TWI730711B - 增量式類比數位轉換器 - Google Patents

增量式類比數位轉換器 Download PDF

Info

Publication number
TWI730711B
TWI730711B TW109111906A TW109111906A TWI730711B TW I730711 B TWI730711 B TW I730711B TW 109111906 A TW109111906 A TW 109111906A TW 109111906 A TW109111906 A TW 109111906A TW I730711 B TWI730711 B TW I730711B
Authority
TW
Taiwan
Prior art keywords
analog
digital converter
incremental
preset
integrator
Prior art date
Application number
TW109111906A
Other languages
English (en)
Other versions
TW202044776A (zh
Inventor
許雲翔
吳書豪
謝弘毅
邱衍智
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW202044776A publication Critical patent/TW202044776A/zh
Application granted granted Critical
Publication of TWI730711B publication Critical patent/TWI730711B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/464Details of the digital/analogue conversion in the feedback path

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本發明公開一種增量式類比數位轉換器,包括量化器,數位類比轉換器和迴路濾波器;量化器輸出量化訊號;該數位類比轉換器耦合到該量化器的輸出端,並產生該量化訊號的估計值;該迴路濾波器根據該類比輸入訊號與估計值之間的差值而運轉,並且該迴路濾波器的輸出端耦合到量化器的輸入端;以及該迴路濾波器具有預設電路,在該增量式類比數位轉換器的重置階段,該預設電路預先設定該迴路濾波器的輸出端子。

