TWI330290B - Light guide panel for tft-lcd back light unit and tft-lcd back light unit and tft-lcd device having the same - Google Patents

Light guide panel for tft-lcd back light unit and tft-lcd back light unit and tft-lcd device having the same Download PDF

Info

Publication number
TWI330290B
TWI330290B TW95119046A TW95119046A TWI330290B TW I330290 B TWI330290 B TW I330290B TW 95119046 A TW95119046 A TW 95119046A TW 95119046 A TW95119046 A TW 95119046A TW I330290 B TWI330290 B TW I330290B
Authority
TW
Taiwan
Prior art keywords
light
guide plate
light guide
main
liquid crystal
Prior art date
Application number
TW95119046A
Other languages
Chinese (zh)
Other versions
TW200722864A (en
Inventor
Chul Goo Chi
O Yong Jeong
Man Suk Kim
Young Su Han
Original Assignee
Cheil Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050116351A external-priority patent/KR100660047B1/en
Priority claimed from KR1020060014626A external-priority patent/KR100660048B1/en
Application filed by Cheil Ind Inc filed Critical Cheil Ind Inc
Publication of TW200722864A publication Critical patent/TW200722864A/en
Application granted granted Critical
Publication of TWI330290B publication Critical patent/TWI330290B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Description

1330290 九、發明說明: 【發明所屬之技術領域】 . 本發明是有關於一種薄膜電晶體液晶顯示器背光模 組之導光板及其應用之薄膜電晶體液晶顯示器背光模組 以及薄膜電晶體液晶顯示器,且特別是有關於一種側光式 薄膜電晶體液晶顯示器背光模組之導光板及其應用之薄 膜電晶體液晶顯不背光模組以及薄膜電晶體液晶顯不 φ 器。其中,每一個副導光元件之厚度係大於主導光元件之 厚度,且每一個副導光元件係配置於光源及主導光元件之 間,用以增加配置於光源之燈管數目,進而增加亮度。 【先前技術】 • 液晶顯示器(Liquid Crystal Display,LCD)為非 自發光裝置。舉例來說,自發光裝置例如是電漿顯示面板 (Plasma Display Panel, PDP)或有機電激發光二極體 Φ (Organic Light Emission Diode, 0LED)。液晶顯示器係 指藉由開啟或關閉光行進之通道而顯示光線之裝置。更具 - 體地來說,當平面光由液晶顯示器之後表面入射進入液晶 . 顯示器時,液晶根據預定之訊號而改變方向,使得光線行 進之通道得以開啟或關閉,藉以控制光線之顯示。 液晶顯示器為非自發光裝置,因此在液晶顯示器之後 表面需配置背光模組。液晶顯示器之背光模組分為側光式 背光模組及直下式背光模組。側光式背光模組係應用於筆 記型電腦或桌上型電腦之顯示器。直下式背光模組係應用 TW3019PA/ CIP06642/TW 6 1330290 於大尺寸之k置,例如是液晶電視。 第1圖繪示侧光式背光模組之剖面圖。 明參照第1圖,側光式背光模組10係面向面板130。 .侧光式背光模組10包括導光板1〇〇及光源1〇5。導光板 100係用以將燈管110產生之光線轉換為平面光線。每一 個光源105具有數個燈管11〇及—燈罩12〇。燈管11〇位 於於導光板100之每-個侧表面並用以產生光線。燈罩12〇 包覆燈㈣0,用以引導㈣11〇產生之光線朝向導光板 100。 擴散片、稜鏡片及其他保護片可堆疊於導光板100之 上,使得導光板100產生之平面光線更為均勻。 如上所述,光源105係位於侧光式背光模組1〇之導 光板100之側表面,因此,每一個光源105之燈管110之/ 數目夂到導光板1〇〇之厚度的限制。一般來說,導光板i 之厚度係不大於12mm,且燈管11Q之厚度大約為3_。由 •於每一個燈管110之間需留有空隙,因此,每一個光源105 最多只能配置三個燈管110。當側光式背光模組10應用於 %时以上之大尺寸液晶顯示器時,由於光源之燈管數目受 至J限制,大尺寸液晶顯示器之党度無法達到所需之標準。 第2圖纟會示直下式背光模組之剖面圖。 如第2圖所示,直下式背光模組2〇之螢光燈管2〇〇 並非位於直下式背光模組20之側表面,而是與顯示面板 230平行配置。 上述之直下式背光模組20包括數個燈管2〇〇、一反射 TW3019PA/ CIP06642/TW 7 1330290 板210及一擴散片220。燈管200係位於與顯示面板230 垂直之處。反射板210包覆燈管200並反射燈管200產生 之光線。擴散片220係用以散射光線以產生均勻之平面光 線。 燈管200係對應於顯示面板230之面積而配置,並沒 有數目上的限制。因此,直下式背光模組20主要應用於 需要高亮度之大尺寸液晶顯示器。 在直下弍背光模組20中,擴散片220會因為燈管200 產生之高溫而變形,進而使得燈管200之間產生暗帶,降 低了直下式背光模組20整體的亮度與均勻度。為了避免 此問題之發生,燈管200及擴散片220之間的距離需均勻 地維持在一定的範圍之内。因此,直下式背光模組20無 法像側光式背光模組10 —樣具有較薄的厚度。 【發明内容】 有鑑於此,本發明的目的就是在提供一種薄型側光式 背光模組之導光板,包括用以增加燈管數量之副導光元 件。當本發明之導光板應用於大尺寸之薄膜電晶體液晶電 視、薄膜電晶體液晶顯不背光模組以及薄膜電晶體液晶 顯示器時,可增加亮度。 根據本發明的目的,提出一種薄膜電晶體液晶顯示器 背光模組之導光板,包括一主導光元件及一副導光元件。 主導光元件係用以將由主導光元件之侧表面入射之光線 轉換為均勻之平面光線,且使得平面光線由導光板之前表 TW3019PA / CIP06642/TW 8 1330290 面射出。每一個副導光元件係對應主導光光件之側表面而 配置。每一個副導光元件包括一第一表面、一第二表面及 數個連接面。第一表面鄰近主導光元件之對應表面。第二 表面平行於第一表面,且第二表面之高度係大於第一表面 之高度。此外,第二表面係鄰近於對應之光源,使得光源 發出之光線入射至第二表面。連接面係用以連接第一表面 及第二表面。 根據本發明的目的,另提出一種應用本發明之導光板 之薄膜電晶體液晶顯不背光权組以及缚膜電晶體液晶 顯示器。 為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 【實施方式】 為達到上述及其他目的,本發明提出一薄膜電晶體液 晶顯示器背光模組之導光板,包括一主導光元件及數個副 導光元件。主導光元件係用以將由主導光元件之側表面入 射之光線轉換為均勻之平面光線,並使得平面光線由主導 光元件之前表面射出。每一個副導光元件係對應主導光元 件之側表面而配置。光線係由主導光元件之側表面入射進 入主導光元件。副導光元件包括一第一表面、一第二表面 及數個連接面。第一表面鄰近於主導光元件之對應側表 面。第二表面平行於第一表面,且第二表面之高度係大於 TW3019PA/ CIP06642/TW 9 第一表面之高度。此外,第二表面鄰近於對應之光源,使 得光源發出之光線入射至第二表面。連接面係用以連接第 一表面及第二表面。 依照本發明之另一觀點提出一薄膜電晶體液晶顯示 器背光模組之導光板,包括一主導光元件及數個副導光元 件。主導光元件用以將由主導光元件之側表面入射之光線 轉換為均勻之平面光線,並使得平面光線由主導光元件之 前表面射出。每一個副導光元件係對應於主導光元件之側 表面而配置。副導光元件包括一第一表面、一第二表面及 數個連接面。第一表面鄰近於主導光元件之對應側表面。 第二表面與第一表面夹一傾斜角,且第二表面之寬度係大 於第一表面之高度。此外,第二表面鄰近於對應之光源, 使得光源發出之光線入射至第二表面。連接面係用以連接 第一表面及第二表面。 依照本發明之再一觀點提出一薄膜電晶體液晶顯示 器背光模組之導光板,以達到上述及其他目的。本發明之 導光板包括一主導光元件及數個副導光元件。主導光元件 用以將由主導光元件之側表面入射之光線轉換為均勻之 平面光線,並使得平面光線由主導光元件之前表面射出。 此外,主導光元件包括配置於主導光元件之前表面之數個 前稜鏡。前稜鏡具有特定之剖面形狀,用以擴散光線。每 一個副導光元件係對應主導光元件之側表面而配置。光線 係由主導光元件之側表面入射。每一個副導光元件包括一 第一表面、一第二表面及數個連接面。第一表面鄰近於主 TW3019PA/ CIP06642/TW 10 1330290 導光元件之對應側表面。第二表面平行於第’一表面,且第 二表面之高度係大於第一表面之高度。此外,第二表面鄰 近於對應之光源,使得光源發出之光線入射至第二表面。 連接面係用以連接第一表面及第二表面。 根據本發明之再一觀點提出一應用上述之導光板之 薄膜電晶體 '夜晶顯不器背光模組以及薄膜電晶體液晶顯 示器,以達到上述及其他目的。 以下詳述本發明之較佳實施例,並請參照所附之圖 式。 請參照下列敘述及所附之圖式以更清楚地了解本發 明之優點、特徵及方法。下列敘述中使用特定之元件以說 明本發明。然本發明之所屬技術領域中具有通常知識者當 可了解,本發明並不以此為限。任何熟習此技藝者,在不 脫離本發明之精神和範圍内,當可作各種之更動與潤飾。 因此本發明之保護範圍當視後附之申請專利範圍所界定 者為準。下列敘述中,即便在不同圖式裡,相同或相似之 元件係使用相同之元件符號表示。 所附之圖式係為本發明之元件之放大圖,以便更清楚 地說明本發明。當一元件位於另一元件之中或與此另一元 件相連時,前者可與後者接觸,亦可與後者以一間隔分 離。當一元件與另一元件以一間隔分離時,此兩元件可用 一第三元件固定或連接,並可被省略此第三元件之說明。 第3圖繪示依照本發明之第一實施例之薄膜電晶體液 晶顯示器背光模組之立體圖。 TW3019PA / CIP06642/TW 11 1330290 如第3圖所示,本發明之第一實施例乏薄膜電晶體液 晶顯示器背无模組之導光板3〇包括主導光元件3〇〇及副 - 導光元件330。每一個光源305包括數個燈管310及一燈 罩320。光源305係配置於導光板3〇之側表面。 當配置於導光板3〇之侧表面之光源305產生光線 時’導光板30之側表面的亮度比導光板3〇之其他的部分 的亮度較高。主導光元件300係用以將光源305產生之光 φ 線轉變為均勻之平面光線。主導光元件300例如由透明之 丙烯酸樹脂所組成。丙烯酸樹脂具有高強度,因此主導光 元件300不易破裂或損壞。此外,主導光元件300之重量 輕且具有高可見射線穿透性。 • 主導光元件300具有一區域,此區域係由使用之面板 決疋。主導光元件300之厚度通常不大於12mm。 此外’主導光元件300之後表面亦可配置數個點稜 鏡’亦即在相對於主導光元件3〇〇之出光面(前表面)之 _ 處設置點稜鏡。點稜鏡係用以擴散及折射由主導光元件 300之側表面所入射之光線,使得此光線成為更加均勻之 平面光線。 每一個光源305包括數個燈管310及燈罩320。燈管 310實質上係用以產生光線。舉例來說,燈管“ο可為冷 極燈管(Cold Cathode Fluorescent Lamp, CCFL),常被 應用於薄膜電晶體液晶顯示器中。此外,燈管31 〇亦可為 發光二極體(Light Emission Diode,LED)。發光二極體 具有長壽命與高亮度之特性,因此近年來亦常被應用於燈 TW3019PA / CIP0664: TW 12 1330290 管 310。 冷陰極燈管幾乎不產生熱量,並具有低耗電量之特 性。此外,冷陰極燈管可產生明亮的白色射線,其射線之 直徑約為匪。因此,在薄膜電晶體液晶顯示器背光模 組中,燈管310通常為冷陰極燈管。 燈罩320係用以反射並引導燈管310產生之光線朝向 導光板3 0之侧表面行進。燈罩3 2 0之内表面係經過反射 材料之處理,用以反射光線。舉例來說,此反射材料可為 玻璃。 每一個副導光元件330係配置於光源305及主導光元 件300之對應側表面之間。 與傳統背光模組之光源相較,本發明之背光模組之光 源305具有較大的空間。傳統背光模組中,光源係鄰近於 導光板之側表面而配置。因此,光源的空間係由導光板之 厚度決定。本發明之背光模組中,由於副導光元件之高度 較主導光元件之高度大,因此,光源具有較大的空間,可 配置較多之光源。當本發明之背光模組應用於大尺寸之液 晶顯示器時,可具有較高之亮度。 在此實施例中,副導光元件330係與主導光元件300 在結構上為兩個分離之元件。然而,副導光元件330亦可 與主導光元牛300在結構上相接,或與主導光元件300 — 體成形。 以下詳細地敘述副導光元件330。 第4圖為第3圖之副導光元件330之立體圖。 TW3019PA / CIP06642/TW 13 1330290 副導光元件330包括一第一表面331、一第二表面332 及數個連接面333。第一表面331與主導光元件300之對 應側表面接觸。第一表面331具有一第一高度hi。第二表 面332與第一表面331平行且具有一第二高度h2。第二表 面332之第二高度h2係大於第一表面331之第一高度hi。 對應之光源305之燈管310所產生之光線係入射至第二表 面332。連接面333及334係用以連接第一表面331及第 二表面332。 第一表面331與主導光元件300之對應側表面接觸, 並將由第二表面332入射之光線傳遞至主導光元件300之 側表面。第一表面331之高度係相等或接近於主導光元件 300之對應側表面之高度。 當副導光元件330與主導光元件300 —體成形時(如 第3圖所示),第一表面331及主導光元件300之側表面 並不存在。 第二表面332係平行於第一表面331並鄰近於光源 305。藉此,光源305產生之光線係入射至第二表面332。 第二表面332之第二高度h2係大於第一表面331之第一 高度hi。 由於第二表面332之第二高度h2係大於第一表面331 之第一高度hi,因此,與第二表面332相鄰之光源305具 有一第三高度h3。第三高度h3係對應於第二表面332之 第二高度h2。 當光源305之第三高度h3增加時,光源305可包括 TW3019PA / CIP06642/TW 14 1330290 較多的燈管310。 也就是說,在習知薄膜電晶體液晶顯示器背光模組 中,光源之空間的高度係決定於導光板之高度。在此情況 中,由於每一個燈管的厚度約為3mm,且每一個燈管之間 必須留有空隙,因此,每一個光源中最多只能配置三個燈 管。 由於本發明之背光模組採用了副導光元件,因此,光 源305可包括較多的燈管310,使得應用本發明之背光模 組之發光二極體液晶顯示器可具有較高的亮度。 光源305產生之光線係入射至第二表面332,並由第 一表面331傳遞至主導光元件300之側表面。因此,第二 表面3 3 2與赛一表面3 31較佳地為透光材料,以加強光的 傳遞。用以連接第一表面331及第二表面332的連接面333 及334 (如第4圖所示)較佳地塗布反射材料。反射材料 例如是玻璃或包含紹的金屬。如此一來,可防止因漏光而 減低了光量。 用以連接第一表面331及第二表面332之連接面333 及334可為平面或曲面。 雖然第4圖繪示兩個連接面333及334,但是用以連 接第一表面331及第二表面332之連接面的數量並不以此 為限。亦即,只要導光板30包括主導光元件300及副導 光元件330,且每一個副導光元件330包括與主導光元件 300之對應側表面連接之第一表面331,以及與光源305 鄰近之第二表面332。而且,第二表面332之高度係大於 TW3019PA / CIP06642/TW 15 1330290 第一表面331之高度。在此情況下,連接面之形狀與數量 並無限制。 第5圖至第7圖為不同之副導光元件330之立體圖。 第5圖中,用以連接第一表面331及第二表面332之 兩連接面係為平面。更具體地來說,其中一個連接面係分 別垂直於第一表面331及第二表面332。另一個連接面係 與第一表面331及第二表面332各夾有一預定的傾斜角。 請參照第6圖,用以連接第一表面331及第二表面332 之兩連接面係為平面。此兩連接面分別與第一表面331及 第二表面332夾有一預定之傾斜角。 請參照第7圖,用以連接第一表面331及第二表面332 之兩連接面係為向内彎曲之凹面。 第8圖繪示依照本發明之第一實施例之薄膜電晶體液 晶顯示器背光模組之剖面圖,用以說明背光模組中光線之 行進。第8圖中之箭頭係表示光線行進之方向。 導光板30包括此實施例之副導光元件330。當光源 305之燈管310產生光線時,光線係朝向各個方向發散。 燈罩320反射發散之光線,使得大部分的光線係朝向副導 光元件330之第二表面入射。 光源305產生之光線入射至副導光元件330之第二表 面332,且透過第一表面331傳遞至主導光元件300。光 源305所產生之一部分的光線傳遞至副導光元件330之連 接面333及334。傳遞至連接面333及334之光線被連接 面333及334所折射,使得此部分之光線朝向主導光元件 TW3019PA / CIP06642/TW 16 1330290 3 0 0行進。 透過副導光元件330傳遞至主導光元件300之光線被 主導光元件300轉換為近似於均勻之平面光線。此近似之 平面光線係朝向液晶顯示器之面板元件之方向行進(第8 圖中向上之方向)。 第9圖及第10圖繪示依照本發明之第二實施例之薄 膜電晶體液晶顯示器背光模組之立體圖。 此實施例中,第9圖及第10圖之部分元件係與第3 圖之第一實施例中之部分元件實質上相同。此些實質上相 同之元件係使用相同之元件符號。 第9圖及第10圖之薄膜電晶體液晶顯示器背光模組 與第3圖之薄膜電晶體液晶顯示器背光模組相同的地方在 於,副導光元件330係配置於主導光元件300及光源305 之間。兩者之不同處在於,第9圖及第10圖之薄膜電晶 體液晶顯示摄背光模組中,副導光元件330之高度係相等 或近似於主導光元件300之高度,且副導光元件330之第 二表面332係與第一表面331夾有一傾斜角。其中,第二 表面332係鄰近於光源305。藉此,第二表面332之寬度 W係大於第一表面331之高度hi。 如此一來,副導光元件330之第二表面332的寬度W 係大於第一表面331之高度hi,進而增加了光源305之空 間。 副導光元件330之剖面可為梯形,如第9圖所示。副 導光元件330之剖面亦可為三角形,如第10圖所示。然 TW3019PA / CIP06642/TW 17 1330290 副導光元件330之剖面形狀並不以此為限/亦可為多邊形 或曲面。 此外,在第9圖及第10圖中,副導光元件330及主 導光元件300在結構上係為互相分離之元件。主導光元件 300之側表面係鄰近於副導光元件330之第一表面331。 然而,副導光元件330亦可與主導光元件300 —體成形。 當副導光元件330與主導光元件300 —體成形時,副導光 元件330之第一表面331及主導光元件300之側表面並不 存在。 第9圖1與第10圖中,鄰近於光源305之第二表面332 的寬度W係大於主導光元件之高度hi。 第11圖繪示依照本發明之第三實施例之薄膜電晶體 液晶顯示器背光模組之立體圖。 如第11圖所示,本實施例之部分元件係與上述實施 例之部分元件實質上相同。本實施例與上述實施例不同之 處在於,數個前稜鏡315係配置於導光板30之主導光元 件300之前表面。此些前稜鏡315具有預定之剖面形狀。 前稜鏡315係用以折射及擴散由主導光元件300之前 表面射出之光線。前稜鏡315係配置於出光面,亦即,主 導光元件300之前表面。 前稜鏡315係以一固定之間距d相隔而配置於主導光 元件300之前表面上。此外,前稜鏡315的排列方向,係 與配置於主導光元件300之後表面上的點稜鏡318之内稜 鏡的排列方向垂直。 TW3019PA / CIP06642/TW 18 1330290 上述之前稜鏡315的排列方式係用以加^光線之均勻 度及可視度。 亦即,前稜鏡315以一傾斜於液晶顯示器之面板(未 顯示於圖中)之角度繞射及反射光線。液晶顯示器係面向 主導光元件300之前表面。此外。在前稜鏡315之間具有 由間距d所形成之平面(前稜鏡315之間的空間),使得 光線垂直於面板(未顯示於圖中)行進,進而增加了光線 到達面板時的均勻度。 前稜鏡315的縱向係平行於光源305發出之光線的方 向。如此一來,前稜鏡315之縱向係垂直於點稜鏡318之 内稜鏡之縱向。其中,點稜鏡318之内稜鏡係配置於主導 光元件300之後表面。 前稜鏡315係繪示於第11圖中。前稜鏡315之縱向 剖面圖係為三角形。然而,每一個前稜鏡315之剖面形狀 並不以此為限,亦可為不同之形狀。 此外,雖然第11圖中之前稜鏡315係以一間距d相 隔而配置,前稜鏡315之間亦可沒有間距d而相連地排列。 當前棱鏡315之剖面為三角形時,每一個前稜鏡315 之一内角係較佳地大於90度,更佳地介於90至150度之 間。 第12圖及第13圖繪示不同剖面形狀之前稜鏡315之 剖面圖。 前稜鏡315之縱向剖面可為梯形,如第12圖所示。 前稜鏡315之縱向剖面亦可為反向之凹槽狀,如第13圖 TW3019PA / CIP06642/TW 19 1330290 所示。反向之凹槽狀的頂端係為尖狀,且其側表面為具有 預定曲率半徑的曲面。 如第12圖所示,當前稜鏡315之縱向剖面為梯形時, 平面A係形成於梯形前棱鏡315之上表面,使得光線垂直 於液晶顯示器之面板(未標示於圖中)行進。 此外,如第13圖所示,當前稜鏡315之縱向剖面為 反向之凹槽狀時,亦即,當前棱鏡315具有尖狀之頂端, 且其側表面為具有預定曲率半徑之曲面時,側表面之曲率 半徑較佳地為0. 01〜1. 0匪。 前稜鏡315可配置於主導光元件300之面向液晶顯示 器之面板(未顯示於圖中)之一表面。前稜鏡315亦可配 置於主導光元件300之其他表面上。 前稜鏡315之尺寸與由前稜鏡315之間距d在主導光 元件300之前表面所形成之平面之尺寸的比例較佳地為 1:1〜0. 1:1。當此比例大於1:1時,光的繞射及擴散效果 較低,且薄膜電晶體液晶顯示器之亮度亦會降低。 前稜鏡315可與主導光元件300 —體成形。前稜鏡315 亦可在結構上與主導光元件300分離,並堆疊於主導光元 件300之前表面上。 請參照第11圖,本發明之第三實施例中,數個網點 (以下稱為點稜鏡)318係配置於導光板30之主導光元件 300的後表面上,並沿著縱向與橫向之方向排列。 第14圖係為第11圖之點稜鏡318之放大剖面圖。 如第14圖所示,每一個點稜鏡318具有一内棱鏡 TW3019PA / CIP06642/TW 20 1330290 322,内稜鏡322之剖面係為一預定之形狀,例如是如第 14圖所示。内稜鏡322係配置於點稜鏡318之表面上。 配置於點稜鏡318之表面上的内棱鏡322的縱向係較 佳地垂直於光源305所產生之光線的方向,進而增加光線 之繞射、折射及擴散效果。 此外,如上所述,内稜鏡322之縱向係較佳地垂直於 前稜鏡315之縱向。由於内稜鏡322會使光線產生繞射、 折射及擴散之現象,因此,内稜鏡322之縱向垂直於前稜 鏡315之縱向可使光線更為均勻,並加強光的折射及擴散 作用。 然而,内稜鏡322之縱向與前稜鏡315之縱向間的角 度並不以此為限。内稜鏡322之縱向與前稜鏡315之縱向 間的角度較佳地介於30至150度之間。 當配置於點稜鏡318之表面上的内稜鏡322之縱向剖 面為三角形時,内棱鏡322之一内角θ 1較佳地介於75 及90度之間。 當内稜鏡322之内角01小於75度或大於90度時, 由後表面發出之光線與前表面之法線方向間所夾的角度 增加,降低了背光模組中間區域的亮度。 第15圖至第18圖繪示不同形狀之點稜鏡318之剖面 圖。 如第15圖至第18圖所示,點稜鏡318包括内稜鏡 322。