TWI693196B - 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置 - Google Patents

好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置 Download PDF

Info

Publication number
TWI693196B
TWI693196B TW105109604A TW105109604A TWI693196B TW I693196 B TWI693196 B TW I693196B TW 105109604 A TW105109604 A TW 105109604A TW 105109604 A TW105109604 A TW 105109604A TW I693196 B TWI693196 B TW I693196B
Authority
TW
Taiwan
Prior art keywords
biological treatment
drainage
tank
semi
pollution
Prior art date
Application number
TW105109604A
Other languages
English (en)
Other versions
TW201708126A (zh
Inventor
三宅將貴
長谷部吉昭
江口正浩
Original Assignee
日商奧璐佳瑙股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57007224&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI693196(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2015073511A external-priority patent/JP6609107B2/ja
Priority claimed from JP2015107925A external-priority patent/JP6605843B2/ja
Application filed by 日商奧璐佳瑙股份有限公司 filed Critical 日商奧璐佳瑙股份有限公司
Publication of TW201708126A publication Critical patent/TW201708126A/zh
Application granted granted Critical
Publication of TWI693196B publication Critical patent/TWI693196B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本發明係一種好氧性顆粒之形成方法,其使用半批式反應槽,該半批式反應槽重複進行下述步驟而形成顆粒:流入步驟,使包含有機物之含有機物排水流入;生物處理步驟,藉由微生物污泥,對該含有機物排水中之處理對象物質進行生物學處理;沉降步驟,使該微生物污泥沉降;及排出步驟,使經該生物學處理之生物處理水排出,其特徵為:調整反應時間,俾使投入該半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,且進行污泥之抽取,俾使污泥停留時間為5~25天。