Description

增量式類比數位轉換器
本發明涉及電學技術領域,尤其涉及一種增量式類比數位轉換器。
由於成本和電路複雜性的降低,所以在許多應用中使用了Δ-Σ類比數位轉換器(analog-to-digital converter,ADC)。無線通訊系統(例如,電信系統,電視,無線電和其他媒體系統,資料通訊網路和其他使用無線發射機和無線接收機在遠端點之間傳遞資訊的系統)通常使用Δ-Σ ADC。
Δ-Σ ADC包括Δ-Σ(Δ-Σ)調製器(modulator)和數位濾波器(digital filter)。類比輸入訊號(analog input signal,Ain)由Δ-Σ調製器處理,並且Δ-Σ調製器的輸出是量化訊號(quantized signal),該量化訊號由數位濾波器進行數位積分(digitally integrated)以生成類比輸入訊號(Ain)的數位表示(Dout)。在Δ-∑調製器中,對類比輸入訊號(Ain)的粗略(rough)估計(estimate)被回饋並從類比輸入訊號(Ain)中減去,並且對得到的差值進行積分以補償該得到的差值。 Δ-Σ ADC可以稱為n階Δ-Σ ADC,其中,n等於Δ-Σ調製器內串聯的(cascaded)類比積分器( analog integrator)的數量。由數位濾波器提供的數位積分(digital integral)的數量優選地與在Δ-∑調製器中級聯類比積分器的數量相同。
一種特定類型的Δ-Σ ADC稱為增量式ADC,其中ADC中的類比和數位積分器在每個類比數位轉換週期後復位或重置(reset),為下一個類比數位轉換週期做準備。
然而,在類比積分器上的復位或重置過程可能引起非線性問題,這大大影響了增量式ADC的精確度。
有鑑於此,本發明提供一種增量式類比數位轉換器,以提高增量式ADC的精確度。
根據本發明的第一方面,公開一種增量式類比數位轉換器,包括: Δ-Σ調製器,對類比輸入訊號進行Δ-Σ調製,以輸出量化訊號;以及 數位濾波器,接收該量化訊號以生成該類比輸入訊號的數位表示, 其中: 該Δ-Σ調製器包括量化器,數位類比轉換器和迴路濾波器; 該量化器輸出該量化訊號; 該數位類比轉換器耦合到該量化器的輸出端,並產生該量化訊號的估計值; 該迴路濾波器根據該類比輸入訊號與估計值之間的差值而運轉,並且該迴路濾波器的輸出端耦合到量化器的輸入端;以及 該迴路濾波器具有預設電路,在該增量式類比數位轉換器的重置階段,該預設電路預先設定該迴路濾波器的輸出端子。
本發明的增量式類比數位轉換器採用預設電路,並且在該增量式類比數位轉換器的重置階段,該預設電路預先設定該迴路濾波器的輸出端子,而不為零,非零預先設定值回饋到迴路濾波器,從而使得輸入訊號減去非零預先設定值之後差值減小,這有效地限制了差值。因此,迴路濾波器內的類比積分器全部在類比積分器線性區域內工作,減少了由於在每個類比數位轉換週期開始時差值的劇烈變化而引起的非線性誤差,從而提高了精確度。
貫穿以下描述和申請專利範圍書使用某些術語,其指代特定部件。如本領域的技術人員將理解的,電子設備製造商可以用不同的名稱來指代组件。本文檔無意區分名稱不同但功能相同的组件。在以下描述和申請專利範圍中,術語“包括”和“包含”以開放式方式使用,因此應解釋為表示“包括但不限於...”。同樣,術語“耦合”旨在表示間接或直接的電連接。因此,如果一個設備耦合到另一設備,則該連接可以是透過直接電連接,或者是透過經由其他設備和連接件的間接電連接。
第1圖是示出根據本發明的示例性實施例的增量式類比數位轉換器(ADC)100的框圖。增量式ADC 100包括Δ-∑調製器102,數位濾波器104和重置(reset)訊號發生器106。Δ-∑調製器102處理類比輸入訊號Ain,並且Δ-∑調製器102的輸出為量化訊號Do,該量化訊號Do由數位濾波器104數位積分以形成類比輸入訊號Ain的數位表示Dout。類比輸入訊號Ain可以是電壓或電流。
Δ-Σ調製器102包括迴路濾波器(loop filter)112(具有L(> = 1)個類比積分器),量化器114,數位類比轉換器(digital-to-analog converter,DAC)116和加法器118。DAC 116輸出訊號120(輸入訊號Ain的粗略估計),加法器118從輸入訊號Ain中減去訊號120,得到差值122。差值122由迴路濾波器112處理,然後由量化器114量化為量化訊號Do。量化訊號Do不僅饋入到數位濾波器104,還回饋作為DAC 116的輸入。在類比數位轉換週期中,補償差值122,差值122的積分(由迴路濾波器112計算)達到穩定值。透過數位濾波器104對逐漸穩定的量化訊號Do進行數位積分,以生成類比輸入訊號Ain的數位表示Dout。
