TWI373850B - Concentrating solar module and system with hollow integration rod - Google Patents

Concentrating solar module and system with hollow integration rod Download PDF

Info

Publication number
TWI373850B
TWI373850B TW097132719A TW97132719A TWI373850B TW I373850 B TWI373850 B TW I373850B TW 097132719 A TW097132719 A TW 097132719A TW 97132719 A TW97132719 A TW 97132719A TW I373850 B TWI373850 B TW I373850B
Authority
TW
Taiwan
Prior art keywords
concentrating
concentrating solar
solar module
module
reflective
Prior art date
Application number
TW097132719A
Other languages
Chinese (zh)
Other versions
TW201010103A (en
Inventor
Hsiao Tse Huang
Pei Shiuan Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW097132719A priority Critical patent/TWI373850B/en
Publication of TW201010103A publication Critical patent/TW201010103A/en
Application granted granted Critical
Publication of TWI373850B publication Critical patent/TWI373850B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能模組,特別是,關於一種具 有空心積分柱之聚光型太陽能模組。 【先前技術】 在能源日益枯竭的現今,節約能源及替代能源的開發 越來越受到重視。太陽能係取之不盡、用之不竭之能源, 也是無污染、無噪音的環保能源,為最佳的替代能源之一。 利用太陽能時,為了挺得足夠的能量,一般會採用集 光器採集太陽能。常見的集光器有平板型及聚光型兩種。 平板型集光器所採集的能量與面板大小成正比。因此,平 板型集光器一般需要較大的半導體基板,因此價格高、整 體尺寸也較大。聚光型集光器使用具有聚光功能的透鏡 (如拋物鏡或凸透鏡),以將光線聚焦為能量較大的光束至 小尺寸的太陽能晶片上。因此,相較於平_型集光器’聚 光型集光器不需使用大型半導體基板,可降低成本,且可 更有效率地採集光能。 圖1顯示習知的聚光型太陽能模組100,其包含一光 學元件110及太陽能晶片14〇。光學元件110可為各種可 聚光的鏡片(例凸透鏡),用以將太陽光1〇2聚焦於太陽能 晶片140上。接著’太陽能晶片14〇可將所接收的光能轉 換為電能’以作為電力的來源。然而’習知的聚光型太陽 能模組100在組裝上容易產生對準誤差,例如光學元件 1373-850 110可能發生傾斜或其中心點可能有偏離等。此外,太陽 能晶片140上只有一點或一微小區域可接收到光線,不但 收光效率不佳,且光線所聚焦的點或小區域也可能因為過 熱而損壞。 因此’有必要提供一種可提升光電轉換效率且可降低 成本的聚光型太陽能模組。 【發明内容】 有鑑於先前技藝之缺失,本發明提供一種聚光型太陽 能模組,具有可改善聚光效率、提高光能-電能的轉換效 率、及降低產品損壞率的優點。 本發明之一方面在於提供一種聚光型太陽能模組,其 包含一光學元件、一空心積分柱、以及一晶片模組◊光學 兀件用以聚焦光線。空心積分柱具有一入射面及一出射 面,其中光學元件所聚焦之光線自入射面進入空心積分 柱,且自出射面離開空心積分柱。空心積分柱用以均勻化 ,子元件所t焦之光線。晶片模組用以接收來自出射面之 光線,並將所接收光線之光能轉換為電能。 本發明另一方面在於提供一種聚光型太陽能系統,其 包含複數個前述之聚光型太陽能模組以及一外框。複數個 聚光型太陽能模組係以並聯、串聯、或串並聯混合之方式 電性連接。外框與複數個聚光型太陽能模組之散熱模組相 連。 1373850 % 八可他方面’部分將在後續說明中陳述,而部 =:::八將可利用後附之申請專利二二t 刀而理解並達成。需了解,前述的一般說明 及下列抽制均僅作舉例之用,並_以限制本發明。 【實施方式】 • +本發明揭露一種聚光型太陽能模組,其光電轉換效率 可藉由加入均光元件而有大幅的改善。為了使本發明之敘 it更加詳盡輿元備,可參照下列描述並配合圖2至圖mg 之圖式,其中類似的元件符號代表類似的元件。然以下實 施例中所述之裝置、元件及程序步驟,僅用以說明本發 明’並非用以限制本發明的範圍。 圖2為根據本發明一實施例所繪示之折射式的聚光型 太此棋組200,其包含一次光學元件210、二次光學元 件220、空心積分柱230、及晶片模組240,其中一次光學 元件210與二次光學元件220為具有聚光功能之光學元 件◊晶片模組240包含一模組基板244、設置於模組基板 244上之一太陽能晶片242、及一散熱模組246。在此實施 例中,太陽光202分別經過一次光學元件210與二次光學 元件220的折射而聚焦於空心積分柱230的頂部。接著, 光線經過空心積分柱230的全反射及/或折射而均勻分布 於太陽能晶片242之上。 在圖2所不的實施例中,二次光學元件220可用以改 善-次光學το件21G所產生的光學誤差。舉例來說,—次 光子兀件’在組裝時可能發生巾^點偏移或角度傾斜 (、P0#G)等對準上的誤差,進而造成聚焦時焦點發生偏 差。加入二次光學元件22〇後,可將經過一次光學元件2⑺ 的光線做進一步的聚焦,以補償一次光學元件210所造成 的光學誤差。 在折射式的聚光型太陽能模組200中,一次光學元件 210為具有以折射方式聚集光線之功能的各種平面、曲 面、或具有其他特殊外形的鏡片,其材料可例如為玻璃、 PMMA'PC、COC、PET、或其他高分子材料。舉例來說, 一次光學元件210可為一習知的凸透鏡或一 Fresnel鏡 片。圖3A繪示一曲面Fresnel鏡片310及一平面Fresnel 鏡片312,其皆可使用作為圖2中之一次光學元件21〇。 二次光學元件220可為具有聚光功能之各種平面、曲 面、或具有其他特殊外形的鏡片’其材料可例如為 PMMA、PC、COC、PET、或其他高分子材料。圖3B繪 示各種具有聚光功能的鏡片320、322、324、及326,其 皆可使用作為圖2之二次光學元件220的鏡片。舉例來 說,鏡片326可為具有曲率之一聚光鏡’其上係鍍上—反 射膜,以反射方式聚焦光線’其中反射膜的材料可例如為 金屬或介電質材料。 參考圖2,空心積分柱230具有一入射面S1及—出 行均勻化 射面S2。二次光學元件220所聚焦之光線自入射面S1進 入空心積分柱230,且自出射面S2離開空心積分柱230 至太陽能晶片242。空心積分柱230用以均勻化二次光學 元件230所聚焦之光線,以將光線能量均勻分布於太陽能 晶片242上,提升太陽能晶片242的整體光電轉換效率。 一般來說,入射面S1係設置於二次光學元件230的焦點 附近,以接收到強度較強的光線。此外,光線經過空心積 分柱230的均勻化之後,可避免光線聚焦於太陽能晶片 242的某一點,而造成晶片因過熱而發生損壞。另外,利 用空心積分柱230入射面較大的面積,也可允許一次光學 疋件210或二次光學元件》2〇在組裝時可能發生中心點偏 移或角度傾斜(即WG)等對準上的誤差,進*造成聚焦時 ,點發生偏差,將所有光線㈣人空心積分柱23()中,進IX. Description of the Invention: [Technical Field] The present invention relates to a solar module, and more particularly to a concentrating solar module having a hollow integrating column. [Prior Art] Nowadays, with the depletion of energy, the development of energy conservation and alternative energy is receiving more and more attention. Solar energy is an inexhaustible source of energy, and it is also an environmentally friendly energy source without pollution and noise. It is one of the best alternative energy sources. When using solar energy, in order to get enough energy, the collector is generally used to collect solar energy. Common concentrators are available in both flat and concentrating versions. The energy collected by the flat panel concentrator is proportional to the panel size. Therefore, the flat plate type concentrator generally requires a large semiconductor substrate, so the price is high and the overall size is large. Concentrating concentrators use a concentrating lens (such as a parabolic or convex lens) to focus the light onto a larger energy beam onto a small-sized solar wafer. Therefore, compared with the flat-type concentrator's concentrating concentrator, it is not necessary to use a large-sized semiconductor substrate, the cost can be reduced, and the light energy can be collected more efficiently. 1 shows a conventional concentrating solar module 100 that includes an optical component 110 and a solar wafer 14A. Optical element 110 can be a variety of light concentrating lenses (e.g., convex lenses) for focusing sunlight 1 〇 2 onto solar wafer 140. The solar chip 14 can then convert the received light energy into electrical energy as a source of power. However, the conventional concentrating solar module 100 is prone to alignment errors in assembly, for example, the optical element 1373-850 110 may be tilted or its center point may be deviated or the like. In addition, only a small or a small area of the solar energy chip 140 can receive light, which is not only poor in light collection efficiency, but also a point or a small area where the light is focused may be damaged by overheating. Therefore, it is necessary to provide a concentrating solar module which can improve photoelectric conversion efficiency and can reduce cost. SUMMARY OF THE INVENTION In view of the deficiencies of the prior art, the present invention provides a concentrating solar module having the advantages of improving concentrating