Description

好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置
本發明係關於為了對含有機物等之含有機物排水進行好氧性生物處理,而用以穩定形成好氧性顆粒之好氧性顆粒之形成方法、好氧性顆粒之形成裝置、使用該已形成顆粒之排水處理方法及排水處理裝置。
以往,對於含有機物等之含有機物排水之生物學排水處理,係採用應用稱為「膠羽」之微生物凝集體(好氧性生物污泥)之活性污泥法。然而,活性污泥法中,於沉澱池將「膠羽」(好氧性生物污泥)與處理水分離時,因「膠羽」之沉降速度慢,故有時必須將沉澱池之表面積設為非常大。又,活性污泥法的處理速度係取決於生物處理槽內之污泥濃度,雖可藉由提高污泥濃度來增大處理速度,但若將污泥濃度增加至1500~5000mg/L或更高之範圍,則有時會因沉澱池中之膨化等造成難以固液分離,而無法維持處理。
另一方面,於厭氧性生物處理中,一般是應用由稱為「顆粒」之微生物緊密凝集而成顆粒狀之凝集體(厭氧性生物污泥)。顆粒因沉降速度非常快速,微生物能緊密凝集,故可提高生物處理槽內之污泥濃度,可實現排水之高速處理。然而,厭氧性生物處理相較於好氧性處理(活性污泥法),有時會有處理對象之排水種類受到限制、或必須將處理水溫維持於30~35℃等之問題點。又,若單獨採用厭氧性生物處理,於處理水之水質不佳,而放流至河川等情形時,有時還必須另外實施活性污泥法等好氧性處理。
近年來,吾人已瞭解,藉由使用令排水間歇性流入反應槽之半批式處理裝置進行處理,以進一步縮短生物污泥的沉降時間,不限於厭氧性生物污泥,即使是好氧性生物污泥亦可形成沉降性良好之已顆粒化之生物污泥(例如,參照專利文獻1~4)。藉由使生物污泥顆粒化,可使平均粒徑為0.2mm以上、沉降速度為5m/h以上。又,於半批式處理裝置中,於1個生物處理槽中,藉由(1)排水之流入、(2)處理對象物質之生物處理、(3)生物污泥之沉降、(4)處理水之排出、四個步驟進行處理。藉由形成如上述之沉降性良好之已顆粒化之好氧性生物污泥,可使槽內污泥濃度維持於高濃度,而實現高速處理。
作為促進顆粒化之方法,有人提出利用縮短好氧性顆粒之沉降時間,而將沉降速度慢之污泥積極排出系統外之方法,然而,此方法中,由於污泥沉降性之變化,使得所排出之微生物量產生變動,而有時難以穩定形成好氧性顆粒。又,於如污水等排水BOD濃度低為80~200mg/L左右之情形時,即使使用半批式反應槽亦不易形成好氧顆粒。 [先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2004/024638號 [專利文獻2]日本特開2008-212878號公報 [專利文獻3]專利第4975541號公報 [專利文獻4]專利第4804888號公報
[發明欲解決之問題] 本發明旨在提供使用半批式反應槽而穩定形成好氧性顆粒之好氧性顆粒之形成方法、好氧性顆粒之形成裝置、使用該已形成顆粒之排水處理方法、及排水處理裝置。 [解決問題之方法]
本發明係一種好氧性顆粒之形成方法,其使用半批式反應槽,該半批式反應槽重複進行下述步驟而形成顆粒:流入步驟,使包含有機物之含有機物排水流入;生物處理步驟,藉由微生物污泥,對該含有機物排水中之處理對象物質進行生物學處理;沉降步驟,使該微生物污泥沉降;及排出步驟,使經該生物學處理之生物處理水排出,其特徵為:調整反應時間,俾使投入該半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,且進行污泥之抽取,俾使污泥停留時間為5~25天。
於該好氧性顆粒之形成方法中,最好藉由將該半批式反應槽之生物處理水排出口設置於較排水流入口更為上方,使該含有機物排水流入該半批式反應槽,而使該生物處理水從該生物處理水排出口排出。
本發明係一種好氧性顆粒之形成裝置,其具備半批式反應槽,該半批式反應槽重複進行下述步驟而形成顆粒:流入步驟,使包含有機物之含有機物排水流入;生物處理步驟,藉由微生物污泥,對該含有機物排水中之處理對象物質進行生物學處理;沉降步驟,使該微生物污泥沉降;及排出步驟,使經該生物學處理之生物處理水排出,其特徵為:調整反應時間,俾使投入該半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,且進行污泥之抽取,俾使污泥停留時間為5~25天。
於該好氧性顆粒之形成裝置中,最好藉由將該半批式反應槽之生物處理水排出口設置於較排水流入口更為上方,使該含有機物排水流入該半批式反應槽,而使該生物處理水從該生物處理水排出口排出。
本發明係一種排水處理方法,其對於一邊使含有機物排水連續流入一邊利用生物污泥對該含有機物排水進行生物處理之連續式生物處理槽,供給藉由該好氧性顆粒之形成方法所形成之顆粒。
於該排水處理方法中,最好該顆粒係具有粒徑為200μm以上之顆粒污泥,該連續式生物處理槽之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍。
該排水處理方法中,最好該連續式生物處理槽由複數個反應槽所構成。
於該排水處理方法中,最好更具備:污泥回送步驟,從經該連續式生物處理槽所處理之生物處理液,使生物污泥固液分離,將該已固液分離之生物污泥回送至該連續式生物處理槽,從流入至該連續式生物處理槽之排水流量及回送至該連續式生物處理槽之生物污泥之流量的總和與該連續式生物處理槽的容積所求得之連續式生物處理槽之水理學停留時間為5小時~10小時之範圍。
於該排水處理方法中,最好於該好氧性顆粒之形成方法之該流入步驟中,使供給至該連續式生物處理槽內之排水之一部分流入該半批式生物處理槽。
本發明係一種排水處理裝置,其具備一邊使含有機物排水連續流入一邊利用生物污泥對該含有機物排水進行生物處理之連續式生物處理槽,將藉由該好氧性顆粒之形成裝置所形成之顆粒供給至該連續式生物處理槽。
於該排水處理裝置中,最好該顆粒為具有粒徑為200μm以上之顆粒污泥,該連續式生物處理槽之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍。 [發明效果]
依據本發明,可提供使用半批式反應槽而穩定形成好氧性顆粒之好氧性顆粒之形成方法、好氧性顆粒之形成裝置、使用該已形成顆粒之排水處理方法、及排水處理裝置。
以下說明本發明之實施形態。本實施形態為實施本發明之一例,本發明不限於本實施形態。
<好氧性顆粒之形成方法及形成裝置> 本發明之實施形態之好氧性顆粒之形成裝置之一例之概略示於圖1,以下說明其構成。顆粒形成裝置1具備半批式反應槽10。顆粒形成裝置1中,排水供給配管28經由排水流入泵12連接於半批式反應槽10之排水流入口。生物處理水配管30經由生物處理水排出閥18連接於半批式反應槽10之生物處理水排出口16;污泥抽取配管32經由污泥抽取泵24連接於污泥抽取口22。於半批式反應槽10之內部下部,設置與曝氣用泵14相連接之曝氣裝置26。排水流入泵12、生物處理水排出閥18、污泥抽取泵24、曝氣用泵14,亦可藉由電連接等分別與控制裝置20相連接。
顆粒形成裝置1,例如,以如下循環進行運轉。 (1)流入步驟:排水流入泵12作動,含有機物排水通過排水供給配管28以既定量流入半批式反應槽10。
(2)生物處理步驟:於排水流入泵12停止之同時,從曝氣用泵14將空氣等之含氧氣體供給至半批式反應槽10,於半批式反應槽10內,藉由微生物污泥對含有機物排水中之處理對象物質進行生物學方式之處理。生物反應不限於好氧反應,可不進行空氣等之供給,而利用攪拌進行無氧反應,亦可將好氧反應及無氧反應相組合。所謂「無氧狀態」係指:不存在溶氧,但存在來自亜硝酸或硝酸之氧等之狀態。例如,如圖3所示,將由馬達34、攪拌翼36、連接馬達34與攪拌翼36之軸等所構成之攪拌裝置,設置於半批式反應槽10,使曝氣用泵14停止而利用攪拌裝置進行攪拌即可。又,攪拌裝置不限於上述構成。
(3)沉降步驟:曝氣用泵14停止,藉由以既定時間使成為靜置狀態,而使半批式反應槽10內之污泥沉降。
(4)排出步驟:藉由打開生物處理水排出閥18,將於沉降步驟所得之上澄液作為生物處理水,從生物處理水排出口16通過生物處理水配管30而排出。此情形時,亦可不使用生物處理水排出閥,而利用泵排出生物處理水。
藉由重複以上(1)~(4)之循環而形成顆粒,而形成微生物緊密凝集而成粒狀所成之凝集體亦即顆粒。又,排水流入泵12、污泥抽取泵24、曝氣用泵14、攪拌裝置之馬達34之作動及停止、及生物處理水排出閥18之開關,亦可由控制裝置20控制。
於半批式反應槽10所形成之顆粒污泥,係指:持續進行自行造粒而成的污泥,例如污泥之平均粒徑為0.2mm以上、或沉降性指標SVI5為80mL/g以下之生物污泥。又,本實施型態中,顆粒是否已形成係例如藉由測定污泥之沉降性指標亦即SVI來判斷。具體而言,定期藉由半批式生物反應槽10內之污泥沉降性試驗測定SVI值,於沉降5分鐘後之體積比率所算出之SVI5值為既定值以下(例如80mL/g以下)之階段,可判斷已形成顆粒。或者,測定半批式反應槽10內之污泥粒徑分布,於其平均粒徑成為既定值以上(例如0.2mm以上)之階段,可判斷已形成顆粒(又,SVI值愈低、平均粒徑愈大,可判斷為愈優良之顆粒污泥)。
本發明人等發現:調整反應時間,俾使投入於此半批式反應槽10之BOD負荷量相對於MLSS濃度的比值(BOD/MLSS)乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,並且,藉由進行污泥抽取並運轉俾使半批式反應槽10內之污泥停留時間為5~25天,可穩定形成好氧性顆粒。
本發明人等發現:上述(2)生物處理步驟之時間之決定方式,對顆粒化有極大影響。本發明人等推定顆粒之形成機理如下。圖2係半批式反應槽之1批次之BOD濃度與處理時間之關係圖。如圖2所示,當完成含有機物排水之流入步驟而移往生物處理步驟時,由於微生物之分解作用,使得半批式反應槽內之BOD濃度隨著處理時間而逐漸減少。於此期間,因半批式反應槽內之BOD高於微生物量,故於半批式反應槽內為有機物剩餘之狀態(飽食狀態)。而隨著利用微生物之有機物分解進行,半批式反應槽內之BOD濃度變低,使得處理速度下降,最後大致為0。亦即,因相對於半批式反應槽內之微生物量,剩餘BOD為少,故對於微生物而言為飢餓狀態。其後,移往生物污泥之沉降步驟、生物處理水之排出步驟。藉由重複此循環,於半批式反應槽內生物污泥之顆粒化持續進展。於在半批式反應槽形成顆粒之機理中,如前述之循環中之半批式反應槽內之有機物濃度梯度為重要因素。又,藉由重複飢餓狀態及飽食狀態,使細菌類產生黏性物質,利用該黏性物質細菌類等彼此強固黏合,而得以形成顆粒。
於1循環中,若相對於投入至半批式反應槽之BOD負荷量而言,半批式反應槽內之微生物量(MLSS濃度)愈高,則飽食狀態下之有機物分解速度變快,飽食時間之長度變短。另一方面,若半批式反應槽內之微生物量(MLSS濃度)愈低,則飽食狀態下之有機物分解速度變慢,飽食時間變長。亦即,若反應時間相同,則利用相對於投入半批式反應槽之BOD負荷量之微生物量,使得飽食時間之長度與飽食時間後之飢餓時間之長度的比值改變。藉由控制此飽食時間/飢餓時間的比值,可穩定形成顆粒。此飽食時間與飢餓時間之長度的比值,可以所投入之BOD負荷量相對於微生物量的比值(BOD/MLSS)表示。又,因生物處理步驟以外之步驟對生物反應影響不大,故藉由以BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值(以下,有時稱為「A值」)進行評價,可更精緻地控制飽食時間/飢餓時間的比值。在此,所謂「全循環時間」係指:上述(1)流入步驟、(2)生物處理步驟、(3)沉降步驟、(4)排出步驟之總和時間(下述圖4、圖5之構成之情形時,為(1)流入步驟/排出步驟、(2)生物處理步驟、(3)沉降步驟之總和時間);而所謂「反應時間」係指:(2)生物處理步驟之時間。