如圖所示,在每個類比數位轉換週期之後的重置階段期間,重置信號發生器106生成重置信號RST以重置增量式ADC 100。根據重置信號RST,數位濾波器104內的數位積分器重置。具體地,量化器114還根據重置信號RST而重置,以向數位濾波器104輸出重置值(例如,Do = 0),以完全清潔數位濾波器104內的數位積分器的電容器。重置階段使得類比輸入訊號Ain和數位表示Dout之間的一對一映射(one-to-one mapping)。為了防止來自量化器114的重置值(例如,Do=0)饋送到下一個類比數位轉換週期,本發明實施例為迴路濾波器112的輸出端子引入了預設(preset)電路。在增量式ADC 100的重置階段期間,預設電路預先設定迴路濾波器112的輸出端子124(可以預先設定為正數或負數,但不是零)。在每個類比數位轉換週期的開始,從迴路濾波器112的輸出端子傳輸到量化器114的訊號是預先設定值(在重置階段預先設定),而不是零。非零的預先設定值透過量化器114,DAC 116和加法器118回饋到迴路濾波器112,這有效地限制了差值122。因此,迴路濾波器112內的類比積分器全部在類比積分器線性區域內工作。減少了由於在每個類比數位轉換週期開始時差值122的劇烈變化而引起的非線性誤差。具體來說,在先前技術中,迴路濾波器的輸出端子(例如輸出端子124)處的值為零(當然之後的量化訊號Do也是零),從而經由DAC(例如DAC 116)回饋至加法器(例如加法器118)的輸出訊號(例如輸出訊號120)也為零,這樣加法器在使用輸入訊號Ain減去輸出訊號(例如輸出訊號120)時,得到差值122與輸入訊號Ain幾乎相同,這樣造成了差值122過大,導致較大的非線性誤差,影響類比數位轉換器精確度。本發明實施例中由於設置具有預設電路的迴路濾波器112,因此在經由該迴路濾波器112後在該迴路濾波器112的輸出端子124處的值並不為零,而是被迴路濾波器112內的預設電路進行了預先設定,為預先設定值,這樣在經過DAC 116之後的輸出訊號120的數值與預先設定值的數值相等,之後加法器118可以操作使用輸入訊號Ain減去輸出訊號120,得到的差值122就會較小,從而限制了差值122的大小,減小了非線性誤差,從而提高了精確度。
第2圖示出了重置訊號RST的波形。重置訊號產生器106可以根據時脈訊號CLK產生重置訊號RST。如圖所示,在類比數位轉換週期之間,需要一個重置階段。在增量式ADC 100的重置階段期間,預先設定迴路濾波器112的輸出端子。
第3圖描繪了根據本發明示例性實施例的增量式ADC 300,其是連續時間ADC。
如第3圖所示,第1圖的迴路濾波器112可以包括如第3圖所示的第一級電路302和第二級電路304,其中每個級電路(第一級電路302和第二級電路304)都涉及積分計算,第一級電路302和第二級電路304均可以分別稱為類比積分器,第一級電路302也可以稱為第一類比積分器,第二級電路304也可以稱為第二類比積分器。或者,本實施例中類比積分器可以包括第一類比積分器(第一級電路302),還可以包括第二類比積分器(第二級電路304)。在增量式ADC 300的重置階段期間,預先設定(而不是零)第一級電路302的積分輸出INT1和第二級電路304的積分輸出INT2。具體來說,先前技術中,積分輸出INT1和積分輸出INT2均為零。而本發明實施例中,第一級電路302的積分輸出INT1和第二級電路304的積分輸出INT2可以分別進行預先設定,預先設定的數值可以是正數或負數(加法器可以相應的根據正數或負數使輸入訊號Ain變小)。
在第一級電路302中,存在運算放大器opl,回饋電容器Cl,預設元件PEl和開關SWl。差值122耦合到運算放大器op1的輸入端子“-”。積分輸出INT1在運算放大器op1的輸出端子處生成。回饋電容器C1耦合在輸入端“-”和運算放大器op1的輸出端之間。預設元件PE1和開關SW1串聯連接在運算放大器op1的輸入端子“-”和輸出端子之間。在增量式ADC 300的重置階段期間,開關SW1由重置訊號RST閉合,從而預設元件PE1與回饋電容器C1並聯連接。回饋電容器C1並未完全清理乾淨,因此在增量式ADC 300的重置階段中會預先設定積分輸出INT1,而不是清理為零。