點稜鏡318可為圓形(如第15圖所示)、橢圓形(如 第16圖所示)、菱形(如第17圖所示)、矩形(如第18 TW3019PA/ CIP06642/TW 21 13302901330290 IX. Description of the invention: [Technical field of the invention] The present invention relates to a light guide plate for a thin film transistor liquid crystal display backlight module and a thin film transistor liquid crystal display backlight module and a thin film transistor liquid crystal display thereof. In particular, there is a light guide plate for a backlight module of a side-light thin film transistor liquid crystal display and a thin film transistor liquid crystal display backlight module and a thin film transistor liquid crystal display device. The thickness of each of the sub-light guiding elements is greater than the thickness of the main optical element, and each of the sub-light guiding elements is disposed between the light source and the main light element to increase the number of lamps disposed in the light source, thereby increasing brightness. . [Prior Art] • A liquid crystal display (LCD) is a non-self-illuminating device. For example, the self-illuminating device is, for example, a plasma display panel (PDP) or an organic light emitting diode Φ (Organic Light Emission Diode, OLED). A liquid crystal display refers to a device that displays light by turning on or off a path through which light travels. More specifically, when planar light is incident on the liquid crystal display from the rear surface of the liquid crystal display, the liquid crystal changes direction according to a predetermined signal, so that the light entering channel is turned on or off, thereby controlling the display of light. The liquid crystal display is a non-self-illuminating device, so a backlight module needs to be disposed on the surface of the liquid crystal display. The backlight module of the liquid crystal display is divided into a side light type backlight module and a direct type backlight module. The edge-lit backlight module is applied to a display of a notebook computer or a desktop computer. The direct type backlight module is applied to the TW3019PA/CIP06642/TW 6 1330290 in a large size, such as a liquid crystal television. FIG. 1 is a cross-sectional view of the edge-lit backlight module. Referring to FIG. 1, the edge-lit backlight module 10 faces the panel 130. The edge-lit backlight module 10 includes a light guide plate 1 and a light source 1〇5. The light guide plate 100 is used to convert the light generated by the tube 110 into planar light. Each of the light sources 105 has a plurality of lamps 11 and a lamp cover 12A. The lamp tube 11 is positioned on each of the side surfaces of the light guide plate 100 to generate light. The lamp cover 12 包覆 encloses the lamp (4) 0 to guide the light generated by the (4) 11 朝向 toward the light guide plate 100. The diffusion sheet, the cymbal sheet and the other protective sheets may be stacked on the light guide plate 100 such that the planar light generated by the light guide plate 100 is more uniform. As described above, the light source 105 is located on the side surface of the light guide plate 100 of the edge-lit backlight module 1 , and therefore, the number of the lamps 110 of each of the light sources 105 is limited to the thickness of the light guide plate 1 . Generally, the thickness of the light guide plate i is not more than 12 mm, and the thickness of the lamp tube 11Q is about 3 mm. There should be a gap between each of the tubes 110, so that each of the light sources 105 can be configured with at most three tubes 110. When the edge-lit backlight module 10 is applied to a large-sized liquid crystal display of more than %, since the number of lamps of the light source is limited by J, the party of the large-size liquid crystal display cannot reach the required standard. Figure 2 shows a cross-sectional view of the direct-lit backlight module. As shown in FIG. 2, the fluorescent tube 2〇〇 of the direct type backlight module 2 is not disposed on the side surface of the direct type backlight module 20, but is disposed in parallel with the display panel 230. The direct type backlight module 20 includes a plurality of lamps 2, a reflection TW3019PA/CIP06642/TW 7 1330290 plate 210, and a diffusion sheet 220. The lamp 200 is located perpendicular to the display panel 230. The reflecting plate 210 covers the bulb 200 and reflects the light generated by the bulb 200. The diffuser 220 is used to scatter light to produce a uniform planar light. The lamp tube 200 is disposed corresponding to the area of the display panel 230, and there is no limit in number. Therefore, the direct type backlight module 20 is mainly applied to a large-sized liquid crystal display requiring high brightness. In the direct-down backlight module 20, the diffusion sheet 220 is deformed due to the high temperature generated by the lamp tube 200, thereby causing a dark band between the lamps 200, which reduces the brightness and uniformity of the direct-type backlight module 20. In order to avoid this problem, the distance between the lamp tube 200 and the diffusion sheet 220 needs to be uniformly maintained within a certain range. Therefore, the direct type backlight module 20 cannot have a thinner thickness as the edge type backlight module 10. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a light guide plate for a thin side-lit backlight module, including a sub-light guide member for increasing the number of lamps. When the light guide plate of the present invention is applied to a large-sized thin film transistor liquid crystal television, a thin film transistor liquid crystal display backlight module, and a thin film transistor liquid crystal display, brightness can be increased. According to an object of the present invention, a light guide plate of a thin film transistor liquid crystal display backlight module is provided, comprising a main light element and a pair of light guiding elements. The primary light element is used to convert the light incident from the side surface of the primary light element into a uniform planar light, and the planar light is emitted from the front surface of the light guide plate TW3019PA / CIP06642/TW 8 1330290. Each of the sub-light guiding elements is disposed corresponding to a side surface of the main light guiding member. Each of the secondary light guiding elements includes a first surface, a second surface, and a plurality of connecting surfaces. The first surface is adjacent to a corresponding surface of the primary light element. The second surface is parallel to the first surface and the height of the second surface is greater than the height of the first surface. Additionally, the second surface is adjacent to the corresponding source such that light from the source is incident on the second surface. The connecting surface is for connecting the first surface and the second surface. According to the object of the present invention, a thin film transistor liquid crystal display backlight group and a bonded film transistor liquid crystal display to which the light guide plate of the present invention is applied are further proposed. The above described objects, features and advantages of the present invention will become more apparent from the following description. The invention provides a light guide plate of a thin film transistor liquid crystal display backlight module, which comprises a main light element and a plurality of sub-light guide elements. The primary light element is used to convert the light incident by the side surface of the primary light element into a uniform planar light such that the planar light is emitted from the front surface of the dominant light element. Each of the sub-light guiding elements is disposed corresponding to a side surface of the main optical element. Light is incident from the side surface of the dominant light element into the dominant light element. The secondary light guiding element includes a first surface, a second surface and a plurality of connecting surfaces. The first surface is adjacent to a corresponding side surface of the primary light element. The second surface is parallel to the first surface, and the height of the second surface is greater than the height of the first surface of TW3019PA/CIP06642/TW9. Further, the second surface is adjacent to the corresponding light source such that light emitted from the light source is incident on the second surface. The connecting surface is for connecting the first surface and the second surface. According to another aspect of the present invention, a light guide plate of a thin film transistor liquid crystal display backlight module includes a main light element and a plurality of sub-light guide elements. The primary light element converts the light incident from the side surface of the primary light element into a uniform planar light such that the planar light is emitted from the front surface of the primary light element. Each of the sub-light guiding elements is disposed corresponding to the side surface of the main optical element. The secondary light guiding element includes a first surface, a second surface and a plurality of connecting surfaces. The first surface is adjacent to a corresponding side surface of the primary light element. The second surface is at an oblique angle to the first surface, and the width of the second surface is greater than the height of the first surface. Furthermore, the second surface is adjacent to the corresponding light source such that light emitted by the light source is incident on the second surface. The connecting surface is for connecting the first surface and the second surface. According to still another aspect of the present invention, a light guide plate of a thin film transistor liquid crystal display backlight module is proposed to achieve the above and other objects. The light guide plate of the present invention comprises a main light element and a plurality of sub light guide elements. The primary light element converts the light incident from the side surface of the primary light element into a uniform planar light and causes the planar light to be emitted from the front surface of the primary light element. In addition, the primary light element includes a plurality of front turns disposed on a front surface of the primary light element. The front cymbal has a specific cross-sectional shape to diffuse light. Each of the sub-light guiding elements is disposed corresponding to the side surface of the main light guiding element. Light is incident from the side surface of the dominant light element. Each of the secondary light guiding elements includes a first surface, a second surface, and a plurality of connecting surfaces. The first surface is adjacent to the corresponding side surface of the main TW3019PA/CIP06642/TW 10 1330290 light guiding element. The second surface is parallel to the first surface and the height of the second surface is greater than the height of the first surface. Further, the second surface is adjacent to the corresponding light source such that light emitted by the light source is incident on the second surface. The connecting surface is for connecting the first surface and the second surface. According to still another aspect of the present invention, a thin film transistor 'nocturnal crystal backlight module> and a thin film transistor liquid crystal display using the above light guide plate are proposed to achieve the above and other objects. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention are described in detail, and reference is made to the accompanying drawings. The advantages, features, and methods of the present invention will be more clearly understood from the following description and the accompanying drawings. Specific elements are used in the following description to illustrate the invention. It will be understood by those of ordinary skill in the art to which the present invention pertains, and the invention is not limited thereto. Anyone skilled in the art can make various changes and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. In the following description, the same or similar elements are denoted by the same reference numerals throughout the different drawings. The attached drawings are enlarged views of the elements of the invention to more clearly illustrate the invention. When an element is located in or connected to another element, the former may be in contact with the latter or may be separated from the latter at an interval. When one element is separated from another element by an interval, the two elements may be fixed or connected by a third element, and the description of the third element may be omitted. Fig. 3 is a perspective view showing a backlight module of a thin film transistor liquid crystal display according to a first embodiment of the present invention. TW3019PA / CIP06642/TW 11 1330290 As shown in FIG. 3, the first embodiment of the present invention has a thin film transistor liquid crystal display, and the module without light guide plate 3 includes a main light element 3 and a sub-light guide element 330. . Each of the light sources 305 includes a plurality of lamps 310 and a lamp cover 320. The light source 305 is disposed on a side surface of the light guide plate 3A. When the light source 305 disposed on the side surface of the light guide plate 3 generates light, the brightness of the side surface of the light guide plate 30 is higher than that of the other portions of the light guide plate 3'. The primary light element 300 is used to convert the light φ line produced by the light source 305 into a uniform planar light. The main light element 300 is composed of, for example, a transparent acrylic resin. The acrylic resin has high strength, so the primary light element 300 is not easily broken or damaged. In addition, the primary light element 300 is lightweight and has high visible ray penetration. • The dominant light element 300 has an area that is determined by the panel used. The thickness of the primary light element 300 is typically no greater than 12 mm. Further, the surface of the leading optical element 300 may be provided with a plurality of point prisms, i.e., at a position _ relative to the light-emitting surface (front surface) of the main light-emitting element 3''. The dot is used to diffuse and refract light incident from the side surface of the dominant light element 300, making the light a more uniform planar light. Each light source 305 includes a plurality of lamps 310 and a lamp cover 320. The tube 310 is essentially used to generate light. For example, the lamp "ο can be a Cold Cathode Fluorescent Lamp (CCFL), which is often used in thin film transistor liquid crystal displays. In addition, the lamp 31 can also be a light emitting diode (Light Emission) Diode, LED). The LED has long life and high brightness, so it has been used in recent years in lamps TW3019PA / CIP0664: TW 12 1330290 tube 310. Cold cathode lamps produce almost no heat and have low consumption. In addition, the cold cathode lamp can produce bright white rays whose diameter is about 匪. Therefore, in the thin film transistor liquid crystal display backlight module, the lamp tube 310 is usually a cold cathode lamp. 320 is used to reflect and guide the light generated by the lamp 310 to travel toward the side surface of the light guide plate 30. The inner surface of the lamp cover 320 is treated by a reflective material for reflecting light. For example, the reflective material can be Each of the sub-light guiding elements 330 is disposed between the light source 305 and the corresponding side surface of the main light guiding element 300. Compared with the light source of the conventional backlight module, the backlight module of the present invention The light source 305 has a large space. In the conventional backlight module, the light source is disposed adjacent to the side surface of the light guide plate. Therefore, the space of the light source is determined by the thickness of the light guide plate. In the backlight module of the present invention, the secondary guide The height of the optical component is larger than the height of the main optical component, so that the light source has a large space and can be configured with more light sources. When the backlight module of the present invention is applied to a large-sized liquid crystal display, it can have a higher brightness. In this embodiment, the secondary light guiding element 330 is structurally two separate elements from the primary light guiding element 300. However, the secondary light guiding element 330 may also be structurally connected to the dominant optical element 300, or The sub-light guide element 330 is described in detail below. Fig. 4 is a perspective view of the sub-light guide element 330 of Fig. 3. TW3019PA / CIP06642/TW 13 1330290 The sub-light guide element 330 includes a first a surface 331, a second surface 332 and a plurality of connecting surfaces 333. The first surface 331 is in contact with a corresponding side surface of the main light element 300. The first surface 331 has a first height hi. The second surface 332 is first The surface 331 is parallel and has a second height h2. The second height h2 of the second surface 332 is greater than the first height hi of the first surface 331. The light generated by the bulb 310 corresponding to the light source 305 is incident on the second surface. 332. The connecting faces 333 and 334 are used to connect the first surface 331 and the second surface 332. The first surface 331 is in contact with the corresponding side surface of the main light element 300, and transmits the light incident from the second surface 332 to the main light element. The side surface of 300. The height of the first surface 331 is equal to or close to the height of the corresponding side surface of the primary light element 300. When the sub-light guiding member 330 and the main light guiding member 300 are integrally formed (as shown in Fig. 3), the side surfaces of the first surface 331 and the main light guiding member 300 are not present. The second surface 332 is parallel to the first surface 331 and adjacent to the light source 305. Thereby, the light generated by the light source 305 is incident on the second surface 332. The second height h2 of the second surface 332 is greater than the first height hi of the first surface 331. Since the second height h2 of the second surface 332 is greater than the first height hi of the first surface 331, the light source 305 adjacent to the second surface 332 has a third height h3. The third height h3 corresponds to the second height h2 of the second surface 332. When the third height h3 of the light source 305 is increased, the light source 305 may include a plurality of lamps 310 of TW3019PA / CIP06642 / TW 14 1330290. That is to say, in the conventional thin film transistor liquid crystal display backlight module, the height of the space of the light source is determined by the height of the light guide plate. In this case, since each of the lamps has a thickness of about 3 mm and a gap must be left between each of the lamps, at most three lamps can be disposed in each of the lamps. Since the backlight module of the present invention employs a sub-light guiding element, the light source 305 can include a plurality of lamps 310, so that the light-emitting diode liquid crystal display to which the backlight module of the present invention is applied can have higher brightness. The light generated by the light source 305 is incident on the second surface 332 and is transmitted from the first surface 331 to the side surface of the main light element 300. Therefore, the second surface 323 and the race surface 316 are preferably light transmissive materials to enhance light transmission. The connecting faces 333 and 334 (shown in Fig. 4) for joining the first surface 331 and the second surface 332 are preferably coated with a reflective material. The reflective material is, for example, glass or a metal containing the material. In this way, it is possible to prevent the amount of light from being reduced by light leakage. The connecting faces 333 and 334 for connecting the first surface 331 and the second surface 332 may be flat or curved. Although the four connecting faces 333 and 334 are shown in FIG. 4, the number of connecting faces for connecting the first surface 331 and the second surface 332 is not limited thereto. That is, as long as the light guide plate 30 includes the main light guiding element 300 and the sub-light guiding element 330, and each of the sub-light guiding elements 330 includes a first surface 331 connected to a corresponding side surface of the main light guiding element 300, and is adjacent to the light source 305. Second surface 332. Moreover, the height of the second surface 332 is greater than the height of the first surface 331 of the TW3019PA / CIP06642 / TW 15 1330290. In this case, there is no limit to the shape and number of the joint faces. 