executed). The displacement acquiring device 104 is configured to obtain the multi-rotor drone by using the highly compensated first real-time displacement and the height-compensated second real-time displacement in each unit time from the take-off time to the predetermined time of the multi-rotor drone The first relative displacement in the first direction and the second relative displacement in the second direction relative to the starting position at the predetermined time (ie, step S204 is performed). The angle compensation device 106 is configured to use the relative height of the multi-rotor drone with respect to the plane to be sensed at a predetermined time and the first Euler angle and the second Euler angle of the multi-rotor drone at the predetermined time. The angle compensation is performed for the first relative displacement and the second relative displacement at the predetermined time (that is, step S206 is executed).

根據本發明實施例的用於多旋翼無人機的位移補償方法和設備,通過利用多旋翼無人機在每個單位時間內的實時高度對光流感測器在相應單位時間內測得的多旋翼無人機的第一和第二實時位移進行高度補償,利用多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一和第二實時位移獲取多旋翼無人機在預定時刻的第一和第二相對位移,並利用多旋翼無人機在預定時刻的相對高度、第一歐拉角、和第二歐拉角對多旋翼無人機在預定時刻的第一和第二相對位移進行角度補償,可以得到多旋翼無人機在預定時刻在第一和第二方向的更為準確的第一和第二實際相對位移。 According to the displacement compensation method and device for multi-rotor drones according to the embodiments of the present invention, the real-time height of the multi-rotor drones in each unit time is used to compare the multi-rotor drones measured by the optical flu detector in the corresponding unit time. The first and second real-time displacements of the multi-rotor drone are used for height compensation, and the first and second real-time displacements of the multi-rotor drone are obtained by using the highly compensated first and second real-time displacements of the multi-rotor drone from the take-off time to the scheduled time in each unit time. The first and second relative displacements at the predetermined time, and the relative height, the first Euler angle, and the second Euler angle of the multi-rotor drone at the predetermined time are used to compare the first and second positions of the multi-rotor drone at the predetermined time. The angle compensation of the relative displacement can obtain the more accurate first and second actual relative displacements of the multi-rotor drone in the first and second directions at the predetermined time.

在一些實施例中,可以定義多旋翼無人機的機頭指向為多旋翼無人機的機體坐標系的橫滾軸方向,定義在水平方向垂直於多旋翼無人機的機頭指向的方向為多旋翼無人機的機體坐標系的俯仰軸方向。多 旋翼無人機的橫滾角為多旋翼無人機的橫滾軸與水平面之間的夾角,多旋翼無人機的俯仰角為多旋翼無人機的俯仰軸與水平面之間的夾角。可以將多旋翼無人機的橫滾角和俯仰角統稱為多旋翼無人機的歐拉角,並且可以將多旋翼無人機的橫滾軸方向和俯仰軸方向分別作為第一方向和第二方向。 In some embodiments, the nose of the multi-rotor drone can be defined as the roll axis direction of the body coordinate system of the multi-rotor drone, and the direction perpendicular to the nose of the multi-rotor drone in the horizontal direction can be defined as the multi-rotor. The direction of the pitch axis of the drone's body coordinate system. many The roll angle of the rotary-wing drone is the angle between the roll axis of the multi-rotor drone and the horizontal plane, and the pitch angle of the multi-rotor drone is the angle between the pitch axis of the multi-rotor drone and the horizontal plane. The roll angle and pitch angle of the multi-rotor drone can be collectively referred to as the Euler angle of the multi-rotor drone, and the roll axis direction and the pitch axis direction of the multi-rotor drone can be regarded as the first direction and the second direction, respectively.

這裡,為了簡單,將多旋翼無人機在第一方向的實時位移、相對位移、以及相對移動速度稱為多旋翼無人機的第一實時位移、第一相對位移、以及第一相對移動速度,並且將多旋翼無人機多旋翼無人機在第二方向的實時位移、相對位移、以及相對移動速度稱為多旋翼無人機的第二實時位移、第二相對位移、以及第二相對移動速度。 Here, for simplicity, the real-time displacement, relative displacement, and relative speed of the multi-rotor drone in the first direction are referred to as the first real-time displacement, first relative displacement, and first relative speed of the multi-rotor drone, and The real-time displacement, relative displacement, and relative moving speed of the multi-rotor drone in the second direction are called the second real-time displacement, second relative displacement, and second relative moving speed of the multi-rotor drone.

在一些實施例中,第一高度補償裝置102可以進一步被配置為通過將多旋翼無人機在每個單位時間內的實時高度與多旋翼無人機在相應單位時間內的第一實時位移相乘來對該第一實時位移進行高度補償,並且通過將多旋翼無人機在每個單位時間內的實時高度與多旋翼無人機在相應單位時間內的第二實時位移相乘來對該第二實時位移進行高度補償。 In some embodiments, the first height compensation device 102 may be further configured to multiply the real-time height of the multi-rotor drone in each unit time by the first real-time displacement of the multi-rotor drone in the corresponding unit time. Perform height compensation for the first real-time displacement, and multiply the real-time height of the multi-rotor drone in each unit time by the second real-time displacement of the multi-rotor drone in the corresponding unit time to obtain the second real-time displacement Perform height compensation.

例如,光流感測器測得的多旋翼無人機在某個單位時間內的第一實時位移和第二實時位移分別為opt x opt y ,並且多旋翼無人機在該單位時間內的實時高度為h rela ,則多旋翼無人機在該單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移分別為opt x ×h rela opt y ×h rela 。這裡,可以將opt x 看作光流感測器測得的多旋翼無人機在該單位時間內相對於被感測平面上的起始位置在第一方向上的第一平均移動速度,並且將opt y 看作光流感測器測得的多旋翼無人機在該單位時間內相對於被感測平面上的起始位置在第二方向上的第二平均移動速度。 For example, the first real-time displacement and the second real-time displacement of the multi-rotor UAV measured by the optical flu detector in a certain unit time are opt x and opt y respectively , and the real-time height of the multi-rotor UAV in the unit time Is h rela , the first and second height-compensated real-time displacements of the multi-rotor drone in the unit time are opt x × h rela and opt y × h rela respectively . Here, opt x can be regarded as the first average moving speed of the multi-rotor drone in the first direction relative to the starting position on the sensed plane measured by the optical flu detector in the unit time, and opt y is regarded as the second average moving speed of the multi-rotor drone in the second direction measured by the optical flu detector relative to the initial position on the plane to be sensed in the unit time.

在一些實施例中,位移獲取裝置104可以進一步被配置為通過將多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移進行累加來獲取多旋翼無人機在預定時刻的第一相對位移,並且通過將多旋翼無人機從起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第二實時位移進行累加來獲取多旋翼無人機在預定時刻的第二相對位移。 In some embodiments, the displacement obtaining device 104 may be further configured to obtain the multi-rotor drone by accumulating the first real-time displacement of the multi-rotor drone, which has undergone height compensation, in each unit time between the time of take-off and the predetermined time. The first relative displacement of the drone at a predetermined time, and the second real-time displacement of the multi-rotor drone in each unit time from the take-off time to the predetermined time is accumulated to obtain the multi-rotor drone’s The second relative displacement at the predetermined time.

例如,可以根據以下等式(1)計算多旋翼無人機在預定時刻的第一相對位移和第二相對位移: For example, the first relative displacement and the second relative displacement of the multi-rotor drone at a predetermined time can be calculated according to the following equation (1):

Figure 110101837-A0101-12-0008-1
Figure 110101837-A0101-12-0008-1

其中,S offseth_x 表示多旋翼無人機在預定時刻的第一相對位移,S offseth_y 表示多旋翼無人機在預定時刻的第二相對位移,opt x 表示多旋翼無人機在每個單位時間內的第一實時位移,opt y 表示多旋翼無人機在每個單位時間內的第二實時位移,h rela 表示多旋翼無人機在每個單位時間內的實時高度,K 1 為將位移規範化到標準單位(例如,釐米)的係數。 Among them, S offseth_x represents the first relative displacement of the multi-rotor drone at a predetermined time, S offseth_y represents the second relative displacement of the multi-rotor drone at the predetermined time, and opt x represents the first relative displacement of the multi-rotor drone in each unit time. Real-time displacement, opt y represents the second real-time displacement of the multi-rotor UAV in each unit time, h rela represents the real-time height of the multi-rotor UAV in each unit time, K 1 is the normalization of the displacement to standard units (e.g. , Cm).

在一些實施例中,角度補償裝置106可以進一步被配置為通過以下處理對多旋翼無人機在預定時刻的第一相對位移進行角度補償:利用多旋翼無人機在預定時刻的第一歐拉角和相對高度通過乘法運算獲取第一角度補償值,並利用第一角度補償值對多旋翼無人機在預定時刻的第一相對位移進行角度補償。 In some embodiments, the angle compensation device 106 may be further configured to perform angle compensation for the first relative displacement of the multi-rotor drone at a predetermined time by the following processing: using the first Euler angle and the first Euler angle of the multi-rotor drone at the predetermined time The relative height obtains the first angle compensation value through multiplication, and uses the first angle compensation value to perform angle compensation for the first relative displacement of the multi-rotor drone at a predetermined time.

在一些實施例中,角度補償裝置106可以進一步被配置為通過以下處理對多旋翼無人機在預定時刻的第二相對位移進行角度補償:利用多旋翼無人機在預定時刻的第二歐拉角和相對高度通過乘法運算獲取第二角度補償值,並利用第二角度補償值對多旋翼無人機在預定時刻的第二相對位移進行角度補償。 In some embodiments, the angle compensation device 106 may be further configured to perform angle compensation for the second relative displacement of the multi-rotor drone at a predetermined time by using the following processing: The relative height obtains the second angle compensation value through multiplication, and uses the second angle compensation value to perform angle compensation for the second relative displacement of the multi-rotor drone at a predetermined time.