在第二級電路304中,存在運算放大器op2,回饋電容器C2,輸入電阻器Rin,預設元件PE2和開關SW2。來自第一級電路302的積分輸出INT1透過輸入電阻器Rin耦合到運算放大器op2的輸入端子“-”。積分輸出INT2在運算放大器op2的輸出端子處生成。回饋電容器C2耦合在運算放大器op2的輸入端“-”和輸出端之間。預設元件PE2和開關SW2串聯連接在運算放大器op2的輸入端子“-”和輸出端子之間。在增量式ADC 300的重置階段期間,開關SW2由重置訊號RST閉合,從而預設元件PE2與回饋電容器C2並聯連接。回饋電容器C2並未完全清潔,因此在增量式ADC 300的重置階段,對積分輸出INT2預先設定,而不是重置為零。
在第3圖中,第二級電路304還具有預設元件PE3和開關SW3。預設元件PE3和開關SW3串聯連接在運算放大器op1的輸出端子和運算放大器op2的輸入端子“-”之間。在增量式ADC 300的重置階段期間,開關SW3由重置訊號RST閉合,從而預設元件PE3與輸入電阻器Rin並聯連接。預先設定積分輸出INT1經由並聯連接的預設元件PE3和輸入電阻器Rin耦合到第二級電路304。預設元件PE3和開關SW3是可選的。其中,輸入電阻器Rin與回饋電容器C2可以組成RC濾波電路,用以去除雜訊等。另外,預設元件PE3和開關SW3組成的電路可以根據所接收的訊號的類型進行設置,例如當輸入訊號Ain為電壓訊號時,類似於包括預設元件PE3和開關SW3的電路也可以設置在第一級電路302之前。若輸入訊號Ain為電流訊號,可以不用設置類似於包括預設元件PE3和開關SW3的電路。當然,一般而言,經過類比積分器(例如第一級電路302或第二級電路304)之後得到為電壓(例如積分輸出INT1和INT2為電壓),因此在類比積分器的後方設置其他的類比積分器時,可以設置類似於包括預設元件PE3和開關SW3的電路。
在第3圖中,預設元件PE1,PE2和PE3是電阻器,但不限於此。預設元件PE1,PE2和PE3可以是緩衝器(buffer),也可以是任何主動(active)或被動(passive)组件。此外,本實施例中,可以只有第一級電路302,而沒有第二級電路304。也就是說,本發明實施例中可以僅有一級電路(具有一個預設元件)。當然也可以具有更多級的電路,例如兩級,三級等等(也可以稱為一階,二階,三階)。
開關SW1,SW2和SW3以及預設元件PE1,PE2和PE3形成預設電路,該預設電路在增量式ADC的重置階段中預先設定迴路濾波器112的輸出端子124。透過以上實施例可以得知,透過預設元件即可以確定相對應的預先設定值,例如積分輸出INT1可以透過預設元件PE1來確定(例如透過預設元件PE1的電阻值來確定)。
第4圖示出了積分輸出INT1和INT2以及量化訊號Do的瞬態波形。實線402、404和406分別是增量式ADC 100的積分輸出INT1,積分輸出INT2和量化訊號Do的瞬態波形。虛線408、410和412是常規增量式ADC的訊號的瞬態波形,其中在ADC的重置階段,迴路濾波器的輸出端子也重置。參照本發明中的實線402和404,預先設定積分輸出INT1和INT2(在時間間隔400期間,對應於ADC的重置階段),而不是重置(例如重置為零),也就是說在重置階段可以重置類比積分器,但是此時積分輸出INT1和INT2也是不為零的(為預先設定值),即不重置積分輸出INT1和INT2。並且示出了建立時間較短(與虛線408和410相比),也就是說,與虛線412相比,由於預先設定的積分輸出INT1和INT2,實線406所示的量化訊號Do迅速提高到期望值。在本發明中,增量式ADC的瞬態回應明顯得到改善,從而能夠滿足更高的負載轉換的要求,適應更多的應用場景。
第5圖描繪了根據本發明的示例性實施例的增量式ADC 500,其是離散時間AD​​C。
如第5圖所示,第1圖的迴路濾波器112可以包括兩個級聯的 (cascaded,也即串聯的)開關電容器積分器(switched-capacitor integrator)502和504,開關SWa,預設元件PEa,開關SWb和預設元件PEb。開關SWa和預設元件PEa串聯連接。開關SWb和預設元件PEb串聯連接。開關電容器積分器502輸出積分輸出INT1。開關電容器積分器504輸出積分輸出INT2。當根據增量式ADC 500的重置訊號RST閉合開關SWa和SWb時,類比輸入訊號Ain透過預設元件PEa耦合到積分輸出INT1,並且積分輸出INT1透過預設元件PEb耦合到積分輸出INT2。因此,當進入隨後的類比數位轉換週期時,量化訊號Do不為零(因為積分輸出INT1和INT2不為零而是預先設定值),這有效地限制了差值122。因此,開關電容器積分器502和504全部在它們的線性區域內操作(運轉或作業)。減少了由於在每個類比數位轉換週期開始時差值122的劇烈變化而引起的非線性誤差。