決定該飽食時間/飢餓時間的比值之「A值」,以0.05~0.25kgBOD/kgMLSS/d之範圍為佳,以0.1~0.16kgBOD/kgMLSS/d之範圍為更佳。若該值小於0.05kgBOD/kgMLSS/d,則飢餓時間長度過長,而導致顆粒解體。又,若該值大於0.25kgBOD/kgMLSS/d,則飽食時間過長,不易產生黏性物質,而難以形成顆粒。
然而,有時僅以此飽食時間/飢餓時間的比值之控制,難以穩定形成顆粒。藉由將此飽食時間/飢餓時間的比值與污泥抽取量之控制相組合,可穩定形成顆粒。
污泥停留時間亦記為SRT(Sludge Retention Time),為污泥管理指標之一。具體而言,以下式表示: SRT[d]=存在於系統內之污泥量[kg]/每天排出至系統外之污泥量[kg/d] 此SRT以5~25天之範圍對顆粒之穩定形成為佳,10~15天之範圍為更佳。為了使此SRT成為5~25天之範圍,使圖1、3之污泥抽取泵24作動,從污泥抽取口22經由污泥抽取配管32進行污泥之抽取即可。
若SRT長於25天,則增殖速度較慢之微生物會有多數保持,另一方面增殖速度較快之微生物則呈滅絕傾向。又,若SRT短於5天,則增殖速度較快之微生物佔優勢,另一方面增殖速度較慢之微生物之存在比率則為減少狀態。一般認為SRT對於顆粒化之影響並不確定,但為了顆粒之維持,此增殖速度快之微生物及增殖速度慢之微生物之存在比率為重要。
又,一般認為SRT亦會影響一種微生物亦即原生動物或後生動物之存在比率。SRT愈長,愈會出現較細菌類高等之原生動物→後生動物。該等原生動物或後生動物捕食細菌類。依據其種類,有捕食形成「膠羽」污泥之細菌或捕食分散狀細菌者等多種類,但為了穩定形成以細菌類為主所構成之顆粒,加長SRT一般認為不利於此。而縮短SRT,會使得顆粒生長期間變短,一般認為不利於顆粒之形成。
又,當「A值」低於0.05之情形時,亦即所投入之BOD量相對於微生物量的比值為大時,因可增殖之微生物之比率少,故無法增加污泥之抽取量,使得SRT難以短於30天,以25天左右為極限。
成為本實施形態之顆粒形成方法之處理對象之含有機物排水,係食品加工廠排水、化學工廠排水、半導體工廠排水、機械工廠排水、污水、糞尿等含有生物分解性有機物之有機性排水。又,於含有生物難分解性之有機物之情形時,可藉由預先實施臭氧處理或芬頓處理等物理化學方式之處理,轉換成生物分解性成分,而成為處理對象。又,本實施形態之顆粒形成方法以各種BOD成分為對象,但關於油脂成分,因有時會附著於污泥或顆粒而導致不良影響之情形,故於導入半批式反應槽之前,最好預先以浮選分離、凝集加壓浮選、吸附等既有手法,去除至如150mg/L以下左右。
半批式反應槽10內之pH,宜設為適合一般微生物之範圍,例如設為6~9之範圍為佳,6.5~7.5之範圍為更佳。於pH值為該範圍以外之情形時,以添加酸、鹼等而實施pH控制為佳。
半批式反應槽10內之溶氧量(DO),於好氧條件下,以設為0.5mg/L以上,特別是1mg/L以上為佳。
就促進生物污泥顆粒化之觀點而言,最好於半批式反應槽10內之含有機物排水或導入半批式反應槽10前之含有機物排水中,添加可形成含有Fe2 、Fe3 、Ca2 、Mg2 等之氫氧化物之離子。於一般含有機物排水中,雖含有可成為顆粒的核之微粒子,但藉由添加上述離子,可更促進顆粒的核之形成。
圖4顯示本實施形態之好氧性顆粒之形成裝置之其他例。輿圖4之顆粒形成裝置1中,排水供給配管28經由排水流入泵12、排水流入閥38,而連接於半批式反應槽10下部之排水流入口40。排水排出部42連接於排水流入口40,並設置於半批式反應槽10內部之下部。半批式反應槽10之生物處理水排出口16相較於排水流入口40更設於上方,生物處理水配管30經由生物處理水排出閥18而連接於生物處理水排出口16。生物處理水排出口16雖較排水流入口40更設於上方,但為了防止流入之含有機物排水之縮短,而更有效率地形成顆粒,以儘可能地遠離排水流入口40而設置為佳,以設置於沉降步驟之水面位為更佳。排水流入泵12、排水流入閥38、生物處理水排出閥18、污泥抽取泵24、曝氣用泵14、攪拌裝置之馬達34,亦可分別藉由電連接等而與控制裝置20連接。其他則與圖3之顆粒形成裝置1為相同構成。
圖4之顆粒形成裝置1中,於(4)排出步驟中,開啟排水流入閥38使排水流入泵12作動,使含有機物排水從排水流入口40通過排水供給配管28而從排水排出部42流入半批式反應槽10,藉此使生物處理水從生物處理水排出口16通過生物處理水配管30而排出。又,排水流入泵12、污泥抽取泵24、曝氣用泵14、攪拌裝置之馬達34之作動及停止、排水流入閥38、生物處理水排出閥18之開關,亦可藉由控制裝置20來控制。
如此,圖4之顆粒形成裝置1中,藉由重複(1)流入步驟/排出步驟、(2)生物處理步驟、(3)沉降步驟之3個循環,而形成顆粒。
圖4之顆粒形成裝置1中,利用使含有機物排水流入半批式反應槽10,而使生物處理水從生物處理水排出口16排出,藉此可使粒徑較小之顆粒與生物處理水一起排出,而對於粒徑較大之顆粒,則藉由重複(1)~(3)之循環,而可更有效率地形成顆粒。
圖5顯示本實施形態之好氧性顆粒之形成裝置之其他例。圖5之顆粒形成裝置1中,排水供給配管28經由排水流入泵12、排水流入閥38,而連接於半批式反應槽10下部之排水流入口40。排水排出部42連接於排水流入口40,並設置於半批式反應槽10內部之下部。半批式反應槽10之生物處理水排出口16相較於排水流入口40更設於上方,生物處理水配管30經由生物處理水排出閥18而連接於生物處理水排出口16。生物處理水排出口16雖較排水流入口40更設於上方,但為了防止流入之含有機物排水之縮短,而更有效率地形成顆粒,以儘可能地遠離排水流入口40而設置為佳,以設置於沉降步驟之水面位為更佳。排水流入泵12、排水流入閥38、生物處理水排出閥18、污泥抽取泵24、曝氣用泵14,亦可分別藉由電連接等而與控制裝置20連接。其他則與圖1之顆粒形成裝置1為相同構成。
圖5之顆粒形成裝置1中,於(4)排出步驟中,開啟排水流入閥38使排水流入泵12作動,使含有機物排水從排水流入口40通過排水供給配管28而從排水排出部42流入半批式反應槽10,藉此使生物處理水從生物處理水排出口16通過生物處理水配管30而排出。又,排水流入泵12、污泥抽取泵24、曝氣用泵14之作動及停止、排水流入閥38、生物處理水排出閥18之開關,亦可藉由控制裝置20來控制。
如此,圖5之顆粒形成裝置1中,亦藉由重複(1)流入步驟/排出步驟、(2)生物處理步驟、(3)沉降步驟之3個循環,而形成顆粒。
圖5之顆粒形成裝置1中,利用使含有機物排水流入半批式反應槽10,而使生物處理水從生物處理水排出口16排出,藉此可使粒徑較小之顆粒與生物處理水一起排出,而對於粒徑較大之顆粒,則藉由重複(1)~(3)之循環,而更有效率地形成顆粒。
<排水處理方法及排水處理裝置> 本實施形態之排水處理裝置,具備連續式生物處理槽,其一邊使含有機物排水連續流入,一邊藉由生物污泥對含有機物排水進行生物處理。本實施形態之排水處理方法及排水處理裝置中,對於一邊使含有機物排水連續流入一邊藉由生物污泥對含有機物排水進行生物處理之連續式生物處理槽,供給以上述好氧性顆粒之形成方法所形成之顆粒。
圖6顯示本實施形態之排水處理裝置之一例之概略構成。排水處理裝置3具備:排水貯存槽50;半批式反應槽10;連續式生物處理槽52;及固液分離裝置54。
排水處理裝置3中,排水貯存槽50之出口與連續式生物處理槽52之排水入口,經由泵56及閥58以排水供給配管66連接。連續式生物處理槽52之出口與固液分離裝置54之入口,以配管70連接。固液分離裝置54之處理水出口連接著處理水配管72。固液分離裝置54之污泥出口,經由閥62連接著污泥排出配管74,污泥排出配管74之閥62之上游側與連續式生物處理槽52之回送污泥入口,經由泵64以污泥回送配管76連接。於排水供給配管66之泵56與閥58之間,與半批式反應槽10之排水流入口經由排水流入閥38以排水供給配管28連接。半批式反應槽10之生物處理水排出口與連續式生物處理槽52之生物處理水入口,經由生物處理水排出閥18以生物處理水配管30連接。半批式反應槽10之污泥排出口與連續式生物處理槽52之污泥入口,經由泵60以污泥配管68連接。
連續式生物處理槽52例如具備連接於攪拌裝置、曝氣用泵、曝氣用泵之曝氣裝置等,並構成為:利用攪拌裝置攪拌槽內之液體,且使從曝氣用泵所供給之空氣等之含氧氣體通過曝氣裝置而供給至槽內。
固液分離裝置54係用以從含有生物污泥之處理水分離出生物污泥與處理水之分離裝置,例如為沉降分離、加壓浮選、過濾及膜分離等之分離裝置。
排水處理裝置3中,首先,開啟閥58,泵56開始作動,使排水貯存槽50內之含有機物排水通過排水供給配管66而供給至連續式生物處理槽52。連續式生物處理槽52中,於好氧條件下,實施利用生物污泥之排水之生物處理(連續式生物處理步驟)。經連續式生物處理槽52處理之處理水,從連續式生物處理槽52之出口通過配管70而供給至固液分離裝置54。固液分離裝置54中,從處理水分離出生物污泥(固液分離步驟)。經固液分離處理之處理水,從固液分離裝置54之處理水出口通過處理水配管72而排出系統外。經固液分離之生物污泥開啟閥62,通過污泥排出配管74而排出至系統外。亦可使泵64作動,通過污泥回送配管76,使已固液分離之生物污泥之至少一部分回送至連續式生物處理槽52。
於使半批式反應槽10稼動之情形時,開啟排水流入閥38,使排水貯存槽50內之含有機物排水之至少一部分通過排水供給配管28而供給至半批式反應槽10。半批式反應槽10中,只要藉由重複上述(1)流入步驟、(2)生物處理步驟、(3)沉降步驟、(4)排出步驟之循環(或(1)流入步驟/排出步驟、(2)生物處理步驟、(3)沉降步驟之循環)而形成顆粒,使泵60作動,通過污泥配管68,將已形成之顆粒供給至連續式生物處理槽52即可。
連續式生物處理槽52內之pH,以調整成適於一般生物處理之6~9之範圍為佳,以調整成6.5~7.5之範圍為更佳。又,連續式生物處理槽52內之溶氧量(DO),以設為適於一般生物處理之0.5mg/L以上為佳,設為1mg/L以上為更佳。
於圖6之排水處理裝置3中,以具備固液分離裝置54之形態為例加以說明,但固液分離裝置54不必非要具備不可。但是,就使顆粒循環以提升排水之處理效率等觀點而言,排水處理裝置3最好具備:固液分離裝置54,從自連續式生物處理槽52所排出之處理水分離出生物污泥;及污泥回送配管76,將從固液分離裝置54所排出之生物污泥回送至連續式生物處理槽52。
圖7係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖7所示之排水處理裝置4中,對於與圖6所示之排水處理裝置3相同之構成賦予同一符號,而省略其說明。圖7所示之排水處理裝置4具備:排水貯存槽50;連續式生物處理槽52;半批式反應槽10;及固液分離裝置54。半批式反應槽10如上所述係一邊對排水進行生物處理一邊形成顆粒之裝置。在此,形成具有粒徑為200μm以上之顆粒污泥。
排水處理裝置4中,排水貯存槽50之出口與連續式生物處理槽52之排水入口,經由泵56以排水供給配管66連接。連續式生物處理槽52之出口與固液分離裝置54之入口,以配管70連接。固液分離裝置54之處理水出口連接著處理水配管72。固液分離裝置54之污泥出口經由閥62連接著污泥排出配管74,污泥排出配管74之閥62之上游側與連續式生物處理槽52之回送污泥入口,經由泵64以污泥回送配管76連接。排水貯存槽50之出口與半批式反應槽10之排水流入口,經由排水流入泵12以排水供給配管28連接。半批式反應槽10之生物處理水排出口與連續式生物處理槽52之生物處理水入口,經由泵59以生物處理水配管30連接。半批式反應槽10之污泥排出口與連續式生物處理槽52之污泥入口,經由泵60以污泥配管68連接。
以下,說明圖7之排水處理裝置4之動作之一例。