這裡,可以將多旋翼無人機在預定時刻的經過角度補償的第一相對位移和第二相對位移分別稱為多旋翼無人機在預定時刻的第一實際相對位移和第二實際相對位移。 Here, the angle-compensated first relative displacement and the second relative displacement of the multi-rotor drone at a predetermined time may be referred to as the first actual relative displacement and the second actual relative displacement of the multi-rotor drone at the predetermined time, respectively.

在一些實施例中,多旋翼無人機在預定時刻的第一歐拉角可以是多旋翼無人機在預定時刻的橫滾角,多旋翼無人機在預定時刻的第二歐拉角可以是多旋翼無人機在預定時刻的俯仰角。在這種情況下,可以根據以下等式(2)計算多旋翼無人機在預定時刻的第一實際相對位移 和第二實際相對位移: In some embodiments, the first Euler angle of the multi-rotor drone at the predetermined time may be the roll angle of the multi-rotor drone at the predetermined time, and the second Euler angle of the multi-rotor drone at the predetermined time may be the multi-rotor drone. The pitch angle of the drone at a predetermined moment. In this case, the first actual relative displacement of the multi-rotor drone at a predetermined time can be calculated according to the following equation (2) And the second actual relative displacement:

Figure 110101837-A0101-12-0009-2
Figure 110101837-A0101-12-0009-2

在一些實施例中,多旋翼無人機在預定時刻的第一歐拉角可以是多旋翼無人機在預定時刻的俯仰角,多旋翼無人機在預定時刻的第二歐拉角可以是多旋翼無人機在預定時刻的橫滾角。在這種情況下,可以根據以下等式(3)計算多旋翼無人機在預定時刻的第一實際相對位移和第二實際相對位移: In some embodiments, the first Euler angle of the multi-rotor drone at the predetermined time may be the pitch angle of the multi-rotor drone at the predetermined time, and the second Euler angle of the multi-rotor drone at the predetermined time may be the multi-rotor drone. The roll angle of the machine at a predetermined moment. In this case, the first actual relative displacement and the second actual relative displacement of the multi-rotor drone at a predetermined time can be calculated according to the following equation (3):

Figure 110101837-A0101-12-0009-3
Figure 110101837-A0101-12-0009-3

在等式(2)和等式(3)中,S opt_x 表示多旋翼無人機在預定時刻的第一實際相對位移,S opt_y 表示多旋翼無人機在預定時刻的第二實際相對位移,S offseth_x 表示多旋翼無人機在預定時刻的第一相對位移,S offseth_y 表示多旋翼無人機在預定時刻的第二相對位移,Angle roll 表示多旋翼無人機在預定時刻的橫滾角,H rela 表示多旋翼無人機在預定時刻的相對高度,K 2 為將多旋翼無人機的歐拉角變化導致的位移規範化到標準單位(例如,釐米)的係數。 In equations (2) and (3), S opt_x represents the first actual relative displacement of the multi-rotor drone at a predetermined time, S opt_y represents the second actual relative displacement of the multi-rotor drone at the predetermined time, S offseth_x Represents the first relative displacement of the multi-rotor UAV at the predetermined time, S offseth_y represents the second relative displacement of the multi-rotor UAV at the predetermined time, Angle roll represents the roll angle of the multi-rotor UAV at the predetermined time, H rela represents the multi-rotor The relative height of the drone at a predetermined moment, K 2 is a coefficient that normalizes the displacement caused by the change of the Euler angle of the multi-rotor drone to a standard unit (for example, centimeters).

圖3示出了根據本發明實施例的用於多旋翼無人機的速度補償設備300的框圖。圖4示出了根據本發明實施例的用於多旋翼無人機的速度補償方法400的流程圖。下面,結合圖3和圖4,詳細描述根據本發明實施例的用於多旋翼無人機的速度補償設備300和方法400。 Fig. 3 shows a block diagram of a speed compensation device 300 for a multi-rotor drone according to an embodiment of the present invention. FIG. 4 shows a flowchart of a speed compensation method 400 for a multi-rotor drone according to an embodiment of the present invention. Below, in conjunction with FIG. 3 and FIG. 4, a speed compensation device 300 and method 400 for a multi-rotor drone according to an embodiment of the present invention will be described in detail.

如圖3所示,根據本發明實施例的用於多旋翼無人機的速度補償設備300可以包括速度獲取裝置302、角速度補償裝置304、以及第二高度補償裝置306,其中:速度獲取裝置302被配置為利用光流感測器獲取多旋翼無人機在最接近預定時刻的一個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實 時位移(即,執行步驟S402)。角速度補償裝置304被配置為利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第一旋轉軸的第一轉動角速度對多旋翼無人機在該單位時間內的第一實時位移進行角速度補償,並利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第二旋轉軸的第二轉動角速度對多旋翼無人機在該單位時間內的第二實時位移進行角速度補償(即,執行步驟S404)。第二高度補償裝置306被配置為利用多旋翼無人機在預定時刻相對於被感測平面的相對高度,對多旋翼無人機在最接近預定時刻的一個單位時間內的經過角速度補償的第一實時位移和經過角速度補償的第二實時位移進行高度補償(即,執行步驟S406)。 As shown in FIG. 3, a speed compensation device 300 for a multi-rotor drone according to an embodiment of the present invention may include a speed acquisition device 302, an angular velocity compensation device 304, and a second height compensation device 306, wherein: the speed acquisition device 302 is It is configured to use the optical flu detector to obtain the first real-time displacement in the first direction and the second direction of the multi-rotor drone relative to the starting position on the sensed plane within a unit time closest to the predetermined time. Second reality Time shift (that is, step S402 is executed). The angular velocity compensation device 304 is configured to use the first rotational angular velocity of the multi-rotor drone relative to its own first rotation axis within a unit time closest to the predetermined time to determine the first real-time value of the multi-rotor drone in the unit time. The displacement is compensated for angular velocity, and the second rotation angular velocity of the multi-rotor UAV relative to its own second rotation axis in a unit time closest to the predetermined time is used to calculate the second real-time displacement of the multi-rotor UAV in the unit time. Perform angular velocity compensation (that is, execute step S404). The second height compensation device 306 is configured to use the relative height of the multi-rotor drone with respect to the plane to be sensed at a predetermined time to compensate the first real-time angular velocity of the multi-rotor drone within a unit time closest to the predetermined time. The displacement and the second real-time displacement subjected to angular velocity compensation are height compensated (that is, step S406 is executed).

這裡,多旋翼無人機在最接近預定時刻的一個單位時間內的經過角速度和高度補償的第一實時位移被作為多旋翼無人機在預定時刻相對於被感測平面上的起始位置在第一方向上的第一相對移動速度,多旋翼無人機在最接近預定時刻的一個單位時間內的經過角速度和高度補償的第二實時位移被作為多旋翼無人機在預定時刻相對於被感測平面上的起始位置在第二方向上的第二相對移動速度。 Here, the first real-time displacement of the multi-rotor drone after angular velocity and height compensation within a unit time closest to the predetermined time is taken as the first real-time displacement of the multi-rotor drone relative to the sensed plane at the predetermined time. The first relative moving speed in the direction, the second real-time displacement of the multi-rotor UAV in a unit time closest to the predetermined time after angular velocity and height compensation is taken as the multi-rotor UAV relative to the sensed plane at the predetermined time The second relative movement speed of the starting position in the second direction.

根據本發明實施例的用於多旋翼無人機的速度補償方法和設備,通過利用多旋翼無人機在最接近預定時刻的一個單位時間內相對於其自身的第一和第二旋轉軸的第一和第二轉動角速度分別對光流感測器在該單位時間內測得的多旋翼無人機的第一實時位移和第二實時位移進行角速度補償,並利用多旋翼無人機在預定時刻的相對高度對經過角速度補償的第一和第二實時位移進行高度補償,可以得到多旋翼無人機在預定時刻在第一和第二方向的更為準確的第一和第二實際相對移動速度。 According to the speed compensation method and device for multi-rotor drones according to the embodiments of the present invention, the first and second rotation axes of the multi-rotor drone relative to its own first and second rotation axis within a unit time closest to the predetermined time are used. And the second rotational angular velocity respectively perform angular velocity compensation on the first real-time displacement and the second real-time displacement of the multi-rotor UAV measured by the optical flu detector in the unit time, and use the relative height of the multi-rotor UAV at a predetermined time to The first and second real-time displacements after angular velocity compensation are compensated for height, and the more accurate first and second actual relative moving speeds of the multi-rotor drone in the first and second directions at the predetermined time can be obtained.

在一些實施例中,第二高度補償裝置306可以進一步被配置為通過將多旋翼無人機在最接近預定時刻的一個單位時間內的經過角速度補償的第一實時位移與多旋翼無人機在預定時刻的相對高度相乘,來對該經過角速度補償的第一實時位移進行高度補償,並且通過將多旋翼無人機在最接近預定時刻的一個單位時間內的經過角速度補償的第二實時位 移與多旋翼無人機在預定時刻的相對高度相乘,來對該經過角速度補償的第二實時位移進行高度補償。 In some embodiments, the second height compensation device 306 may be further configured to compare the angular velocity compensated first real-time displacement of the multi-rotor drone in a unit time closest to the predetermined time with the multi-rotor drone at the predetermined time. The relative height of the multi-rotor UAV is multiplied by the relative height to compensate the first real-time displacement with angular velocity compensation. The shift is multiplied by the relative height of the multi-rotor UAV at a predetermined time to compensate the second real-time displacement with angular velocity compensation.