在第5圖所示的示例中,開關電容器積分器502和504是可重置的(是指開關電容器積分器502和504的內部可以清空為零,但是積分輸出INT1和INT2處不為零)。根據重置訊號RST,清潔開關電容器積分器502和504內的電容器。積分輸出INT1和INT2的預先設定狀態透過閉合的開關SWa和SWb以及預設元件PEa和PEb來實現(也即積分輸出INT1和INT2可以預先設定,而不為零)。預設元件PEa和PEb可以是電阻器,緩衝器或任何有源或無源组件。積分輸出INT1和INT2的預先設定值可以分別透過預設元件PEa和PEb來確定(例如透過預設元件PEa和PEb的電阻值的大小或其他參數來確定)。
開關SWa和SWb以及預設元件PEa和PEb形成預設電路,該預設電路在增量式ADC的重置階段中預先設定迴路濾波器112的輸出端子124。
在另一個示例性實施例中,可以用RC(Resistor-Capacitance,電阻電容)積分器代替開關電容器積分器502和504。本實施例中,開關電容器積分器502和504可以分別屬於第一類比積分器和第二類比積分器(類比積分器可以包括第一類比積分器和第二類比積分器),其中第一類比積分器可以包括開關電容器積分器502以及與開關電容器積分器502並聯的開關SWa和預設元件PEa(開關SWa和預設元件PEa串聯連接),開關SWa的一端還連接加法器118的輸入端(該輸入端接收輸入訊號Ain),預設元件PEa的一端還連接到開關電容器積分器502的輸出端(也即積分輸出INT1處)。第二類比積分器可以包括開關電容器積分器504以及與開關電容器積分器504並聯的開關SWb和預設元件PEb(開關SWb和預設元件PEb串聯連接),開關SWb的一端還連接預設元件PEa的輸出端(也即積分輸出INT1處),預設元件PEb的一端還連接到開關電容器積分器504的輸出端(也即積分輸出INT2處)。本實施例中,可以僅有一個類比積分器,例如第一類比積分器,或者也可以兩個類比積分器或更多的類比積分器。
在第3圖和第5圖中,僅示出了兩個級聯(串聯)積分器。然而,迴路濾波器112內級聯(串聯)積分器的數量不限於兩個,也可以是一個,或三個,或更多。本實施例中設置兩級類比積分器可以更加準確的設定預先設定值,從而提高轉換器的精確度。在整個ADC的重置階段期間將迴路濾波器112的輸出端子124預先設定的任何電路設計都應視為在本發明的範圍內。
基於第3圖的概念,迴路濾波器112可以包括串聯在一起的(cascaded in a series)複數個類比積分器(例如第一級電路和第二級電路)或一個類比積分器,並且迴路濾波器112的預設電路包括與複數個模組相對應的複數個預設元件(PE#)的類比積分器一一對應。在增量式類比數位轉換器的重置階段,每個預設元件和相應類比積分器的回饋電容器並聯連接。
基於第5圖的概念,迴路濾波器112可以包括串聯在一起的複數個類比積分器或一個類比積分器,並且增量式類比數位轉換器的重置階段,迴路濾波器112的預設電路將類比輸入訊號耦合到類比積分器的輸出端子。
儘管已經對本發明實施例及其優點進行了詳細說明,但應當理解的是,在不脫離本發明的精神以及申請專利範圍所定義的範圍內,可以對本發明進行各種改變、替換和變更。所描述的實施例在所有方面僅用於說明的目的而並非用於限制本發明。本發明的保護範圍當視所附的申請專利範圍所界定者為准。本領域技術人員皆在不脫離本發明之精神以及範圍內做些許更動與潤飾。
100、300、500:增量式類比數位轉換器 102:Δ-∑調製器 104:數位濾波器 112:迴路濾波器 114:量化器 116:數位類比轉換器 118:加法器 120:輸出訊號 122:差值 124:輸出端子 302:第一級電路 304:第二級電路 402、404、406:實線 408、410、412:虛線 502、504:開關電容器積分器
透過閱讀後續的詳細描述和實施例可以更全面地理解本發明,本實施例參照附圖給出,其中: 第1圖是示出根據本發明的示例性實施例的增量式類比數位轉換器(ADC)100的框圖; 第2圖示出了重置訊號RST的波形; 第3圖描繪了根據本發明示例性實施例的增量式ADC 300,其是連續時間(continuous time)ADC; 第4圖示出了積分輸出(integral output)INT1和INT2以及量化訊號Do的瞬態(transient)波形; 第5圖描繪了根據本發明的示例性實施例的增量式ADC 500,其是離散時間(discrete time)ADC。
100:增量式類比數位轉換器
102:△-Σ調製器
104:數位濾波器
112:迴路濾波器
114:量化器
116:數位類比轉換器
118:加法器
120:輸出訊號
122:差值
124:輸出端子