efficiency, improving conversion efficiency of light energy-electric energy, and reducing product damage rate. One aspect of the present invention provides a concentrating solar module including an optical component, a hollow integrating column, and a wafer module and an optical component for focusing light. The hollow integrating column has an incident surface and an outgoing surface, wherein the light focused by the optical element enters the hollow integrating column from the incident surface, and exits the hollow integrating column from the outgoing surface. The hollow integral column is used to homogenize the light of the sub-component t-focus. The wafer module is configured to receive light from the exit surface and convert the light energy of the received light into electrical energy. Another aspect of the present invention is to provide a concentrating solar power system comprising a plurality of the aforementioned concentrating solar modules and an outer frame. A plurality of concentrating solar modules are electrically connected in parallel, series, or series-parallel mixing. The outer frame is connected to a plurality of heat sink modules of the concentrating solar module. The 1373850% 八可他 aspect part will be stated in the follow-up instructions, while the department =:::8 will be understood and achieved with the attached patent application 22 knives. It is to be understood that the foregoing general description and the following drawings are by way of example only and [Embodiment] The present invention discloses a concentrating solar module whose photoelectric conversion efficiency can be greatly improved by adding a light absorbing element. In order to make the present invention more detailed, reference is made to the following description in conjunction with the drawings of FIG. 2 to FIG. The apparatus, elements and program steps described in the following examples are merely illustrative of the invention and are not intended to limit the scope of the invention. 2 is a refracting concentrating type of the chess set 200, which includes a primary optical component 210, a secondary optical component 220, a hollow integrating pillar 230, and a wafer module 240, wherein The primary optical component 210 and the secondary optical component 220 are optical components having a concentrating function. The chip module 240 includes a module substrate 244, a solar chip 242 disposed on the module substrate 244, and a heat dissipation module 246. In this embodiment, sunlight 202 is focused on the top of hollow integrating column 230 via refraction of primary optical element 210 and secondary optical element 220, respectively. The light is then evenly distributed over the solar wafer 242 by total reflection and/or refraction of the hollow integrating column 230. In the embodiment of Figure 2, secondary optics 220 can be used to improve the optical error produced by the secondary optics 21G. For example, the sub-photon element ' may cause an alignment error such as a towel offset or an angle tilt (, P0 #G) during assembly, thereby causing a focus deviation when focusing. After the secondary optical element 22 is added, the light passing through the primary optical element 2 (7) can be further focused to compensate for the optical error caused by the primary optical element 210. In the refracting concentrating solar module 200, the primary optical element 210 is a lens having various planes, curved surfaces, or other special shapes having the function of condensing light in a refracting manner, and the material thereof may be, for example, glass, PMMA'PC. , COC, PET, or other polymer materials. For example, primary optical element 210 can be a conventional convex lens or a Fresnel lens. FIG. 3A illustrates a curved Fresnel lens 310 and a planar Fresnel lens 312, both of which can be used as the primary optical element 21A of FIG. The secondary optical element 220 can be a variety of planes, curved surfaces, or other special shaped lenses having a concentrating function. The material can be, for example, PMMA, PC, COC, PET, or other polymeric materials. Figure 3B illustrates various lenses 320, 322, 324, and 326 having a concentrating function, all of which can be used as the secondary optical element 220 of Figure 2. For example, the lens 326 can be a concentrating mirror having a curvature thereon that is plated with a reflective film that focuses the light in a reflective manner. The material of the reflective film can be, for example, a metal or a dielectric material. Referring to Fig. 2, the hollow integrating column 230 has an incident surface S1 and a traveling uniformizing surface S2. The light focused by the secondary optical element 220 enters the hollow integrating column 230 from the incident surface S1 and exits the hollow integrating column 230 to the solar wafer 242 from the exit surface S2. The hollow integrating column 230 is used to homogenize the light focused by the secondary optical element 230 to evenly distribute the light energy on the solar wafer 242 to enhance the overall photoelectric conversion efficiency of the solar wafer 242. Generally, the incident surface S1 is disposed near the focal point of the secondary optical element 230 to receive light having a stronger intensity. In addition, after the light is homogenized through the hollow building block 230, the light can be prevented from being focused on a certain point of the solar wafer 242, causing damage to the wafer due to overheating. In addition, by using the larger area of the incident surface of the hollow integrating column 230, it is also possible to allow the primary optical element 210 or the secondary optical element to be aligned in the assembly, such as center point offset or angular tilt (ie, WG). The error, when the * causes the focus, the point is deviated, and all the rays (four) of the hollow integral column 23 ()