在一些實施例中,在多旋翼無人機在預定時刻的第一歐拉角和第二歐拉角分別是多旋翼無人機在預定時刻的橫滾角和俯仰角的情況下,可以根據以下等式(4)計算多旋翼無人機在預定時刻的第一相對移動速度和第二相對移動速度: In some embodiments, in the case that the first Euler angle and the second Euler angle of the multi-rotor drone at a predetermined time are the roll and pitch angles of the multi-rotor drone at the predetermined time, the following can be used: Equation (4) calculates the first relative moving speed and the second relative moving speed of the multi-rotor UAV at a predetermined time:

Figure 110101837-A0101-12-0011-4
Figure 110101837-A0101-12-0011-4

在一些實施例中,在多旋翼無人機在預定時刻的第一歐拉角和第二歐拉角分別是多旋翼無人機在預定時刻的俯仰角和橫滾角的情況下,可以根據以下等式(5)計算多旋翼無人機在預定時刻的第一相對移動速度和第二相對移動速度: In some embodiments, in the case where the first Euler angle and the second Euler angle of the multi-rotor drone at a predetermined time are the pitch and roll angles of the multi-rotor drone at the predetermined time, the following can be used: Equation (5) calculates the first relative moving speed and the second relative moving speed of the multi-rotor UAV at a predetermined moment:

Figure 110101837-A0101-12-0011-5
Figure 110101837-A0101-12-0011-5

在等式(4)和等式(5)中,V opt_x 表示多旋翼無人機在預定時刻的第一相對移動速度,V opt_y 表示多旋翼無人機在預定時刻的第二相對移動速度,opt x 表示多旋翼無人機在最接近預定時刻的一個單位時間內的第一實時位移,opt y 表示多旋翼無人機在最接近預定時刻的一個單位時間內的第二實時位移,ω roll 表示多旋翼無人機在最接近預定時刻的一個單位時間內相對於其橫滾軸的轉動角速度,ω pitch 表示多旋翼無人機在最接近預定時刻的一個單位時間內相對於其俯仰軸的轉動角速度,H rela 表示多旋翼無人機在預定時刻的相對高度,K 3 為將轉動角速度變化帶來的位移規範化到與轉動角速度相對應的標準單位(例如,rad/s)的係數,K 4 為將多旋翼無人機的經過角速度補償的移動速度規範化到標準單位(例如,cm/s)的係數,A為用於角速度補償的橫滾軸及俯仰軸上的角速度限幅,該角速度限幅取決於光流感測器的最大感測角速度。 In equations (4) and (5), V opt_x represents the first relative moving speed of the multi-rotor drone at a predetermined time, and V opt_y represents the second relative moving speed of the multi-rotor drone at the predetermined time, opt x Represents the first real-time displacement of the multi-rotor UAV within a unit time closest to the predetermined time, opt y represents the second real-time displacement of the multi-rotor UAV within a unit time closest to the predetermined time, ω roll represents the multi-rotor unmanned The rotational angular velocity of the aircraft relative to its roll axis within a unit time closest to the predetermined time. ω pitch represents the rotational angular velocity of the multi-rotor drone relative to its pitch axis within a unit time closest to the predetermined time. H rela represents The relative height of the multi-rotor UAV at a predetermined time, K 3 is the coefficient that normalizes the displacement caused by the change of the rotation angular velocity to the standard unit corresponding to the rotation angular velocity (for example, rad / s ), and K 4 is the coefficient of the multi-rotor UAV The moving speed after angular velocity compensation is normalized to the coefficient of standard units (for example, cm / s ), A is the angular velocity limiter on the roll axis and the pitch axis used for angular velocity compensation. The angular velocity limiter depends on the optical sensor The maximum sensing angular velocity.

在一些實施例中,可以利用多旋翼無人機搭載的慣性測量單元(Inertial Measurement Unit,IMU)感測器來獲取多旋翼無人機在 預定時刻的第一和第二歐拉角及多旋翼無人機在最接近預定時刻的一個單位時間內的第一和第二轉動角速度,並且可以利用高度感測器來獲取多旋翼無人機在每個單位時間內的實時高度及多旋翼無人機在預定時刻的相對高度。 In some embodiments, the inertial measurement unit (IMU) sensor carried by the multi-rotor drone can be used to obtain the multi-rotor drone's The first and second Euler angles at the predetermined time and the first and second rotational angular velocity of the multi-rotor drone within a unit time closest to the predetermined time, and the altitude sensor can be used to obtain the multi-rotor drone’s The real-time altitude within a unit time and the relative altitude of the multi-rotor UAV at a predetermined time.

在一些實施例中,高度感測器可以採用飛行時間(Time of flight,TOF)紅外測距感測器或超聲波感測器等能夠精確測量多旋翼無人機的相對高度的感測器。由於氣壓計感測器存在不定漂移特性,其測量結果會受外界大氣壓強的變化的影響而產生漂移,所以由氣壓計感測器測得的多旋翼無人機的相對高度存在失真。利用多旋翼無人機的存在失真的相對高度對多旋翼無人機在每個單位時間內的實時位移進行補償會導致經過高度補償的實時位移存在失真,這最終會影響多旋翼無人機的飛行及懸停穩定性,甚至會導致多旋翼無人機無法實現懸停。因此,不使用氣壓計感測器作為高度感測器來測量多旋翼無人機的相對高度。 In some embodiments, the height sensor may be a time of flight (TOF) infrared ranging sensor or an ultrasonic sensor that can accurately measure the relative height of the multi-rotor drone. Due to the uncertain drift characteristics of the barometer sensor, the measurement results will be affected by changes in the external atmospheric pressure and drift, so the relative height of the multi-rotor drone measured by the barometer sensor is distorted. Compensating the real-time displacement of the multi-rotor UAV in each unit time by using the distorted relative height of the multi-rotor UAV will result in the distortion of the highly compensated real-time displacement, which will ultimately affect the flight and suspension of the multi-rotor UAV. Hovering stability may even cause the multi-rotor drone to fail to hover. Therefore, the barometer sensor is not used as an altitude sensor to measure the relative altitude of the multi-rotor drone.

通過根據本發明實施例的用於多旋翼無人機的位移補償設備和方法,可以較高精度地還原多旋翼無人機在懸停及飛行狀態下的相對位移及相對移動速度。例如,在多旋翼無人機處於懸停狀態的情況下,可增加多旋翼無人機的懸停穩定性,降低因多旋翼無人機的姿態調節帶來的控制誤差引入,同時增加後續控制環路中控制參數對不同高度的適應性。在多旋翼無人機處於飛行狀態的情況下,可準確得到多旋翼無人機在飛行過程中的實際位移及移動速度,對後續導航控制及自主飛行路線規劃提供較高精度的位移及移動速度資訊。 Through the displacement compensation device and method for multi-rotor drones according to the embodiments of the present invention, the relative displacement and relative moving speed of the multi-rotor drones in hovering and flying states can be restored with high accuracy. For example, when the multi-rotor UAV is hovering, it can increase the hovering stability of the multi-rotor UAV, reduce the introduction of control errors caused by the attitude adjustment of the multi-rotor UAV, and increase the subsequent control loop Adaptability of control parameters to different heights. When the multi-rotor UAV is in flight, the actual displacement and movement speed of the multi-rotor UAV during the flight can be accurately obtained, and the subsequent navigation control and autonomous flight route planning can provide high-precision displacement and movement speed information.

通常,光流感測器針對被感測平面的解析度會隨光流感測器與被感測平面的距離的減小而增高,並且隨光流感測器與被感測平面的距離的增大而降低。這裡,光流感測器的解析度單位用每英寸測量點數(Counts per Inch,CPI)表示。由光流感測器測得的多旋翼無人機在每個單位時間內的實時位移及移動速度會受此特性的影響,直觀體現為多旋翼無人機離被感測平面越遠,單位位移內的測量點數越少,即位移及速度資訊的齒感越強,雜訊越多。 Generally, the resolution of the optical flu sensor for the sensed plane increases as the distance between the optical flu sensor and the sensed plane decreases, and as the distance between the optical flu sensor and the sensed plane increases reduce. Here, the resolution unit of the optical flu detector is expressed by Counts per Inch (CPI). The real-time displacement and moving speed of the multi-rotor UAV measured by the optical flu detector in each unit time will be affected by this feature. It is intuitively reflected that the farther the multi-rotor UAV is from the sensed plane, the unit displacement is The fewer the number of measurement points, the stronger the tooth feel of the displacement and velocity information, and the more noise.

因此,在一些實施例中,考慮到光流感測器的上述解析度特性,根據本發明實施例的用於多旋翼無人機的位移補償設備100還可以包括第一低通濾波裝置108,被配置為對多旋翼無人機在預定時刻的第一實際相對位移(即,經過角度補償的第一相對位移)和第二實際相對位移(即,經過角度補償的第二相對位移)進行低通濾波(即,執行步驟S208)。 Therefore, in some embodiments, taking into account the above-mentioned resolution characteristics of the optical flu sensor, the displacement compensation device 100 for a multi-rotor drone according to an embodiment of the present invention may further include a first low-pass filtering device 108 configured to To perform low-pass filtering ( That is, step S208) is executed.

例如,可以根據以下等式(6)對多旋翼無人機在預定時刻的第一或第二實際相對位移進行低通濾波: For example, the first or second actual relative displacement of the multi-rotor drone at a predetermined time can be low-pass filtered according to the following equation (6):

S(n)=S(n-1)+P.(S opt (n)-S(n-1)) (6) S ( n ) = S ( n -1) + P. ( S opt ( n )- S ( n -1)) (6)

其中,S(n)表示多旋翼無人機在預定時刻的經過低通濾波的第一或第二實際相對位移,S(n-1)表示多旋翼無人機在預定時刻之前的另一時刻的經過低通濾波的第一或第二實際相對位移,S opt (n)為多旋翼無人機在預定時刻的第一或第二實際相對位移。 Among them, S ( n ) represents the low-pass filtered first or second actual relative displacement of the multi-rotor drone at a predetermined time, and S ( n -1) represents the passage of the multi-rotor drone at another time before the predetermined time. The low-pass filtered first or second actual relative displacement, S opt ( n ) is the first or second actual relative displacement of the multi-rotor drone at a predetermined time.