5 to 7 are perspective views of different sub-light guiding elements 330. In Fig. 5, the two connecting faces for connecting the first surface 331 and the second surface 332 are flat. More specifically, one of the joining faces is perpendicular to the first surface 331 and the second surface 332, respectively. The other connecting surface has a predetermined inclination angle with each of the first surface 331 and the second surface 332. Referring to FIG. 6, the two connecting surfaces for connecting the first surface 331 and the second surface 332 are planar. The two connecting faces are respectively formed with a predetermined inclination angle with the first surface 331 and the second surface 332. Referring to FIG. 7, the two connecting surfaces for connecting the first surface 331 and the second surface 332 are concave surfaces which are curved inward. Figure 8 is a cross-sectional view showing a backlight module of a thin film transistor liquid crystal display according to a first embodiment of the present invention for explaining the traveling of light in the backlight module. The arrows in Fig. 8 indicate the direction in which the light travels. The light guide plate 30 includes the sub-light guide member 330 of this embodiment. When the light tube 310 of the light source 305 generates light, the light is diverged in various directions. The lamp cover 320 reflects the divergent light such that most of the light is incident toward the second surface of the secondary light guiding element 330. The light generated by the light source 305 is incident on the second surface 332 of the sub-light guiding element 330 and transmitted to the main light element 300 through the first surface 331. Light from a portion of the light source 305 is transmitted to the connecting faces 333 and 334 of the secondary light guiding element 330. The light transmitted to the connection faces 333 and 334 is refracted by the connection faces 333 and 334 such that the light of this portion travels toward the main light element TW3019PA / CIP06642/TW 16 1330290 300. Light transmitted to the primary light element 300 through the secondary light guiding element 330 is converted by the primary light element 300 into a uniform planar light. This approximate planar light travels in the direction of the panel elements of the liquid crystal display (upward direction in Figure 8). 9 and 10 are perspective views of a backlight module of a thin film transistor liquid crystal display according to a second embodiment of the present invention. In this embodiment, some of the elements of the ninth and tenth drawings are substantially the same as those of the first embodiment of the third embodiment. These substantially identical components use the same component symbols. The thin film transistor liquid crystal display backlight module of FIGS. 9 and 10 is the same as the thin film transistor liquid crystal display backlight module of FIG. 3 , in that the sub light guiding element 330 is disposed in the main light element 300 and the light source 305 . between. The difference between the two is that in the thin film transistor liquid crystal display backlight module of FIGS. 9 and 10, the height of the sub-light guiding element 330 is equal or similar to the height of the main optical element 300, and the sub-light guiding element The second surface 332 of the 330 has an angle of inclination with the first surface 331. The second surface 332 is adjacent to the light source 305. Thereby, the width W of the second surface 332 is greater than the height hi of the first surface 331. As such, the width W of the second surface 332 of the secondary light guiding element 330 is greater than the height hi of the first surface 331, thereby increasing the space of the light source 305. The cross section of the sub-light guiding element 330 may be trapezoidal as shown in FIG. The cross section of the sub-light guiding element 330 may also be triangular, as shown in Fig. 10. However, the cross-sectional shape of the sub-light-guiding element 330 is not limited thereto/can be a polygon or a curved surface. Further, in Figs. 9 and 10, the sub-light guiding element 330 and the main light guiding element 300 are structurally separated from each other. The side surface of the primary light element 300 is adjacent to the first surface 331 of the secondary light guiding element 330. However, the sub-light guiding element 330 may also be integrally formed with the main light guiding element 300. When the sub-light guiding member 330 and the main light guiding member 300 are integrally formed, the side surfaces of the first surface 331 of the sub-light guiding member 330 and the main light guiding member 300 are not present. In Figures 9 and 10, the width W of the second surface 332 adjacent to the light source 305 is greater than the height hi of the primary light element. Figure 11 is a perspective view showing a backlight module of a thin film transistor liquid crystal display according to a third embodiment of the present invention. As shown in Fig. 11, some of the elements of this embodiment are substantially the same as those of the above-described embodiments. The difference between this embodiment and the above embodiment is that a plurality of front sills 315 are disposed on the front surface of the main light guide 300 of the light guide plate 30. The front sills 315 have a predetermined cross-sectional shape. The front 稜鏡 315 is used to refract and diffuse light emitted from the front surface of the dominant light element 300. The front 稜鏡 315 is disposed on the light exit surface, that is, the front surface of the main light guiding element 300. The front jaws 315 are disposed on the front surface of the main light guiding member 300 with a fixed distance d therebetween. Further, the arrangement direction of the front cymbal 315 is perpendicular to the arrangement direction of the inner prisms of the dot 318 disposed on the rear surface of the main light element 300. TW3019PA / CIP06642/TW 18 1330290 The above arrangement of 稜鏡 315 is used to add uniformity and visibility of light. That is, the front sill 315 diffracts and reflects light at an angle that is oblique to the panel of the liquid crystal display (not shown). The liquid crystal display is oriented to the front surface of the leading light element 300. Also. Between the front 稜鏡 315 has a plane formed by the spacing d (the space between the front 稜鏡 315), so that the light travels perpendicular to the panel (not shown), thereby increasing the uniformity of the light reaching the panel. . The longitudinal direction of the front weir 315 is parallel to the direction of the light emitted by the source 305. As such, the longitudinal direction of the front 稜鏡 315 is perpendicular to the longitudinal direction of the 稜鏡 318. The lanthanum within the point 318 is disposed on the rear surface of the lead optical element 300. The front 稜鏡 315 is shown in Figure 11. The longitudinal section of the front 稜鏡 315 is a triangle. However, the cross-sectional shape of each of the front sills 315 is not limited thereto, and may be different shapes. Further, although the first 稜鏡 315 is arranged at a pitch d in Fig. 11, the front ridges 315 may be arranged in parallel without the spacing d. When the current prism 315 has a triangular cross section, the inner angle of each of the front ridges 315 is preferably greater than 90 degrees, more preferably between 90 and 150 degrees. Figures 12 and 13 show cross-sectional views of 稜鏡 315 before different cross-sectional shapes. The longitudinal section of the front jaw 315 can be trapezoidal, as shown in FIG. The longitudinal section of the front 稜鏡 315 may also be a reverse groove shape as shown in Fig. 13 TW3019PA / CIP06642/TW 19 1330290. The reverse groove-like tip is pointed and its side surface is a curved surface having a predetermined radius of curvature. As shown in Fig. 12, when the longitudinal section of the crucible 315 is trapezoidal, the plane A is formed on the upper surface of the trapezoidal front prism 315 so that the light travels perpendicular to the panel of the liquid crystal display (not shown). Further, as shown in FIG. 13, when the longitudinal section of the crucible 315 is in the shape of a reverse groove, that is, when the current prism 315 has a pointed top end and the side surface thereof is a curved surface having a predetermined radius of curvature, 01〜1. 0匪。 The radius of curvature of the side surface is preferably 0. 01~1. 0匪. The front sill 315 can be disposed on a surface of a panel (not shown) of the liquid crystal display of the lead light element 300. The front sill 315 can also be placed on other surfaces of the primary light element 300. The ratio of the size of the front cymbal 315 to the size of the plane formed by the front surface of the leading optical element 300 is preferably 1:1 to 0. 1:1. When the ratio is greater than 1:1, the diffraction and diffusion effects of light are low, and the brightness of the thin film transistor liquid crystal display is also lowered. The front jaw 315 can be integrally formed with the primary light element 300. The front sill 315 can also be structurally separated from the primary light element 300 and stacked on the front surface of the primary light element 300. Referring to FIG. 11, in a third embodiment of the present invention, a plurality of dots (hereinafter referred to as dots) 318 are disposed on the rear surface of the light guiding member 300 of the light guide plate 30, and are along the longitudinal direction and the lateral direction. Arrange in the direction. Figure 14 is an enlarged cross-sectional view of point 318 of Figure 11. As shown in Fig. 14, each of the dots 318 has an inner prism TW3019PA / CIP06642 / TW 20 1330290 322, and the inner ridge 322 has a predetermined shape, for example, as shown in Fig. 14. The inner bore 322 is disposed on the surface of the point 318. The longitudinal direction of the inner prism 322 disposed on the surface of the spot 318 is preferably perpendicular to the direction of the light generated by the light source 305, thereby increasing the diffraction, refraction, and diffusion effects of the light. Moreover, as noted above, the longitudinal direction of the inner bore 322 is preferably perpendicular to the longitudinal direction of the front weir 315. Since the inner crucible 322 causes diffraction, refraction, and diffusion of light, the longitudinal direction of the inner crucible 322 is perpendicular to the longitudinal direction of the front prism 315 to make the light more uniform and enhance the refraction and diffusion of light. However, the angle between the longitudinal direction of the inner bore 322 and the longitudinal direction of the front cymbal 315 is not limited thereto. The angle between the longitudinal direction of the inner bore 322 and the longitudinal direction of the front weir 315 is preferably between 30 and 150 degrees. When the longitudinal section of the inner bore 322 disposed on the surface of the spot 318 is triangular, the inner angle θ 1 of the inner prism 322 is preferably between 75 and 90 degrees. When the inner angle 01 of the inner bore 322 is less than 75 degrees or greater than 90 degrees, the angle between the light emitted by the rear surface and the normal direction of the front surface increases, which lowers the brightness of the middle portion of the backlight module. Figures 15 through 18 illustrate cross-sectional views of points 318 of different shapes. As shown in Figures 15 through 18, the point 318 includes an inner ridge 322. The point 318 can be circular (as shown in Fig. 15), elliptical (as shown in Fig. 16), diamond (as shown in Fig. 17), and rectangular (such as 18th TW3019PA/CIP06642/TW 21 1330290).