參考圖4,Referring to Figure 4,

面S1及出射 、大小。舉例來說,積分 與出射面S2具有相同的 在另—實施例中,積 为柱的入射面S1可不同於出射面S2,如圖4之積分柱 431。在又—實施例中,積分柱的入射面&與出射面S2 的形狀大小可相同或不相同,且與積分柱中央部分截面積 的大小不同,如圖4之積分柱432。一般來說,積分柱的 出射面S2之形狀及大小可根據太陽能晶片242的形狀大 小而決定。 再次參考圖2,在此例示中,晶片模組240包含一個 太陽能晶片242,在其他實施例中,晶片模組24〇可包含 複數個太陽能晶片242,本發明並不限制每一晶片模組所 包含的太陽能晶片數量。太陽能晶片242用以將所接收光 線之光能轉換為電能,其可例如以板上晶片(chip 〇n B〇ard) 方式封裝於模組基板244上,模組基板244可例如為銅基 板、鋁基板、或其他的金屬基板、亦可為塑膠基板或陶瓷 基板。當晶片模組240包含複數個太陽能晶片242時,複 數個太陽能晶片242可以並聯或串聯的方式連接,亦可使 用串並聯混合方式連接。 政熱模組246係鄰近模組基板244而設置,用以散逸 太陽能晶片242所產生之熱能。在一實施例中,散熱模組 246可接觸模組基板244,以更有效益地散熱。本發明之 散熱模組246可例如為一散熱葉片、一散熱柱、或具有複 ,個熱導管的散熱單元,其材質可為金屬、陶竟、或其他 導熱係數較高的材料。在其他實施例中,散熱模組246'可 具有一金屬外殼或一陶磁外殼,以進一步幫助散熱,例如 金屬擠壓成型外殼、金屬壓鑄成型外殼、金屬鰭片組合外 殼、陶瓷燒結成型外殼等,其中金屬可為銅、鋁、鐵等導 熱金屬或其金屬合金材料。在另一實施例中,晶片模組240 可更包含一風扇(圖未示),用以產生空氣流動以幫助散逸 太陽能晶片242所產生之熱能。 圖5為根據本發明另一實施例所繪示之折射式的聚光 型太陽能模組500,其包含一次光學元件510、空心積分 柱530、及晶片模組540,其中晶片模組540包含一模組 基板544、設置於模組基板544上之一太陽能晶片542、 及一散熱模組546,些元件的工作原理與圖2相同,故不 贅述。相較於圖2所示實施例,圖5之聚光型太陽能模組 500不包含二次光學元件,太陽光502由一次光學元件510 直接聚焦於空心積分柱530的入射面。空心積分柱530用 以均勻化所聚焦的光線,以將能量均勻分散於太陽能晶片 542上,進而提升太陽能晶片542的光電轉換效能。 除了折射式的聚光型太陽能模組,本發明亦可應用於 反射式的聚光型太陽能模組,如圖6所示。圖6顯示本發 明一實施例之反射式聚光型太陽能模組600,其包含底座 反射聚光元件610、上蓋反射聚光元件615、二次光學元 件620、空心積分柱630、及晶片模組640,其中晶片模組 640包含一模組基板644、設置於模組基板644上之一太 陽能晶片642、及一散熱模組646。 在反射式的聚光型太陽能模組600中,底座反射聚光 元件610及上蓋反射聚光元件615為具有以反射方式聚集 光線之功能的各種光學元件。舉例來說,圖7為根據本發 明一實施例所繪示之底座反射聚光元件710及上蓋反射聚 光元件715。底座反射聚光元件71〇具有一反射凹面712, 其曲率可為球面、非球面、拋物線、或橢圓曲率等任意曲 率。底座反射聚光元件710的材質可為金屬、玻璃、 PMMA、PC、COC、PET、或其他高分子材料,且在反射 凹面712上可鍍上一反射膜,其中反射膜的材質可例如為 金屬或介電質材料。上蓋反射聚光元件715可包含一平板 716及一凸面結構717,其中平板716及凸面結構717可 一體成型之結構,亦可為兩個獨立結構。平板的材質 可例如為玻璃、PMMA、PC、COC、PET、或其他高分子 材料。凸面結構717的曲率可為球面、非球面、拋物線、 或橢圓曲率等任意曲率,且凸面結構717之材質可為金 屬、玻璃、PMMA、PC、COC、PET、或其他高分子材料。 凸面結構717可更包含一反射膜(圖未示)於其表面,其中 反射膜之材質可例如為金屬或介電質材料。 • · .. 同時參考圖6及圖7 ’在此實施例中,太陽光602先 穿過上蓋反射聚光元件615之平板部分(如圖7之716), 再經過底座反射聚光元件610反射至上蓋反射聚光元件 615之凸面結構(如圖7之717),再經由上蓋反射聚光元件 615反射至一次光學元件620。接著,光線透過二次光學 元件620的折射而聚焦於空心積分柱630的頂部,再由空 心積分柱630將光線能量均勻分布於太陽能晶片642上。 圖8為根據本發明另一實施例所繪示之反射式聚光型 1373850 太陽能模組800,其包含底座反射聚光元件810、上蓋反 射聚光元件815、空心積分柱830、及晶片模組840,其中 晶片模組840包含一模組基板844、設置於模組基板844 上之一太陽能晶片842、及一散熱模組846。些元件的工 作原理與圖6相同,故不贅述。相較於圖6所示實施例, 圖8之聚光型太陽能模組800不包含二次光學元件,而將 空心積分柱830的頂部設置於上蓋反射聚光元件815的焦 點處。 圖9A為根據本發明一實施例所繪示之折射式聚光型 太陽能系統900,而圖90為根據本發明另一實施例所繪 示之反射式聚光型太陽能系統950。折射式聚光型太陽能 系統900包含複數個折射式聚光型太陽能模組91〇、92()、 930、及940’其中每一折射式聚光型太陽能模組的結構可 例如為圖2或圖5所描述之結構。折射式聚光型太陽能模 組910、920、930、及940中的晶片模組係以串聯、並聯、 或多串多並的方式電性連接。折射式聚光型太陽能系統 _更包含-外框架905 ’與每—晶片模組中的散熱模組 相接,以進一步幫助散熱。 反射式聚光型太陽能系統95〇包含複數個反射式聚; 型太陽能模組960、970、980、及99〇,立中每一反射〕 聚光型太陽能模組的結構可例如為圖6或圖8所描述《 構,且其晶片模組係以串聯、並聯、❹串多並的方式^ 性連接。反射式聚光型太陽能系、统95Q更包含一外框? 955,其具有散熱功能,且與每—晶片模組中的散熱模i 1373850 相接,以進一步幫助散熱。 圖顯示單一聚光型太陽能模組之5種不同外型 a、b、c、d、及e的示意圖,圖顯示以圖嫩^ 種聚光型太陽能模組所排列出之5種不同的系統面板A、 ,二? 。參考圖1GA’本創作之聚光型太陽能模 ,.且的外聖可為圓形、四邊形、六邊形、八邊形、或由圓形Face S1 and the size and size. For example, the integration is the same as the exit surface S2. In another embodiment, the incident surface S1 of the column may be different from the exit surface S2, such as the integrating column 431 of FIG. In another embodiment, the incident surface & and the exit surface S2 of the integrating column may have the same or different shape and different sizes from the central portion of the integrating column, such as the integrating column 432 of FIG. In general, the shape and size of the exit surface S2 of the integrating column can be determined according to the shape of the solar wafer 242. Referring again to FIG. 2, in this illustration, the wafer module 240 includes a solar wafer 242. In other embodiments, the wafer module 24 can include a plurality of solar wafers 242. The present invention does not limit each wafer module. The number of solar wafers included. The solar chip 242 is used to convert the light energy of the received light into electrical energy, which can be packaged on the module substrate 244, for example, on a chip substrate. The module substrate 244 can be, for example, a copper substrate. The aluminum substrate or other metal substrate may be a plastic substrate or a ceramic substrate. When the wafer module 240 includes a plurality of solar wafers 242, the plurality of solar wafers 242 may be connected in parallel or in series, or may be connected in a series-parallel hybrid manner. The thermal module 246 is disposed adjacent to the module substrate 244 for dissipating thermal energy generated by the solar wafer 242. In one embodiment, the heat dissipation module 246 can contact the module substrate 244 for more efficient heat dissipation. The heat dissipation module 246 of the present invention may be, for example, a heat dissipating blade, a heat dissipating post, or a heat dissipating unit having a plurality of heat pipes, and the material thereof may be metal, ceramic, or other material having a high thermal conductivity. In other embodiments, the heat dissipation module 246' may have a metal casing or a ceramic casing to further help heat dissipation, such as a metal extrusion casing, a metal die-cast casing, a metal fin casing, a ceramic sintered casing, and the like. The metal may be a heat conductive metal such as copper, aluminum or iron or a metal alloy material thereof. In another embodiment, the wafer module 240 can further include a fan (not shown) for generating air flow to help dissipate the thermal energy generated by the solar wafer 242. FIG. 5 illustrates a refractive concentrating solar module 500 including a primary optical component 510, a hollow integrating pillar 530, and a wafer module 540, wherein the wafer module 540 includes a first embodiment. The module substrate 544, the solar chip 542 disposed on the module substrate 544, and a heat dissipation module 546, the working principle of these components is the same as that of FIG. 2, and therefore will not be described again. Compared to the embodiment shown in FIG. 2, the concentrating solar module 500 of FIG. 5 does not include a secondary optical element, and the sunlight 502 is directly focused by the primary optical element 510 onto the incident surface of the hollow integrating column 530. The hollow integrating column 530 is used to homogenize the focused light to evenly disperse the energy on the solar wafer 542, thereby enhancing the photoelectric conversion efficiency of the solar wafer 542. In addition to the refracting concentrating solar module, the present invention can also be applied to a reflective concentrating solar module, as shown in FIG. 6 shows a reflective concentrating solar module 600 according to an embodiment of the present invention, comprising a base reflective concentrating element 610, an upper cover reflective concentrating element 615, a secondary optical element 620, a hollow integrating column 630, and a wafer module. 