TWI667781B - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
TWI667781B
TWI667781B TW106114297A TW106114297A TWI667781B TW I667781 B TWI667781 B TW I667781B TW 106114297 A TW106114297 A TW 106114297A TW 106114297 A TW106114297 A TW 106114297A TW I667781 B TWI667781 B TW I667781B
Authority
TW
Taiwan
Prior art keywords
electron transport
layer
emitting device
light
inert metal
Prior art date
Application number
TW106114297A
Other languages
Chinese (zh)
Other versions
TW201743441A (en
Inventor
段煉
賓正楊
Original Assignee
清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清華大學 filed Critical 清華大學
Publication of TW201743441A publication Critical patent/TW201743441A/en
Application granted granted Critical
Publication of TWI667781B publication Critical patent/TWI667781B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明關於一種有機電場發光裝置,包括基板,以及依次形成在該基板上的發光裝置,該發光裝置包括第一電極層、電洞注入層、電洞傳輸層、發光層、電洞阻擋層、電子傳輸層和第二電極層,該電子傳輸層包括具有配位元能力的電子傳輸主體材料和摻雜在該電子傳輸主體材料中的惰性金屬;該電子傳輸主體材料為具有配位元性能的電子傳輸材料,能與惰性金屬陽離子發生配位元反應,促進惰性金屬失去電子的過程,從而降低惰性金屬的功函數,使惰性金屬也能實現與活潑金屬類似的n型摻雜效果,降低電子傳輸材料的LUMO能級,進而促進電子的注入,從而顯著降低裝置的驅動電壓,提高裝置的效率。 The present invention relates to an organic electric field light-emitting device comprising a substrate, and a light-emitting device sequentially formed on the substrate, the light-emitting device comprising a first electrode layer, a hole injection layer, a hole transport layer, a light-emitting layer, a hole blocking layer, An electron transport layer and a second electrode layer, the electron transport layer comprising an electron transport host material having a coordination element capability and an inert metal doped in the electron transport host material; the electron transport host material having coordination element properties The electron transporting material can react with the inert metal cation to promote the process of the inert metal to lose electrons, thereby reducing the work function of the inert metal, so that the inert metal can also achieve the n-type doping effect similar to the active metal, and reduce the electron The LUMO energy level of the transport material, which in turn promotes electron injection, significantly reduces the driving voltage of the device and increases the efficiency of the device.

Description

有機電場發光裝置 Organic electric field illuminating device

本發明關於一種有機電場發光裝置技術領域,特別是一種含有配位元能力材料的電子傳輸層中摻雜惰性金屬實現n型摻雜效果的有機電場發光裝置。 The invention relates to the technical field of an organic electric field illuminating device, in particular to an organic electric field illuminating device which is doped with an inert metal in an electron transport layer containing a coordination element capable material to realize an n-type doping effect.

有機發光二極體(OLED)是一種複數層有機薄膜結構、可通過電場發光的裝置。它擁有多種超越液晶顯示器(LCD)的顯示特性和品質,憑藉其低能耗和柔韌性等優良特性,具有很好的應用前景,將成為下一代主流平板顯示器。 An organic light-emitting diode (OLED) is a device having a plurality of organic thin film structures and capable of emitting light by an electric field. It has a variety of display characteristics and quality beyond the liquid crystal display (LCD). With its excellent characteristics such as low power consumption and flexibility, it has a good application prospect and will become the next generation mainstream flat panel display.

在OLED中,通常使用的電子傳輸材料(ETM)的LUMO能級在-3.0eV附近,而金屬陰極的功函數一般大於4.0eV,因此當電子直接從金屬陰極注入到電子傳輸層時,存在較大的能隙阻礙電子的注入,使得裝置驅動電壓較高,同時使得到達發光層中的電子電洞不平衡,降低裝置效率和縮短裝置壽命。因此可以使用n型摻雜的方法提高電子傳輸材料的傳輸特性,降低電子傳輸材料的LUMO能級,進而促進電子從電極的注入。n型摻雜的機理是摻雜劑將電子轉移到ETM的LUMO能級上,從而實現電荷轉移,提高自由載流子濃度。電子傳輸材料的LUMO能級在-3.0 eV左右,這就要求摻雜劑功函數必須在3.0eV以下,才能高效的將電子轉移到ETM的LUMO能級上。但是功函數小於3.0eV的物質,其還原性十分強,很容易被空氣中的氧氣氧化,因此適用於OLED的n型摻雜劑種類較少。其中,最常用的是鹼金屬,鹼金屬的功函數均小於3.0eV,因此將鹼金屬與ETM共摻雜,可以實現高效的n型摻雜效果,然而鹼金屬特別活潑,在空氣中易被氧化,鈉、鉀、銫等甚至在空氣中自燃,因此難以長時間存儲,而且操作較為不便。通過鹼金屬化合物在真空熱分解原位產生活潑的鹼金屬的方法可以避免直接在空氣中使用活潑的鹼金屬,增強其在空氣中的穩定性,然而鹼金屬化合物在真空中分解時存在嚴重的放氣現象,使蒸鍍薄膜時的真空度較差,成膜性和氣氛均不穩定,難以得到實際應用。惰性金屬在空氣中穩定,可以長期存儲和使用,然而由於其功函數較大,與ETM間不能發生電荷轉移,因此沒有n型摻雜效果,不是一種很好的n型摻雜劑。 In OLEDs, the commonly used electron transport material (ETM) has a LUMO level near -3.0 eV, while the metal cathode typically has a work function greater than 4.0 eV, so when electrons are directly injected from the metal cathode into the electron transport layer, there is a The large energy gap hinders the injection of electrons, so that the device driving voltage is higher, and at the same time, the electron holes reaching the light-emitting layer are unbalanced, reducing device efficiency and shortening device life. Therefore, the n-type doping method can be used to improve the transmission characteristics of the electron transporting material, reduce the LUMO energy level of the electron transporting material, and further promote the injection of electrons from the electrode. The mechanism of n-type doping is that the dopant transfers electrons to the LUMO level of the ETM, thereby achieving charge transfer and increasing the free carrier concentration. The LUMO energy level of the electron transport material is -3.0 Around eV, this requires that the dopant work function must be below 3.0 eV in order to efficiently transfer electrons to the LUMO level of the ETM. However, a substance having a work function of less than 3.0 eV is highly reductive and easily oxidized by oxygen in the air, so that n-type dopants suitable for OLEDs are less. Among them, the most commonly used is alkali metal, the work function of alkali metal is less than 3.0eV, so the alkali metal and ETM are co-doped, which can achieve high-efficiency n-type doping effect. However, alkali metal is particularly active and easy to be in the air. Oxidation, sodium, potassium, barium, etc. even spontaneously ignite in the air, so it is difficult to store for a long time, and the operation is inconvenient. The method of producing an active alkali metal in situ by vacuum thermal decomposition of an alkali metal compound can avoid the use of an active alkali metal directly in the air to enhance its stability in air. However, the alkali metal compound is severely decomposed in a vacuum. The deflation phenomenon makes the degree of vacuum at the time of vapor deposition of the film poor, and the film forming property and the atmosphere are unstable, and it is difficult to obtain practical use. The inert metal is stable in air and can be stored and used for a long time. However, due to its large work function, charge transfer cannot occur between the ETM and the ETM, so there is no n-type doping effect, and it is not a good n-type dopant.