• I 圖所示)或者為前述形狀之組合。 如上所述,每一個點稜鏡318之外部形狀可任意改 變。點稜鏡318之外部形狀較佳地為橢圓形,如第16圖 所示。 ' 請參照第16圖,當每一個點稜鏡318為橢圓形時, 短轴半徑b與長軸半徑a之比例較佳地為0. 5〜0. 9。 當短轴半徑b與長軸半徑a之比例小於0. 5時,導光 ^ 板之光學特性不佳。導光板之光學特性例如為折射與繞射 作用。當短轴半徑b與長軸半徑a之比例大於0. 9時,會 發生可視度之問題。 當點稜鏡318為橢圓形時,橢圓形之點稜鏡318之長 . 軸較佳地係平行於光源所發出之光線的方向。 點稜鏡318可蝕刻於主導光元件300之後表面(請參 照第11圖)。或者,點稜鏡318亦可突出於主導光元件300 之後表面上。 ^ 點稜鏡318可密集地排列於主導光元件300之後表面 之邊緣,進而防止主導光元件300之後表面的邊緣產生暗 帶。 ' 第19圖繪示第9圖之主導光元件300之底視圖,以 • 說明點稜鏡之較佳的排列方式。 如第19圖所示,點稜鏡318係交替地排列,使得奇 數行之點稜鏡318與偶數行之點稜鏡318不會互相重疊。 上述點棱鏡318之交替的排列方式加強了點稜鏡318 對於光的傳遞方向的影響,進而增加射出之光線的均勻度 TW3019PA / CIP06642>TW 22• Figure I) or a combination of the aforementioned shapes. As described above, the outer shape of each of the dots 318 can be arbitrarily changed. The outer shape of the dot 318 is preferably elliptical, as shown in Fig. 16. 5〜0. 9。 The ratio of the ratio of the short axis radius b to the long axis radius a is preferably 0. 5~0. When the ratio of the minor axis radius b to the major axis radius a is less than 0.5, the optical properties of the light guiding plate are not good. The optical characteristics of the light guide plate are, for example, refraction and diffraction. When the ratio of the minor axis radius b to the major axis radius a is greater than 0.9, a problem of visibility occurs. When the point 318 is elliptical, the elliptical point 318 is long. The axis is preferably parallel to the direction of the light emitted by the source. The dot 318 can be etched on the back surface of the leading light element 300 (refer to Fig. 11). Alternatively, the dot 318 may also protrude from the rear surface of the leading light element 300. The dot 318 can be densely arranged at the edge of the surface behind the leading light element 300, thereby preventing the edge of the surface of the leading light element 300 from being dark. Fig. 19 is a bottom view of the main light element 300 of Fig. 9 to illustrate the preferred arrangement of the dots. As shown in Fig. 19, the dots 318 are alternately arranged such that the dots 318 of the odd rows and the dots 318 of the even rows do not overlap each other. The alternating arrangement of the point prisms 318 enhances the effect of the point 318 on the direction of light transmission, thereby increasing the uniformity of the emitted light. TW3019PA / CIP06642>TW 22