640, wherein the chip module 640 includes a module substrate 644, a solar chip 642 disposed on the module substrate 644, and a heat dissipation module 646. In the reflective concentrating solar module 600, the base reflective concentrating element 610 and the upper cover reflecting concentrating element 615 are various optical elements having a function of collecting light in a reflective manner. For example, FIG. 7 illustrates a base reflective concentrating element 710 and an upper cover reflective concentrating element 715 according to an embodiment of the invention. The base reflection concentrating element 71 has a reflective concave surface 712 whose curvature may be any curvature such as a spherical surface, an aspherical surface, a parabola, or an elliptical curvature. The material of the base reflective concentrating element 710 may be metal, glass, PMMA, PC, COC, PET, or other polymer material, and a reflective film may be plated on the reflective concave surface 712, wherein the reflective film may be made of metal, for example. Or dielectric material. The upper cover reflective concentrating element 715 can include a flat plate 716 and a convex structure 717. The flat plate 716 and the convex structure 717 can be integrally formed, or can be two independent structures. The material of the flat plate can be, for example, glass, PMMA, PC, COC, PET, or other high molecular materials. The curvature of the convex structure 717 may be any curvature such as a spherical surface, an aspherical surface, a parabola, or an elliptical curvature, and the material of the convex surface structure 717 may be metal, glass, PMMA, PC, COC, PET, or other polymer materials. The convex structure 717 may further include a reflective film (not shown) on the surface thereof, wherein the material of the reflective film may be, for example, a metal or a dielectric material. Referring to FIG. 6 and FIG. 7 simultaneously, in this embodiment, the sunlight 602 first passes through the upper cover to reflect the flat portion of the concentrating element 615 (see 716 of FIG. 7), and then reflects through the base reflective concentrating element 610. The convex structure of the upper cover reflective concentrating element 615 (Fig. 717) is reflected by the upper cover reflective concentrating element 615 to the primary optical element 620. Then, the light is focused on the top of the hollow integrating column 630 by the refraction of the secondary optical element 620, and the light energy is evenly distributed on the solar wafer 642 by the hollow integrating column 630. FIG. 8 illustrates a reflective concentrating type 1373850 solar module 800 including a base reflective concentrating element 810, an upper cover reflective concentrating element 815, a hollow integrating column 830, and a wafer module according to another embodiment of the invention. 840, wherein the chip module 840 includes a module substrate 844, a solar chip 842 disposed on the module substrate 844, and a heat dissipation module 846. The working principle of these components is the same as that of Fig. 6, and therefore will not be described again. Compared with the embodiment shown in Fig. 6, the concentrating solar module 800 of Fig. 8 does not include a secondary optical element, and the top of the hollow integrating column 830 is disposed at the focal point of the upper cover reflecting concentrating element 815. 9A is a refracting concentrating solar system 900 according to an embodiment of the invention, and FIG. 90 is a reflective concentrating solar system 950 according to another embodiment of the invention. The refracting concentrating solar system 900 includes a plurality of refracting concentrating solar modules 91 〇, 92 (), 930, and 940 ′, wherein the structure of each refracting concentrating solar module can be, for example, FIG. 2 or The structure depicted in Figure 5. The wafer modules in the refracting concentrating solar modules 910, 920, 930, and 940 are electrically connected in series, in parallel, or in a plurality of strings. The refracting concentrating solar system _ further includes an outer frame 905' that interfaces with the heat sink module in each of the wafer modules to further aid heat dissipation. The reflective concentrating solar system 95A includes a plurality of reflective poly-type solar modules 960, 970, 980, and 99〇, each of which reflects the structure of the concentrating solar module. For example, FIG. 6 or The structure described in Fig. 8 and the wafer modules are connected in series, in parallel, and in series. The reflective concentrating solar system, the system 95Q further includes a frame 955, which has a heat dissipation function and is connected to the heat dissipation module i 1373850 in each chip module to further help heat dissipation. The figure shows a schematic diagram of five different shapes a, b, c, d, and e of a single concentrating solar module. The figure shows five different systems arranged by the concentrating solar module. Panel A, , II?. Referring to Figure 1GA's concentrating solar module of the present invention, the outer sanctuary may be circular, quadrangular, hexagonal, octagonal, or circular.