在一些實施例中,考慮到光流感測器的上述解析度特性,根據本發明實施例的用於多旋翼無人機的速度補償設備300還可以包括第二低通濾波裝置308,被配置為對多旋翼無人機在預定時刻的第一相對移動速度和第二相對移動速度進行低通濾波(即,執行步驟S408)。 In some embodiments, considering the above-mentioned resolution characteristics of the optical flu detector, the speed compensation device 300 for a multi-rotor drone according to an embodiment of the present invention may further include a second low-pass filtering device 308 configured to The first relative movement speed and the second relative movement speed of the multi-rotor drone at a predetermined time are low-pass filtered (that is, step S408 is performed).

例如,可以根據以下等式(7)對多旋翼無人機在預定時刻的第一或第二相對移動速度進行低通濾波: For example, the first or second relative movement speed of the multi-rotor drone at a predetermined time can be low-pass filtered according to the following equation (7):

V(n)=V(n-1)+P.(V opt (n)-V(n-1)) (7) V ( n ) = V ( n -1) + P. ( V opt ( n )- V ( n -1)) (7)

其中,V(n)表示多旋翼無人機在預定時刻的經過低通濾波的第一或第二相對移動速度,V(n-1)表示多旋翼無人機在預定時刻之前的另一時刻的經過低通濾波的第一或第二相對移動速度,V opt (n)表示多旋翼無人機在預定時刻的第一或第二相對移動速度。 Among them, V ( n ) represents the low-pass filtered first or second relative movement speed of the multi-rotor drone at a predetermined time, and V ( n -1) represents the passage of the multi-rotor drone at another time before the predetermined time. The low-pass filtered first or second relative moving speed, V opt ( n ) represents the first or second relative moving speed of the multi-rotor drone at a predetermined time.

在一些實施例中,第一低通濾波裝置108和第二低通濾波裝置308可以進一步被配置為:利用光流感測器的解析度特性參數和多 旋翼無人機在預定時刻的相對高度(即,光流感測器在預定時刻的相對高度),獲取光流感測器在該相對高度針對被感測平面的光流解析度;利用光流解析度獲取用於低通濾波的截止頻率;以及利用用於低通濾波的截止頻率獲取低通濾波係數。 In some embodiments, the first low-pass filter device 108 and the second low-pass filter device 308 may be further configured to: use the resolution characteristic parameters and the multiplicity of the optical sensor. The relative height of the rotary wing drone at a predetermined time (ie, the relative height of the optical flue sensor at the predetermined time), and obtain the optical flow resolution of the optical flue sensor for the sensed plane at the relative height; use the optical flow resolution to obtain The cut-off frequency used for low-pass filtering; and the cut-off frequency used for low-pass filtering is used to obtain low-pass filter coefficients.

在一些實施例中,可以根據以下等式(8)計算等式(6)和等式(7)中的低通濾波係數P In some embodiments, the low-pass filter coefficient P in equation (6) and equation (7) can be calculated according to the following equation (8):

Figure 110101837-A0101-12-0014-8
Figure 110101837-A0101-12-0014-8

其中,T表示用於低通濾波的採樣週期,f c 表示用於低通濾波的截止頻率。 Among them, T represents the sampling period used for low-pass filtering, and f c represents the cutoff frequency used for low-pass filtering.

光流感測器在預定時刻的解析度R cpi 與光流感測器在預定時刻相對於被感測平面的相對高度(即,多旋翼無人機在預定時刻的相對高度H rela )的關係如下: The relationship between the resolution R cpi of the optical flu sensor at a predetermined time and the relative height of the optical flu sensor with respect to the plane to be sensed at the predetermined time (ie, the relative height H rela of the multi-rotor drone at the predetermined time) is as follows:

R cpi =α.(H rela )-β (9) R cpi = α . ( H rela ) (9)

其中,αβ為光流感測器的解析度特性參數(不同光流感測器的解析度特性參數不同),可通過光流相關技術手冊或者直接測試得出。圖5示出了光流感測器相對於被感測平面的相對高度與光流感測器針對被感測平面的解析度之間的關係的曲線圖。 Among them, α and β are the resolution characteristic parameters of the optical flu detector (different optical flu detectors have different resolution characteristic parameters), which can be obtained through optical flow related technical manuals or direct tests. FIG. 5 shows a graph of the relationship between the relative height of the optical flu sensor with respect to the plane to be sensed and the resolution of the optical flu detector with respect to the plane to be sensed.

在一些實施例中,可以根據以下等式(10)計算用於低通濾波的截止頻率f c In some embodiments, the cutoff frequency f c for low-pass filtering can be calculated according to the following equation (10):

f c =λR cpi (10) f c = λ . R cpi (10)

其中,λ是用於將光流感測器在預定時刻的解析度R cpi 規範到合適的截止頻率範圍內的係數。 Among them, λ is a coefficient used to normalize the resolution R cpi of the optical flu detector at a predetermined time to a suitable cut-off frequency range.

這裡,通過將基於光流感測器在預定時刻的解析度得到的截止頻率f c 帶入P即可實現對於多旋翼無人機在預定時刻的第一和第二實際相對位移及第一和第二相對移動速度的低通濾波,從而可以在保證多 旋翼無人機在預定時刻的相對位移和相對移動速度的真實性和實時性前提下,使得多旋翼無人機在預定時刻的相對位移和相對移動速度更加平滑且降低雜訊,以此來增加多旋翼無人機在後續飛行及懸停控制過程中的平滑性和穩定性。 Here, the first and second actual relative displacements and the first and second actual relative displacements of the multi-rotor UAV at the predetermined time can be realized by bringing the cutoff frequency f c obtained based on the resolution of the optical flue detector at the predetermined time into P. The low-pass filtering of the relative moving speed can make the relative displacement and relative moving speed of the multi-rotor UAV at the predetermined time under the premise of ensuring the authenticity and real-time performance of the relative displacement and relative moving speed of the multi-rotor UAV at the predetermined time. Smoother and reduce noise, in order to increase the smoothness and stability of the multi-rotor UAV in the subsequent flight and hover control process.

圖6示出了可以實現根據本發明實施例的用於多旋翼無人機的位移補償方法和裝置的電腦系統的示意圖。下面結合圖6,描述適於用來實現本發明的實施例的電腦系統600。應該明白的是,圖6示出的電腦系統600僅是一個示例,不應對本發明的實施例的功能和使用範圍帶來任何限制。 Fig. 6 shows a schematic diagram of a computer system that can implement a displacement compensation method and device for a multi-rotor unmanned aerial vehicle according to an embodiment of the present invention. Next, in conjunction with FIG. 6, a computer system 600 suitable for implementing the embodiments of the present invention will be described. It should be understood that the computer system 600 shown in FIG. 6 is only an example, and should not bring any limitation to the functions and scope of use of the embodiments of the present invention.

如圖6所示,電腦系統600可以包括處理裝置(例如,中央處理器、圖形處理器等)601,其可以根據存儲在唯讀記憶體(Read Only Memory,ROM)602中的程式或者從存儲裝置608載入到隨機存取記憶體(Random Access Memory,RAM)603中的程式而執行各種適當的動作和處理。在RAM 603中,還存儲有電腦系統600操作所需的各種程式和資料。處理裝置601、ROM 602、以及RAM 603通過匯流排604彼此相連。輸入/輸出(Input/Output,I/O)介面605也連接至匯流排604。 As shown in FIG. 6, the computer system 600 may include a processing device (for example, a central processing unit, a graphics processor, etc.) 601, which may be based on a program stored in a read-only memory (Read Only Memory, ROM) 602 or from a storage device. The device 608 loads programs in a random access memory (Random Access Memory, RAM) 603 to perform various appropriate actions and processing. Various programs and data required for the operation of the computer system 600 are also stored in the RAM 603. The processing device 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604. The Input/Output (I/O) interface 605 is also connected to the bus 604.

通常,以下裝置可以連接至I/O介面605:包括例如觸控式螢幕、觸控板、攝像頭、加速度計、陀螺儀、感測器等的輸入裝置606;包括例如液晶顯示器(LCD,Liquid Crystal Display)、揚聲器、振動器、電機、電子調速器等的輸出裝置607;包括例如快閃記憶體(Flash Card)等的存儲裝置608;以及通訊裝置609。通訊裝置609可以允許電腦系統600與其他設備進行無線或有線通訊以交換資料。雖然圖6示出了具有各種裝置的電腦系統600,但是應理解的是,並不要求實施或具備所有示出的裝置。可以替代地實施或具備更多或更少的裝置。圖6中示出的每個方框可以代表一個裝置,也可以根據需要代表多個裝置。 Generally, the following devices can be connected to the I/O interface 605: including input devices 606 such as touch screens, touch panels, cameras, accelerometers, gyroscopes, sensors, etc.; including, for example, liquid crystal displays (LCD, Liquid Crystal Display), speaker, vibrator, motor, electronic speed controller, etc. output device 607; including, for example, flash memory (Flash Card) and other storage device 608; and communication device 609. The communication device 609 can allow the computer system 600 to perform wireless or wired communication with other devices to exchange data. Although FIG. 6 shows a computer system 600 with various devices, it should be understood that it is not required to implement or have all of the illustrated devices. It may alternatively be implemented or provided with more or fewer devices. Each block shown in FIG. 6 can represent one device, or can represent multiple devices as needed.