I33029U 與可視度。 内稜鏡322係配置於點稜鏡318之表面。内稜鏡322 ,的縱向係垂直於光源發出之光線的方向以及前棱鏡315之 .縱向。當内稜鏡322之縱向垂直於光源所發出之光線的方 向時’内稜鏡322有效地使光線產生繞射、折射及擴散作 用此外内稜鏡322垂直於前稜鏡315的排列方式更加 強了上述之作用。 • 本發明所屬技術領域中具有通常知識者當可了解,本 發明之第三實施例之導光板中,前稜鏡315及點棱鏡318 亦可被應用於本發明之第二實施例之導光板中,因而省略 此部分之敘述。 * 本發明上述實施例之薄膜電晶體液晶顯示器背光模 組之導光板増加了光源之高度,進而增加了光源中可配置 之燈管的數量,並更進一步地增加了背光模組之亮度。因 此,g /專型之侧光式背光模組應用於大尺寸之薄膜電晶體 φ 液晶電視時,側光式的背光模組仍可維持所需要之高亮 度。 第20圖繪示第9圖之主導光元件300之底視圖,以 說明點稜鏡318及條狀棱鏡353之排列方式。條狀稜鏡353 係配置於主導光元件300之邊緣’用以防止主導光元件3〇〇 之後表面之邊緣出現暗帶。 第2 0圖繪示之部分元件係與第19圖中之部分元件實 質上相同’亦使用相同的元件符號。因此,此些實質上相 同之元件不再贅述。第20圖中’條狀稜鏡353係用以防 TW3019PA / CIP06642/TW 23 1330290 止主導光元件300之後表面之邊緣出現暗帶。條狀棱鏡353 係配置於主導光元件300之後表面上。 第21圖繪示主導光元件300之底視圖,用以說明點 稜鏡318之另一種排列方式。 第21圖繪示之部分元件係與第19圖中之部分元件實 質上相同,亦使用相同的元件符號。因此,此些實質上相 同之元件不再贅述。第21圖中,為了防止主導光元件300 之後表面之邊緣產生暗帶,點稜鏡318在主導光元件300 之後表面的邊緣排列較為密集。 第22圖繪示液晶電視之立體圖。本發明之第一實施 例之導光板係應用於第22圖中之液晶電視。 如第22圖所示,液晶電視包括數個光源305、一導光 板3 0、一液晶面板元件9 0 0及一液晶顯示器驅動積體電路 (LCD Driving IC,LDI)元件 910。每一個光源 305 包括 數個燈管310及一燈罩320。導光板30包括一主導光元件 300及一副導光元件330。 本實施例之液晶電視之液晶顯不面板元件9 0 0及液晶 顯不is驅動積體電路元件910係與習知之薄膜電晶體液晶 顯示器相同。 如第22圖所示,在本發明之導光板實質上所應用之 液晶電視中,副導光元件330之高度係大於主導光元件300 之高度,進而在主導光元件300之後表面上形成一預定的 空間。液晶顯示器驅動積體電路元件910係位於此預定之 空間中。液晶顯示面板元件900係位於與主導光元件300 TW3019PA / CIP06642/TW 24 1330290 之後表面相對的表面上。雖然光源305之光源310的數目 增加了,但液晶電視整體之厚度係小於習知直下式薄膜電 晶體液晶顯示器背光模組之厚度。 由以上敘述可知,本發明提出了 一薄膜電晶體液晶顯 示器背光模組之導光板及其應用之薄膜電晶體液晶顯示 器背光模組以及薄膜電晶體液晶顯示器,藉由副導光元件 以增加燈管之數量,進而增加了薄膜電晶體液晶顯示器之 亮度。 綜上所述,雖然本發明已以一較佳實施例揭露如上, 然其並非用以限定本發明,任何熟習此技藝者,在不脫離 本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式W單說明】 第1圖繪示侧光式背光模組之剖面圖; 第2圖繪示直下式背光模組之剖面圖; 第3圖繪示依照本發明之第一實施例之薄膜電晶體液 晶顯示器背光模組之立體圖; 第4圖為第3圖之薄膜電晶體液晶顯示器背光模組之 導光板之副導光元件之立體圖; 第5圖至第7圖為不同副導光元件之立體圖; 第8圖繪示依照本發明之第一實施例之薄膜電晶體液 晶顯示器背光模組之剖面圖,用以說明光線之行進; TW3019PA / CIP06642/TW 25 1330290 第9圖及第10圖繪示依照本發明之第二實施例.之薄 膜電晶體液晶顯示器背光模組之立體圖; 第11圖繪示依照本發明之第三實施例之薄膜電晶體 液晶顯示器背光模組之立體圖; 第12圖及第13圖繪示不同剖面形狀之前稜鏡之剖面 圖, 第14圖係為主導光元件之點稜鏡之放大剖面圖; 第15圖至第18圖繪示不同形狀之點稜鏡之剖面圖; 第19圖繪示主導光元件之底視圖,用以說明點稜鏡 之較佳排列#式; 第20圖繪示主導光元件之底視圖,用以說明點稜鏡 及條狀棱鏡之排列方式; 第21圖繪示主導光元件之底視圖,用以說明點稜鏡 之另一種排列方式;及 第22圖繪示應用本發明之導光板之液晶電視之立體 圖。 【主要元件符號說明】 10、20 :背光模組 30 :導光板 100 :導光板 105、3)5 :光源 110、200、310 :燈管 120、320 :燈罩 TW3019PA / CIP06642/TW 26I33029U with visibility. The inner bore 322 is disposed on the surface of the point 318. The longitudinal direction of the inner bore 322 is perpendicular to the direction of the light emitted by the light source and the longitudinal direction of the front prism 315. When the longitudinal direction of the inner bore 322 is perpendicular to the direction of the light emitted by the light source, the inner bore 322 effectively diffracts, refracts and diffuses the light, and the inner bore 322 is more rigidly aligned with the front turn 315. The above role. In the light guide plate of the third embodiment of the present invention, the front sill 315 and the point prism 318 can also be applied to the light guide plate of the second embodiment of the present invention. Therefore, the description of this section is omitted. The light guide plate of the backlight module of the thin film transistor liquid crystal display of the above embodiment of the present invention adds the height of the light source, thereby increasing the number of configurable lamps in the light source and further increasing the brightness of the backlight module. Therefore, when the g/special side-lit backlight module is applied to a large-sized thin film transistor φ LCD TV, the edge-lit backlight module can maintain the required high brightness. Fig. 20 is a bottom view of the main light element 300 of Fig. 9 to illustrate the arrangement of the dot 318 and the strip prism 353. A strip 稜鏡 353 is disposed at the edge of the primary light element 300 to prevent dark bands from appearing at the edges of the surface after the primary light element 3 。. Some of the components shown in Fig. 20 are substantially the same as those of the components in Fig. 19, and the same component symbols are used. Therefore, substantially the same elements will not be described again. In Fig. 20, the strip strip 353 is used to prevent the TW3019PA / CIP06642/TW 23 1330290 from appearing as a dark band at the edge of the surface of the leading light element 300. The strip prism 353 is disposed on the rear surface of the lead optical element 300. Figure 21 illustrates a bottom view of the primary light element 300 for illustrating another arrangement of the dots 318. Some of the components shown in Fig. 21 are substantially the same as those of the components in Fig. 19, and the same component symbols are also used. Therefore, substantially the same elements will not be described again. In Fig. 21, in order to prevent the dark band from being generated at the edge of the rear surface of the main light element 300, the edge 318 is densely arranged at the edge of the surface after the main light element 300. Figure 22 is a perspective view of a liquid crystal television. The light guide plate of the first embodiment of the present invention is applied to the liquid crystal television of Fig. 22. As shown in Fig. 22, the liquid crystal television includes a plurality of light sources 305, a light guide plate 30, a liquid crystal panel element 900 and a liquid crystal display driving integrated circuit (LCD) IC 910. Each light source 305 includes a plurality of light tubes 310 and a light cover 320. The light guide plate 30 includes a main light guiding element 300 and a sub-light guiding element 330. The liquid crystal display panel element 90 of the liquid crystal television of the present embodiment and the liquid crystal display integrated circuit component 910 are the same as the conventional thin film transistor liquid crystal display. As shown in FIG. 22, in the liquid crystal television to which the light guide plate of the present invention is substantially applied, the height of the sub-light guiding member 330 is greater than the height of the main light guiding member 300, and a predetermined surface is formed on the surface of the main light guiding member 300. Space. The liquid crystal display driving integrated circuit element 910 is located in this predetermined space. The liquid crystal display panel element 900 is located on a surface opposite to the surface behind the main light element 300 TW3019PA / CIP06642 / TW 24 1330290. Although the number of light sources 310 of the light source 305 is increased, the thickness of the liquid crystal television as a whole is smaller than that of the conventional direct type thin film transistor liquid crystal display backlight module. It can be seen from the above that the present invention provides a light guide plate for a thin film transistor liquid crystal display backlight module and a thin film transistor liquid crystal display backlight module and a thin film transistor liquid crystal display thereof, which are provided with a light guide element to increase the light tube. The amount, which in turn increases the brightness of the thin film transistor liquid crystal display. In view of the above, the present invention has been described above with reference to a preferred embodiment, and is not intended to limit the invention, and various modifications may be made without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. 1 is a cross-sectional view of a side-lit backlight module; FIG. 2 is a cross-sectional view of a direct-lit backlight module; and FIG. 3 is a cross-sectional view of the first embodiment of the present invention; 3 is a perspective view of a backlight module of a thin film transistor liquid crystal display backlight; FIG. 4 is a perspective view of a sub-light guiding element of a light guide plate of a thin film transistor liquid crystal display backlight module of FIG. 3; FIGS. 5 to 7 are different sub-light guides FIG. 8 is a cross-sectional view showing a backlight module of a thin film transistor liquid crystal display according to a first embodiment of the present invention for explaining the progress of light; TW3019PA / CIP06642/TW 25 1330290 9th and 10th 2 is a perspective view of a thin film transistor liquid crystal display backlight module according to a second embodiment of the present invention; FIG. 11 is a perspective view of a thin film transistor liquid crystal display backlight module according to a third embodiment of the present invention; 12 and 13 show cross-sectional views of different cross-sectional shapes, Figure 14 is an enlarged cross-sectional view of the point of the dominant optical element; Figures 15 to 18 show the different shapes. Sectional view; Figure 19 is a bottom view of the main light element for explaining the preferred arrangement of the dot structure; Figure 20 is a bottom view of the main light element for explaining the arrangement of the dot and the strip prism; Figure 21 is a bottom view of the main light element for explaining another arrangement of the dots; and Figure 22 is a perspective view of the liquid crystal television to which the light guide plate of the present invention is applied. [Main component symbol description] 10, 20: backlight module 30: light guide plate 100: light guide plate 105, 3) 5: light source 110, 200, 310: lamp tube 120, 320: lamp cover TW3019PA / CIP06642/TW 26