修整四邊而職之-特殊多邊型等,且依其外型不同可做 適當的排列,以組成各種系統面板,如圖咖所示。 以上所述僅為本發明之較佳實施例而已,並非.用以限 定本發明之巾請翻·;凡其它未麟本發明所揭示之 精神下所完狀等效改變或修飾’均應包含訂述之 專利範圍内。 % 【圖式簡單說明】 圖1顯示習知的聚光型太陽能模組; a,2為根據本發明一實施例所繪示之折射式的聚光型 太ί^3爿t*彳果组, 圖3A繪示本發明之Fresnei鏡片; 圖3B繪示本發明之各種二次光學元件 圖4顯示本發明之各種空心積分柱結構; 圖5為根據本發明另一實施例所繪示之折射式的聚 型太陽能模組; Λ 圖6顯示本發明一實施例之反射式聚光型太陽能模 1373850 » « 圖7為根據本發明一實施例所繪示之底座反射聚光元 件及上蓋反射聚光元件; 圖8為根據本發明另一實施例所繪示之反射式的聚光 型太陽能模組 圖9A為根據本發明一實施例所繪示之折射式聚光型 太陽能***》; 圖9B為根據本發明另一實施例所繪示之反射式聚光 型太陽能系統;以及 圖l〇A顯示單一聚光型太陽能模組之5種不同外型的 不意圖’圖10B顯示以圖10A之5種聚光型太陽能模組 所排列出之5種不同的系統面板。 【主要元件符號說明】 100 102 110 140 200 202 210 220 230 240 242 244 246 聚光型太陽能模組 太陽光 光學元件 太1¼能晶片 折射式聚光型太陽能模組 太陽光 一次光學元件 二次光學元件 空心積分柱 晶片模組 太1%能晶片 模組基板 散熱模組 15 1373850 » *Trimming the four sides and working for them - special polygons, etc., and depending on their appearance, can be properly arranged to form various system panels, as shown in the coffee. The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. All other equivalent changes or modifications should be included in the spirit of the present invention. Within the scope of the patents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional concentrating solar module; a, 2 is a condensing type of condensing type ί ^ 彳 彳 彳 彳 group according to an embodiment of the invention Figure 3A shows the Fresnei lens of the present invention; Figure 3B shows various secondary optical components of the present invention. Figure 4 shows various hollow integrated column structures of the present invention; Figure 5 shows the refraction according to another embodiment of the present invention. FIG. 6 shows a reflective concentrating solar module 1373850 according to an embodiment of the invention. « FIG. 7 is a diagram of a base reflection concentrating element and an upper cover reflection condensing according to an embodiment of the invention. FIG. 8 is a reflective concentrating solar module according to another embodiment of the present invention. FIG. 9A is a refracting concentrating solar system according to an embodiment of the invention; FIG. 9B A reflective concentrating solar system according to another embodiment of the present invention; and FIG. 1A shows a non-intention of five different shapes of a single concentrating solar module. FIG. 10B shows FIG. 10A. 5 kinds of 5 kinds of concentrating solar modules With the system panel. [Main component symbol description] 100 102 110 140 200 202 210 220 230 240 242 244 246 Concentrating solar module solar optical component too 11⁄4 capable wafer refractive concentrating solar module solar primary optical element secondary optical component Hollow integral column wafer module too 1% energy chip module substrate heat dissipation module 15 1373850 » *