目前有公開顯示將惰性金屬薄層Ag蒸鍍1nm到Bphen或者BCP上,在介面處Ag可以和Bphen或者BCP發生作用,提高電子的注入。雖然這樣有一定的效果,然而Ag通過滲透進入Bphen【4,7-二苯基-1,10-菲囉啉(4,7-diphenyl-1,10-phenanthroline)】或者BCP【2,9-二甲基-4,9-二苯基-1,10-菲囉啉(2,9-dimethyl-4,9-diphenyl-1,10-phenanthroline)】的量有限,僅能在介面處形成複合,而且作用的機理並不明確。 CN201110325422.2公開提出了用活潑金屬M摻雜ETM從而實現n型摻雜效果,其中這類活潑金屬自身功函數較低,直接充當了強還原性的n型摻雜劑,而且在空氣中不穩定,難以長期存儲和使用,不利於工業生產。 At present, there is a public display that a thin layer of inert metal Ag is evaporated to 1 nm to Bphen or BCP, and Ag can interact with Bphen or BCP at the interface to improve electron injection. Although this has a certain effect, Ag penetrates into Bphen [4,7-diphenyl-1,10-phenanthroline] or BCP [2,9-]. The amount of dimethyl-4,9-diphenyl-1,10-phenanthroline (2,9-dimethyl-4,9-diphenyl-1,10-phenanthroline) is limited, and it can only form a complex at the interface. And the mechanism of action is not clear. CN201110325422.2 discloses the use of active metal M doping ETM to achieve n-type doping effect, wherein such active metal has a low work function, directly acts as a strong reducing n-type dopant, and does not in the air. Stable, difficult to store and use for a long time, is not conducive to industrial production.

為此,本發明提供了一種有機電場發光裝置,採用在具有配位元能力的電子傳輸材料中摻雜惰性金屬,通過電子傳輸材料與惰性金屬陽離子發生配位元反應,促進惰性金屬失去電子的過程,從而降低惰性金屬的功函數,使惰性金屬也能實現與活潑金屬類似的n型摻雜效果,降低電子傳輸材料的LUMO能級,進而降低電子的注入勢壘,從而顯著降低裝置驅動電壓、提高裝置效率。 To this end, the present invention provides an organic electric field illuminating device which is doped with an inert metal in an electron transporting material having a coordination element capability, and a coordination reaction with an inert metal cation by an electron transporting material to promote the loss of electrons of the inert metal. The process, thereby reducing the work function of the inert metal, enables the inert metal to achieve an n-type doping effect similar to that of a reactive metal, lowering the LUMO energy level of the electron transporting material, thereby reducing the electron injection barrier, thereby significantly reducing the device driving voltage Improve equipment efficiency.

為解決上述技術問題,本發明採用如下技術方案。 In order to solve the above technical problems, the present invention adopts the following technical solutions.

一種有機電場發光裝置,包括基板,以及依次形成在所述基板上的發光裝置,所述發光裝置包括第一電極層、發光層、電子傳輸層和第二電極層;所述電子傳輸層包括電子傳輸主體材料和摻雜在所述電子傳輸主體材料中的惰性金屬。 An organic electric field light-emitting device comprising a substrate, and a light-emitting device sequentially formed on the substrate, the light-emitting device comprising a first electrode layer, a light-emitting layer, an electron transport layer and a second electrode layer; the electron transport layer comprising an electron The host material and the inert metal doped in the electron transport host material are transported.

所述電子傳輸主體材料為具有配位元性能的電子傳輸材料。 The electron transport host material is an electron transport material having coordination element properties.

所述惰性金屬的摻雜比例為1vol%至99vol%,較佳為5vol%至30vol%。 The doping ratio of the inert metal is from 1 vol% to 99 vol%, preferably from 5 vol% to 30 vol%.

所述惰性金屬為在空氣中穩定且功函數高於4.0eV的金屬,具體為鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷 (Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鍀(Tc)、釕(Ru)、銠(Rh)、鉛(Pd)、銀(Ag)、鎘(Cd)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、銥(Ir)、金(Au)、鉑(Pt)、汞(Hg)中的一種或其中幾種的混合物。 The inert metal is a metal which is stable in air and has a work function higher than 4.0 eV, specifically titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt. (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Tc), ruthenium (Ru), rhodium (Rh), lead (Pd), silver (Ag), cadmium (Cd), tantalum (Ta), tungsten (W), antimony (Re), antimony (Os), antimony (Ir), gold (Au), platinum (Pt), mercury One or a mixture of several of (Hg).

所述惰性金屬為配位元能力較強的金屬原子,如鈷(Co)、鎳(Ni)、銅(Cu)、釕(Ru)、銀(Ag)、銥(Ir)、金(Au)或鉑(Pt)。 The inert metal is a metal atom having strong coordination ability, such as cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), silver (Ag), iridium (Ir), gold (Au). Or platinum (Pt).

所述電子傳輸主體材料具有含N或O的相鄰雜環,可形成較好的配位元結構,其分子式如式(1)至式(12)所示: The electron transporting host material has an adjacent heterocyclic ring containing N or O, and can form a better coordination structure, and the molecular formula is as shown in the formulas (1) to (12):

其中R1至R8相同或不同,分別選自烷基(CnHm)、共軛芳香基團,共軛雜環、甲氧基(OCH3)、氨基及烷基取代的氨基(NRxH2-x)、氰基(CN)、鹵族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙醯丙酮基(COCH2COR)。 Wherein R 1 to R 8 are the same or different and are respectively selected from an alkyl group (C n H m ), a conjugated aromatic group, a conjugated heterocyclic ring, a methoxy group (OCH 3 ), an amino group, and an alkyl-substituted amino group (NR). x H 2-x ), cyano (CN), halo (X), aldehyde and keto (CHO, COR 2 ), ester (COOR) and acetoacetone (COCH 2 COR).

所述共軛芳香基團為苯基(Ph)、萘基或蒽基;所述的 共軛雜環為吡啶基(Py)或喹啉基。 The conjugated aromatic group is a phenyl (Ph), naphthyl or anthracenyl group; The conjugated heterocyclic ring is a pyridyl group (Py) or a quinolyl group.

所述具有配位元性能的電子傳輸材料為式(2-1)至式(9-1)所示的結構式: The electron transporting material having the coordination element property is a structural formula represented by the formula (2-1) to the formula (9-1):

所述的發光裝置還包括設置在所述第一電極層和所述發光層之間的電洞注入層及/或電洞傳輸層、和所述發光層和所述電子傳輸層之間的電洞阻擋層。 The light emitting device further includes a hole injection layer and/or a hole transport layer disposed between the first electrode layer and the light emitting layer, and electricity between the light emitting layer and the electron transport layer Hole barrier.