特別地,根據本發明的實施例,上文參考流程圖描述的過程可以被實現為電腦軟體程式。例如,本發明的實施例提供一種電腦可讀存儲介質,其存儲電腦程式,該電腦程式包含用於執行圖1所示的位移 補償設備100的程式碼。在這樣的實施例中,該電腦程式可以通過通訊裝置609從網路上被下載和安裝,或者從存儲裝置608被安裝,或者從ROM 602被安裝。在該電腦程式被處理裝置601執行時,實現根據本發明實施例的裝置中限定的上述功能。 In particular, according to the embodiment of the present invention, the process described above with reference to the flowchart can be implemented as a computer software program. For example, an embodiment of the present invention provides a computer-readable storage medium that stores a computer program, and the computer program includes a computer program for executing the displacement shown in FIG. 1 The code of the compensation device 100. In such an embodiment, the computer program can be downloaded and installed from the Internet through the communication device 609, or installed from the storage device 608, or installed from the ROM 602. When the computer program is executed by the processing device 601, the above-mentioned functions defined in the device according to the embodiment of the present invention are realized.

需要說明的是,根據本發明實施例的電腦可讀介質可以是電腦可讀訊號介質或者電腦可讀存儲介質或者是上述兩者的任意組合。電腦可讀存儲介質例如可以是──但不限於──電、磁、光、電磁、紅外線、或半導體的系統、裝置或器件,或者任意以上的組合。電腦可讀存儲介質的更具體的例子可以包括但不限於:具有一個或多個導線的電連接、可擕式電腦磁片、硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可抹除可程式化唯讀記憶體((Erasable Programmable Read Only Memory,EPROM)或快閃記憶體)、光纖、可擕式緊湊光碟唯讀記憶體(Compact Disc Read Only Memory,CD-ROM)、光記憶體件、磁記憶體件、或者上述的任意合適的組合。根據本發明實施例的電腦可讀存儲介質可以是任何包含或存儲程式的有形介質,該程式可以被指令執行系統、裝置或者器件使用或者與其結合使用。另外,根據本發明實施例的電腦可讀訊號介質可以包括在基帶中或者作為載波一部分傳播的資料訊號,其中承載了電腦可讀的程式碼。這種傳播的資料訊號可以採用多種形式,包括但不限於電磁訊號、光訊號或上述的任意合適的組合。電腦可讀訊號介質還可以是電腦可讀存儲介質以外的任何電腦可讀介質,該電腦可讀訊號介質可以發送、傳播或者傳輸用於由指令執行系統、裝置或者器件使用或者與其結合使用的程式。電腦可讀介質上包含的程式碼可以用任何適當的介質傳輸,包括但不限於:電線、光纜、射頻(Radio Frequency,RF)等等,或者上述的任意合適的組合。 It should be noted that the computer-readable medium according to the embodiment of the present invention may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory ( ROM), Erasable Programmable Read Only Memory ((Erasable Programmable Read Only Memory, EPROM) or flash memory), optical fiber, portable compact disc Read Only Memory (Compact Disc Read Only Memory, CD- ROM), optical memory, magnetic memory, or any suitable combination of the above. The computer-readable storage medium according to the embodiment of the present invention may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, device, or device. In addition, the computer-readable signal medium according to the embodiment of the present invention may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This transmitted data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. The computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium. The computer-readable signal medium can send, propagate or transmit a program for use by or in combination with the instruction execution system, device, or device . The program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.

可以以一種或多種程式設計語言或其組合來編寫用於執行根據本發明實施例的操作的電腦程式碼,所述程式設計語言包括物件導向的程式設計語言──諸如Java、Smalltalk、C++,還包括常規的過程式程式設計語言──諸如“C”語言或類似的程式設計語言。程式碼可以完全 地在使用者電腦上執行、部分地在使用者電腦上執行、作為一個獨立的套裝軟體執行、部分在使用者電腦上部分在遠端電腦上執行、或者完全在遠端電腦或伺服器上執行。在涉及遠端電腦的情形中,遠端電腦可以通過任意種類的網路──包括區域網路(Local Area Network,LAN)或廣域網路(Wide Area Network,WAN)──連接到使用者電腦,或者,可以連接到外部電腦(例如利用網際網路服務提供者來通過網際網路連接)。 The computer program code used to perform operations according to the embodiments of the present invention can be written in one or more programming languages or a combination thereof. The programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, and more. Including conventional procedural programming languages-such as "C" language or similar programming languages. The code can be completely Run on the user's computer, partly on the user's computer, run as a stand-alone software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server . In the case of a remote computer, the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (Wide Area Network, WAN). Alternatively, it can be connected to an external computer (for example, using an Internet service provider to connect via the Internet).

圖式中的流程圖和框圖,圖示了按照本發明的各種實施例的系統、方法和電腦程式產品的可能實現的體系架構、功能、和操作。在這點上,流程圖或框圖中的每個方框可以代表一個模組、程式段、或程式碼的一部分,該模組、程式段、或程式碼的一部分包含一個或多個用於實現規定的邏輯功能的可執行指令。也應當注意,在有些作為替換的實現中,方框中所標注的功能也可以以不同於圖式中所標注的順序發生。例如,兩個接連地表示的方框實際上可以基本並行地執行,它們有時也可以按相反的循序執行,這依所涉及的功能而定。也要注意的是,框圖和/或流程圖中的每個方框、以及框圖和/或流程圖中的方框的組合,可以用執行規定的功能或操作的專用的基於硬體的系統來實現,或者可以用專用硬體與電腦指令的組合來實現。 The flowcharts and block diagrams in the drawings illustrate the possible implementation architecture, functions, and operations of the system, method, and computer program product according to various embodiments of the present invention. In this regard, each box in the flowchart or block diagram can represent a module, program segment, or part of the code. The module, program segment, or part of the code contains one or more Executable instructions that implement the specified logic functions. It should also be noted that in some alternative implementations, the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, and they can sometimes be executed in reverse order, depending on the functions involved. It should also be noted that each block in the block diagram and/or flowchart, as well as the combination of the blocks in the block diagram and/or flowchart, may use a dedicated hardware-based The system can be implemented, or it can be implemented with a combination of dedicated hardware and computer instructions.

描述於本發明的實施例中所涉及到的裝置可以通過軟體的方式實現,也可以通過硬體的方式來實現。所描述的裝置也可以設置在處理器中,例如,可以描述為:一種處理器,包括第一和第二高度補償裝置、位移獲取裝置、角度補償裝置、速度獲取裝置、角速度補償裝置、以及第一和第二低通濾波裝置。其中,這些裝置的名稱在某種情況下並不構成對該裝置本身的限定。 The devices involved in the embodiments described in the present invention can be implemented in software or hardware. The described device can also be provided in a processor, for example, it can be described as: a processor including a first and a second height compensation device, a displacement acquisition device, an angle compensation device, a speed acquisition device, an angular velocity compensation device, and a second height compensation device. One and second low-pass filtering device. Among them, the names of these devices do not constitute a limitation on the device itself under certain circumstances.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變 從而都被包括在本發明的範圍之中。 The present invention can be implemented in other specific forms without departing from its spirit and essential characteristics. For example, the algorithm described in the specific embodiment can be modified, and the system architecture does not deviate from the basic spirit of the present invention. Therefore, the current embodiments are regarded as illustrative rather than restrictive in all aspects, and the scope of the present invention is defined by the scope of the appended patent application rather than the above description, and falls within the meaning and equivalent of the scope of the patent application. All changes within the scope of things Therefore, they are all included in the scope of the present invention.

200:位移補償方法 200: Displacement compensation method

S202,S204,S206,S208:步驟 S202, S204, S206, S208: steps

Claims (25)