310 、 312 320、322、324、326 430-432 4301 ' 4311 ' 4321 500 502 510 530 540 542 5'44 546 600 602 610 615 620 630 640 642 644 646 710 712 715 716310, 312 320, 322, 324, 326 430-432 4301 '4311 ' 4321 500 502 510 530 540 542 5'44 546 600 602 610 615 620 630 640 642 644 646 710 712 715 716

Fresnel 鏡片 二次光學元件 積分柱 反射膜 折射式聚光型太陽能模組 太陽光 一次光學元件 空心積分柱 晶片模組 太陽能晶片 模組基板 散熱模組 反射式聚光型太陽能模組 太陽光 底座反射聚光元件 上蓋反射聚光元件 二次光學元件 空心積分柱 晶片模組 太陽能晶片 模組基板 散熱模組 底座反射聚光元件 反射凹面 上蓋反射聚光元件 平板 16 1373850 717 凸面結構 800 反射式聚光型太陽能模組 802 太陽光 810 底座反射聚光元件 815 上蓋反射聚光元件 830 空心積分柱 840 晶片模組 842 太能晶片 844 模組基板 846 散熱模組 900 折射式聚光型太陽能系統 910、920、930、940 折射式聚光型太陽能模組 950 反射式聚光型太陽能系統 960、970、980、990 反射式聚光型太陽能模組 a、b、c、d、e 聚光型太陽能模組 A、B、C、D、E 系統面板 SI 入射面 S2 出射面 17-Fresnel lens secondary optics integral column reflection film refractive concentrating solar module solar light primary optical element hollow integral column chip module solar chip module substrate heat dissipation module reflective concentrating solar module solar light base reflection Optical element upper cover reflection concentrating element secondary optical element hollow integral column wafer module solar chip module substrate heat dissipation module base reflection concentrating element reflection concave surface cover reflection concentrating element plate 16 1373850 717 convex structure 800 reflective concentrating solar energy Module 802 Solar 810 Base Reflective Concentrating Element 815 Upper Cover Reflecting Concentrating Element 830 Hollow Integral Column 840 Chip Module 842 Solar Chip 844 Module Substrate 846 Thermal Module 900 Refractive Concentrating Solar System 910, 920, 930 940 Refracting concentrating solar module 950 Reflective concentrating solar system 960, 970, 980, 990 Reflective concentrating solar modules a, b, c, d, e concentrating solar module A, B, C, D, E system panel SI incident surface S2 exit surface 17-

Claims (1)