Claims (1)

1330290_ 2010/3/23 修正 年為…哼正本 LBsL-L-£? _1-· 十1、申請專利範圍: 1. 一種導光板,用以裝設在一薄膜電晶體液晶顯示器 背光模組中,該導光板包括: 一主導光元件,用以將一光線轉換為一均勻平面光線 且將該平面光線由該主導光元件之一前表面射出,其中該 光線係由該主導光元件之複數個側表面入射,其中該主導 光元件包括複數個前稜鏡,該些前棱鏡係以一固定間距相 隔地配置於該主導光元件之該前表面上,且該些前稜鏡具 有一預定之剖面形狀,用以擴散光線;以及 複數個副導光元件,每一該些副導光元件係對應該主 導光元件之該些側表面之一而配置,該光線係由該主導光 元件之對應該側表面入射,每一該些副導光元件包括一第 一表面、一第二表面及複數個連接面,該第一表面係鄰近 於該主導光元件之對應該側表面,該第二表面係平行於該 第一表面,該第二表面之高度係大於該第一表面之高度, 該第二表面係鄰近於該光源,使得該光源產生之該光線得 以由該第二表面入射,該些連接面係經過一反射材料之處 理,用以反射光線且用以連接該第一表面及該第二表面。 2. —種導光板,用以裝設在一薄膜電晶體液晶顯示 器背光模組中,該導光板包括: 一主導光元件,用以將一光線轉換為一均勻平面光線 且將該平面光線由該主導光元件之一前表面射出,其中該 光線係由該主導光元件之複數個側表面入射;以及 複數個副導光元件,每一該些副導光元件係對應該主 1330290 - _ 2010/3/23 修正 導光元件之該些側表面之一而配置,該光線係由該主導光 元件之對應該側表面入射,每一該些副導光元件包括一第 一表面、一第二表面及複數個連接面,該第一表面係鄰近 於該主導光元件之對應該側表面,該第二表面係傾斜於該 • 第一表面,該第二表面之寬度係大於該第一表面之寬度, 該第二表面係鄰近於該光源,使得該光源產生之該光線得 以由該第二表面入射,該些連接面係經過一反射材料之處 理,用以反射光線且用以連接該第一表面及該第二表面。 • 3.如申請專利範圍第2項所述之導光板,其中每一 該些副導光元件之剖面形狀係選自由三角形、梯形、多邊 形及曲線形(Curvi 1 inear)所組成之群組。 4. 如申請專利範圍第1項或第2項所述之導光板, 其中每一該些副導光元件之該些連接面包括複數個平 面、複數個曲面或其任意組合。 5. 如申請專利範圍第1項或第2項所述之導光板, 其中每一該些副導光元件之該第一表面在結構上係與該 ^ 主導光元件之對應該側表面分離。 6. 如申請專利範圍第1項或第2項所述之導光板, ' 其中該主導光元件包括複數個點稜鏡,係配置於該主導光 • 元件之一後表面。 7. 如申請專利範圍第6項所述之導光板,其中該些 點稜鏡之複數個内棱鏡之縱向係垂直於由該光源入射至 該導光板之該光線的方向。 8. 如申請專利範圍第6項所述之導光板,其中每一 29 1330290 2010/3/23 修正 該些點稜鏡之外部形狀係選自由圓形、橢圓形、菱形、矩 形及其任意組合所組成之群組。 9. 如申請專利範圍第8項所述之導光板,其中每一 該些點稜鏡之外部形狀為橢圓形,每一該些橢圓形點稜鏡 之長軸係平行於由該光源入射至該導光板之該光線之方 向。 10. 如申請專利範圍第6項所述之導光板,其中該些 點稜鏡係沿著縱向及橫向排列於該主導光元件之該後表 面,位於奇數排之該些點棱鏡係與位於偶數排之該些點稜 鏡係交錯排列,且在該入射光線之方向上不會互相重疊。 11. 如申請專利範圍第6項所述之導光板,其中越靠 近該光源之該些點稜鏡之尺寸越大。 12. 如申請專利範圍第7項所述之導光板,其中該些 内棱鏡之一内角係介於75°至90°之間。 13. 如申請專利範圍第1項所述之導光板,其中該些 前稜鏡之該縱向剖面形狀係選自由三角形、梯形及反向之 凹槽狀所組成之群組,該反向之凹槽狀包括一尖狀頂端及 複數個側表面,該些侧表面具有一預定之曲率半徑。 14. 如申請專利範圍第1項所述之導光板,其中該些 前稜鏡之該縱向剖面係為三角形,每一該些前棱鏡之一頂 角係介於90°至150°之間。 15. 如申請專利範圍第1項所述之導光板,其中該前 表面具有複數個分離平面,位於該些前稜鏡之間。 16. 如申請專利範圍第15項所述之導光板,其中在 1330290 2010/3/23 修正 該主導光元件之該前表面上,該些前棱鏡之尺寸與該些分 離平面之尺寸的比例係介於1:卜0.1:1。 17. 如申請專利範圍第1項所述之導光板,其中該些 前稜鏡之縱向與該些點稜鏡之該些内稜鏡之縱向間所夾 之角度係介於30。至150。之間。 18. 如申請專利範圍第1項所述之導光板,其中該些 前稜鏡之縱向係垂直於該些點稜鏡之該些内稜鏡之縱向。 19·如申請專利範圍第6項所述之導光板,其中在該 主導光元件之該後表面上,位於該後表面之邊緣之該些點 棱鏡排列較位於該後表面之其他區域之該些點稜鏡為密 集。 20. 如申請專利範圍第丨項或第2項所述之導光板, 二中該主導光兀件包括複數個條狀稜鏡係形成於該主導 光疋件之該後表面之邊緣,用以防止暗帶之發生。 21. 種薄膜電晶體液晶顯示器背光模組,包括: ♦如申請專利範圍第1項或第2韻述之導光板;以及 複數個光源,配置於該導光板之複數個側表面或一後 表面上。 1此1如申請專利範圍第21項所述之背光模組 该二先源係為冷陰極燈管或發光二極體。 23. -種薄膜電晶體液晶顯示器,包括: Si利範圍第1項或第2項所述之導光板’· =個_’配置於該些副導光 複數個側表面 或一後表面上; 1330290 2010/3/23 修正 一液晶面板元件,係面向該主導光元件之該前表面; 以及 一液晶顯示器驅動積體電路(LCD Driving IC,LDI ), 配置於該主導光元件之該後表面與該些副導光元件所形 成之一空間中。1330290_ 2010/3/23 The revised year is... 哼 LBsL-L-£? _1-· XI. Scope of application: 1. A light guide plate for mounting in a thin film transistor liquid crystal display backlight module. The light guide plate comprises: a main light element for converting a light into a uniform planar light and emitting the planar light from a front surface of the primary light element, wherein the light is from a plurality of sides of the dominant light element Surface incident, wherein the main light element comprises a plurality of front ridges disposed on the front surface of the main light element at a fixed pitch, and the front ridges have a predetermined cross-sectional shape And a plurality of sub-light guiding elements, each of the sub-light guiding elements being disposed corresponding to one of the side surfaces of the optical element, the light being corresponding to the side of the main light element The surface is incident, each of the sub-light guiding elements includes a first surface, a second surface, and a plurality of connecting surfaces, the first surface being adjacent to a corresponding side surface of the main light element, the second surface system Parallel to the first surface, the height of the second surface is greater than the height of the first surface, the second surface is adjacent to the light source, such that the light generated by the light source is incident from the second surface, the connections The surface is treated by a reflective material for reflecting light and for connecting the first surface and the second surface. 2. A light guide plate for mounting in a thin film transistor liquid crystal display backlight module, the light guide plate comprising: a main light element for converting a light into a uniform planar light and the planar light a front surface of the main light element is emitted, wherein the light is incident from a plurality of side surfaces of the main light element; and a plurality of sub-light guiding elements, each of the sub-light guiding elements is corresponding to the main 1330290 - _ 2010 /3/23 arranging one of the side surfaces of the light guiding element, the light is incident from a corresponding side surface of the main light element, each of the sub-light guiding elements comprising a first surface, a second a surface and a plurality of connecting surfaces, the first surface being adjacent to a corresponding side surface of the main light element, wherein the second surface is inclined to the first surface, the second surface having a width greater than the first surface Width, the second surface is adjacent to the light source, such that the light generated by the light source is incident from the second surface, and the connecting surfaces are processed by a reflective material for reflecting light and being used for The first surface and the second surface are connected. 3. The light guide plate of claim 2, wherein each of the sub-light guide elements has a cross-sectional shape selected from the group consisting of a triangle, a trapezoid, a polygon, and a curve (Curvi 1 inear). 4. The light guide plate of claim 1 or 2, wherein the connecting faces of each of the sub-light guiding elements comprise a plurality of planes, a plurality of curved surfaces or any combination thereof. 5. The light guide plate of claim 1 or 2, wherein the first surface of each of the sub-light guiding elements is structurally separated from a corresponding side surface of the main light guiding element. 6. The light guide plate of claim 1 or 2, wherein the main light element comprises a plurality of dots arranged on a rear surface of one of the main light elements. 7. The light guide plate of claim 6, wherein the longitudinal axes of the plurality of inner prisms are perpendicular to a direction of the light incident from the light source to the light guide plate. 8. The light guide plate of claim 6, wherein each of the external shapes of the points is selected from the group consisting of a circle, an ellipse, a diamond, a rectangle, and any combination thereof. The group formed. 9. The light guide plate of claim 8, wherein an outer shape of each of the plurality of points is elliptical, and a long axis of each of the elliptical points is parallel to the incident from the light source. The direction of the light of the light guide plate. 10. The light guide plate of claim 6, wherein the plurality of points are arranged on the rear surface of the main light element along the longitudinal direction and the lateral direction, and the point prisms in the odd row are located at an even number The dots are arranged in a staggered arrangement and do not overlap each other in the direction of the incident light. 11. The light guide plate of claim 6, wherein the closer to the light source, the larger the size of the light guide. 12. The light guide plate of claim 7, wherein an inner angle of one of the inner prisms is between 75° and 90°. 13. The light guide plate of claim 1, wherein the longitudinal cross-sectional shape of the front cymbals is selected from the group consisting of a triangular shape, a trapezoidal shape, and a reverse groove shape. The trough shape includes a pointed top end and a plurality of side surfaces having a predetermined radius of curvature. 14. The light guide plate of claim 1, wherein the longitudinal profiles of the front ridges are triangular, and one of the front prisms has an apex angle between 90° and 150°. 15. The light guide plate of claim 1, wherein the front surface has a plurality of separation planes between the front ridges. 16. The light guide plate of claim 15, wherein the ratio of the dimensions of the front prisms to the dimensions of the separation planes is corrected on the front surface of the primary light element at 1330290 2010/3/23 Between 1: Bu 0.1:1. 17. The light guide plate of claim 1, wherein an angle between the longitudinal direction of the front ridges and the longitudinal direction of the inner ridges of the plurality of points is 30. To 150. between. 18. The light guide plate of claim 1, wherein the longitudinal axes of the front ridges are perpendicular to the longitudinal direction of the inner ridges of the points. The light guide plate of claim 6, wherein on the rear surface of the main light element, the dot prisms located at the edge of the rear surface are arranged more than other regions of the rear surface The point is intensive. 20. The light guide plate of claim 2 or 2, wherein the main aperture member comprises a plurality of strips of tantalum formed on an edge of the rear surface of the main aperture member for Prevent the occurrence of dark bands. 21. A thin film transistor liquid crystal display backlight module, comprising: ♦ a light guide plate according to claim 1 or 2; and a plurality of light sources disposed on a plurality of side surfaces or a rear surface of the light guide plate on. 1 The backlight module described in claim 21 is the cold cathode lamp or the light emitting diode. 23. A thin film transistor liquid crystal display comprising: a light guide plate according to item 1 or item 2 of the Si range is disposed on a plurality of side surfaces or a rear surface of the pair of light guides; 1330290 2010/3/23 modifies a liquid crystal panel element facing the front surface of the main light element; and a liquid crystal display driving integrated circuit (LCD), disposed on the rear surface of the main light element The sub-light guiding elements are formed in one of the spaces. 32 .732.7
TW95119046A 2005-12-01 2006-05-29 Light guide panel for tft-lcd back light unit and tft-lcd back light unit and tft-lcd device having the same TWI330290B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050116351A KR100660047B1 (en) 2005-12-01 2005-12-01 Light guide panel for tft-lcd back light unit, tft-lcd back light unit and tft-lcd device thereby
KR1020060014626A KR100660048B1 (en) 2006-02-15 2006-02-15 Light guide panel for tft-lcd back light unit, tft-lcd back light unit and tft-lcd device thereby