排水貯存槽50內之處理對象排水,藉由泵56之稼動,從排水供給配管66供給至連續式生物處理槽52。又,排水貯存槽50內之排水,藉由排水流入泵12之稼動,從排水供給配管28供給至半批式反應槽10。半批式反應槽10中,進行前述排水之生物處理,並形成具有粒徑為200μm以上之顆粒污泥。於半批式反應槽10內所形成之顆粒污泥,藉由泵60之稼動,從污泥配管68供給至連續式生物處理槽52。又,半批式反應槽10內之處理水,藉由泵59之稼動,從生物處理水配管30供給至連續式生物處理槽52。接著,於連續式生物處理槽52中,例如,於好氧條件下,利用含有上述顆粒污泥之生物污泥來實施排水之生物處理。
經連續式生物處理槽52所處理之處理水,從配管70供給至固液分離裝置54,並從處理水分離出生物污泥。經固液分離之污泥,藉由泵64之稼動,從污泥回送配管76回送至連續式生物處理槽52。又,藉由閥62之開啟,將經固液分離之污泥從污泥排出配管74排出至系統外。再者,固液分離裝置54內之處理水從處理水配管72排出系統外。
以下,具體說明圖7之排水處理裝置4之處理條件等。
<連續式生物處理槽52之處理條件> 相對於連續式生物處理槽52內之污泥量之排水中之BOD負荷量(BOD污泥負荷),為0.08~0.2kgBOD/kgMLVSS/d之範圍,以0.1~0.18kgBOD/kgMLVSS/d之範圍為更佳。BOD污泥負荷若小於0.08kgBOD/kgMLVSS/d,則從半批式反應槽10所供給之顆粒污泥之解體速度快,而難以維持顆粒污泥。又,若BOD污泥負荷大於0.2kgBOD/kgMLVSS/d,則造成槽內顆粒污泥以外之「膠羽」狀污泥之比率增加,或產生因負荷過高所致之膨化(固液分離阻礙),而難以維持高沉降性。一般而言,於流入連續式生物處理槽52之排水之BOD為低之情形時,例如為200mgBOD/L以下時,顆粒污泥之解體為顯著,但藉由使BOD污泥負荷於0.08~0.2kgBOD/kgMLVSS/d之範圍下運轉,可抑制顆粒之解體,良好地保持連續式生物處理槽52內之污泥之沉降性,而得以進行排水之高速處理。本實施形態中,即使流入連續式生物處理槽52之排水的BOD濃度為50~200mg/L左右之排水,亦可抑制顆粒污泥之解體,而得以進行排水之高速處理。
連續式生物處理槽52之BOD污泥負荷,藉由供給至連續式生物處理槽52之排水流量、通過污泥配管68之顆粒污泥量、通過污泥回送配管76之回送污泥量等而調整。具體而言,從供給至連續式生物處理槽52之排水之BOD、連續式生物處理槽52內之MLVSS,來調整排水流量、顆粒污泥供給量或回送污泥量、剩餘污泥之排出量,以使連續式生物處理槽52之BOD污泥負荷符合上述範圍。BOD污泥負荷之調整,就操作之容易度觀點等而言,最好以藉由調整供給至連續式生物處理槽52之排水流量而進行,但亦可藉由調整系統內污泥量而進行。
排水流量、顆粒污泥、回送污泥之量之調整,可由作業員調整各泵之輸出而進行,亦可使用依據排水之BOD值及MLVSS值而控制各泵之輸出之控制裝置,調整各泵之輸出而進行。供給至連續式生物處理槽52之排水之BOD,例如可依據公定分析方法由作業員測定,亦可從每天所測定之TOC或COD值等推定BOD值。又,連續式生物處理槽52內之MLVSS,例如可依據公定分析方法由作業員測定,亦可從設置於連續式生物處理槽52之MLSS分析儀之值與從平常測定所得出之平均之MLVSS/MLSS比值來推定。
連續式生物處理槽52之實質水理學之停留時間(實質HRT)以5小時~10小時之範圍為佳,5小時~8小時之範圍為更佳。所謂實質HRT係指:從將排水被導入之排水流量(圖7中通過排水供給配管66之排水流量)與污泥循環所得之污泥流量(圖7中通過污泥回送配管76之污泥流量)相加所得之流量、及連續式生物處理槽52之容積所計算而得之HRT。若實質HRT超過10小時,則與5小時~10小時之範圍時相較,有時會有顆粒污泥容易解體之情形。又,若連續式生物處理槽52內之顆粒污泥之停留時間未滿5小時,則與5小時~10小時之範圍時相較,有時會有槽內之「膠羽」狀污泥之產生比率變大或槽內有機物濃度變低而使顆粒污泥難以維持之狀況。
連續式生物處理槽52內之MLSS濃度以維持於3000mg/L以上為佳,4000mg/L以上為更佳。於如一般污水排水中之有機物濃度為低時之活性污泥處理中,因為污泥沉降分離性之問題,一般MLSS濃度大多維持於1000~2000mg/L左右,但於本實施形態之處理裝置中,即使令MLSS濃度以3000mg/L以上運轉,亦可於維持沉降性高之污泥下,使系統內污泥保持為高濃度,可進行排水之高速處理。結果,可使連續式生物處理槽52大幅小型化,可達到排水處理施設之佔地面積之省空間化及設備成本之大幅削減。
連續式生物處理槽52內之pH,以調整成適於一般生物處理之6~9之範圍為佳,以調整成6.5~7.5之範圍為更佳。於pH值為該範圍以外之情形時,以利用酸、鹼實施pH調整為佳。
<半批式反應槽10中之顆粒污泥之形成>
半批式反應槽10中,藉由重複上述(1)流入步驟、(2)生物處理步驟、(3)沉降步驟、(4)排出步驟之循環(或(1)流入步驟/排出步驟、(2)生物處理步驟、(3)沉降步驟之循環),而形成顆粒,並供給至連續式生物處理槽52。
流入步驟中,供給至半批式反應槽10之排水,不必與供給至連續式生物處理槽52之排水為相同之排水,例如亦可將其他系統之排水供給至半批式反應槽10。然而,就可形成具有適於處理對象排水之微生物相之顆粒污泥等之觀點而言,最好使供給至連續式生物處理槽52之排水之一部分分流而使其流入半批式反應槽10,再利用此排水而形成顆粒。
半批式反應槽10內之顆粒污泥,不限於直接供給至連續式生物處理槽52之形態。例如,於使固液分離裝置54內之污泥回送至連續式生物處理槽52時,可將半批式反應槽10內之顆粒污泥導入固液分離裝置54,亦可導入至用以使污泥從固液分離裝置54回送至連續式生物處理槽52之污泥回送配管76。不論如何,只要為可將半批式反應槽10內之顆粒污泥供給至連續式生物處理槽52之形態即可。
從半批式反應槽10所排出之處理水,例如,可供給至連續式生物處理槽52,亦可供給至固液分離裝置54,只要最終處理水可排出至系統外即可,但於從半批式反應槽10所排出之排出水中有殘留BOD或氮化合物等成分之情形時,就不會使最終處理水惡化之觀點而言,以供給至連續式生物處理槽52為佳。
就半批式反應槽10內之污泥性狀而言,粒徑為200μm以上之污泥佔污泥整體之體積比率以50%以上為佳,85%以上為更佳。顆粒污泥之粒徑及各粒度之體積分佈,例如利用雷射繞射粒徑分佈分析儀來測定。
來自半批式反應槽10之顆粒污泥之供給,可於(2)生物處理步驟進行,可於(3)沉降步驟進行,亦可於(4)排出步驟進行。所謂「於半批式反應槽10所形成之顆粒污泥」,係指持續進行自行造粒而成的污泥,例如污泥之平均粒徑為200μm以上之生物污泥。又,本實施形態中,顆粒污泥之形成與否,可藉由測定半批式反應槽10內之污泥之粒徑分佈,於該平均粒徑成為200μm以上之階段,可判斷為「顆粒污泥已形成」。或者,亦可利用半批式反應槽10內之污泥沉降性試驗定期測定SVI值,於從沉降5分鐘後之體積比率所算出之SVI5之值成為既定值以下(例如80mL/g以下)之階段,則判斷為「顆粒污泥已形成」(又,若SVI值愈低,平均粒徑愈大,則可判斷為愈良好之顆粒污泥)。
半批式反應槽10內之pH,以調整成適於一般生物處理之6~9之範圍為佳,以調整成6.5~7.5之範圍為更佳。於pH值為該範圍以外之情形時,以利用酸、鹼實施pH調整為佳。於半批式反應槽10中實施pH調整時,就適當測定pH值之觀點而言,相較於未攪拌半批式反應槽10之狀態,最好於攪拌狀態下實施pH調整。半批式反應槽10內之溶氧量(DO)以設為適於一般生物處理之0.5mg/L以上為佳,1mg/L以上為更佳。
相對於連續式生物處理槽52之容積而言,當半批式反應槽10之反應槽容積為過小之情形時,槽內顆粒之增加變緩,到達可稼動狀態較費時。因此,以相對於連續式生物處理槽52之容積而言,為1/3以下為佳,1/5以下為更佳。又,半批式反應槽10之反應槽容積,以相對於連續式生物處理槽52之容積而言,為1/20以上為佳。
圖8係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖8所示之排水處理裝置5中,對於與圖7所示之排水處理裝置4相同之構成賦予同一符號,而省略其說明。圖8所示之排水處理裝置5具備3個連續式生物處理槽(52a、52b、52c)。圖8所示之排水處理裝置5中,污泥配管68之一端連接於半批式反應槽10之污泥出口;污泥配管68之另一端連接於連續式生物處理槽52a之污泥供給口。生物處理水配管30之一端連連接於半批式反應槽10之處理水出口;生物處理水配管30之另一端連接於連續式生物處理槽52b之處理水入口。
於單一連續式生物處理槽中,因排水成完全混合狀態,故槽內有機物濃度為固定,而如圖8所示,因藉由設置複數個連續式生物處理槽,使各槽內之有機物濃度產生差異,故與單一連續式生物處理槽相較,對於槽內之微生物而言容易形成飽食狀態及飢餓狀態,可更抑制顆粒污泥之解體。又,藉由設置複數個連續式生物處理槽,使得微生物以存在於槽內之顆粒污泥作為核而增殖,亦可提高連續式生物處理槽內之顆粒污泥之比率。
於設置複數個連續式生物處理槽之情形時,連續式生物處理槽整體之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍即可。亦即,若連續式生物處理槽整體之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍,則各連續式生物處理槽之BOD污泥負荷未符合上述範圍亦可。於設置複數個連續式生物處理槽之情形時,就抑制顆粒污泥解體之觀點而言,最好將連續式生物處理槽整體之BOD污泥負荷設為0.08~0.2kgBOD/kgMLVSS/d之範圍,且隨著從前段之連續式生物處理槽往後段之連續式生物處理槽,而降低槽之BOD污泥負荷。此情形時,以將最前段之連續式生物處理槽之BOD污泥負荷設為0.24~0.6kgBOD/kgMLVSS/d之範圍,而將最後段之連續式生物處理槽之BOD污泥負荷設為0.02~0.05kgBOD/kgMLVSS/d之範圍為更佳。為了於各水槽調整BOD污泥負荷,可藉由將排水分流並導入各水槽,以調整流入量,而進行調整。
圖9係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖9所示之排水處理裝置6中,對於與圖7所示之排水處理裝置4相同之構成賦予同一符號,而省略其說明。圖9所示之排水處理裝置6主要適用於含氮化合物之排水的處理,具備以前段為無氧槽52d而後段為曝氣槽52e所構成之連續式生物處理槽。在此,所謂「無氧槽」係指維持為無氧條件狀態之反應槽,所謂「無氧條件」係指不存在排水中之溶氧量,但存在來自亜硝酸或硝酸之氧之條件。
於圖9所示之連續式生物處理槽中,利用循環式硝化脫氮法,處理排水中之氮化合物及有機物。具體而言,於後段之曝氣槽52e中,排水中之含氮物質於好氧條件下經氧化處理成為亜硝酸態氮或硝酸態氮。如此,藉由設置於曝氣槽52e及無氧槽52d間之循環管線15,從後段之曝氣槽52e對前段之無氧槽52d供給含有亜硝酸態氮或硝酸態氮之污泥混合液。接著,於無氧槽52d中,亜硝酸態氮或硝酸態氮於無氧條件下還原處理成氮氣。
供給至連續式生物處理槽之顆粒污泥因粒徑大,故可使有機物氧化細菌或硝化細菌存在於污泥粒子外側,而使脫氮菌存在於污泥粒子之較內側。因此,於以無氧槽52d及曝氣槽52e作為連續式生物處理槽之處理裝置中,藉由將200μm以上之顆粒污泥供給至連續式生物處理槽,可利用該顆粒污泥更有效率地處理氮化合物及有機物。又,藉由使連續式生物處理槽包含無氧步驟,可使構成顆粒污泥之脫氮菌維持於顆粒內,可於連續式生物處理槽內維持顆粒。如此,藉由對由無氧槽52d及曝氣槽52e所構成之連續式生物處理槽,供給粒徑為200μm以上之顆粒污泥,且將連續式生物處理槽整體之BOD污泥負荷(無氧槽52d及曝氣槽52e之總和之BOD負荷)設為0.08~0.2kgBOD/kgMLVSS/d之範圍,可更抑制顆粒污泥之解體,又,亦可使顆粒污泥於槽內維持・育成。特別是,將以連續式生物處理槽整體之BOD污泥負荷設為0.08~0.2kgBOD/kgMLVSS/d之範圍,並將無氧槽52d之BOD污泥負荷設為0.16~0.6kgBOD/kgMLVSS/d之範圍為更佳。