本發明的上述技術方案相比先前技術具有以下優點。 The above technical solution of the present invention has the following advantages over the prior art.

本發明的電子傳輸層基於配位元作用能促使惰性金屬實現n型摻雜效果,具體為利用惰性的金屬M與具有配位元性能的電子傳輸材料ETM(如Bphen)共摻雜,通過ETM可與Mn+發生配位元作用促進惰性金屬M失去電子,降低其功函數,使得惰性金屬實現與活潑鹼金屬類似的n型摻雜效果,提高電子傳輸材料的傳輸特性,降低電子的注入勢壘,增強電子的注入。將惰性金屬與具有配位元能力的ETM共摻雜,通過以上作用機理,使得惰性金屬也能實現活潑金屬類似的n型摻雜劑,是一種新的n型摻雜思路,可以避免使用活潑的鹼金屬,製備出廉價、穩定且高效的 OLED裝置。 The electron transport layer of the present invention can promote the n-type doping effect of the inert metal based on the coordination element action, specifically, co-doping with the electron transport material ETM (such as Bphen) having the coordination element property by using the inert metal M, through the ETM It can react with Mn + to promote the loss of electrons in the inert metal M, reduce its work function, and make the inert metal achieve n-type doping effect similar to that of the active alkali metal, improve the transmission characteristics of the electron transporting material, and reduce the electron injection potential. Base, enhance the injection of electrons. The inert metal is co-doped with the ETM having the coordination element ability, and the inert metal can also realize the n-type dopant similar to the active metal through the above mechanism, which is a new n-type doping idea, which can avoid active use. The alkali metal produces an inexpensive, stable and efficient OLED device.

申請人實驗發現:將惰性金屬M和ETM共摻雜(x% M:ETM)比使用薄層的Bphen或者BCP/Ag(1nm)通過滲透在介面處相互作用的效果好很多,而且摻雜M後,ETM的穩定性也得到了大大的提高。 Applicants' experiments found that co-doping of inert metal M and ETM (x% M:ETM) is much better than the use of thin layers of Bphen or BCP/Ag (1 nm) by infiltration at the interface, and doping M After that, the stability of the ETM has also been greatly improved.

本發明採用的材料是惰性金屬,其在空氣中穩定,存儲和使用方便,可以反復利用,有利於工業生產;不存在放氣現象,蒸鍍氣氛相對穩定,可以進行批量生產;惰性金屬摻雜電子傳輸材料後,提高電子傳輸材料的傳輸特性,降低電子傳輸材料的LUMO能級,可以和陰極更好的匹配,降低電子注入勢壘,提高電子的注入效率;惰性金屬較多,可以選擇一些蒸鍍溫度較低的惰性金屬,選擇面比較廣泛;電子傳輸材料是有機材料,熱穩定性差,摻雜無機的惰性金屬形成配合物後,顯著改善其熱穩定性。 The material used in the invention is an inert metal, which is stable in air, convenient to store and use, can be repeatedly used, and is beneficial to industrial production; there is no gas venting phenomenon, the evaporation atmosphere is relatively stable, and mass production can be carried out; inert metal doping After the electron transport material, the transmission characteristics of the electron transport material are improved, the LUMO energy level of the electron transport material is lowered, the cathode can be better matched, the electron injection barrier is lowered, the electron injection efficiency is improved, and the inert metal is more, and some can be selected. The inert metal with lower evaporation temperature has wider selection surface; the electron transporting material is organic material, and the thermal stability is poor. After the inorganic inert metal is formed into a complex, the thermal stability is remarkably improved.

01‧‧‧基板 01‧‧‧Substrate

02‧‧‧第一電極層 02‧‧‧First electrode layer

03‧‧‧第二電極層 03‧‧‧Second electrode layer

04‧‧‧電洞注入層 04‧‧‧ hole injection layer

05‧‧‧電洞傳輸層 05‧‧‧ hole transport layer

06‧‧‧發光層 06‧‧‧Lighting layer

07‧‧‧電洞阻擋層 07‧‧‧ Hole blocking layer

08‧‧‧電子傳輸層 08‧‧‧Electronic transport layer

為了使本發明的內容更容易被清楚地理解,下面根據本發明的具體實施案例並結合圖式,對本發明作進一步詳細的說明。 In order to make the content of the present invention easier to understand, the present invention will be further described in detail below in accordance with the specific embodiments of the invention.

圖1為本發明的有機電場發光裝置的結構示意圖。 1 is a schematic view showing the structure of an organic electric field light-emitting device of the present invention.

圖2為實施例1的裝置1至裝置6電流密度-電壓曲線圖。 2 is a current density-voltage graph of the device 1 to the device 6 of the embodiment 1.

圖3為實施例2的裝置7至裝置11的電流密度-電壓曲線圖。 3 is a current density-voltage graph of the device 7 to the device 11 of the second embodiment.

圖4為實施例2的裝置7至裝置11的亮度-電壓曲線 圖。 4 is a brightness-voltage curve of the device 7 to the device 11 of Embodiment 2. Figure.

圖5為實施例2的裝置7至裝置11的電流效率-亮度曲線圖。 Fig. 5 is a graph showing the current efficiency-luminance of the device 7 to the device 11 of the second embodiment.

圖6為實施例2的裝置7至裝置11的功率效率-亮度曲線圖。 6 is a graph showing the power efficiency-luminance of the device 7 to the device 11 of the second embodiment.

圖7為實施例3的裝置12至裝置16的電流密度-電壓曲線圖。 7 is a current density-voltage graph of the device 12 to the device 16 of the third embodiment.

圖8為實施例3的裝置12至裝置16的亮度-電壓曲線圖。 8 is a graph of luminance-voltage of the device 12 to the device 16 of the third embodiment.

圖9為實施例3的裝置12至裝置16的電流效率-亮度曲線圖。 9 is a current efficiency-luminance graph of the device 12 to the device 16 of the third embodiment.

圖10為實施例3的裝置12至裝置16的功率效率-亮度曲線圖。 10 is a graph showing the power efficiency-luminance of the device 12 to the device 16 of the third embodiment.

圖11為本發明的摻雜有多型金屬的電子傳輸層質譜圖。 Figure 11 is a mass spectrum of an electron transport layer doped with a polytype metal of the present invention.

本發明可以以許多不同的形式實施,而不應該被理解為限於在此闡述的實施例。相反,提供這些實施例,使得本揭露將是徹底和完整的,並且將把本發明的構思充分傳達給本領域技術人員,本發明將僅由申請專利範圍來限定。在圖式中,為了清晰起見,會誇大層和區域的尺寸和相對尺寸。應當理解的是,當元件例如層、區域或基板被稱作“形成在”或“設置在”另一元件“上”時,該元件可以直接設置在所述另一元件上,或者也可以存在中間元 件。相反,當元件被稱作“直接形成在”或“直接設置在”另一元件上時,不存在中間元件。 The invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete. In the drawings, the dimensions and relative sizes of the layers and regions are exaggerated for clarity. It will be understood that when an element, such as a layer, region or substrate, is referred to as "in" or "on" another element, the element may be directly disposed on the other element or may be present Intermediate element Pieces. In contrast, when an element is referred to as being "directly on" or "directly on" another element, there is no intermediate element.