Publications (2)

Publication Number Publication Date
TW200722864A TW200722864A (en) 2007-06-16
TWI330290B true TWI330290B (en) 2010-09-11

Family

ID=38092385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95119046A TWI330290B (en) 2005-12-01 2006-05-29 Light guide panel for tft-lcd back light unit and tft-lcd back light unit and tft-lcd device having the same

Country Status (2)

Country Link
TW (1) TWI330290B (en)
WO (1) WO2007064063A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106985A1 (en) * 2013-07-03 2015-01-22 Osram Oled Gmbh Optoelectronic component device and method for producing an optoelectronic component device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316438B2 (en) * 1997-12-08 2002-08-19 三洋電機株式会社 Light guide plate, surface light source and liquid crystal display
JP2002116440A (en) * 2000-10-10 2002-04-19 Sony Corp Back light mechanism of liquid crystal display device
KR100756368B1 (en) * 2002-12-05 2007-09-10 삼성전자주식회사 Back light assembly and liquid crystal display having the same
KR20050030724A (en) * 2003-09-26 2005-03-31 삼성전자주식회사 Back light assembly and liquid crystal display having the same

Also Published As

Publication number Publication date
TW200722864A (en) 2007-06-16
WO2007064063A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US7255456B2 (en) Direct backlight module
JP4011287B2 (en) Light control sheet, surface light source device, and liquid crystal display
JP4053626B2 (en) Surface light source device and asymmetric prism sheet
JP4477600B2 (en) Backlight module
US7380971B2 (en) Backlight module
US20130010494A1 (en) Backlight device, light source device, lens, electronic apparatus and light guide plate
KR101604243B1 (en) Light guide plate, backlight unit and liquid crystal display having the same
US9690034B2 (en) Illumination device and display device
US10352530B2 (en) Lens, light emitting apparatus including the lens, and backlight unit including the apparatus
TWI460503B (en) Backlight unit
JP2007194214A (en) Light guide plate and display device provided with the same
US7708445B2 (en) Light guide device and backlight module using the same
EP1726976A1 (en) Prism sheet and backlight unit including the same
JP2007109625A (en) Backlight device
TW201426125A (en) Light guide plate and backlight module
US7898615B2 (en) Backlight module with light guide plate having partially overlapped reflective structures and liquid crystal display with same
US7448788B2 (en) Backlight module
US20150168632A1 (en) Planar lighting device and display device including planar lighting device
WO2010125839A1 (en) Lighting device and displaying device
TWI330290B (en) Light guide panel for tft-lcd back light unit and tft-lcd back light unit and tft-lcd device having the same
US20140320783A1 (en) Condensing sheet, backlight unit and liquid crystal display device using the same
JP5293177B2 (en) Optical sheet, surface light source device and display device
JP4394497B2 (en) Lighting device
US8814413B2 (en) Backlight module and liquid crystal display using the same
WO2013089172A1 (en) Light source device, planar light source device, display device, and illumination device