圖10係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖10所示之排水處理裝置7中,對於與圖7所示之排水處理裝置4相同之構成賦予同一符號,而省略其說明。圖10所示之排水處理裝置7,具備由複數個無氧槽52d、曝氣槽52e交互配置而構成之連續式生物處理槽。圖10所示之連續式生物處理槽係為:將排水供給配管66a連接於各無氧槽52d,並對各無氧槽52d分注排水之方式(階段流入式多段硝化脫氮法)。於各無氧槽52d及各曝氣槽52e中,如上所述,氮化合物被進行硝化脫氮處理而成為氮氣。
供給至連續式生物處理槽之顆粒污泥因粒徑大,故可使有機物氧化細菌或硝化細菌存在於污泥粒子外側,而使脫氮菌存在於污泥粒子之較內側。因此,於以無氧槽52d及曝氣槽52e作為連續式生物處理槽之處理裝置中,藉由將200μm以上之顆粒污泥供給至連續式生物處理槽,可利用該顆粒污泥更有效率地處理氮化合物及有機物。又,藉由使連續式生物處理槽包含無氧步驟,可使構成顆粒污泥之脫氮菌維持於顆粒內,可於連續式生物處理槽內維持顆粒。圖10所示之排水處理裝置7中,連續式生物處理槽整體之BOD污泥負荷(各無氧槽10d及各曝氣槽10e之總和之BOD污泥負荷)為0.08~0.2kgBOD/kgMLVSS/d之範圍。此時,將無氧槽10d之BOD污泥負荷設為0.16~0.6kgBOD/kgMLVSS/d之範圍為更佳。
圖11係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖11所示之排水處理裝置8中,對於與圖7所示之排水處理裝置4相同之構成賦予同一符號,而省略其說明。圖11所示之排水處理裝置8,主要適用於含磷化合物之排水之處理,具備由前段為厭氧槽52f而後段為曝氣槽52e所構成之連續式生物處理槽(所謂AO法(Anaerobic-Oxic法)之連續式生物處理槽)。於圖11所示之連續式生物處理槽中,利用AO法(Anaerobic-Oxic法),共同處理排水中之磷化合物及有機物。在此,所謂「厭氧槽」係指維持為厭氧條件之狀態之反應槽,其條件為:排水中不僅不存在溶氧量,亦不存在來自亜硝酸或硝酸之氧。
供給至連續式生物處理槽之顆粒污泥因粒徑大,故可使有機物氧化細菌存在於污泥粒子外側,而使於厭氧條件下及好氧條件下可代謝並去除磷之細菌(聚磷菌)存在於污泥粒子內部。因此,於以厭氧槽52f及曝氣槽52e作為連續式生物處理槽之處理裝置中,藉由將200μm以上之顆粒污泥供給至連續式生物處理槽,可利用該顆粒污泥更有效率地處理磷化合物及有機物。又,藉由使連續式生物處理槽包含厭氧步驟及曝氣步驟,可使存在於顆粒污泥內部之聚磷菌維持於顆粒內,可使顆粒不解體地維持於連續式生物處理槽內。如此,藉由對由厭氧槽52f及曝氣槽52e所構成之連續式生物處理槽供給粒徑為200μm以上之顆粒污泥,且將連續式生物處理槽整體之BOD污泥負荷(厭氧槽52f及曝氣槽52e之總和之BOD負荷)設為0.08~0.2kgBOD/kgMLVSS/d之範圍,可更抑制顆粒污泥之解體,又,亦可使顆粒污泥於槽內維持・育成。特別是,將連續式生物處理槽整體之BOD污泥負荷設為0.08~0.2kgBOD/kgMLVSS/d之範圍,並將厭氧槽52f之BOD污泥負荷設為0.16~0.6kgBOD/kgMLVSS/d之範圍為更佳。
圖中省略其說明,但圖11所連續式生物處理槽亦可為:使用將厭氧槽、無氧槽、曝氣槽串聯配置,而使曝氣槽內之含硝酸態氮之污泥混合液於無氧槽循環之方式(所謂A2O法(Anaerobic-Anoxic-Oxic法)而成之連續式生物處理槽。
圖12係本發明之實施形態之排水處理裝置之其他例之概略構成圖。圖12之排水處理裝置9中,對於與圖7所示之排水處理裝置4相同之構成賦予同一符號,而省略其說明。於圖12所示之排水處理裝置9中,於排水供給配管66設有泵56及閥58,於排水供給配管28設有排水流入閥38。排水供給配管28之一端,連接於泵56と閥58之間之排水供給配管66;排水供給配管28之另一端則連接於半批式反應槽10之排水入口。又,圖12所示之排水處理裝置9,具備將從半批式反應槽10所排出之處理水及顆粒污泥供給至連續式生物處理槽52之污泥處理水供給管線61。於污泥處理水供給管線61,設有閥63。污泥處理水供給管線61具備下述功能:作為處理水供給裝置之功能,將從半批式反應槽10所排出之處理水供給至連續式生物處理槽52;及作為污泥供給裝置之功能,將顆粒污泥供給至連續式生物處理槽52。
圖13係用於圖12所示之排水處理裝置之半批式生物處理槽之構成之一例之示意圖。於圖13所示之半批式反應槽10中,設置排出處理水及顆粒污泥之處理水排出口12d,於處理水排出口12d上,連接著污泥處理水供給管線61之一端。污泥處理水供給管線61之另一端,連接於連續式生物處理槽52。於圖13所示之半批式反應槽10中,排水流入之排水流入口12a設置於較處理水排出口12d為低之位置。
圖13所示之半批式反應槽10中,排水之流入與處理水之排出同時進行。亦即,重複進行「排水之流入及處理水之排出」、「處理對象物質之生物處理」、「生物污泥之沉降」之步驟。以下,說明圖13之半批式反應槽10之動作之一例及圖12之排水處理裝置之動作。
首先,於使泵56稼動之同時,使閥58開啟,而使排水貯存槽50內之處理對象排水從排水供給配管66連續供給至連續式生物處理槽52。於連續式生物處理槽52中實施排水之生物處理後,將處理水從配管70供應至固液分離裝置54。接著,於使半批式反應槽10稼動時,使閥38及閥63開啟,使排水從排水供給配管28供給至半批式反應槽10,同時使半批式反應槽10內之處理水及顆粒污泥從污泥處理水供給管線61供給至連續式生物處理槽52(排水之流入/處理水之排出)。此時,藉由使攪拌裝置49稼動,可使半批式反應槽10內之顆粒污泥有效率地從污泥處理水供給管線61供給至連續式生物處理槽52。接著,對連續式生物處理槽52內之生物污泥中,供給具有粒徑為200μm以上之顆粒污泥之後,使閥38及閥63關閉。其次,於攪拌裝置49維持稼動之狀態下,使曝氣用泵14稼動,而開始對半批式反應槽10內進行空氣之供給,以進行排水之生物處理(生物處理步驟)。
於經過既定時間後,使曝氣用泵14之動作停止,於使空氣之供給停止之同時,使攪拌裝置49停止(生物處理步驟結束)。生物處理結束後,藉由使半批式反應槽10內之生物污泥以既定時間沉降,而於半批式反應槽10內,使生物污泥與處理水分離(生物污泥之沉降)。接著,再次移至排水之流入/處理水之排出步驟。
本實施形態中,將設於半批式反應槽10之排水流入口12a配置於較處理水排出口12d為低之位置,因此可抑制流入至半批式反應槽10內之排水未被生物處理而從半批式反應槽10排出(排水之捷徑)。結果,可於半批式反應槽10有效率地形成顆粒污泥。又,因半批式反應槽10內之處理水以被流入之排水推壓之形式排出,故可將低沉降性之生物污泥(未顆粒化之污泥等)積極排出系統外。結果,因高沉降性之生物污泥留在半批式反應槽10內,故可更有效率地形成顆粒污泥。
於半批式生物處理槽之顆粒污泥之形成中,宜適當控制沉降時間之管理及每1批次之排水流入率。停止攪拌(含利用曝氣之攪拌)而使污泥沉降之沉降時間,係由從水面至作為目的之污泥界面位置之距離與污泥之沉降速度所計算,例如,以設定為4分鐘/m至15分鐘/m之間為佳,設定為5分鐘/m至10分鐘/m之間為更佳。又,排水流入率(流入水相對於反應時有效容積之比率)以例如20%以上120%以下之範圍為佳,以40%以上120%以下之範圍為更佳。因為認為藉由使污泥重複經歷「處理對象物質亦即有機物濃度為非常高」之狀態(緊接流入步驟後、飽食狀態)與「有機物濃度為非常低」之狀態(生物處理步驟之末期、飢餓狀態),可使污泥之顆粒化得以進展,故就形成顆粒污泥之觀點而言,以盡量提高排水流入率為佳,但另一方面,愈提高排水流入率,則流入泵之電容變愈大,而使得成本變高。因此,就顆粒污泥之形成及降低成本之觀點而言,排水流入率以40%以上120%以下之範圍為佳。於排水流入率為大之情形時,雖有時可能有從半批式生物處理槽所排出之排出水之濃度不佳之情形,但因為排出水會被導入至連續式生物處理槽,故不必擔心最終處理水之濃度會變差。 [實施例]
以下,以實施例及比較例,更具體且詳細地說明本發明,但本發明不限於以下實施例。
<實施例1及比較例1> 使用反應槽有效容積3.5L(縱70mm×橫140mm×高360mm)之半批式反應槽,實施流通試驗。顆粒化之指標係使用SVI5的值進行評價。所謂「SVI5」係為生物污泥之沉降性指標,由以下方法求得。首先,將1L的污泥投入1L的量筒,緩慢攪拌使污泥濃度儘可能地均勻之後,測定靜置5分鐘後之污泥界面。接著,計算量筒中污泥所佔體積率(%)。其次,測定污泥之MLSS(mg/L)。將該等數據代入下述算式而算出SVI5。SVI5的值愈小,表示為沉降性愈高之污泥。SVI5為100mL/g以下時,判斷為具有良好沉降性之顆粒。
SVI5(mL/g)=污泥所佔體積率×10,000/MLSS
所使用之模擬排水以魚肉萃取物及蛋白腖作為主成分,將BOD濃度調整為80~120mg/L。
投入至半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值(A值),以如下求之。 A=(((B-C)/1000×(H×D/100×G))/(I/1000×H))×(F/E) 在此, B=排水之BOD濃度[mg/L] C=處理後之BOD濃度[mg/L] D=排水相對於每1循環之反應槽有效容積之導入比率[%] E=每1循環之生物處理步驟時間[分鐘] F=1循環之全步驟時間[分鐘] G=每1天之循環數[次/天] H=反應槽有效容積[m3 ] I=MLSS[mg/L]
半批式反應槽之運轉循環如下進行。 (1)流入步驟:將1.75L之排水導入至半批式反應槽。 (2)生物處理步驟:將BOD負荷量相對於MLSS濃度的比值(上述式之A值)設定為如表1之值。於生物處理步驟中,從設置於反應槽下部之曝氣裝置供給空氣,進行生物反應。 (3)沉降步驟:停止來自曝氣裝置之空氣之供給,靜置10分鐘,使反應槽內之污泥沉降。 (4)排出步驟:將上澄液之1.75L作為處理水排出。 重複以上(1)~(4)之操作。
【表1】
Figure 105109604-A0304-0001
各條件(表1之條件1~3(比較例1)及條件4~6(實施例1))之SVI5隨經過天數之變化示於圖14。
於條件1期間,將A值設為0.12~0.18kg/kg/d而開始流通之後,流通初期時之SVI5為60mL/g左右,流通40天期間SVI5為50~60mL/g維持良好沉降性,但其後SVI5轉為惡化,於第75天惡化至100mL/g。此期間,為未特別進行污泥之抽取而僅以處理水中所含之SS抽取污泥之狀態,污泥停留時間(SRT)以30~100天左右運轉。
於條件2期間,將A值設為0.12kg/kg/d,且開始進行污泥之抽取,將SRT設為30天,但較條件1之狀態更加惡化,SVI5上升至110mL/g左右。
於條件3期間,使SRT維持30天,將反應時間縮短,並使A值從0.12kg/kg/d上升至0.25kg/kg/d,結果,SVI5更加惡化,於第104天上升至180mL/g。
於條件2~3之期間之污泥之顯微鏡觀察中,觀察具有粒徑為200μm以上之污泥,於其周圍觀察到許多「膠羽」污泥,此外亦觀察到數量眾多之原生動物或後生動物。一般認為由於此等原生動物或後生動物,使得原本應形成顆粒之細菌類被捕食,係顆粒解體而沉降性惡化之主因之一(參考圖17)。
於條件4期間,加長反應時間,使A值下降至0.1kg/kg/d,並實施污泥之抽取使SRT成為25天,結果,SVI5之值轉為下降,於第140天時下降至90mL/g並維持穩定。