一種用於多旋翼無人機的位移補償方法,包括: A displacement compensation method for multi-rotor UAVs includes: 從所述多旋翼無人機從被感測平面上的起始位置的起飛時刻開始, From the moment of take-off of the multi-rotor drone from the starting position on the sensed plane, 利用光流感測器獲取所述多旋翼無人機在每個單位時間內相對於所述起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並且 Obtain the first real-time displacement in the first direction and the second real-time displacement in the second direction of the multi-rotor drone relative to the starting position in each unit time by using an optical flu detector, and 利用所述多旋翼無人機在每個單位時間內相對於所述被感測平面的實時高度,對所述多旋翼無人機在相應單位時間內的所述第一實時位移和所述第二實時位移進行高度補償; Using the real-time height of the multi-rotor drone relative to the sensed plane in each unit time, calculate the first real-time displacement and the second real-time displacement of the multi-rotor drone in the corresponding unit time. Displacement for height compensation; 利用所述多旋翼無人機從所述起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移,獲取所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第一方向上的第一相對位移和在所述第二方向上的第二相對位移;以及 Using the first highly compensated real-time displacement and the second highly compensated real-time displacement of the multi-rotor drone in each unit time between the take-off time and the predetermined time to obtain the multi-rotor drone A first relative displacement in the first direction and a second relative displacement in the second direction at the predetermined time relative to the starting position; and 利用所述多旋翼無人機在所述預定時刻相對於所述被感測平面的相對高度以及所述多旋翼無人機在所述預定時刻的第一歐拉角和第二歐拉角,對所述第一相對位移和所述第二相對位移進行角度補償。 Using the relative height of the multi-rotor drone with respect to the sensed plane at the predetermined time and the first Euler angle and the second Euler angle of the multi-rotor drone at the predetermined time, The first relative displacement and the second relative displacement perform angular compensation. 如請求項1所述的位移補償方法,還包括: The displacement compensation method according to claim 1, further including: 對經過角度補償的第一相對位移和經過角度補償的第二相對位移進行低通濾波。 Low-pass filtering is performed on the angle-compensated first relative displacement and the angle-compensated second relative displacement. 如請求項1所述的位移補償方法,其中,通過將所述多旋翼無人機在每個單位時間內的所述實時高度與所述多旋翼無人機在相應單位時間內的所述第一實時位移相乘,來對所述第一實時位移進行高度補償,並且 The displacement compensation method according to claim 1, wherein the real-time height of the multi-rotor drone in each unit time is compared with the first real-time height of the multi-rotor drone in the corresponding unit time. The displacement is multiplied to compensate the height of the first real-time displacement, and 通過將所述多旋翼無人機在每個單位時間內的所述實時高度與所述多旋翼無人機在相應單位時間內的所述第二實時位移相乘,來對所述第二實時位移進行高度補償。 The second real-time displacement is performed by multiplying the real-time height of the multi-rotor drone in each unit time by the second real-time displacement of the multi-rotor drone in the corresponding unit time Height compensation. 如請求項1所述的位移補償方法,其中,對所述第一相對位移進行角度補償包括:利用所述第一歐拉角和所述相對高度通過乘法運算獲取第 一角度補償值,並利用所述第一角度補償值對所述第一相對位移進行角度補償,並且 The displacement compensation method according to claim 1, wherein, performing angle compensation on the first relative displacement includes: obtaining the first Euler angle and the relative height through multiplication. An angle compensation value, and use the first angle compensation value to perform angle compensation on the first relative displacement, and 對所述第二相對位移進行角度補償包括:利用所述第二歐拉角和所述相對高度通過乘法運算獲取第二角度補償值,並利用所述第二角度補償值對所述第二相對位移進行角度補償。 Performing angular compensation on the second relative displacement includes: using the second Euler angle and the relative height to obtain a second angle compensation value through multiplication, and using the second angle compensation value to compensate the second relative displacement. The displacement is angle compensated. 如請求項2所述的位移補償方法,還包括: The displacement compensation method according to claim 2, further including: 利用所述光流感測器的解析度特性參數和所述相對高度,獲取所述光流感測器在所述相對高度針對所述被感測平面的光流解析度; Using the resolution characteristic parameter of the optical flu sensor and the relative height to obtain the optical flow resolution of the optical flu sensor with respect to the sensed plane at the relative height; 利用所述光流解析度獲取用於低通濾波的截止頻率;以及 Using the optical flow resolution to obtain a cutoff frequency for low-pass filtering; and 利用所述用於低通濾波的截止頻率獲取低通濾波係數。 The cutoff frequency for low-pass filtering is used to obtain low-pass filter coefficients. 如請求項1所述的位移補償方法,其中,所述第一歐拉角是所述多旋翼無人機的橫滾角,所述第二歐拉角是所述多旋翼無人機的俯仰角,或者 The displacement compensation method according to claim 1, wherein the first Euler angle is a roll angle of the multi-rotor drone, and the second Euler angle is a pitch angle of the multi-rotor drone, or 所述第一歐拉角是所述多旋翼無人機的俯仰角,所述第二歐拉角是所述多旋翼無人機的橫滾角。 The first Euler angle is the pitch angle of the multi-rotor drone, and the second Euler angle is the roll angle of the multi-rotor drone. 一種用於多旋翼無人機的速度補償方法,包括: A speed compensation method for multi-rotor drones, including: 利用光流感測器獲取所述多旋翼無人機在最接近預定時刻的一個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移; The optical flue detector is used to obtain the first real-time displacement in the first direction and the second direction of the multi-rotor drone relative to the initial position on the sensed plane within a unit time closest to the predetermined time. Second real-time displacement; 利用所述多旋翼無人機在最接近所述預定時刻的一個單位時間內相對於其自身的第一旋轉軸的第一轉動角速度對所述第一實時位移進行角速度補償,並利用所述多旋翼無人機在最接近所述預定時刻的一個單位時間內相對於其自身的第二旋轉軸的第二轉動角速度對所述第二實時位移進行角速度補償;以及 The first rotation angular velocity of the multi-rotor drone relative to its own first rotation axis within a unit time closest to the predetermined time is used to perform angular velocity compensation on the first real-time displacement, and the multi-rotor drone is utilized The UAV performs angular velocity compensation on the second real-time displacement with respect to the second rotational angular velocity of its own second rotation axis within a unit time closest to the predetermined time; and 利用所述多旋翼無人機在所述預定時刻相對於所述被感測平面的相對高度,對經過角速度補償的第一實時位移和經過角速度補償的第二實時位移進行高度補償,其中 Utilizing the relative height of the multi-rotor drone with respect to the sensed plane at the predetermined moment, height compensation is performed on the angular velocity compensated first real-time displacement and the angular velocity compensated second real-time displacement, wherein 將經過角速度和高度補償的第一實時位移作為所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第一方向上的第一相對移動速度,並將經過角速度和高度補償的第二實時位移作為所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第二方向上的第二相對移動速度。 The first real-time displacement after angular velocity and height compensation is taken as the first relative movement speed of the multi-rotor drone in the first direction with respect to the starting position at the predetermined moment, and the angular velocity and altitude will be passed through The compensated second real-time displacement is taken as the second relative movement speed of the multi-rotor drone in the second direction with respect to the starting position at the predetermined time. 如請求項7所述的速度補償方法,還包括: The speed compensation method described in claim 7 further includes: 對所述第一相對移動速度和所述第二相對移動速度進行低通濾波。 Low-pass filtering is performed on the first relative movement speed and the second relative movement speed. 如請求項8所述的速度補償方法,還包括: The speed compensation method described in claim 8 further includes: 利用所述光流感測器的解析度特性參數和所述相對高度,獲取所述光流感測器在所述相對高度針對所述被感測平面的光流解析度; Using the resolution characteristic parameter of the optical flu sensor and the relative height to obtain the optical flow resolution of the optical flu sensor with respect to the sensed plane at the relative height; 利用所述光流解析度獲取用於低通濾波的截止頻率;以及 Using the optical flow resolution to obtain a cutoff frequency for low-pass filtering; and 利用所述用於低通濾波的截止頻率獲取低通濾波係數。 The cutoff frequency for low-pass filtering is used to obtain low-pass filter coefficients. 如請求項7所述的速度補償方法,其中,通過將所述經過角速度補償的第一實時位移與所述相對高度相乘,來對所述經過角速度補償的第一實時位移進行高度補償,並且 The speed compensation method according to claim 7, wherein the first real-time displacement subjected to angular velocity compensation is highly compensated by multiplying the first real-time displacement subjected to angular velocity compensation by the relative height, and 通過將所述經過角速度補償的第二實時位移與所述相對高度相乘,來對所述經過角速度補償的第二實時位移進行高度補償。 By multiplying the angular velocity compensated second real-time displacement by the relative height, height compensation is performed on the angular velocity compensated second real-time displacement. 如請求項7所述的速度補償方法,其中,所述第一旋轉軸是所述多旋翼無人機的橫滾軸,所述第二旋轉軸是所述多旋翼無人機的俯仰軸,或者 The speed compensation method according to claim 7, wherein the first rotation axis is the roll axis of the multi-rotor drone, and the second rotation axis is the pitch axis of the multi-rotor drone, or 所述第一旋轉軸是所述多旋翼無人機的俯仰軸,所述第二旋轉軸是所述多旋翼無人機的橫滾軸。 The first rotation axis is the pitch axis of the multi-rotor drone, and the second rotation axis is the roll axis of the multi-rotor drone. 一種用於多旋翼無人機的位移補償設備,包括: A displacement compensation device for multi-rotor drones, including: 高度補償裝置,被配置為從所述多旋翼無人機從被感測平面上的起始位置的起飛時刻開始, The height compensation device is configured to start from the moment of take-off of the multi-rotor drone from the starting position on the sensed plane, 利用光流感測器獲取所述多旋翼無人機在每個單位時間內相對於所述起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移,並且 Obtain the first real-time displacement in the first direction and the second real-time displacement in the second direction of the multi-rotor drone relative to the starting position in each unit time by using an optical flu detector, and 利用所述多旋翼無人機在每個單位時間內相對於所述被感測平面的實時高度,對所述多旋翼無人機在相應單位時間內的所述第一實時位移和所述第二實時位移進行高度補償; Using the real-time height of the multi-rotor drone relative to the sensed plane in each unit time, calculate the first real-time displacement and the second real-time displacement of the multi-rotor drone in the corresponding unit time. Displacement for height compensation; 位移獲取裝置,被配置為利用所述多旋翼無人機從所述起飛時刻到預定時刻之間的每個單位時間內的經過高度補償的第一實時位移和經過高度補償的第二實時位移,獲取所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第一方向上的第一相對位移和在所述第二方向上的第二相對位移;以及 The displacement acquiring device is configured to use the first highly compensated real-time displacement and the highly compensated second real-time displacement of the multi-rotor drone in each unit time between the take-off time and the predetermined time to acquire A first relative displacement in the first direction and a second relative displacement in the second direction of the multi-rotor drone at the predetermined time relative to the starting position; and 角度補償裝置,被配置為利用所述多旋翼無人機在所述預定時刻相對於所述被感測平面的相對高度以及所述多旋翼無人機在所述預定時刻的第一歐拉角和第二歐拉角,對所述第一相對位移和所述第二相對位移進行角度補償。 The angle compensation device is configured to use the relative height of the multi-rotor drone with respect to the sensed plane at the predetermined time and the first Euler angle and the first Euler angle of the multi-rotor drone at the predetermined time. Two Euler angles are used to perform angular compensation for the first relative displacement and the second relative displacement. 如請求項12所述的位移補償設備,還包括: The displacement compensation device according to claim 12, further comprising: 低通濾波裝置,被配置為對經過角度補償的第一相對位移和經過角度補償的第二相對位移進行低通濾波。 The low-pass filtering device is configured to perform low-pass filtering on the angle-compensated first relative displacement and the angle-compensated second relative displacement. 如請求項12所述的位移補償設備,其中,所述高度補償裝置進一步被配置為: The displacement compensation device according to claim 12, wherein the height compensation device is further configured to: 通過將所述多旋翼無人機在每個單位時間內的所述實時高度與所述多旋翼無人機在相應單位時間內的所述第一實時位移相乘,來對所述第一實時位移進行高度補償,並且 The first real-time displacement is performed by multiplying the real-time height of the multi-rotor drone in each unit time by the first real-time displacement of the multi-rotor drone in the corresponding unit time Height compensation, and 通過將所述多旋翼無人機在每個單位時間內的所述實時高度與所述多旋翼無人機在相應單位時間內的所述第二實時位移相乘,來對所述第二實時位移進行高度補償。 The second real-time displacement is performed by multiplying the real-time height of the multi-rotor drone in each unit time by the second real-time displacement of the multi-rotor drone in the corresponding unit time Height compensation. 如請求項12所述的位移補償設備,其中,所述角度補償裝置進一步被配置為: The displacement compensation device according to claim 12, wherein the angle compensation device is further configured to: 利用所述第一歐拉角和所述相對高度通過乘法運算獲取第一角度補償值,並利用所述第一角度補償值對所述第一相對位移進行角度補償,並且 Use the first Euler angle and the relative height to obtain a first angle compensation value through multiplication, and use the first angle compensation value to perform angular compensation on the first relative displacement, and 利用所述第二歐拉角和所述相對高度通過乘法運算獲取第二角度補償值,並利用所述第二角度補償值對所述第二相對位移進行角度補償。 Using the second Euler angle and the relative height to obtain a second angle compensation value through multiplication, and using the second angle compensation value to perform angular compensation on the second relative displacement. 如請求項13所述的位移補償設備,其中,所述低通濾波裝置進一步被配置為: The displacement compensation device according to claim 13, wherein the low-pass filtering device is further configured to: 利用所述光流感測器的解析度特性參數和所述相對高度,獲取所述光流感測器在所述相對高度針對所述被感測平面的光流解析度; Using the resolution characteristic parameter of the optical flu sensor and the relative height to obtain the optical flow resolution of the optical flu sensor with respect to the sensed plane at the relative height; 利用所述光流解析度獲取用於低通濾波的截止頻率;以及 Using the optical flow resolution to obtain a cutoff frequency for low-pass filtering; and 利用所述用於低通濾波的截止頻率獲取低通濾波係數。 The cutoff frequency for low-pass filtering is used to obtain low-pass filter coefficients. 如請求項12所述的位移補償設備,其中,所述第一歐拉角是所述多旋翼無人機的橫滾角,所述第二歐拉角是所述多旋翼無人機的俯仰角,或者 The displacement compensation device according to claim 12, wherein the first Euler angle is a roll angle of the multi-rotor drone, and the second Euler angle is a pitch angle of the multi-rotor drone, or 所述第一歐拉角是所述多旋翼無人機的俯仰角,所述第二歐拉角是所述多旋翼無人機的橫滾角。 The first Euler angle is the pitch angle of the multi-rotor drone, and the second Euler angle is the roll angle of the multi-rotor drone. 一種用於多旋翼無人機的速度補償設備,包括: A speed compensation device for multi-rotor drones, including: 速度獲取裝置,被配置為利用光流感測器獲取所述多旋翼無人機在最接近預定時刻的一個單位時間內相對於被感測平面上的起始位置在第一方向上的第一實時位移和在第二方向上的第二實時位移; The speed acquiring device is configured to acquire the first real-time displacement of the multi-rotor drone in the first direction relative to the starting position on the sensed plane within a unit time closest to the predetermined time by using the optical flue sensor And the second real-time displacement in the second direction; 角速度補償裝置,被配置為利用所述多旋翼無人機在最接近所述預定時刻的一個單位時間內相對於其自身的第一旋轉軸的第一轉動角速度對所述第一實時位移進行角速度補償,並利用所述多旋翼無人機在最接近所述預定時刻的一個單位時間內相對於其自身的第二旋轉軸的第二轉動角速度對所述第二實時位移進行角速度補償;以及 The angular velocity compensation device is configured to perform angular velocity compensation on the first real-time displacement by using the first rotation angular velocity of the multi-rotor drone relative to its own first rotation axis within a unit time closest to the predetermined time , And use the second rotation angular velocity of the multi-rotor drone relative to its own second rotation axis within a unit time closest to the predetermined time to perform angular velocity compensation on the second real-time displacement; and 高度補償裝置,被配置為利用所述多旋翼無人機在所述預定時刻相對於所述被感測平面的相對高度,對經過角速度補償的第一實時位移和經過角速度補償的第二實時位移進行高度補償,其中 The height compensation device is configured to use the relative height of the multi-rotor drone with respect to the sensed plane at the predetermined moment to perform angular velocity compensation on the first real-time displacement and the angular velocity compensated second real-time displacement Height compensation, where 經過角速度和高度補償的第一實時位移被作為所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第一方向上的第一相對移動速度, 經過角速度和高度補償的第二實時位移被作為所述多旋翼無人機在所述預定時刻相對於所述起始位置在所述第二方向上的第二相對移動速度。 The first real-time displacement after angular velocity and height compensation is taken as the first relative movement speed of the multi-rotor drone in the first direction with respect to the starting position at the predetermined moment, The second real-time displacement after angular velocity and height compensation is taken as the second relative moving speed of the multi-rotor drone in the second direction with respect to the starting position at the predetermined moment. 如請求項18所述的速度補償設備,還包括: The speed compensation device according to claim 18, further including: 低通濾波裝置,被配置為對所述第一相對移動速度和所述第二相對移動速度進行低通濾波。 The low-pass filtering device is configured to perform low-pass filtering on the first relative movement speed and the second relative movement speed. 如請求項19所述的速度補償設備,所述低通濾波裝置進一步被配置為: According to the speed compensation device according to claim 19, the low-pass filtering device is further configured to: 利用所述光流感測器的解析度特性參數和所述相對高度,獲取所述光流感測器在所述相對高度針對所述被感測平面的光流解析度; Using the resolution characteristic parameter of the optical flu sensor and the relative height to obtain the optical flow resolution of the optical flu sensor with respect to the sensed plane at the relative height; 利用所述光流解析度獲取用於低通濾波的截止頻率;以及 Using the optical flow resolution to obtain a cutoff frequency for low-pass filtering; and 利用所述用於低通濾波的截止頻率獲取低通濾波係數。 The cutoff frequency for low-pass filtering is used to obtain low-pass filter coefficients. 如請求項18所述的速度補償設備,其中,所述高度補償裝置進一步被配置為: The speed compensation device according to claim 18, wherein the height compensation device is further configured to: 通過將經過角速度補償的第一實時位移與所述相對高度相乘,來對所述經過角速度補償的第一實時位移進行高度補償,並且 By multiplying the angular velocity compensated first real-time displacement by the relative height, height compensation is performed on the angular velocity compensated first real-time displacement, and 通過將經過角速度補償的第二實時位移與所述相對高度相乘,來對所述經過角速度補償的第二實時位移進行高度補償。 By multiplying the angular velocity compensated second real-time displacement by the relative height, height compensation is performed on the angular velocity compensated second real-time displacement. 如請求項18所述的速度補償設備,其中,所述第一旋轉軸是所述多旋翼無人機的橫滾軸,所述第二旋轉軸是所述多旋翼無人機的俯仰軸,或者 The speed compensation device according to claim 18, wherein the first rotation axis is the roll axis of the multi-rotor drone, and the second rotation axis is the pitch axis of the multi-rotor drone, or 所述第一旋轉軸是所述多旋翼無人機的俯仰軸,所述第二旋轉軸是所述多旋翼無人機的橫滾軸。 The first rotation axis is the pitch axis of the multi-rotor drone, and the second rotation axis is the roll axis of the multi-rotor drone. 一種用於多旋翼無人機的位移補償設備,包括: A displacement compensation device for multi-rotor drones, including: 記憶體,其上存儲有電腦可執行指令;以及 Memory, on which computer executable instructions are stored; and 一個或多個處理器,被配置為執行所述電腦可執行指令以實現如請求項1至6中任一項所述的位移補償方法。 One or more processors are configured to execute the computer-executable instructions to implement the displacement compensation method according to any one of Claims 1 to 6. 一種用於多旋翼無人機的速度補償設備,包括: A speed compensation device for multi-rotor drones, including: 記憶體,其上存儲有電腦可執行指令;以及 Memory, on which computer executable instructions are stored; and 一個或多個處理器,被配置為執行所述電腦可執行指令以實現如請求項7至11中任一項所述的速度補償方法。 One or more processors are configured to execute the computer-executable instructions to implement the speed compensation method according to any one of Claims 7 to 11. 一種電腦可讀存儲介質,其上存儲有電腦可讀指令,所述電腦可讀指令在被一個或多個處理器執行時,使得所述一個或多個處理器執行如請求項1至6中任一項所述的位移補償方法或如請求項7至11中任一項所述的速度補償方法。 A computer-readable storage medium having computer-readable instructions stored thereon. When the computer-readable instructions are executed by one or more processors, the one or more processors can execute as in claim items 1 to 6 The displacement compensation method according to any item or the speed compensation method according to any one of claims 7 to 11.
TW110101837A 2020-12-14 2021-01-18 Displacement compensation method and equipment and speed compensation method and equipment TWI747718B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011465801.7 2020-12-14
CN202011465801.7A CN112414365B (en) 2020-12-14 2020-12-14 Displacement compensation method and apparatus and velocity compensation method and apparatus

Publications (2)

Publication Number Publication Date
TWI747718B true TWI747718B (en) 2021-11-21
TW202223339A TW202223339A (en) 2022-06-16

Family

ID=74776542

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101837A TWI747718B (en) 2020-12-14 2021-01-18 Displacement compensation method and equipment and speed compensation method and equipment

Country Status (2)

Country Link
CN (1) CN112414365B (en)
TW (1) TWI747718B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200718966A (en) * 2005-11-04 2007-05-16 Univ Nat Chiao Tung Embedded network controlled optical flow image positioning omni-direction motion system
TW201720717A (en) * 2015-12-09 2017-06-16 Univ Nat Formosa Multiple-obstacle avoidance system for multi-rotor aircraft by moving the rotor body to free space to avoid the obstacles so as to significantly enhance its practical use and added value, and improve its economic benefits
US20170212529A1 (en) * 2013-11-27 2017-07-27 The Trustees Of The University Of Pennsylvania Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft micro-aerial vehicle (mav)
CN107390704A (en) * 2017-07-28 2017-11-24 西安因诺航空科技有限公司 A kind of multi-rotor unmanned aerial vehicle light stream hovering method based on IMU pose compensations
US20180164801A1 (en) * 2016-12-14 2018-06-14 Samsung Electronics Co., Ltd. Method for operating unmanned aerial vehicle and electronic device for supporting the same
CN108196565A (en) * 2018-03-04 2018-06-22 西北工业大学 A kind of novel unmanned plane and its attitude control method being combined based on projection with more rotors
CN108196563A (en) * 2018-02-09 2018-06-22 深圳禾苗通信科技有限公司 A kind of multi-rotor unmanned aerial vehicle active disturbance rejection compensating control method and system
US20180275685A1 (en) * 2017-03-22 2018-09-27 Samsung Electronics Co., Ltd. Method for determining movement location based on movement of external object and electronic device for the same
CN108733068A (en) * 2017-04-24 2018-11-02 菜鸟智能物流控股有限公司 Aircraft with a flight control device
CN208181413U (en) * 2018-05-14 2018-12-04 天长航空技术有限公司 A kind of steady damping multi-rotor unmanned aerial vehicle fuselage box
US20190023395A1 (en) * 2017-07-18 2019-01-24 Samsung Electronics Co., Ltd Electronic device moved based on distance from external object and control method thereof
WO2019095453A1 (en) * 2017-11-15 2019-05-23 北京工业大学 Unmanned aerial vehicle fixed-point hovering system and method
CN109975621A (en) * 2019-04-11 2019-07-05 西安电子科技大学 A kind of multi-rotor unmanned aerial vehicle large-scale antenna scene pattern measurement system and method
US10551834B2 (en) * 2016-12-26 2020-02-04 Samsung Electronics Co., Ltd Method and electronic device for controlling unmanned aerial vehicle
TW202013251A (en) * 2018-09-15 2020-04-01 美商高通公司 Systems and methods for vslam scale estimation using optical flow sensor on a robotic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822631B (en) * 2014-02-28 2016-05-18 哈尔滨伟方智能科技开发有限责任公司 Localization method and the device of a kind of satellite towards rotor and the combination of optical flow field vision
FR3020169A1 (en) * 2014-04-16 2015-10-23 Parrot ROTATING WING DRONE WITH VIDEO CAMERA DELIVERING STABILIZED IMAGE SEQUENCES
CN105094138A (en) * 2015-07-15 2015-11-25 东北农业大学 Low-altitude autonomous navigation system for rotary-wing unmanned plane
CN105352495B (en) * 2015-11-17 2018-03-23 天津大学 Acceleration and light stream Data Fusion of Sensor unmanned plane horizontal velocity control method
CN107077140B (en) * 2016-03-28 2018-11-30 深圳市大疆创新科技有限公司 Hovering control method, control system and the unmanned vehicle of unmanned vehicle
CN106959110B (en) * 2017-04-06 2020-08-11 亿航智能设备(广州)有限公司 Cloud deck attitude detection method and device
RU2683133C1 (en) * 2018-04-23 2019-03-26 Общество с ограниченной ответственностью "Стрелец" (ООО "Стрелец") Unmanned aerial tethered system
WO2020019331A1 (en) * 2018-07-27 2020-01-30 深圳市大疆创新科技有限公司 Method for height measurement and compensation by barometer, and unmanned aerial vehicle
CN109062238A (en) * 2018-09-19 2018-12-21 张洋 Control the device of unmanned plane hovering
CN109725652B (en) * 2018-11-16 2022-04-01 广州昂宝电子有限公司 Method for resolving and controlling course of unmanned aerial vehicle holder
CN109883444B (en) * 2019-02-25 2022-03-25 航天科工防御技术研究试验中心 Attitude angle coupling error compensation method and device and electronic equipment
CN110375747A (en) * 2019-08-26 2019-10-25 华东师范大学 A kind of inertial navigation system of interior unmanned plane
CN111221347B (en) * 2020-04-21 2020-07-21 广东英诺威盛科技有限公司 Acceleration compensation method and system in attitude estimation of vertical take-off and landing fixed wing unmanned aerial vehicle
CN211956224U (en) * 2020-05-25 2020-11-17 武汉大学 Cable inspection aircraft based on laser radar and vision

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200718966A (en) * 2005-11-04 2007-05-16 Univ Nat Chiao Tung Embedded network controlled optical flow image positioning omni-direction motion system
US20170212529A1 (en) * 2013-11-27 2017-07-27 The Trustees Of The University Of Pennsylvania Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft micro-aerial vehicle (mav)
US20180088597A1 (en) * 2013-11-27 2018-03-29 The Trustees Of The University Of Pennsylvania Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft micro-aerial vehicle (mav)
TW201720717A (en) * 2015-12-09 2017-06-16 Univ Nat Formosa Multiple-obstacle avoidance system for multi-rotor aircraft by moving the rotor body to free space to avoid the obstacles so as to significantly enhance its practical use and added value, and improve its economic benefits
US20180164801A1 (en) * 2016-12-14 2018-06-14 Samsung Electronics Co., Ltd. Method for operating unmanned aerial vehicle and electronic device for supporting the same
US10551834B2 (en) * 2016-12-26 2020-02-04 Samsung Electronics Co., Ltd Method and electronic device for controlling unmanned aerial vehicle
US20180275685A1 (en) * 2017-03-22 2018-09-27 Samsung Electronics Co., Ltd. Method for determining movement location based on movement of external object and electronic device for the same
CN108733068A (en) * 2017-04-24 2018-11-02 菜鸟智能物流控股有限公司 Aircraft with a flight control device
US20190023395A1 (en) * 2017-07-18 2019-01-24 Samsung Electronics Co., Ltd Electronic device moved based on distance from external object and control method thereof
CN107390704A (en) * 2017-07-28 2017-11-24 西安因诺航空科技有限公司 A kind of multi-rotor unmanned aerial vehicle light stream hovering method based on IMU pose compensations
WO2019095453A1 (en) * 2017-11-15 2019-05-23 北京工业大学 Unmanned aerial vehicle fixed-point hovering system and method
US20200097025A1 (en) * 2017-11-15 2020-03-26 Beijing University Of Technology An uav fixed point hover system and method
CN108196563A (en) * 2018-02-09 2018-06-22 深圳禾苗通信科技有限公司 A kind of multi-rotor unmanned aerial vehicle active disturbance rejection compensating control method and system
CN108196565A (en) * 2018-03-04 2018-06-22 西北工业大学 A kind of novel unmanned plane and its attitude control method being combined based on projection with more rotors
CN208181413U (en) * 2018-05-14 2018-12-04 天长航空技术有限公司 A kind of steady damping multi-rotor unmanned aerial vehicle fuselage box
TW202013251A (en) * 2018-09-15 2020-04-01 美商高通公司 Systems and methods for vslam scale estimation using optical flow sensor on a robotic device
CN109975621A (en) * 2019-04-11 2019-07-05 西安电子科技大学 A kind of multi-rotor unmanned aerial vehicle large-scale antenna scene pattern measurement system and method

Also Published As

Publication number Publication date
CN112414365A9 (en) 2021-04-20
CN112414365A (en) 2021-02-26
TW202223339A (en) 2022-06-16
CN112414365B (en) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2018184467A1 (en) Method and device for detecting posture of ball head
CN109696183A (en) The scaling method and device of Inertial Measurement Unit
US20210370970A1 (en) Positioning Method And Apparatus, Autonomous Driving Vehicle, Electronic Device And Storage Medium
CN104374388B (en) Flight attitude determining method based on polarized light sensor
JP2015526726A (en) Wind vector estimation
WO2021031975A1 (en) Method and device for determining heading of unmanned aerial vehicle, and unmanned aerial vehicle
WO2020103049A1 (en) Terrain prediction method and device of rotary microwave radar, and system and unmanned aerial vehicle
WO2021078002A1 (en) Method and device for selecting initial value of heading angle of unmanned aerial vehicle, and unmanned aerial vehicle
JP2020530569A (en) Vehicle sensor calibration and positioning
WO2022007602A1 (en) Method and apparatus for determining location of vehicle
WO2021031974A1 (en) Method for selecting initial value of course angle of unmanned aerial vehicle and unmanned aerial vehicle
CN106705936A (en) Method and device for optimizing altitude of unmanned aerial vehicle
FR3041121A1 (en) METHOD OF CONTROLLING A FOLLOWING AIRCRAFT IN RELATION TO TOURBILLONS GENERATED BY AN AIRCRAFT AIRCRAFT
CN109343558A (en) A kind of rotor wing unmanned aerial vehicle automatically corrects navigation control system
CN115164936A (en) Global pose correction method and device for point cloud splicing in high-precision map manufacturing
CN106708088B (en) Coordinate calculation method and device, flight control method and system and unmanned aerial vehicle
TWI805141B (en) Positioning method and device for unmanned aerial vehicles
TWI747718B (en) Displacement compensation method and equipment and speed compensation method and equipment
WO2021217329A1 (en) Altitude detection method, method and device for determining compensation, and unmanned aerial vehicle
CN115900697B (en) Object motion trail information processing method, electronic equipment and automatic driving vehicle
CN115727871A (en) Track quality detection method and device, electronic equipment and storage medium
CN114413898B (en) Multi-sensor data fusion method and device, computer equipment and storage medium
CN113946151A (en) Data processing method and device for automatic driving vehicle and automatic driving vehicle
WO2018214014A1 (en) Method and device for measuring mounting error of accelerometer, and unmanned aerial vehicle
CN112649884B (en) Nacelle attitude real-time adjustment method applied to aviation electromagnetic measurement system