一種有機電場發光裝置包括基板01、以及依次形成在所述基板01上的發光裝置,所述發光裝置包括第一電極層02(陽極)、電洞注入層04、電洞傳輸層05、發光層06、電洞阻擋層07、電子傳輸層08和第二電極層03(陰極)。 An organic electric field light-emitting device includes a substrate 01 and a light-emitting device sequentially formed on the substrate 01, the light-emitting device including a first electrode layer 02 (anode), a hole injection layer 04, a hole transport layer 05, and a light-emitting layer 06. A hole barrier layer 07, an electron transport layer 08, and a second electrode layer 03 (cathode).

所述電子傳輸層08包括電子傳輸主體材料和摻雜在所述電子傳輸主體材料中的惰性金屬;所述電子傳輸主體材料為具有配位元性能的電子傳輸材料。 The electron transport layer 08 includes an electron transport host material and an inert metal doped in the electron transport host material; the electron transport host material is an electron transport material having coordination element properties.

所述惰性金屬的摻雜比例為1vol%至99vol%,較佳為5vol%至30vol%。 The doping ratio of the inert metal is from 1 vol% to 99 vol%, preferably from 5 vol% to 30 vol%.

所述惰性金屬為在空氣中穩定且功函數高於4.0eV的金屬,具體為鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鍀(Tc)、釕(Ru)、銠(Rh)、鉛(Pd)、銀(Ag)、鎘(Cd)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、銥(Ir)、金(Au)、鉑(Pt)、汞(Hg)中的一種或其中幾種的混合物。 The inert metal is a metal which is stable in air and has a work function higher than 4.0 eV, specifically titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co). , nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Tc), ruthenium (Ru), rhenium (Rh), lead (Pd) , silver (Ag), cadmium (Cd), tantalum (Ta), tungsten (W), antimony (Re), antimony (Os), antimony (Ir), gold (Au), platinum (Pt), mercury (Hg) One or a mixture of several of them.

較佳地,所述惰性金屬為鈷鈷(Co)、鎳(Ni)、銅(Cu)、釕(Ru)、銀(Ag)、銥(Ir)、金(Au)或鉑(Pt)。 Preferably, the inert metal is cobalt cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), silver (Ag), iridium (Ir), gold (Au) or platinum (Pt).

所述電子傳輸主體材料具有含N或O的相鄰雜環,可形成較好的配位元結構,其分子式如式(1)至式(12)所示: The electron transporting host material has an adjacent heterocyclic ring containing N or O, and can form a better coordination structure, and the molecular formula is as shown in the formulas (1) to (12):

其中R1至R8相同或不同,可選自但不限於烷基(CnHm)、共軛芳香基團,共軛雜環、甲氧基(OCH3)、氨基及烷基取代的氨基(NRx-H2-x)、氰基(CN)、鹵族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙醯丙酮基(COCH2COR)。 Wherein R 1 to R 8 are the same or different and may be selected from, but not limited to, alkyl (C n H m ), conjugated aromatic groups, conjugated heterocyclic ring, methoxy (OCH 3 ), amino group and alkyl substituted Amino (NR x -H 2-x ), cyano (CN), halo (X), aldehyde and keto (CHO, COR 2 ), ester (COOR) and acetoacetone (COCH 2 COR) ).

所述共軛芳香基團為苯基(Ph)、萘基或蒽基;所述的共軛雜環為吡啶基(Py)或喹啉基。 The conjugated aromatic group is a phenyl (Ph), naphthyl or anthracenyl group; and the conjugated heterocyclic ring is a pyridyl group (Py) or a quinolyl group.

所述具有配位元性能的電子傳輸材料為式(2-1)至式(9-1)所示的結構式: The electron transporting material having the coordination element property is a structural formula represented by the formula (2-1) to the formula (9-1):

本發明的有機電場發光裝置的製備製程同先前技術,其中電子傳輸層08中金屬的蒸鍍速率應較慢,為0.1埃/秒,在此速率下,電子傳輸層的具有配位元性能的主體材料和摻雜材料惰性金屬之間接觸更加充分,惰性金屬M在主體材料ETM中分散更加均一,有利於兩者複合。 The preparation process of the organic electric field illuminating device of the present invention is the same as the prior art, wherein the evaporation rate of the metal in the electron transport layer 08 should be slow, 0.1 Å/sec, at which the electron transport layer has the coordination element property. The contact between the host material and the inert metal of the dopant material is more sufficient, and the inert metal M is more uniformly dispersed in the host material ETM, which is advantageous for the composite of the two.

實施例1Example 1

單電子裝置的結構 Single electronic device structure

ITO/BCP(10nm)/Bphen(90nm)/10%M-ETM(10nm)/Al ITO/BCP (10nm) / Bphen (90nm) / 10% M - ETM (10nm) / Al

第一電極層02(陽極ITO)/電洞傳輸層05(BCP)/電洞阻擋層07(Bphen)/電子傳輸層08(10%M-ETM)/第二電極層03(陰極Al) First electrode layer 02 (anode ITO) / hole transport layer 05 (BCP) / hole barrier layer 07 (Bphen) / electron transport layer 08 (10% M-ETM) / second electrode layer 03 (cathode Al)

本實施例中的電子傳輸層的主體材料為Bphen,摻雜的惰性金屬為Ag,對比裝置中使用的是活潑金屬Cs(通過碳酸銫在真空中分解得到)。如圖2所示,裝置1為Al對應的曲線,裝置2為Ag/Al對應的曲線,裝置3為Cs/Al 對應的曲線,裝置4為CsBphen/Al對應的曲線,裝置5為AgBphen/Al對應的曲線,裝置6為AgBcp/Al對應的曲線,裝置1-6的陰極均為Al,其中:裝置1電子傳輸層08為Bphen(即不摻雜惰性金屬),無電子注入層;裝置2的電子傳輸層08是Bphen,電子注入層為Ag(1nm);裝置3的電子傳輸層08是Bphen,電子注入層為Cs(3nm);裝置4中的電子傳輸層08(10%M-ETM)採用的Cs:Bphen為Cs和Bphen共摻雜,摻雜比例為10vol%,即100埃的電子傳輸主體材料中摻雜有10埃的惰性金屬;裝置5中電子傳輸層08(10%M-ETM)採用的Ag:Bphen是Ag與Bphen共摻雜,摻雜比例為10vol%,即100埃的電子傳輸主體材料中摻雜有10埃的惰性金屬;裝置6中電子傳輸層08(10%M-ETM)採用的Ag:Bcp是Ag與Bcp共摻雜,摻雜比例為10vol%,即100埃的電子傳輸主體材料中摻雜有10埃的惰性金屬。 The host material of the electron transport layer in this embodiment is Bphen, the doped inert metal is Ag, and the active metal Cs (derived by cesium carbonate in vacuum) is used in the comparison device. As shown in FIG. 2, the device 1 is a curve corresponding to Al, the device 2 is a curve corresponding to Ag/Al, and the device 3 is Cs/Al. Corresponding curve, device 4 is the curve corresponding to CsBphen/Al, device 5 is the curve corresponding to AgBphen/Al, device 6 is the curve corresponding to AgBcp/Al, and the cathode of device 1-6 is Al, wherein: device 1 is electronically transmitted Layer 08 is Bphen (ie, undoped with inert metal), no electron injection layer; device 2 has electron transport layer 08 of Bphen, electron injection layer is Ag (1 nm); device 3 electron transport layer 08 is Bphen, electron injection layer Cs (3nm); Cs:Bphen used in electron transport layer 08 (10%M-ETM) in device 4 is co-doped with Cs and Bphen, and the doping ratio is 10 vol%, that is, 100 angstroms in the electron transport host material. Doped with 10 angstroms of inert metal; Ag:Bphen used in electron transport layer 08 (10%M-ETM) in device 5 is co-doped with Ag and Bphen, and the doping ratio is 10 vol%, that is, 100 angstroms of electron transporting body The material is doped with 10 angstroms of inert metal; Ag: Bcp used in electron transport layer 08 (10% M-ETM) in device 6 is co-doped with Ag and Bcp, and the doping ratio is 10 vol%, that is, 100 angstroms of electrons. The transfer host material is doped with an inert metal of 10 angstroms.