於條件5期間,進行污泥之抽取使SRT成為15天,結果,SVI5變為更加下降,下降至40mL/g。此期間之A值為0.1~0.16。
於條件6期間,進行污泥之抽取使SRT維持為15天下縮短反應時間,並使A值上升至0.22,結果SVI5之值為50mL/g左右保持穩定。於條件3之期間,若於SRT為30天之狀態下使A值上升至0.25,則SVI惡化,相對於此,於條件6下,若將SRT設為15天,而A值為0.22左右,則可穩定維持顆粒。於條件5及6期間之顯微鏡觀察中,相較於條件2及3期間之污泥,「膠羽」污泥存在比率減少,並確認多數具有粒徑為200~300μm左右之良好顆粒(參考圖18)。又,確認原生動物或後生動物之存在比率減少。
<比較例2> 使用反應槽有效容積12L(縱200mm×橫150mm×高400mm)之半批式反應槽,實施流通試驗。於本試驗中,進行下述運轉:於沉降步驟之水面位置設置生物處理水排出口而導入排水,同時開啟生物處理水排出口之電磁閥而排出生物處理水(參考圖5)。運轉循環如下。 (1)流入/排出步驟:導入9L之排水,排出生物處理水。 (2)生物處理步驟:將BOD負荷量相對於MLSS濃度的比值(上述式之A值)設定為0.03~0.04kg/kg/d(參考表2)。於生物處理步驟中,從設置於反應槽下部之曝氣裝置供給空氣,進行生物反應。 (3)沉降步驟:停止來自曝氣裝置之空氣之供給,靜置10分鐘,使反應槽內之污泥沉降。又,進行污泥之抽取使SRT成為25天。
【表2】
Figure 105109604-A0304-0002
結果示於圖15。以A值:0.03~0.04、SRT:25~30天運轉。流通初期時之SVI5為15mL/g左右具非常良好之沉降性,但SVI隨著流通呈上升傾向,於第50天惡化至47mL/g。
<實施例2> 使用反應槽有效容積12L(縱200mm×橫150mm×高400mm)之半批式反應槽,實施流通試驗。於本試驗中,進行下述運轉:於沉降步驟之水面位置設置生物處理水排出口而導入排水,同時開啟生物處理水排出口之電磁閥而排出生物處理水(參考圖5)。運轉循環如下。 (1)流入/排出步驟:導入9.6L之排水,排出生物處理水。 (2)生物處理步驟:將於BOD負荷量相對於MLSS濃度的比值(上述式之A值)設定為表3之值。於生物處理步驟中,從設置於反應槽下部之曝氣裝置供給空氣,進行生物反應。 (3)沉降步驟:停止來自曝氣裝置之空氣之供給,靜置10分鐘靜置,使反應槽內之污泥沉降。
【表3】
Figure 105109604-A0304-0003
結果示於圖16。以A值:0.15~0.2、SRT:7~10天進行運轉。流通初期時之SVI5為250mL/g左右,但隨著流通SVI呈下降傾向,於第40天下降至51mL/g,可形成顆粒。
如此,藉由調整反應時間,俾使投入至半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,並且進行污泥之抽取,俾使污泥停留時間成為5~25天,使得即使於排水之BOD濃度為80~120mg/L左右之低濃度之情形時,亦可穩定形成好氧性之顆粒。
(實施例3) 使用由連續式生物處理槽(114L)、顆粒形成槽(11L)及固液分離槽所構成之圖8所示之排水處理裝置,實施模擬排水之生物處理試驗。模擬排水係以魚肉萃取物及蛋白腖作為主體,並將BOD濃度調整為80~120mg/L,且將全氮濃度調整為15~25mgN/L。
於連續式生物處理槽中,使用階段流入式多段硝化脫氮法(3段),其係將13.6L之無氧槽、13.6L之曝氣槽、19L之無氧槽、19L之曝氣槽、24.5L之無氧槽、24.5L之曝氣槽串聯排列,藉由使排水各以3分之1分注至各無氧槽,而處理排水中之有機物及氮成分。於無氧槽中,不進行曝氣而以攪拌機進行攪拌,於曝氣槽中,使用空氣擴散裝置進行空氣曝氣,以使溶氧濃度成為1~5mg/L。於固液分離槽中,利用沉降分離使污泥混合液分離成濃縮污泥及處理水,使濃縮污泥回送至最前段之無氧槽。顆粒形成槽使用圖3所示之半批式生物處理槽。將來自顆粒形成槽之處理水及顆粒導入至連續式生物處理槽之最前段之無氧槽。
連續式生物處理槽中之BOD負荷之調整,係藉由調整排水之流入量而進行。又,包含循環之停留時間之調整,係藉由調整從負荷所計算而得之排水流量及來自固液分離槽之循環流量而進行。
投入至連續式生物處理槽之接種污泥,係使用從污水處理場所取得之活性污泥。接種污泥之性狀係SVI為200mL/g、活性污泥之平均粒徑為80μm左右之具有一般沉降性之污泥。
半批式生物處理槽於進行在連續式生物處理槽之流通前,先使用上述模擬排水進行顆粒污泥之形成。所形成之顆粒污泥,為平均粒徑為340μm、而200μm以上之體積比率佔85%之顆粒污泥。
表4中列示流通試驗之各條件(連續式生物處理槽內之MLSS、連續式生物處理槽之BOD污泥負荷、BOD容積負荷、實質停留時間(包含來自固液分離槽之循環流量之停留時間))及變更為各條件並經50天後之污泥之SVI值。
【表4】
Figure 105109604-A0304-0004
於將MLSS設為1500mg/L、將BOD污泥負荷設為0.08kgBOD/kgMLVSS/d之條件1下,從半批式生物處理槽開始進行顆粒污泥之供給、及模擬排水之流通。從流通開始後SVI緩慢下降,於第50天下降至150mL/g左右。此期間之包含循環之停留時間為10~14小時。又,因接種污泥之活性污泥不被模擬排水馴養,故無法得到明顯之改善。
其次,藉由使排水流入量下降,而降低負荷,於將BOD污泥負荷設為0.05~0.07kgBOD/kgMLVSS/d之條件2下,進行流通試驗。實質停留時間為10~12小時。於條件2之流通試驗中,連續式生物處理槽內之污泥之SVI隨著流通而增加,達到300mL/g左右。若以顯微鏡觀察連續式生物處理槽內之污泥,於污泥內並未確認有顆粒。一般認為此係因顆粒已解體。
其次,增加排水流入量,於將BOD污泥負荷設為0.12~0.18kgBOD/kgMLVSS/d之條件3下,進行流通試驗。實質停留時間為8~10小時左右。於條件3之流通試驗中,連續式生物處理槽內之污泥之SVI急遽下降,於15天期間SVI下降至100mL/g,最終下降至60mL/g。從此結果可得知,顆粒污泥之解體被抑制,具有良好沉降性之顆粒污泥維持於生物處理槽內。
其次,於藉由在維持BOD污泥負荷下,降低污泥之循環流量而將停留時間設為10~12小時之條件4下,進行流通試驗。於條件4下之流通試驗中,連續式生物處理槽內之污泥之SVI值呈上升傾向,但於120mL/g左右呈現穩定,而維持具有較好沉降性之顆粒污泥。
其次,於將BOD污泥負荷設為0.08~0.1kgBOD/kgMLVSS/d左右,將停留時間設為5~8小時之條件5下,進行流通試驗,結果,SVI呈下降傾向,而下降至65mL/g。於此期間,試著隨著沉降性之提升而增加污泥濃度及提高負荷,結果MLSS增加至4500mg/L,而BOD容積負荷上升至0.4kgBOD/m3 /d。
其次,於將MLSS設為4500mg/L,將BOD容積負荷設為0.4kgBOD/m3 /d之條件6下,進行流通試驗,結果SVI維持為90mL/g並可穩定運轉。
圖19係顯示接種污泥、於半批式生物處理槽所形成之顆粒污泥、於條件6下之連續式生物處理槽內之污泥之粒徑分佈圖。接種污泥為具有平均粒徑為80μm左右之污泥;而於半批式生物處理槽所形成之顆粒污泥為具有粒徑為300μm以上之污泥。又,於條件6下之連續式生物處理槽內之污泥雖存在具有粒徑為80μm左右之污泥,但確認亦具有粒徑為300~500μm左右之污泥。亦即,於連續式生物處理槽內,顆粒污泥之粒徑變大。
於條件1~6之流通期間,最終處理水之水質中,BOD為5mg/L以下,而TN濃度為10mg/L以下。
(比較例3) 於不進行從半批式生物處理槽對連續式生物處理槽之顆粒供給之條件下,進行流通試驗。接種污泥與實施例相同,使用從污水處理場所取得之活性污泥。接種污泥之性狀中,SVI為180mL/g。表5中列示流通試驗之各條件(連續式生物處理槽內之MLSS、連續式生物處理槽之BOD污泥負荷、BOD容積負荷、實質停留時間(包含來自固液分離槽之循環流量之停留時間))及變更為各條件並經20天後之污泥之SVI值。
【表5】
Figure 105109604-A0304-0005
首先,於將BOD污泥負荷設為0.06~0.08kgBOD/kgMLVSS/d之條件7下,進行流通試驗。結果,接種污泥之沉降性緩慢惡化,SVI上升至250mL/g。
其次,於將BOD污泥負荷設為0.12~0.16kgBOD/kgMLVSS/d左右之條件8下,進行流通試驗,結果,沉降性雖有改善傾向,但停滯於200mL/g。
其次,於將BOD污泥負荷設為0.08~0.1kgBOD/kgMLVSS/d左右之條件9下,進行流通試驗,但沉降性無變化,維持為200mL/g。
於條件7~9之任一期間中,沉降性皆無太大改善。因此,藉由使MLSS濃度上升並無法提高處理量。
從實施例3及比較例3之結果可知,於將具有粒徑為200μm以上之顆粒污泥供給至連續式生物處理槽之系統中,藉由運轉以使BOD污泥負荷之值成為0.08~0.2kgBOD/kgMLVSS/d,可於抑制顆粒污泥之解體而維持良好沉降性之同時,可使MLSS為4000mg/L以上而得到高處理速度。
1‧‧‧顆粒形成裝置 3~9‧‧‧排水處理裝置 10‧‧‧半批式反應槽 12‧‧‧排水流入泵 12a‧‧‧排水流入口 12d‧‧‧處理水排出口 14‧‧‧曝氣用泵 15‧‧‧循環管線 16‧‧‧生物處理水排出口 18‧‧‧生物處理水排出閥 20‧‧‧控制裝置 22‧‧‧污泥抽取口 24‧‧‧污泥抽取泵 26‧‧‧曝氣裝置 28‧‧‧排水供給配管 30‧‧‧生物處理水配管 32‧‧‧污泥抽取配管 34‧‧‧馬達 36‧‧‧攪拌翼 38‧‧‧排水流入閥 40‧‧‧排水流入口 42‧‧‧排水排出部 49‧‧‧攪拌裝置 50‧‧‧排水貯存槽 52、52a、52b、52c‧‧‧連續式生物處理槽 52d‧‧‧無氧槽 52e‧‧‧曝氣槽 52f‧‧‧厭氧槽 54‧‧‧固液分離裝置 56、59、60、64‧‧‧泵 58、62、63‧‧‧閥 61‧‧‧污泥處理水供給管線 66、66a‧‧‧排水供給配管 68‧‧‧污泥配管 70‧‧‧配管 72‧‧‧處理水配管 74‧‧‧污泥排出配管 76‧‧‧污泥回送配管
【圖1】本發明之實施形態之好氧性顆粒之形成裝置之一例之概略構成圖。 【圖2】半批式反應槽之1批次之BOD濃度與處理時間之關係圖。 【圖3】本發明之實施形態之好氧性顆粒之形成裝置之其他例之概略構成圖。 【圖4】本發明之實施形態之好氧性顆粒之形成裝置之其他例之概略構成圖。 【圖5】本發明之實施形態之好氧性顆粒之形成裝置之其他例之概略構成圖。 【圖6】本發明之實施形態之排水處理裝置之一例之概略構成圖。 【圖7】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖8】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖9】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖10】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖11】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖12】本發明之實施形態之排水處理裝置之其他例之概略構成圖。 【圖13】用於圖12之排水處理裝置之半批式生物處理槽之構成例之示意圖。 【圖14】實施例1及比較例1之SVI5隨經過天數之變化圖。 【圖15】比較例2之SVI5隨經過天數之變化圖。 【圖16】實施例2之SVI5隨經過天數之變化圖。 【圖17】比較例1之條件2及條件3之期間之污泥之顯微鏡相片。 【圖18】實施例1之條件5及條件6之期間之污泥之顯微鏡相片。 【圖19】接種污泥、於半批式生物處理槽所形成之顆粒污泥、及於條件6下之連續式生物處理槽內之污泥之粒徑分佈圖。

Claims (11)

  1. 一種好氧性顆粒之形成方法,其使用半批式反應槽,該半批式反應槽重複進行下述步驟而形成顆粒: 流入步驟,使包含有機物之含有機物排水流入; 生物處理步驟,藉由微生物污泥,對該含有機物排水中之處理對象物質進行生物學處理; 沉降步驟,使該微生物污泥沉降;及 排出步驟,使經該生物學處理之生物處理水排出, 其特徵為:           調整反應時間,俾使投入該半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,且進行污泥之抽取,俾使污泥停留時間為5~25天。
  2. 如申請專利範圍第1項之好氧性顆粒之形成方法,其中, 藉由將該半批式反應槽之生物處理水排出口設置於較排水流入口更為上方,使該含有機物排水流入該半批式反應槽,而使該生物處理水從該生物處理水排出口排出。
  3. 一種好氧性顆粒之形成裝置,其具備半批式反應槽,該半批式反應槽重複進行下述步驟而形成顆粒: 流入步驟,使包含有機物之含有機物排水流入; 生物處理步驟,藉由微生物污泥,對該含有機物排水中之處理對象物質進行生物學處理; 沉降步驟,使該微生物污泥沉降;及 排出步驟,使經該生物學處理之生物處理水排出, 其特徵為: 調整反應時間,俾使投入該半批式反應槽之BOD負荷量相對於MLSS濃度的比值乘以[全循環時間/反應時間]所得的值為0.05~0.25kgBOD/kgMLSS/d之範圍,且進行污泥之抽取,俾使污泥停留時間為5~25天。
  4. 如申請專利範圍第3項之好氧性顆粒之形成裝置,其中, 藉由將該半批式反應槽之生物處理水排出口設置於較排水流入口更為上方,使該含有機物排水流入該半批式反應槽,而使該生物處理水從該生物處理水排出口排出。
  5. 一種排水處理方法,其對於一邊使含有機物排水連續流入一邊利用生物污泥對該含有機物排水進行生物處理之連續式生物處理槽,供給藉由如申請專利範圍第1或2項之好氧性顆粒之形成方法所形成之顆粒。
  6. 如申請專利範圍第5項之排水處理方法,其中, 該顆粒係具有粒徑為200μm以上之顆粒污泥, 該連續式生物處理槽之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍。
  7. 如申請專利範圍第5或6項之排水處理方法,其中, 該連續式生物處理槽由複數個反應槽所構成。
  8. 如申請專利範圍第5或6項之排水處理方法,其更具備: 污泥回送步驟,從經該連續式生物處理槽所處理之生物處理液,使生物污泥固液分離,將該已固液分離之生物污泥回送至該連續式生物處理槽, 從「流入至該連續式生物處理槽之排水流量與回送至該連續式生物處理槽之生物污泥之流量的總和」及「該連續式生物處理槽的容積」所求得之連續式生物處理槽之水理學停留時間為5小時~10小時之範圍。
  9. 如申請專利範圍第5或6項之排水處理方法,其中, 於該好氧性顆粒之形成方法之該流入步驟中,使供給至該連續式生物處理槽內之排水之一部分流入該半批式生物處理槽。
  10. 一種排水處理裝置,其具備一邊使含有機物排水連續流入一邊利用生物污泥對該含有機物排水進行生物處理之連續式生物處理槽,將藉由如申請專利範圍第3或4項之好氧性顆粒之形成裝置所形成之顆粒供給至該連續式生物處理槽。
  11. 如申請專利範圍第10項之排水處理裝置,其中, 該顆粒係具有粒徑為200μm以上之顆粒污泥, 該連續式生物處理槽之BOD污泥負荷為0.08~0.2kgBOD/kgMLVSS/d之範圍。
TW105109604A 2015-03-31 2016-03-28 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置 TWI693196B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-073511 2015-03-31
JP2015073511A JP6609107B2 (ja) 2015-03-31 2015-03-31 好気性グラニュールの形成方法、好気性グラニュールの形成装置、排水処理方法、および排水処理装置
JP2015107925A JP6605843B2 (ja) 2015-05-27 2015-05-27 排水処理方法及び排水処理装置
JP2015-107925 2015-05-27