Claims (11)

  1. 一種增量式類比數位轉換器,包括:Δ-Σ調製器,對類比輸入訊號進行Δ-Σ調製,以輸出量化訊號;以及數位濾波器,接收該量化訊號以生成該類比輸入訊號的數位表示,其中:該Δ-Σ調製器包括量化器,數位類比轉換器和迴路濾波器;該量化器輸出該量化訊號;該數位類比轉換器耦合到該量化器的輸出端,並產生該量化訊號的估計值;該迴路濾波器根據該類比輸入訊號與估計值之間的差值而運轉,並且該迴路濾波器的輸出端耦合到量化器的輸入端;以及該迴路濾波器具有預設電路,在該增量式類比數位轉換器的重置階段,該預設電路根據該類比輸入訊號預先設定該迴路濾波器的輸出端子的輸出。
  2. 如申請專利範圍第1項所述的增量式類比數位轉換器,其中:該迴路濾波器包括類比積分器;該預設電路包括預設元件;以及在該增量式類比數位轉換器的重置階段,每個該預設元件和相應的該類比積分器的回饋電容器並聯連接。
  3. 如申請專利範圍第1項所述的增量式類比數位轉換器,其中:該迴路濾波器包括第一類比積分器;該第一類比積分器具有第一運算放大器和耦合在該第一運算放大器的輸入端和輸出端之間的第一回饋電容器;該預設電路包括第一開關和第一預設元件,該第一開關和該第一預設元件串聯連接在該第一運算放大器的輸入端子和輸出端子之間;以及在該增量式類比數位轉換器的重置階段,該第一個開關閉合。
  4. 如申請專利範圍第3項所述的增量式類比數位轉換器,其中:該迴路濾波器還包括耦合在該第一類比積分器和該量化器之間的第二類比積分器;該第二類比積分器具有第二運算放大器和耦合在該第二運算放大器的輸入端和輸出端之間的第二回饋電容器;該預設電路還包括第二開關和第二預設元件,該第二開關和第二預設元件串聯連接在該第二運算放大器的輸入端子和輸出端子之間;以及在該增量式類比數位轉換器的重置階段,該第二開關閉合。
  5. 如申請專利範圍第4項所述的增量式類比數位轉換器,其中:該第二類比積分器包括輸入電阻器,該輸入電阻器耦合在該第一運算放大器的輸出端子與該第二運算放大器的輸入端子之間;預設電路還包括:第三開關和第三預設元件,該第三開關和第三預設元件串聯連接在該第一運算放大器的輸出端子和第二運算放大器的輸入端子之間;以及在該增量式類比數位轉換器的重置階段,該第三個開關閉合。
  6. 如申請專利範圍第5項所述的增量式類比數位轉換器,其中:該第一預設元件,該第二預設元件和該第三預設元件是電阻器。
  7. 如申請專利範圍第1項所述的增量式類比數位轉換器,其中:該迴路濾波器包括類比積分器;在該增量式類比數位轉換器的重置階段,該預設電路將該類比輸入訊號耦合到該類比積分器的輸出端子。
  8. 如申請專利範圍第7項所述的增量式類比數位轉換器,其中:在該增量式類比數位轉換器的重置階段,重置該類比積分器。
  9. 如申請專利範圍第7項所述的增量式類比數位轉換器,其中: 該類比積分器包括開關電容器積分器以及與該開關電容器積分器並聯連接的開關和預設元件,該開關和該預設元件串聯連接。
  10. 如申請專利範圍第1項所述的增量式類比數位轉換器,其中:該數位濾波器包括數位積分器,在增量式類比數位轉換器的重置階段,重置該數位積分器。
  11. 如申請專利範圍第10項所述的增量式類比數位轉換器,其中:在該增量式類比數位轉換器的重置階段,重置該量化器。
TW109111906A 2019-04-29 2020-04-09 增量式類比數位轉換器 TWI730711B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962839820P 2019-04-29 2019-04-29
US62/839,820 2019-04-29
US16/837,417 2020-04-01
US16/837,417 US11265010B2 (en) 2019-04-29 2020-04-01 Incremental analog-to-digital converter

Publications (2)

Publication Number Publication Date
TW202044776A TW202044776A (zh) 2020-12-01
TWI730711B true TWI730711B (zh) 2021-06-11

Family

ID=70292859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109111906A TWI730711B (zh) 2019-04-29 2020-04-09 增量式類比數位轉換器

Country Status (4)

Country Link
US (1) US11265010B2 (zh)
EP (1) EP3734842B1 (zh)
CN (1) CN111865309A (zh)
TW (1) TWI730711B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696826A (zh) * 2020-12-31 2022-07-01 合肥市芯海电子科技有限公司 模数转换器、电量检测电路以及电池管理***
TWI782637B (zh) * 2021-07-26 2022-11-01 新唐科技股份有限公司 增量型類比數位轉換器與使用其的電路系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036140A1 (en) * 2006-09-22 2008-03-27 Cirrus Logic, Inc. Incremental delta-sigma data converters with improved stability over wide input voltage ranges
WO2013077873A1 (en) * 2011-11-22 2013-05-30 Robert Bosch Gmbh Voltage sensing circuit with reduced susceptibility to gain drift
WO2015200267A2 (en) * 2014-06-25 2015-12-30 Cirrus Logic, Inc. Systems and methods for compressing a digital signal

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903585B2 (en) * 2003-06-27 2005-06-07 Analog Devices, Inc. Pulse width modulated common mode feedback loop and method for differential charge pump
US7358879B2 (en) * 2005-08-09 2008-04-15 Analog Devices, Inc. ΔΣ modulator system with start up transient suppression
US7365667B1 (en) * 2006-09-21 2008-04-29 Cirrus Logic, Inc. Delta-sigma analog-to-digital converter (ADC) having an intermittent power-down state between conversion cycles
US7525465B1 (en) * 2008-02-19 2009-04-28 Newport Media, Inc. Reconfigurable and adaptive continuous time-sigma delta data converter
US7671774B2 (en) * 2008-05-08 2010-03-02 Freescale Semiconductor, Inc. Analog-to-digital converter with integrator circuit for overload recovery
US8149151B2 (en) * 2010-04-26 2012-04-03 Robert Bosch Gmbh Second order dynamic element rotation scheme
US8395418B2 (en) * 2010-11-04 2013-03-12 Robert Bosch Gmbh Voltage sensing circuit with reduced susceptibility to gain drift
US8698664B2 (en) 2012-02-01 2014-04-15 Intel IP Corporation Continuous-time incremental analog-to-digital converter
US9401728B2 (en) * 2014-12-16 2016-07-26 Freescale Semiconductor, Inc. Test signal generator for sigma-delta ADC
CN104506196A (zh) * 2014-12-30 2015-04-08 天津大学 高速高精度两步式模数转换器
US9432049B2 (en) * 2015-01-07 2016-08-30 Asahi Kasei Microdevices Corporation Incremental delta-sigma A/D modulator and A/D converter
US9680496B2 (en) * 2015-06-25 2017-06-13 Intel Corporation Apparatus for overload recovery of an integrator in a sigma-delta modulator
US9787316B2 (en) 2015-09-14 2017-10-10 Mediatek Inc. System for conversion between analog domain and digital domain with mismatch error shaping
CN108028662B (zh) * 2015-09-15 2022-01-25 皇家飞利浦有限公司 执行模数转换的方法
CN106130556B (zh) * 2016-07-12 2019-10-01 昆明物理研究所 一种两步式增量模拟-数字转换器及两步式转换方法
JP2018014664A (ja) * 2016-07-22 2018-01-25 旭化成エレクトロニクス株式会社 インクリメンタルデルタシグマad変換器
US9866238B1 (en) * 2017-04-27 2018-01-09 Silicon Laboratories Inc. Incremental analog to digital converter with efficient residue conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036140A1 (en) * 2006-09-22 2008-03-27 Cirrus Logic, Inc. Incremental delta-sigma data converters with improved stability over wide input voltage ranges
WO2013077873A1 (en) * 2011-11-22 2013-05-30 Robert Bosch Gmbh Voltage sensing circuit with reduced susceptibility to gain drift
WO2015200267A2 (en) * 2014-06-25 2015-12-30 Cirrus Logic, Inc. Systems and methods for compressing a digital signal

Also Published As

Publication number Publication date
US20200343905A1 (en) 2020-10-29
CN111865309A (zh) 2020-10-30
US11265010B2 (en) 2022-03-01
EP3734842B1 (en) 2023-08-09
TW202044776A (zh) 2020-12-01
EP3734842A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US7129874B2 (en) Method and apparatus for operating a pipelined ADC circuit
EP2027654B1 (en) A/d converter and a/d converting method
JP2704060B2 (ja) 過サンプリング変換器
US5148166A (en) Third order sigma delta oversampled analog-to-digital converter network with low component sensitivity
US5148167A (en) Sigma-delta oversampled analog-to-digital converter network with chopper stabilization
US5329282A (en) Multi-bit sigma-delta analog-to-digital converter with reduced sensitivity to DAC nonlinearities
US5461381A (en) Sigma-delta analog-to-digital converter (ADC) with feedback compensation and method therefor
US20070241950A1 (en) Mismatch-shaping dynamic element matching systems and methods for multi-bit sigma-delta data converters
JPH04229723A (ja) 高次シグマ・デルタアナログ/デジタル変換器
JPH05152967A (ja) シグマデルタアナログ/デジタル変換器
JPH04225624A (ja) シグマデルタアナログ−デジタル変換器
US7365668B2 (en) Continuous-time delta-sigma analog digital converter having operational amplifiers
US7034728B2 (en) Bandpass delta-sigma modulator with distributed feedforward paths
TWI730711B (zh) 增量式類比數位轉換器
US9641192B1 (en) Methods and apparatus for a delta sigma ADC with parallel-connected integrators
US20110267211A1 (en) Analog-digital converter and operating method thereof
Ortmanns et al. A case study on a 2-1-1 cascaded continuous-time sigma-delta modulator
JP7324596B2 (ja) 音声アナログ・デジタル変換器システム及び方法
US9641190B1 (en) Continuous-time cascaded sigma-delta analog-to-digital converter
Kosonocky et al. Analog-to-digital conversion architectures
JPH07283736A (ja) シグマ−デルタ形アナログ−ディジタル変換器の分解能の延長方法および装置
US10897232B2 (en) Multi-level capacitive digital-to-analog converter for use in a sigma-delta modulator
Mohamed et al. FIR feedback in continuous-time incremental sigma-delta ADCs
WO2009034494A1 (en) Adjustable-resistor array type circuit of a semi-digital ratiometric finite impulse response digital-to-analog converter (firdac)
JP2001156642A (ja) マルチビット−デルタシグマad変換器