裝置1、裝置2、裝置3、裝置4、裝置5和裝置6的電流密度-電壓曲線圖見圖2。由圖2可以看出惰性金屬Ag和Bphen共摻雜作為電子傳輸層,可以實現高效的電子注入,和活潑金屬Cs摻雜Bphen可以實現類似的效果。另外,由於空間位阻,Bphen的配位能力略優於Bcp,因此Ag和Bphen摻雜效果略優於Ag和Bcp的效果。其中 Bphen如式(1-1)所示,Bcp如式(1-2)所示: The current density-voltage curves of device 1, device 2, device 3, device 4, device 5 and device 6 are shown in Figure 2. It can be seen from Fig. 2 that the inert metal Ag and Bphen are co-doped as an electron transport layer, and high-efficiency electron injection can be realized, and a reactive metal Cs-doped Bphen can achieve a similar effect. In addition, due to steric hindrance, Bphen's coordination ability is slightly better than Bcp, so the Ag and Bphen doping effect is slightly better than Ag and Bcp. Where Bphen is as shown in formula (1-1) and Bcp is as shown in formula (1-2):

圖11說明,通過Mardi-Tof測試摻雜薄膜中的分子組成,可以發現Bphen+H的本體峰,一個Ag與單分子Bphen形成的單配位元結構,或者一個Ag與兩個Bphen形成雙配位元結構,如下。 Figure 11 shows that the molecular composition of the doped film can be found by Mardi-Tof, and the bulk peak of Bphen+H, the mono-ligand structure formed by Ag and single-molecule Bphen, or one Ag and two Bphens are formed. The bit structure is as follows.

實施例2Example 2

裝置結構 Device structure

ITO/HAT-CN(10nm)/NPB(30nm)/Alq3(30nm)/Bphen(20nm)/x%Ag:Bphen 10nm/Ag ITO/HAT-CN (10 nm) / NPB (30 nm) / Alq 3 (30 nm) / Bphen (20 nm) / x% Ag: Bphen 10 nm / Ag

第一電極層02(陽極ITO)、電洞注入層04(HAT-CN)、電洞傳輸層05(NPB)、發光層06(Alq3)、電洞阻擋層07(Bphen)、電子傳輸層08(x%Ag:Bphen)、第二電極層03(陰極Ag) First electrode layer 02 (anode ITO), hole injection layer 04 (HAT-CN), hole transport layer 05 (NPB), light-emitting layer 06 (Alq 3 ), hole barrier layer 07 (Bphen), electron transport layer 08 (x% Ag: Bphen), second electrode layer 03 (cathode Ag)

本實施例中的電子傳輸層的主體材料為Bphen,摻雜的惰性金屬為Ag。如圖3至圖6所示,裝置7為Ag對應 的曲線,裝置8為Mg:Ag對應的曲線,裝置9為5%對應的曲線,裝置10為10%對應的曲線,裝置11為25%對應的曲線,裝置7和裝置8中Ag,Mg:Ag分別為金屬陰極,其電子傳輸層材料為Bphen;裝置9、裝置10和裝置11的金屬陰極均為Ag;其中:裝置9中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為5vol%(即蒸鍍厚度100埃Bphen時中同時蒸鍍摻雜有厚度5埃Ag);裝置10中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為10vol%(即蒸鍍厚度100埃Bphen時同時蒸鍍厚度10埃Ag);裝置11中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為25vol%(即蒸鍍厚度100埃Bphen時中同時蒸鍍摻雜有厚度25埃Ag)。 The host material of the electron transport layer in this embodiment is Bphen, and the doped inert metal is Ag. As shown in FIG. 3 to FIG. 6, the device 7 is corresponding to Ag. Curve, device 8 is a curve corresponding to Mg:Ag, device 9 is a 5% corresponding curve, device 10 is a 10% corresponding curve, device 11 is a 25% corresponding curve, and device 7 and device 8 are Ag, Mg: Ag is a metal cathode, and the electron transport layer material is Bphen; the metal cathodes of the device 9, the device 10 and the device 11 are Ag; wherein: the electron transport layer material of the device 9 is co-doped with Ag and Bphen, and the doping ratio is 5 vol% (ie, vapor deposition thickness of 100 angstroms Bphen is simultaneously doped with a thickness of 5 angstroms Ag); in the device 10, the electron transport layer material is co-doped with Ag and Bphen, and the doping ratio is 10 vol% (ie, vapor deposition thickness) 100 Å Bphen simultaneously vapor-deposited 10 angstroms Ag); the electron transport layer material in device 11 is co-doped with Ag and Bphen, and the doping ratio is 25 vol% (ie, the vapor deposition thickness is 100 angstroms Bphen while the vapor deposition is doped Thickness 25 angstroms Ag).

裝置7、裝置8、裝置9、裝置10、裝置11的電流密度-電壓曲線圖見圖3,亮度-電壓曲線圖見圖4,電流效率-亮度曲線圖見圖5,功率效率-亮度曲線圖見圖6。由圖3至圖6可以看出,使用惰性電極Ag時,由於電極與電子傳輸材料之間存在較大的注入勢壘,因此電子難以注入,裝置性能比活潑的Mg:Ag電極製備的裝置低很多。通過將電子傳輸層中引入適當比例的Ag,即採用Ag:Bphen混合物,可以降低注入勢壘,大大提高電子的注入效率,整體提升裝置的性能,實現略優於活潑Mg:Ag/Ag電極製備的裝置性能,可以製備出使用惰性電極的高性能裝置。 The current density-voltage curve of device 7, device 8, device 9, device 10, device 11 is shown in Figure 3. The brightness-voltage curve is shown in Figure 4. The current efficiency-luminance curve is shown in Figure 5. Power efficiency-luminance curve. See Figure 6. It can be seen from FIG. 3 to FIG. 6 that when the inert electrode Ag is used, since there is a large injection barrier between the electrode and the electron transporting material, electrons are difficult to be injected, and the device performance is lower than that of the active Mg:Ag electrode device. a lot of. By introducing an appropriate proportion of Ag into the electron transport layer, that is, using an Ag:Bphen mixture, the injection barrier can be lowered, the electron injection efficiency is greatly improved, and the performance of the overall lifting device is achieved, which is slightly better than the active Mg:Ag/Ag electrode preparation. The performance of the device allows the preparation of high performance devices using inert electrodes.

實施例3Example 3

裝置結構 Device structure

ITO/HATCN(10nm)/NPB(30nm)/Alq3(30nm)/Bphen(20nm)/x%Ag-Bphen 10nm/Mg:Ag/Ag ITO/HATCN (10 nm) / NPB (30 nm) / Alq 3 (30 nm) / Bphen (20 nm) / x% Ag-Bphen 10 nm / Mg: Ag / Ag

第一電極層02(陽極ITO)、電洞注入層04(HATCN)、電洞傳輸層05(NPB)、發光層06(Alq3)、電洞阻擋層07(Bphen)、電子傳輸層08(x%Ag-Bphen)、第二電極層03(陰極Mg:Ag/Ag) First electrode layer 02 (anode ITO), hole injection layer 04 (HATCN), hole transport layer 05 (NPB), light-emitting layer 06 (Alq 3 ), hole barrier layer 07 (Bphen), electron transport layer 08 ( x%Ag-Bphen), second electrode layer 03 (cathode Mg: Ag/Ag)

本實施例中的電子傳輸層的主體材料為Bphen,摻雜的惰性金屬為Ag。如圖7至圖10所示,裝置12為Ag對應的曲線,裝置13為Mg:Ag對應的曲線,裝置14為5%對應的曲線,裝置15為10%對應的曲線,裝置16為20%對應的曲線,裝置12和裝置13中的Ag、Mg:Ag分別為金屬陰極,其電子傳輸層材料為Bphen;裝置14、裝置15和裝置16的金屬陰極均為Ag;其中:裝置14中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為5vol%(即蒸鍍厚度100埃Bphen時中同時蒸鍍摻雜有厚度5埃Ag);裝置15中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為10vol%(即蒸鍍厚度100埃Bphen時中同時蒸鍍摻雜有厚度10埃Ag);裝置16中電子傳輸層材料為Ag和Bphen共摻雜,摻雜比例為20vol%(即蒸鍍厚度100埃Bphen時中同時蒸鍍摻雜有厚度20埃Ag)。 The host material of the electron transport layer in this embodiment is Bphen, and the doped inert metal is Ag. As shown in FIG. 7 to FIG. 10, the device 12 is a curve corresponding to Ag, the device 13 is a curve corresponding to Mg:Ag, the device 14 is a curve corresponding to 5%, the device 15 is a curve corresponding to 10%, and the device 16 is 20%. Corresponding curves, Ag, Mg:Ag in device 12 and device 13 are respectively metal cathodes, and the electron transport layer material is Bphen; the metal cathodes of device 14, device 15 and device 16 are Ag; wherein: electrons in device 14 The transport layer material is co-doped with Ag and Bphen, and the doping ratio is 5 vol% (that is, the vapor deposition thickness is 100 angstroms Bphen, and the vapor deposition is doped with a thickness of 5 angstroms Ag); the electron transport layer material of the device 15 is Ag and Bphen. Co-doping, the doping ratio is 10 vol% (ie, the vapor deposition thickness is 100 angstroms Bphen, while the vapor deposition is doped with a thickness of 10 angstroms Ag); the electron transport layer material in device 16 is co-doped with Ag and Bphen, and the doping ratio It is 20 vol% (that is, a vapor deposition thickness of 100 angstroms Bphen is simultaneously vapor-doped with a thickness of 20 angstroms of Ag).

裝置12、裝置13、裝置14、裝置15、裝置16的電流密度-電壓曲線圖見圖7,亮度-電壓曲線圖見圖8,電流效率-亮度曲線圖見圖9,功率效率-亮度曲線圖見圖10。由圖7至圖10可以看出,裝置電極使用活潑的Mg:Ag電極製備時,通過將電子傳輸層中引入適當比例的Ag,即採用AgBphen混合物,仍可以進一步降低注入勢壘,提高電子的注入效率,整體提升裝置的性能。 The current density-voltage curve of device 12, device 13, device 14, device 15, device 16 is shown in Figure 7, the luminance-voltage curve is shown in Figure 8, and the current efficiency-luminance curve is shown in Figure 9. Power efficiency-luminance curve. See Figure 10. It can be seen from Fig. 7 to Fig. 10 that when the device electrode is prepared by using an active Mg:Ag electrode, by introducing an appropriate proportion of Ag into the electron transport layer, that is, using the AgBphen mixture, the injection barrier can be further reduced and the electrons can be improved. Injection efficiency, overall lifting device performance.

Ag電極性能差,應此通常用Mg:Ag電極替代Ag電極可以大大提升裝置性能,但是Mg:Ag電極是活潑電極,裝置不太穩定。而裝置12採用Ag做陰極,電子傳輸層08採用本發明的共摻雜材料,仍然可以實現Mg:Ag電極相似的效果。 The performance of the Ag electrode is poor. Generally, replacing the Ag electrode with a Mg:Ag electrode can greatly improve the performance of the device, but the Mg:Ag electrode is a live electrode and the device is not stable. While the device 12 uses Ag as the cathode and the electron transport layer 08 uses the co-doped material of the present invention, a similar effect of the Mg:Ag electrode can still be achieved.

實施例4Example 4

裝置17至裝置42的結構同裝置12,其中電子傳輸層08的構成如下: The structure of the device 17 to the device 42 is the same as that of the device 12, wherein the electron transport layer 08 is constructed as follows:

注:上表中EMT為電子傳輸主體材料;M代表惰性金屬;摻比vol%是指惰性金屬在電子傳輸主體材料中的摻雜比例,如15vol%是指惰性金屬在電子傳輸主體材料中的摻雜比例為15vol%,即100埃的電子傳輸主體材料中摻雜有15埃的惰性金屬。 Note: EMT in the above table is the electron transport host material; M represents the inert metal; the blend ratio vol% refers to the doping ratio of the inert metal in the electron transport host material, such as 15 vol% refers to the inert metal in the electron transport host material. The doping ratio was 15 vol%, that is, 100 angstroms of the electron transport host material was doped with an inert metal of 15 angstroms.

實施例5Example 5

裝置43至裝置45的結構同裝置12,其中電子傳輸層08的中的EMT分別採用式(6-1)、式(6-2)、式(6-3)所示結構的化合物,摻雜的金屬M分別為釕Ru、銠Rh、鉛Pd,摻雜比例分別為20vol%、30vol%和40vol%。 The structure of the device 43 to the device 45 is the same as that of the device 12, wherein the EMT in the electron transport layer 08 is doped with a compound of the formula (6-1), the formula (6-2), and the formula (6-3), respectively. The metals M are 钌Ru, 铑Rh, and lead Pd, respectively, and the doping ratios are 20 vol%, 30 vol%, and 40 vol%, respectively.

實施例6Example 6

裝置46至裝置48的結構同裝置12,其中電子傳輸層 08的中的EMT分別採用式(7-1)、式(7-2)、式(7-3)所示結構的化合物,摻雜的金屬M分別為銀Ag、鎘Cd、鉭Ta,摻雜比例分別為22vol%、25vol%和28vol%。 The structure of the device 46 to the device 48 is the same as the device 12, wherein the electron transport layer The EMT in 08 is a compound of the formula (7-1), the formula (7-2), and the formula (7-3), respectively, and the doped metal M is silver Ag, cadmium Cd, 钽Ta, respectively. The impurity ratios were 22 vol%, 25 vol%, and 28 vol%, respectively.

實施例7Example 7

裝置49至裝置119的結構同裝置12,其中電子傳輸層08的中的EMT分別採用式(8-1)至式(8-71)所示結構的化合物,裝置49至裝置60摻雜的金屬M均為銀Ag,摻雜比例均為22vol%;裝置61至裝置80摻雜的金屬M均為鎘Cd,摻雜比例均為25vol%;裝置81至裝置100摻雜的金屬M均為鉭Ta,摻雜比例均為28vol%;裝置101至裝置119摻雜的金屬M均為鉑Pt,摻雜比例均為30vol%。 The structure of the device 49 to the device 119 is the same as that of the device 12, in which the EMT in the electron transport layer 08 is a compound of the structure shown by the formula (8-1) to the formula (8-71), and the device 49 is a metal doped with the device 60. M is silver Ag, the doping ratio is 22 vol%; the metal M doped by the device 61 to the device 80 are all cadmium Cd, and the doping ratio is 25 vol%; the metal M doped by the device 81 to the device 100 are both 钽Ta, the doping ratio was 28 vol%; the metal M doped by the device 101 to the device 119 was platinum Pt, and the doping ratio was 30 vol%.

顯然,上述實施案例僅僅是為清楚地說明所作的舉例,而並非對實施方式的限定。對於所屬領域的普通技術人員來說,在上述說明的基礎上還可以做出其它不同形式的變化或變動。這裡無需也無法對所有的實施方式予以窮舉。而由此所引伸出的顯而易見的變化或變動仍處於本發明創造的保護範圍之中。 It is to be understood that the above-described embodiments are merely illustrative of the embodiments and are not intended to limit the embodiments. Other variations or modifications of the various forms may be made by those skilled in the art in light of the above description. There is no need and no way to exhaust all of the implementations. Obvious changes or variations resulting therefrom are still within the scope of the invention.

Claims (10)

一種有機電場發光裝置,包括基板(01);以及依次形成在前述基板(01)上的發光裝置,前述發光裝置包括第一電極層(02)、發光層(06)、電子傳輸層(08)和第二電極層(03);前述電子傳輸層(08)包括電子傳輸主體材料和摻雜在前述電子傳輸主體材料中的惰性金屬;前述電子傳輸主體材料為具有配位元性能的電子傳輸材料;其中前述電子傳輸主體材料具有含N或O的相鄰雜環,可形成較好的配位元結構,其分子式如式(1)至式(12)所示: 其中R1至R8相同或不同,選自烷基(CnHm)、共軛芳香基團、共軛雜環、甲氧基(OCH3)、氨基及烷 基取代的氨基(NRxH2-x)、氰基(CN)、鹵族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙醯丙酮基(COCH2COR)。 An organic electric field light-emitting device comprising a substrate (01); and a light-emitting device sequentially formed on the substrate (01), the light-emitting device comprising a first electrode layer (02), a light-emitting layer (06), and an electron transport layer (08) And a second electrode layer (03); the electron transport layer (08) includes an electron transport host material and an inert metal doped in the electron transport host material; and the electron transport host material is an electron transport material having coordination element properties Wherein the aforementioned electron transport host material has an adjacent hetero ring containing N or O, which can form a better coordination structure, and the molecular formula is as shown in the formulas (1) to (12): Wherein R 1 to R 8 are the same or different and are selected from the group consisting of alkyl (C n H m ), conjugated aromatic groups, conjugated heterocyclic rings, methoxy (OCH 3 ), amino groups, and alkyl-substituted amino groups (NR x H 2-x ), cyano (CN), halo (X), aldehyde and keto (CHO, COR 2 ), ester (COOR) and acetoacetone (COCH 2 COR). 如請求項1所記載之有機電場發光裝置,其中前述惰性金屬的摻雜比例為1vol%至99vol%。 The organic electric field light-emitting device according to claim 1, wherein the inert metal is doped at a ratio of 1 vol% to 99 vol%. 如請求項2所記載之有機電場發光裝置,其中前述惰性金屬的摻雜比例為5vol%至30vol%。 The organic electric field light-emitting device according to claim 2, wherein the inert metal is doped at a ratio of 5 vol% to 30 vol%. 如請求項1至3中任一項所記載之有機電場發光裝置,其中前述惰性金屬為在空氣中穩定且功函數高於4.0eV的金屬。 The organic electric field light-emitting device according to any one of claims 1 to 3, wherein the inert metal is a metal which is stable in air and has a work function higher than 4.0 eV. 如請求項4所記載之有機電場發光裝置,其中前述惰性金屬為鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鍀(Tc)、釕(Ru)、銠(Rh)、鉛(Pd)、銀(Ag)、鎘(Cd)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、銥(Ir)、金(Au)、鉑(Pt)、汞(Hg)中的一種或其中幾種的混合物。 The organic electric field light-emitting device according to claim 4, wherein the inert metal is titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) ), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), niobium (Tc), antimony (Ru), rhenium (Rh), lead (Pd), silver (Ag ), one of cadmium (Cd), strontium (Ta), tungsten (W), strontium (Re), strontium (Os), strontium (Ir), gold (Au), platinum (Pt), or mercury (Hg) or A mixture of several of them. 如請求項5所記載之有機電場發光裝置,其中前述惰性金屬為配位元能力較強的金屬原子。 The organic electric field light-emitting device according to claim 5, wherein the inert metal is a metal atom having a strong coordination function. 如請求項6所記載之有機電場發光裝置,其中前述配位元能力較強的金屬原子為鈷(Co)、鎳(Ni)、銅(Cu)、釕(Ru)、銀(Ag)、銥(Ir)、金(Au)或鉑(Pt)。 The organic electric field light-emitting device according to claim 6, wherein the metal atom having a strong coordination ability is cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), silver (Ag), or (Ir), gold (Au) or platinum (Pt). 如請求項1所記載之有機電場發光裝置,其中前述共軛芳香基團為苯基(Ph)、萘基或蒽基;前述共軛雜環 為吡啶基(Py)或喹啉基。 The organic electroluminescence device according to claim 1, wherein the conjugated aromatic group is a phenyl (Ph), naphthyl or anthracenyl group; the conjugated heterocyclic ring It is pyridyl (Py) or quinolyl. 如請求項1所記載之有機電場發光裝置,其中前述具有配位元性能的電子傳輸材料為下列式所示的結構式: The organic electric field light-emitting device according to claim 1, wherein the electron transporting material having the coordination element property is a structural formula represented by the following formula: 如請求項1所記載之有機電場發光裝置,其中前述發光裝置還包括設置在前述第一電極層(02)和前述發光層(06)之間的電洞注入層(04)及/或電洞傳輸層(05)、和設置在前述發光層(06)和前述電子傳輸層(08)之間的電洞阻擋層(07)。 The organic electric field light-emitting device according to claim 1, wherein the light-emitting device further includes a hole injection layer (04) and/or a hole disposed between the first electrode layer (02) and the light-emitting layer (06). A transport layer (05), and a hole blocking layer (07) disposed between the foregoing light-emitting layer (06) and the aforementioned electron transport layer (08).
TW106114297A 2016-06-06 2017-04-28 Organic electroluminescent device TWI667781B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610391515.8A CN107464885B (en) 2016-06-06 2016-06-06 A kind of organic electroluminescence device
??201610391515.8 2016-06-06