Publications (2)

Publication Number Publication Date
TW201708126A TW201708126A (zh) 2017-03-01
TWI693196B true TWI693196B (zh) 2020-05-11

Family

ID=57007224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109604A TWI693196B (zh) 2015-03-31 2016-03-28 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置

Country Status (7)

Country Link
US (1) US10590018B2 (zh)
EP (1) EP3279154B1 (zh)
CN (1) CN107531525B (zh)
MY (1) MY182447A (zh)
SG (1) SG11201707571SA (zh)
TW (1) TWI693196B (zh)
WO (1) WO2016159091A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693196B (zh) 2015-03-31 2020-05-11 日商奧璐佳瑙股份有限公司 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置
CN107973398B (zh) * 2017-11-24 2024-06-25 中粮生化能源(衡水)有限公司 一种培养好氧颗粒污泥的推进式反应装置及其培养方法
CN112512977B (zh) * 2018-07-31 2022-12-09 奥加诺株式会社 水处理方法及水处理装置
CA3133969A1 (en) * 2019-03-26 2020-10-01 Evocra Pty Limited Sewage treatment method
EP3947297A4 (en) * 2019-04-01 2022-12-28 Carollo Engineers, Inc. FLOW-THROUGH AEROBIC GRAINULAR SYSTEM AND PROCESS
CN111003899A (zh) * 2019-12-27 2020-04-14 扬州大学 一种含有聚丙烯酸酯类浆料的喷水织造废水的处理及回用工艺
EP4222116A4 (en) * 2020-09-29 2024-06-05 Carollo Engineers, Inc. WASTE WATER TREATMENT SYSTEM AND PROCESS USING AEROBIC GRANULAR SLUDGE WITH SUBMERGED MEMBRANE SEPARATION
WO2022243114A1 (fr) * 2021-05-18 2022-11-24 Exelio Procédé et réacteur pour le traitement biologique des eaux usées
BE1029409B1 (fr) * 2021-05-18 2022-12-19 Exelio Procédé pour le traitement biologique des eaux usées
JP2023013640A (ja) * 2021-07-16 2023-01-26 オルガノ株式会社 有機性排水の処理方法および有機性排水の処理装置
CN115259355A (zh) * 2022-07-14 2022-11-01 清研环境科技股份有限公司 连续好氧颗粒污泥筛选工艺及用于该工艺的装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596224A (zh) * 2002-02-22 2005-03-16 Sut(西拉雅)私人有限公司 用于废水处理的好氧生物质颗粒
JP2014136188A (ja) * 2013-01-16 2014-07-28 Japan Organo Co Ltd 排水処理方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484888Y1 (zh) 1969-02-05 1973-02-07
JP2937204B2 (ja) * 1990-02-22 1999-08-23 東京都 汚水から窒素を除去する方法及びその装置
NL1021466C2 (nl) 2002-09-16 2004-03-18 Univ Delft Tech Werkwijze voor het behandelen van afvalwater.
JP2006346572A (ja) 2005-06-16 2006-12-28 Toyo Kankyo Gijutsu Kenkyusho:Kk 有機物の処理方法
EP1899273B1 (en) * 2005-07-06 2010-04-07 Glowtec Bio Pte Ltd. Water treatment process
JP2006088158A (ja) 2005-11-14 2006-04-06 Kirin Brewery Co Ltd 水処理方法
JP4804888B2 (ja) 2005-11-18 2011-11-02 住友重機械工業株式会社 粒状微生物汚泥生成方法
JP2007136367A (ja) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd 生物学的排水処理装置及び生物学的排水処理方法
US7459076B2 (en) * 2005-12-22 2008-12-02 Zenon Technology Partnership Flow-through aerobic granulator
JP2008212878A (ja) * 2007-03-06 2008-09-18 Sumitomo Heavy Ind Ltd 廃水処理装置
JP2008284427A (ja) 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd 排水処理装置及び排水処理方法
JP4975541B2 (ja) 2007-07-12 2012-07-11 住友重機械工業株式会社 回分式排水処理方法
KR101268116B1 (ko) * 2009-05-21 2013-05-29 광주과학기술원 연속회분식 장치 및 이를 이용한 호기성 입상 슬러지의 제조방법
CN101698534B (zh) * 2009-11-12 2011-08-31 上海交通大学 好氧颗粒污泥稳定性优化方法
CN101700931A (zh) * 2009-11-13 2010-05-05 江南大学 一种调控膜生物反应器中污泥性质的方法
CN101759289A (zh) * 2010-01-15 2010-06-30 杨国靖 一种处理城市污水生物营养物用的好氧颗粒污泥培养方法
CN103068746A (zh) * 2010-03-03 2013-04-24 液体消耗治疗***有限公司 反应器设定
JP5746853B2 (ja) 2010-12-10 2015-07-08 オルガノ株式会社 排水処理装置および排水処理方法
CN102583722B (zh) * 2012-03-12 2014-03-26 北京化工大学 一种好氧颗粒污泥的固定化培养方法
NL2008598C2 (en) 2012-04-03 2013-10-07 Dhv B V Hybrid wastewater treatment.
CN103896393A (zh) * 2014-01-17 2014-07-02 复旦大学 一种高强度好氧颗粒污泥的培养方法
TWI693196B (zh) 2015-03-31 2020-05-11 日商奧璐佳瑙股份有限公司 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596224A (zh) * 2002-02-22 2005-03-16 Sut(西拉雅)私人有限公司 用于废水处理的好氧生物质颗粒
JP2014136188A (ja) * 2013-01-16 2014-07-28 Japan Organo Co Ltd 排水処理方法

Also Published As

Publication number Publication date
EP3279154A1 (en) 2018-02-07
TW201708126A (zh) 2017-03-01
CN107531525B (zh) 2021-01-01
MY182447A (en) 2021-01-25
CN107531525A (zh) 2018-01-02
US20180339925A1 (en) 2018-11-29
SG11201707571SA (en) 2017-10-30
US10590018B2 (en) 2020-03-17
EP3279154B1 (en) 2020-08-19
WO2016159091A1 (ja) 2016-10-06
EP3279154A4 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
TWI693196B (zh) 好氧性顆粒之形成方法、好氧性顆粒之形成裝置、排水處理方法及排水處理裝置
CN108473349B (zh) 颗粒形成方法和废水处理方法
US6555002B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
CN108409033A (zh) Fna强化短程硝化的分段进水uct深度脱氮除磷的装置与方法
JP6609107B2 (ja) 好気性グラニュールの形成方法、好気性グラニュールの形成装置、排水処理方法、および排水処理装置
CN103209931B (zh) 排水处理装置
JP6605843B2 (ja) 排水処理方法及び排水処理装置
CN106795021B (zh) 废水处理方法及废水处理装置
CZ2003948A3 (cs) Způsob a zařízení pro úpravu odpadní vody se zvýšenou redukcí pevných látek
KR0165168B1 (ko) 혐기/무산소 슬러지처리조를 포함하는 순산소포기 활성슬러지법에 의한 폐수처리장치 및 방법
JP6702656B2 (ja) グラニュールの形成方法及びグラニュールの形成装置
WO2023276823A1 (ja) 好気性グラニュールの形成方法、好気性グラニュールの形成装置
KR101433314B1 (ko) 음식물 침출수와 유용미생물을 이용한 유기산 생성장치 및 이를 포함하는 하수처리장치
Tociu et al. LABORATORY RESEARCH ON INTENSIFIED BIOLOGICAL TREATMENT BY ACTIVATED SLUDGE OF WASTEWATERS WITH HIGH CONTENT OF ORGANIC POLLUTANTS
JP6613043B2 (ja) 排水処理方法及び排水処理装置
CN111936431A (zh) 废水处理方法