1373850 » . t 十、申請專利範圍: 1. 一種聚光型太陽能模組,包含: 一光學元件,用以聚焦光線; 一空心積分柱,具有一入射面及一出射面,其中 該光學元件所聚焦之光線自該入射面進入該空心積分 柱,且自該出射面離開該空心積分柱,該空心積分柱 用以均勻化該光學元件所聚焦之光線;以及 一晶片模組,用以接收來自該出射面之光線,並 ^ 將所接收光線之光能轉換為電能。 2. 如請求項1所述之聚光型太陽能模組,其中該光學元 件為一凸透鏡,用以將光線聚焦至該空心積分柱之該 入射面。 3. 如請求項1所述之聚光型太陽能模組,其中該光學元 件為一 Fresnel鏡片,用以將光線聚焦至該空心積分柱 之該入射面。 4. 如請求項1所述之聚光型太陽能模組,其中該光學元 件包含一一次光學元件及一二次光學元件,其中該一 次光學元件為用以聚焦光線之一凸透鏡或一 Fresnel 鏡片,且其中該二次光學元件設置於該一次光學元件 與該空心積分柱之間,用以進一步聚焦來自該一次光 學元件之光線。 5. 如請求項4所述之聚光型太陽能模組,其中該一次光 -18 - 學元件之材質為玻璃、PMMA、Pc、COC、PET、或 其他高分子材料。 如請求項1所述之聚光型太陽能模組,其中該光學元 件包含: 一底座反射聚光元件,具有一反射凹面;以及 一上蓋反射聚光元件,包含一凸面結構; 其中該反射凹面係環繞該空心積分柱且用以將光 線反射至該凸面結構’該凸面結構係設置於該空心積 分柱之上’用以將來自該反射凹面之光線反射且聚焦 至該空心積分柱之該入射面。 如請求項6所述之聚光型太陽能模組,其中該底座反 射聚光元件之該反射凹面的曲率為球面、拋物線、或 橢圓曲率,且該底座反射聚光元件之材質為金屬、玻 璃、PMMA、PC、COC、PET、或其他高分子材料。 如請求項7所述之聚光型太陽能模組,其中該底座反 射聚光元件更包含一反射膜於該反射凹面之上,該反 射膜之材質為金屬或介電質材料。 如請求項6所述之聚光型太陽能模組,其中該上蓋反 射聚光元件更包含一平板,設置於該底座反射聚光元 件之上’且該凸面結構係設置於該平板之一下表面 上,其中該平板之材質為玻璃、PMMA、PC、COC、 PET、或其他高分子材料。 1373850 « * 10. 如請求項9所述之聚光型太陽能模組,其中該凸面結 構的曲率為球面、抛物線、或擴圓曲率,且該凸面結 構之材質為金屬、玻璃、PMMA、PC、COC、PET、 或其他高分子材料》 11. 如請求項10所述之聚光型太陽能模組,其中該凸面結 構更包含一反射膜於該凸面結構之上,該反射膜之材 貲為金屬或介電質材料。 12. 如請求項6所述之聚光型太陽能模組,其中該光學元 件更包含一二次光學元件,設置於該上蓋反射聚光元 件與該空心積分柱之間,用以進一步聚焦來自該上蓋 反射聚光元件之光線。 13. 如請求項4或12所述之聚光型太陽能模組,其中該二 次光學元件為平面凸透鏡或曲面凸透鏡,且該二次光 學元件之材質為PMMA、PC、COC、PET、或其他高 分子材料。 14. 如請求項4或12所述之聚光型太陽能模組,其中該二 次光學元件為具有一曲率之反射聚光鏡,且該二次光 學兀件之材質為金屬、玻璃、塑膠、或其他高分子材 料。 15. 如請求項14所述之聚光型太陽能模組,其中該二次光 •20- 學元件更包含一反射膜於該反射聚光鏡之上,該反射 犋之材質為金屬或介電質材料。 16,如請求項1所述之聚光型太陽能模組,其中該空心積 分检之開口係分別形成該入射面及該出射面,且該空 心積i柱更包含一反射膜於該中空結構體之内部表面 上,該反射膜之材質為金屬或介電質材料。 17·如請求項1所述之聚光型太陽能模組,其中該空心積 分柱之該入射面之形狀為圓形或四邊形,且該出射面 之形狀為四邊形。. 18·=請求項1所述之聚光型太陽能模組,其中該空心積 分桂之該入射面及該出射面具有相同的形狀及大小。 19.=請求項1所述之料型太陽能模組,其中該空心積 分柱之該入射面及該出射面具有不同之形狀及大小。 2〇. ^請求項i所述之料型太陽能模組,其中該空心積 it之—#央部份截面積之形狀大小與該人射面或該 出射面不囡。 八月长項1所述之聚光型太陽能模纽,其中該空心積 刀柱為請求項19、20及21所述之空心積分柱之組合。 22.如凊求項丨所述之料型太陽能模組,其中該晶片模 1.373850 組包含: 一模組基板; 至少一太陽能晶片’設置於該模組基板之上,用 以將所接收光線之光能轉換為電能;以及 一散熱模組’鄰近該模組基板而設置,用以散填 該至少一太陽能晶片所產生之熱能。 23. 如請求項22所述之聚光型太陽能模組,其中該至少〜 φ 太陽能晶片係以板上晶片(Chip on Board)方式封骏於 該板組基板上。 24. 如請求項22所述之聚光型太陽能模組,其中該模組基 板為一金屬基板、一陶瓷基板、或一塑膠基板。 25. 如請求項22所述之聚光型太陽能模組,其中該晶片模 組更包含複數個太陽能晶片,且該複數個太陽能晶片 _ 係以並聯、串聯、或串並聯混合之方式連接。 26. 如請求項22所述之聚光型太陽能模組其中該散熱模 組為—散熱葉片、一散熱柱、或具有複數個熱導管之 一散熱單元。 27. 如請求項22所述之聚光型太陽能模組,其中該散熱模 組包含一金屬外殼或一陶瓷外殼。 28. 如請求項22所述之聚光型太陽能模組其中該晶片模 -22· 1.373.850 \ 4 組更包含一風扇’用以產生空氣流動以幫助散逸該至 少一太陽能晶片所產生之熱能。 29. —種聚光型太陽能系統,包含: 複數個如請求項21所述之聚光型太陽能模組,該 複數個聚光型太陽能模組係以並聯、串聯、或串並聯 混合之方式電性連接;以及 一外框,與該複數個聚光型太陽能模組之散熱模 φ 組相連。 30. 如請求項29所述之聚光型太陽能系統,其中該外框具 有散熱功能。 31. 如請求項29所述之聚光型太陽能系統,其中每一該聚 光型太陽能模組之外型為一圓形、一四邊形、一六邊 形、一八邊形、或由圓形修整四邊而形成之·一特殊多 邊型。 -23-1373850 » . t 10. Patent application scope: 1. A concentrating solar module comprising: an optical component for focusing light; a hollow integrating column having an incident surface and an exit surface, wherein the optical component The focused light enters the hollow integrating column from the incident surface, and exits the hollow integrating column from the exiting surface, the hollow integrating column is used to homogenize the light focused by the optical component; and a wafer module is configured to receive from The light exiting the surface and converting the light energy of the received light into electrical energy. 2. The concentrating solar module of claim 1, wherein the optical element is a convex lens for focusing light onto the incident surface of the hollow integrating column. 3. The concentrating solar module of claim 1, wherein the optical element is a Fresnel lens for focusing light onto the incident surface of the hollow integrating column. 4. The concentrating solar module of claim 1, wherein the optical component comprises a primary optical component and a secondary optical component, wherein the primary optical component is a convex lens or a Fresnel lens for focusing light. And wherein the secondary optical component is disposed between the primary optical component and the hollow integrating column for further focusing light from the primary optical component. 5. The concentrating solar module of claim 4, wherein the primary optical element is made of glass, PMMA, Pc, COC, PET, or other polymeric material. The concentrating solar module of claim 1, wherein the optical component comprises: a base reflective concentrating component having a reflective concave surface; and an upper cover reflective concentrating component comprising a convex structure; wherein the reflective concave surface Surrounding the hollow integrating column and for reflecting light to the convex structure 'the convex structure is disposed on the hollow integrating column' for reflecting and focusing light from the reflecting concave surface to the incident surface of the hollow integrating column . The concentrating solar module of claim 6, wherein the reflective concave surface of the base reflective concentrating element has a spherical, parabolic, or elliptical curvature, and the base reflective concentrating element is made of metal or glass. PMMA, PC, COC, PET, or other polymeric materials. The concentrating solar module of claim 7, wherein the reflective concentrating element further comprises a reflective film on the reflective concave surface, the reflective film being made of a metal or a dielectric material. The concentrating solar module of claim 6, wherein the upper cover reflective concentrating element further comprises a flat plate disposed on the base reflective concentrating element and the convex structure is disposed on a lower surface of the flat plate The material of the plate is glass, PMMA, PC, COC, PET, or other polymer materials. The concentrating solar module of claim 9, wherein the convex structure has a spherical surface, a parabola, or a circular curvature, and the convex structure is made of metal, glass, PMMA, PC, The concentrating solar module of claim 10, wherein the convex structure further comprises a reflective film on the convex structure, the material of the reflective film being metal Or dielectric material. 12. The concentrating solar module of claim 6, wherein the optical component further comprises a secondary optical component disposed between the upper cover reflective concentrating component and the hollow integrating post for further focusing from the The upper cover reflects the light of the concentrating element. 13. The concentrating solar module of claim 4 or 12, wherein the secondary optical component is a planar convex lens or a curved convex lens, and the secondary optical component is made of PMMA, PC, COC, PET, or the like. Polymer Materials. 14. The concentrating solar module of claim 4 or 12, wherein the secondary optical component is a reflective concentrating mirror having a curvature, and the secondary optical component is made of metal, glass, plastic, or the like. Polymer Materials. 15. The concentrating solar module of claim 14, wherein the secondary optical element further comprises a reflective film on the reflective concentrating mirror, the reflective iridium material being a metal or a dielectric material. . The concentrating solar module of claim 1, wherein the hollow integral detection opening forms the incident surface and the exit surface, respectively, and the hollow assembly i column further comprises a reflective film on the hollow structure The inner surface of the reflective film is made of a metal or a dielectric material. The concentrating solar module according to claim 1, wherein the incident surface of the hollow integrating column has a circular or quadrangular shape, and the exit surface has a quadrangular shape. The concentrating solar module of claim 1, wherein the incident surface and the exit surface of the hollow component have the same shape and size. 19. The material type solar module of claim 1, wherein the incident surface and the exit surface of the hollow integrating column have different shapes and sizes. 2. The material-type solar module described in claim i, wherein the shape of the central portion of the hollow product is not the same as the shape of the person or the exit surface. The concentrating solar module according to the item 1 of the preceding item, wherein the hollow product column is a combination of the hollow integrating columns described in claims 19, 20 and 21. 22. The solar module of claim 1, wherein the wafer mold 1.373850 comprises: a module substrate; at least one solar wafer is disposed on the module substrate for receiving the received light The light energy is converted into electrical energy; and a heat dissipation module is disposed adjacent to the module substrate to fill the thermal energy generated by the at least one solar wafer. 23. The concentrating solar module of claim 22, wherein the at least ~ φ solar wafer is sealed on the set of substrates by a chip on board. 24. The concentrating solar module of claim 22, wherein the module substrate is a metal substrate, a ceramic substrate, or a plastic substrate. 25. The concentrating solar module of claim 22, wherein the wafer module further comprises a plurality of solar wafers, and the plurality of solar wafers are connected in parallel, series, or series-parallel mixing. 26. The concentrating solar module of claim 22, wherein the heat dissipating module is a heat dissipating blade, a heat dissipating post, or a heat dissipating unit having a plurality of heat pipes. 27. The concentrating solar module of claim 22, wherein the heat dissipation module comprises a metal casing or a ceramic casing. 28. The concentrating solar module of claim 22, wherein the wafer mold-22· 1.373.850 4 group further comprises a fan for generating air flow to help dissipate heat generated by the at least one solar wafer . 29. A concentrating solar energy system comprising: a plurality of concentrating solar modules as claimed in claim 21, wherein the plurality of concentrating solar modules are electrically connected in parallel, series, or series-parallel And a frame connected to the heat dissipation mode φ of the plurality of concentrating solar modules. 30. The concentrating solar power system of claim 29, wherein the outer frame has a heat dissipation function. The concentrating solar system of claim 29, wherein each of the concentrating solar modules has a shape of a circle, a quadrangle, a hexagon, an octagon, or a circle A special multilateral type formed by trimming the four sides. -twenty three-
TW097132719A 2008-08-27 2008-08-27 Concentrating solar module and system with hollow integration rod TWI373850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097132719A TWI373850B (en) 2008-08-27 2008-08-27 Concentrating solar module and system with hollow integration rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097132719A TWI373850B (en) 2008-08-27 2008-08-27 Concentrating solar module and system with hollow integration rod