Publications (2)

Publication Number Publication Date
TW201743441A TW201743441A (en) 2017-12-16
TWI667781B true TWI667781B (en) 2019-08-01

Family

ID=60545044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114297A TWI667781B (en) 2016-06-06 2017-04-28 Organic electroluminescent device

Country Status (3)

Country Link
CN (1) CN107464885B (en)
TW (1) TWI667781B (en)
WO (1) WO2017211100A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098902A (en) * 2017-02-27 2018-09-05 삼성전자주식회사 Organometallic compound, organic light emitting device including the same and a composition for diagnosing including the same
CN116456742A (en) * 2017-04-07 2023-07-18 株式会社半导体能源研究所 Light emitting element, display device, electronic device, and lighting device
JP7304818B2 (en) * 2017-12-22 2023-07-07 株式会社半導体エネルギー研究所 Light-emitting elements, light-emitting devices, electronic devices, and lighting devices
CN109994651B (en) * 2017-12-29 2020-12-25 昆山国显光电有限公司 Organic electroluminescent device and preparation method thereof
CN108963098B (en) * 2018-08-03 2020-04-28 京东方科技集团股份有限公司 QLED display panel, preparation method thereof and display device
KR102168781B1 (en) * 2018-09-06 2020-10-22 영남대학교 산학협력단 Method of producing phenanthriline and derivative thereof
CN110957426A (en) * 2018-09-27 2020-04-03 清华大学 Electron transport material and application thereof
CN109473558B (en) * 2018-09-28 2020-02-07 清华大学 N-type dopant of inert metal and application thereof in organic electroluminescent device
CN109524571B (en) * 2018-09-28 2021-05-14 清华大学 Method for realizing N-type doping of electron transport material based on inert metal and application thereof
KR20220035957A (en) 2019-09-06 2022-03-22 닛폰 호소 교카이 Organic thin film and manufacturing method of organic thin film, organic electroluminescent device, display device, lighting device, organic thin film solar cell, thin film transistor, photoelectric conversion device, coating composition, material for organic electroluminescence device
CN111004270B (en) * 2019-12-27 2023-10-20 厦门天马微电子有限公司 Organic compound, electron transport material and application thereof
CN111574505B (en) * 2020-05-22 2021-08-03 西安瑞联新材料股份有限公司 Compound with benzo [ c ] cinnoline as receptor and application thereof
CN111969017B (en) * 2020-08-21 2023-05-26 合肥维信诺科技有限公司 Display panel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965653A (en) * 2008-02-27 2011-02-02 奥斯兰姆奥普托半导体有限责任公司 Method for producing a doped organic semiconducting layer
TW201619176A (en) * 2014-10-08 2016-06-01 環球展覽公司 Organic electroluminescent materials and devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005009802D1 (en) * 2005-11-10 2010-08-05 Novaled Ag Doped organic semiconductor material
ES2673573T3 (en) * 2013-12-23 2018-06-22 Novaled Gmbh Semiconductor material with doping N comprising a phosphine oxide matrix and a doping metal
CN104934541A (en) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 Organic electroluminescent light emitting device and preparation method thereof
CN104934543A (en) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 Organic electroluminescent light emitting device and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965653A (en) * 2008-02-27 2011-02-02 奥斯兰姆奥普托半导体有限责任公司 Method for producing a doped organic semiconducting layer
TW201619176A (en) * 2014-10-08 2016-06-01 環球展覽公司 Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
WO2017211100A1 (en) 2017-12-14
TW201743441A (en) 2017-12-16
CN107464885A (en) 2017-12-12
CN107464885B (en) 2019-01-18

Similar Documents

Publication Publication Date Title
TWI667781B (en) Organic electroluminescent device
TWI640532B (en) Phosphorescent organic electroluminescent device
TWI507396B (en) Compounds for organic light emitting device and organic light emitting devices having the same
TWI380491B (en)
JP4364201B2 (en) Organic electroluminescence device
CN104167496B (en) Inversion type top emitting device and preparation method thereof
WO2017032143A1 (en) Light-emitting metal iridium complex and organic electroluminescence device prepared therefrom
US11081646B2 (en) Coating composition, method for producing organic electroluminescent device using same, and organic electroluminescent device produced thereby
JP5094781B2 (en) Organic EL device and manufacturing method thereof
JP6280234B2 (en) Organic electroluminescent device and production method thereof
KR100769946B1 (en) Organic electroluminesecnt device capable of driving in low voltage
Chen et al. Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers
Hu et al. Assistant dopant system in red phosphorescent OLEDs and its mechanism reveal
CN104370964B (en) Electron type phosphorus-oxygen derivative and electrophosphorescence luminescent device
Zhang et al. Solution-processable, high current efficiency deep-blue organic light-emitting diodes based on novel biphenyl-imidazole derivatives
CN101222027B (en) Organic light-emitting device and method for producing the same
CN111740020B (en) High-efficiency long-service-life blue light device
CN101339976B (en) Organic electroluminescent device
CN109473558B (en) N-type dopant of inert metal and application thereof in organic electroluminescent device
CN108269931B (en) Organic electroluminescent device and preparation method thereof
CN110343073A (en) Benzimidazole n-type dopant and its application in organic electroluminescence device
Gong et al. Thermally stable inverted organic light-emitting diodes using Ag-doped 4, 7-diphenyl-1, 10-phenanthroline as an electron injection layer
JP3849937B2 (en) Organic EL device and method for manufacturing the same
CN109661734B (en) Organic electroluminescent device and method of manufacturing the same
CN100448051C (en) Organic electroluminescence device