Publications (2)

Publication Number Publication Date
TW201010103A TW201010103A (en) 2010-03-01
TWI373850B true TWI373850B (en) 2012-10-01

Family

ID=44828057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097132719A TWI373850B (en) 2008-08-27 2008-08-27 Concentrating solar module and system with hollow integration rod

Country Status (1)

Country Link
TW (1) TWI373850B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552368B (en) * 2015-12-24 2016-10-01 hong-ying Chen High power condenser for solar cells

Also Published As

Publication number Publication date
TW201010103A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
TWI234635B (en) Photovoltaic array module design for solar electric power generation systems
US10020413B2 (en) Fabrication of a local concentrator system
US20090032103A1 (en) Condensing Type Solar Cell Apparatus
WO2010059657A2 (en) Köhler concentrator
EP1872412A2 (en) Spectral splitting-based radiation concentration photovoltaic system
TW201110386A (en) Non-imaging light concentrator
US20110120539A1 (en) On-window solar-cell heat-spreader
US20100307586A1 (en) Reflective free-form kohler concentrator
WO2019084707A1 (en) Light-concentrating solar energy system
US20140326293A1 (en) Methods and apparatus for solar energy concentration and conversion
KR20190096370A (en) Solar energy condenser
JP2009147155A (en) Condensing photovoltaic power generation system
KR101207852B1 (en) Planar type high concentration photovoltaic power generator module and sun tracker using this module
TWI373850B (en) Concentrating solar module and system with hollow integration rod
KR100824402B1 (en) A solar cell module with hybrid type
JP2008311408A (en) Condensing solar cell module
WO2018077223A1 (en) Tubular concentrating photovoltaic cell assembly and array
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
KR101899845B1 (en) A Photovoltaic Generating Module Using Light Concentrating Apparatus
JP2010169981A (en) Solar lens and solar light utilizing device
RU2496181C1 (en) Photoelectric concentrator submodule
US10199527B2 (en) Solar concentrator and illumination apparatus
RU2436193C1 (en) Photovoltaic concentrator module
CN111801888A (en) Side light-gathering solar device
RU2773716C1 (en) Concentrator photoelectric module with planar elements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees