TWI293766B - A method for assembling carbon nanotubes and micro-probe and an apparatus thereof - Google Patents

A method for assembling carbon nanotubes and micro-probe and an apparatus thereof Download PDF

Info

Publication number
TWI293766B
TWI293766B TW093101013A TW93101013A TWI293766B TW I293766 B TWI293766 B TW I293766B TW 093101013 A TW093101013 A TW 093101013A TW 93101013 A TW93101013 A TW 93101013A TW I293766 B TWI293766 B TW I293766B
Authority
TW
Taiwan
Prior art keywords
probe
layer
carbon nanotube
tip
conductive layer
Prior art date
Application number
TW093101013A
Other languages
Chinese (zh)
Other versions
TW200523976A (en
Inventor
Hui Chi Su
Hsin Chien Huang
Yuh Wen Lee
Wei Chin Lin
Hui Ling Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW093101013A priority Critical patent/TWI293766B/en
Priority to US10/815,842 priority patent/US20050150767A1/en
Publication of TW200523976A publication Critical patent/TW200523976A/en
Application granted granted Critical
Publication of TWI293766B publication Critical patent/TWI293766B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

1293766 玖、發明說明·· 【發明所屬之技術領域】 本發明側於-種奈米碳管與探針接合之 結構,尤其是指一種藉由電' β ^ 冤冰原理,使奈米碳管 可又電%驅使而自組接合於探針上之方法及結構。 【先前技術】 。奈米碳管(CarbonNanotubes)是由碳原子所組成的一 種單層或多層壁之纽結構,管㈣為數奈米,長度可達 數微米。由於奈米碳管的特殊結構與特性,使其具^良好 的機械特性、高深寬比、曲饒性等優勢,而可廣泛應^在 光電元件、電子元件、生化醫療、能源材料··等各種不同 領域。此外’更可利用奈米碳管細長金屬與半導電特性及 曲饒性之優點,更可應用於奈米級微探針或微電極。但是, 由於奈米峡官為奈米級之尺寸’當奈米碳管欲與一探針接 合時,將因奈米碳管之尺寸太小而不易處理。 當欲進行奈米碳管與探針接合之製程時,目前習知之 技術都疋採用配合觸媒之塗佈及化學氣相沉積法進行,使 奈米碳管沿著沾有觸媒的地方成長,例如:電漿強化化學 氣相沉積法、常溫化學氣相沉積法、電弧放電等。但是, 上述之製程條件需要真空環境(50〜400T〇rr)或在高溫下進 行,即便是低溫製程也要450〜50(TC,且低溫製程僅限於 MWNTs,對於SWNTs仍需要1000〜1200t高溫製程。此 類習用技術對於大尺寸與低溫平台材料上沉積奈米碳管均 1293766 有很大的限制。此外,由於觸媒通常是由鐵、錄、始等金 屬研磨至奈米等級,不僅價格昂貴,且在沉積碳管的過程 中’常附帶產生不純物,如結晶或非結晶性的碳化物及未 反應元之催化劑等,因此會增加純化之額外製程,且技術 亦相對較困難。有鑒於習知之採用配合觸媒之塗佈及化學 沉積法之缺失及限制,因此本發明其係提供一種奈米碳管 與探針自組裝接合技術,以克服奈米尺寸之材料與巨觀元 件接合所面臨之困難。 【發明内容】 本發明之主要目的係提供一種奈米碳管與探針接合之 製作方法,可在常溫缝下進行奈米碳f與探針接合製程。 本發明之另-目的係提供一種奈米碳管與探針自組接 裝作方法由電泳或介電泳原理,使奈米碳管可在 南壓電場驅使下$組接合於探針尖端之上。 本發明之再-目的係提供一種奈米碳管與探針接合之 =構’其奈米碳管係平行於f場方向排列並附著於探針尖 端之上。 糸絲ίί明之更—目的係提供'"種奈米碳管與探針接合之 ==構’可進行使奈来碳管受高壓 而 於探針尖端的製程。 牛驟本發明之㈣方法’至少包含下列 使該探針暴露於-含有分散奈米碳管電= 1293766 溶液環境中並财-電極;並對該導電層及_之間施加 -預疋電壓’使至少-奈米碳管因電泳效應或是介電泳效 應而朝向·十之失端泳動、並藉由凡得瓦耳力附著於其上。 、為使貴審查委員能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,茲配合圖式詳細說明如後: 【實施方式】 本發明之奈米碳官與探針接合之製作方法係使用簡單 之電泳或介電泳技術。在常溫㈣的狀態下,即可以進行 奈官與微雜針的接合,且製程技誠製程條件均相 對簡單,以下將舉若干實施例詳細說明本發明之技術特徵 及功效。 請參閱圖一,為本發明藉由電泳(或介電泳)原理來 進行奈米碳管與探針自組裝接合之系統架構與方法示意 圖。 如圖一所示,該方法主要是先提供一矽材質之基底 11,於基底11上並藉由半導體製程而製作至少一微米探針 Π (圖中係以四隻探針12為例)。於基底u及探針12表 面覆蓋有一導電層13,例如金、銅、銘或其他金屬或合金 等,其可藉由電鍍或是薄膜沈積方式形成為較佳。於導電 層13上更覆蓋有一非導電物質層14以作為遮蔽層,於本 較佳實施例中係以光阻作為非導電物質層14但亦可選用其 他非導電材質。該非導電物質層14係覆蓋於導電層13上 預定區域處,並使探針12尖端121處之導電層ι31不被非 Ϊ293766 導電物質層14所覆蓋而係暴露於外界。 該基底11連同其上之探針12、導電層13及 質層14 -起被置入-溶液環境2〇中,例如置入一反 等。於該溶液環境20 +分散有懸浮之多數奈米碳管ϋ 溶液環境20中與基底U相隔一預定距離處並設置有二 電極3卜藉由導電膠4卜42與連接線43、44將基底u 上之導電層13與電極31分職_—直流電源45的正負 兩極。該直流電源45可在導電層13與電極31之間提供二 預定強度的直流電壓。由於導電層13僅有探針12尖端 處係暴露於溶液環境20中、其暴露於溶液環境2〇之表面 積,小於電極31。所以,在靠近探針12尖端121處將會有 電場集中強化之效應。在此情形之下,溶液環境2〇中之多 數不米碳g 21將會因為電泳效應或是介電泳效應而朝向探 針12尖端121處泳動,並在探針12尖端121時會被電場 所導引而使奈米碳管21的長度方向與探針12延伸方向呈 現平行於電場整齊排列,並進一步藉由凡得瓦耳力而附著 固定於探針12尖端12卜 於一較佳實施例中,該溶液環境2〇係包括有陰離子界 面活性劑,例如十二烷基硫酸鈉(substantially deereased, fDS)、或是其他種類之界面活性劑等,其可在原本不帶電 何之奈米碳管21表面附著一層負電荷。並且,該導電層13 係為連接直流電源45的正極、而電極31則是連接直流電 源45之負極(如圖一所示)。如此一來,帶著負電荷之奈 米碳管21將會受到電場影響而朝向相反電性(也就是正極) 1293766 之^針12尖端121泳動1後則因凡得瓦耳力而附著固定 =探針12尖端121。這種現象便稱作電泳(Electr〇ph_is, 、於此電/永技術中’奈米碳管21的泳動率將取決於其 分子量,而與原來分子所帶的電荷無關。 〃、 —而在另一較佳實施例中,該溶液環境20係為不帶電之 溶劑,例如異丙醇或其他有機溶劑等。由於奈米碳管21本 身亦不帶電荷,所料會絲朝某1極祕。然而,由 於導電層13僅有在探針12尖端121處係暴露於溶液環境 2〇中、其暴露於溶液環境20之表面積遠小於電極31。所 以,在靠近探針12尖端121處將會有電場集中強化之效應 ,產生不-致的電場強度。在其影響下,未帶電之奈米碳 管21由於極化之誘導,造成側向移動。其原语是^場影 響下,誘發粒予表面受到極化的效應,而產生一耦極距。 如此,即使異丙醇與奈米碳管21兩者都不帶電荷,也將因 不一致之電場環境而仍將奈米碳管21引導朝向電場流密度 大之探針12尖端121泳動,最後則因凡得瓦耳力而附著固 疋於探針12尖端121。這種現象便稱作介電泳動 (Dielectrophoresis )。 於本較佳實施例中,更可設置包括一超音波裝置46, 其可對該溶液環境20提供超音波震盪,不僅避免溶液環境 20中之複數個奈米碳管21凝聚成團、也可使奈米碳管21 均勻分散懸浮於溶液環境20中。 請參閱圖二A至圖二E所示,為如圖一所示之該含有探 針12之基底11的製程步驟的較佳實施例,其包括有下列步 1293766 驟: 首先,如圖二A所示,於矽材質之基底51上(例如矽晶 圓)依序形成一氤化矽層52及一阻障層53 (例如光阻)。 利用黃光微影儀刻等半導體製程技術於該阻障層53預定位 置處開設有若刊口 53卜而使開口531部分之氮化石夕層52 可暴露於外界。 接著,如圖二B所示,對如圖二A所示之裝置進行反 應性離子_機(RIE)侧,並_基底51作為侧終 點,使開口 531部分之氮化矽層52因蝕刻而遭侵蝕,之後 再去除阻障層53,而在基底上留下若干柱狀之氮化矽柱 521 〇 然後,如圖二C所示,對氮化矽柱521進行非等向性 濕蝕刻,而於基底51上形成若干氮化矽材質之圓錐狀探針 522結構。 再來,如圖二D所示,藉由電鍍、濺鍍、物理氣相沈積、 化學氣相沈積、或是其他方式在基底51及探針522上形成一 金屬導電層54,例如金、銅、鋁、鎳或其他金屬或合金等。 於本較佳實施例中,該導電層54係廣泛覆蓋整個基底51與 探針522。然而,於其他實施例中,該導電層54至少需覆蓋 有探針522之尖端。 最後,如圖一E所示,形成一非導電物質層55覆蓋於導 電層54上之預定區域處而僅暴露出探針522尖端處之導電 層541。於本實施例中,該非導電物質55可為光阻或其他不 導電薄膜或南分子材料等。其先將光阻廣泛覆蓋於整個導 1293766 電層54上後、再藉由反應性離子蝕刻掉預定厚度的光阻, 而使除了探針522尖端處之外的其他部分導電層54均被非 導電物質55所遮蔽。如此,便完成圖一所示之具有探針之 基板結構的製作。 值得一提的是,於圖二A至圖二E所示之本發明之該含 有探針12之基底11的製程步驟的實施例中,雖然是以氮化 石夕(SiKO作為製作微米探針的材料,然而,吾人亦可選 用其他氮化梦、氧化⑦、金屬、或高分子聚合物等來在基 底上形成探針者。 如上述之電泳系統/介電泳系統係可在常溫常壓下進行 奈米碳管與探針接合之製作,可以避免習知技術需要在高 溫高壓下進行奈米碳管與探針接合之缺失。並且,本發明 於申請前從未曾見於任何刊物及公開場合中,確實具有新 颖性及南度進步性。 唯以上所述者,僅為本發明之較佳實施例,當不能以之 限制本發明的範圍。即大凡依本發明申請專利範圍所做之 均等變化及修飾,仍料失本_之要義所在,亦不脫離 本發明之精神和範圍,故都應視為本發_進—步實施狀 況。 【圖式簡單說日日11293766 玖 发明 发明 发明 发明 发明 发明 发明 发明 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 The method and structure of self-assembly and bonding to the probe can be driven by electricity. [Prior Art]. Carbon Nanotubes are a single or multi-walled neon structure composed of carbon atoms. The tube (4) is a few nanometers and can be several microns in length. Due to the special structure and characteristics of the carbon nanotubes, it has the advantages of good mechanical properties, high aspect ratio, and flexibility. It can be widely used in optoelectronic components, electronic components, biochemical medical materials, energy materials, etc. Various fields. In addition, it can be applied to nanometer microprobes or microelectrodes by utilizing the advantages of the elongated metal and semiconducting properties and the flexibility of the carbon nanotubes. However, since the nano-gorge is a nanometer size, when the nanocarbon tube is to be combined with a probe, the size of the carbon nanotube is too small to be handled. When the process of bonding carbon nanotubes to probes is to be carried out, the conventional techniques are carried out by coating with a catalyst and chemical vapor deposition, so that the carbon nanotubes grow along the place where the catalyst is contaminated. For example, plasma enhanced chemical vapor deposition, normal temperature chemical vapor deposition, arc discharge, and the like. However, the above process conditions require a vacuum environment (50 to 400 T rr) or high temperature, even a low temperature process of 450 to 50 (TC, and low temperature process is limited to MWNTs, for SWNTs still need 1000 ~ 1200t high temperature process This type of conventional technology has great limitations on the deposition of carbon nanotubes on large and low temperature platform materials. In addition, since the catalyst is usually ground from iron, recording, and other metals to nanometer grade, it is not only expensive. And in the process of depositing carbon tubes, it often contains impurities, such as crystalline or amorphous carbides and unreacted catalysts, which will increase the additional process of purification, and the technology is relatively difficult. It is known that the coating and chemical deposition methods are compatible with the absence and limitation of the catalyst. Therefore, the present invention provides a self-assembly bonding technique of a carbon nanotube and a probe to overcome the problem of the nano-sized material and the giant element. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for fabricating a carbon nanotube and a probe, which can be carried out under normal temperature seams. The process of bonding with the probe. Another object of the present invention is to provide a method for self-assembly of carbon nanotubes and probes by electrophoresis or dielectrophoresis, so that the carbon nanotubes can be driven by the south piezoelectric field. Bonding to the probe tip. A further object of the present invention is to provide a carbon nanotube-to-probe bonding structure in which the carbon nanotubes are aligned parallel to the f-field direction and attached to the probe tip.糸 ί ί — — — — — 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的'At least the following is included to expose the probe to - containing the dispersed carbon nanotubes = 1293766 solution in the environment and the electrode - and apply - pre-voltage between the conductive layer and _ to make at least - carbon nanotubes Due to the electrophoretic effect or the dielectrophoretic effect, it is directed to the end of the movement, and is attached to it by the van der Waals force. In order to enable the reviewing committee to further understand the features, purposes and functions of the present invention. Understand, please follow the detailed description of the drawings as follows: [Embodiment] The method for fabricating the nano carbon official and the probe of the present invention is a simple electrophoresis or dielectrophoresis technique. Under normal temperature (four) state, the bonding between the nemesis and the micro-coil can be performed, and the process conditions of the process are all The technical features and effects of the present invention will be described in detail below with reference to a number of embodiments. Referring to Figure 1, a system for self-assembly bonding of carbon nanotubes and probes by electrophoresis (or dielectrophoresis) principle is provided. Schematic diagram of the structure and method. As shown in Fig. 1, the method mainly provides a substrate 11 of a germanium material, and at least one micrometer probe Π is fabricated on the substrate 11 by a semiconductor process (four probes are used in the figure) 12 is an example. The surface of the substrate u and the probe 12 is covered with a conductive layer 13, such as gold, copper, or other metal or alloy, which may be formed by electroplating or thin film deposition. The conductive layer 13 is further covered with a non-conductive material layer 14 as a shielding layer. In the preferred embodiment, the photoresist is used as the non-conductive material layer 14, but other non-conductive materials may be used. The non-conductive substance layer 14 covers a predetermined area on the conductive layer 13, and the conductive layer ι31 at the tip end 121 of the probe 12 is not covered by the non-Ϊ 766 766 766 conductive material layer 14 and is exposed to the outside. The substrate 11 together with the probe 12, the conductive layer 13 and the layer 14 thereon is placed in a solution environment 2, for example, placed in the opposite direction. In the solution environment 20 + dispersed in the majority of the carbon nanotubes solution solution environment 20 is separated from the substrate U by a predetermined distance and is provided with two electrodes 3 by the conductive adhesive 4 and 42 and the connecting lines 43, 44 The conductive layer 13 on the u is separated from the electrode 31 by the positive and negative poles of the DC power source 45. The DC power source 45 can provide a DC voltage of a predetermined intensity between the conductive layer 13 and the electrode 31. Since the conductive layer 13 is only exposed at the tip end of the probe 12 to the solution environment 20, it is exposed to the surface area of the solution environment 2, which is smaller than the electrode 31. Therefore, there will be an effect of concentrated concentration of the electric field near the tip 121 of the probe 12. Under this circumstance, most of the non-meter carbon g 21 in the solution environment will move toward the tip 121 of the probe 12 due to the electrophoretic effect or the dielectrophoretic effect, and will be electrically grounded at the tip 121 of the probe 12. Guided so that the length direction of the carbon nanotubes 21 and the direction in which the probe 12 extends are aligned parallel to the electric field, and further adhered to the tip end 12 of the probe 12 by van der Waals force in a preferred embodiment. The solution environment 2 includes an anionic surfactant, such as substantially dedeased (fDS), or other kinds of surfactants, etc., which can be used in the original carbon nanotubes. A negative charge is attached to the surface of the 21 surface. Further, the conductive layer 13 is connected to the positive electrode of the DC power source 45, and the electrode 31 is connected to the negative electrode of the DC power source 45 (as shown in Fig. 1). As a result, the negatively charged carbon nanotube 21 will be affected by the electric field and will move toward the opposite polarity (that is, the positive electrode) 1293766 of the needle 12 tip 121, and then adhere to the fixed van der Waals force. Needle 12 tip 121. This phenomenon is called electrophoresis (Electr〇ph_is, in this electric / permanent technology 'the mobility of the carbon nanotube 21 will depend on its molecular weight, and has nothing to do with the charge carried by the original molecule. 〃, - In another preferred embodiment, the solution environment 20 is an uncharged solvent, such as isopropyl alcohol or other organic solvent, etc. Since the carbon nanotube 21 itself is not charged, it is expected to be directed to a certain However, since the conductive layer 13 is only exposed to the solution environment 2 at the tip 121 of the probe 12, its surface area exposed to the solution environment 20 is much smaller than the electrode 31. Therefore, near the tip 121 of the probe 12, There is an effect of concentrated strengthening of the electric field, resulting in an uninduced electric field strength. Under its influence, the uncharged carbon nanotubes 21 cause lateral movement due to the polarization induced. The original is the influence of the field, induced particles The surface is subjected to the effect of polarization, and a coupling pole distance is generated. Thus, even if both the isopropyl alcohol and the carbon nanotube 21 are not charged, the carbon nanotubes 21 will still be guided due to the inconsistent electric field environment. Leaving toward the tip 121 of the probe 12 having a large electric field flow density Finally, it is attached to the tip end 121 of the probe 12 by the van der Waals force. This phenomenon is called Dielectrophoresis. In the preferred embodiment, an ultrasonic device 46 is further provided. It can provide ultrasonic oscillation to the solution environment 20, which not only avoids agglomeration of a plurality of carbon nanotubes 21 in the solution environment 20, but also allows the carbon nanotubes 21 to be uniformly dispersed and suspended in the solution environment 20. 2A to FIG. 2E, which is a preferred embodiment of the manufacturing process of the substrate 11 including the probe 12 as shown in FIG. 1, which includes the following steps 1293766: First, as shown in FIG. 2A, A germanium germanium layer 52 and a barrier layer 53 (eg, photoresist) are sequentially formed on the substrate 51 of the germanium material (for example, a germanium wafer). The semiconductor processing technology is used to reserve the barrier layer 53 by using a yellow photolithography apparatus or the like. At the position where the opening 53 is opened, the nitride layer 52 of the opening 531 portion may be exposed to the outside. Next, as shown in FIG. 2B, the apparatus shown in FIG. 2A is subjected to a reactive ion-machine ( RIE) side, and _ base 51 as the side end point, making the opening 531 part The tantalum nitride layer 52 is etched by etching, and then the barrier layer 53 is removed, leaving a plurality of columnar tantalum nitride pillars 521 on the substrate. Then, as shown in FIG. 2C, the tantalum nitride pillars 521 are shown. An anisotropic wet etching is performed, and a plurality of conical probes 522 of tantalum nitride are formed on the substrate 51. Next, as shown in FIG. 2D, by electroplating, sputtering, physical vapor deposition, chemistry Vapor deposition, or other means, forming a metal conductive layer 54 on the substrate 51 and the probe 522, such as gold, copper, aluminum, nickel or other metals or alloys, etc. In the preferred embodiment, the conductive layer 54 The entire substrate 51 and the probe 522 are widely covered. However, in other embodiments, the conductive layer 54 is at least covered with the tip end of the probe 522. Finally, as shown in Fig. EE, a layer of non-conductive material 55 is formed overlying a predetermined area on the conductive layer 54 to expose only the conductive layer 541 at the tip of the probe 522. In this embodiment, the non-conductive substance 55 may be a photoresist or other non-conductive film or a south molecular material or the like. After the photoresist is widely covered on the entire conductive layer 1293766, the photoresist of a predetermined thickness is etched away by reactive ions, so that some of the conductive layers 54 except the tip of the probe 522 are not. The conductive material 55 is shielded. Thus, the fabrication of the substrate structure having the probe shown in Fig. 1 is completed. It is worth mentioning that in the embodiment of the process step of the substrate 11 containing the probe 12 of the present invention shown in FIG. 2A to FIG. 2E, although SiKO is used as the microprobe. Materials, however, we can also use other nitriding dreams, oxidation 7, metal, or high molecular polymers to form probes on the substrate. The above electrophoresis system / dielectrophoresis system can be carried out under normal temperature and pressure. The fabrication of the carbon nanotubes and probes can avoid the need for the prior art to eliminate the carbon nanotube and probe bonding under high temperature and high pressure. Moreover, the present invention has never been seen in any publications and public occasions before application. It is true that there is no change in the scope of the present invention. And the modification, still deserving the meaning of the _, does not deviate from the spirit and scope of the present invention, it should be regarded as the implementation status of the _ _ _ _ _ _ _

W 圖一為本發明藉由電泳(或介電泳)原理來進行奈米碳管 與探針自組裝接合之系統架構與方法示意圖。 圖二A至圖二E絲本發明之具有探針之基底的製程步驟 1293766 流程圖。 圖示之圖號說明: 11基底 12探針 121尖端 13導電層 131尖端處導電層 14非導電物質層 20溶液環境 21奈米碳管 31電極 41、42導電膠 43、44連接線 45直流電源 46超音波裝置 51基底 52氮化矽層 521氮化矽柱 522探針 53阻障層 531 開口 55非導電物質 54導電層 13W is a schematic diagram of a system architecture and method for self-assembly bonding of a carbon nanotube and a probe by electrophoresis (or dielectrophoresis) principle. Figure 2A to Figure 2E. Process steps of the probed substrate of the present invention 1293766 Flowchart. Description of the figure: 11 substrate 12 probe 121 tip 13 conductive layer 131 tip conductive layer 14 non-conductive material layer 20 solution environment 21 carbon nanotube 31 electrode 41, 42 conductive adhesive 43, 44 connecting line 45 DC power supply 46 ultrasonic device 51 substrate 52 tantalum nitride layer 521 nitride column 522 probe 53 barrier layer 531 opening 55 non-conductive substance 54 conductive layer 13

Claims (1)

_tt委員明示,本索修正後是否變更原實質内會 1293766 (專卿纖削G1GI3 _______ 拾、申請專利範圍: 碳倾探針接合之製作方法,包括下列步驟: ⑻棱供一矽材質的基底; ⑼依序形成—氮化石夕層及—阻障層,並於該 位置處開設若干開σ ’使該開口部分之氮 化石夕層可暴露於外界; (0進行侧,使該開口部分之氮切層賴刻而遭侵 韻,之後再去除該阻障層; ⑼對該氮切層進行非等向性做彳,而於 至少一氮化石夕材質之探針結構; -域 ⑻以魏或_崎方式職基敍贿針表面覆蓋一 導電層; (f) 除該探針尖端處之導電層外,於其餘導 蓋一 非導電物質層; 覆 (g) 將該t有探針、導電層及非導電物質層之基底置入一 含有分散奈米碳管之溶液環境+,並於雜液環境中 另設一電極;以及 (h) 、於該導電層及該電極間施加一預定電壓,使至少一奈 米碳管朝向該探針之尖端泳動,並附著於該探針之尖& 處。 2·如申請專利範圍第丨項所述之奈米碳管與探針接合之製 作方法,其中,該電極暴露於溶液環境之面積 針尖端暴露於溶液環境之面積。 、' 、 3·如申請專利範圍第1項所述之奈米碳管與探針接合之製 14 1293766 G額10Π ________ 成團 ,步驟,以避免該溶 圍第1賴述之奈米碳管絲針接合之製 作方法,其中,該非導電物質為光阻。 …+ ’該减喊係包括有陰料界面活性劑, =在該奈米碳管表騎著—層負電荷,紅,該導 係為所施加預定電壓的正極。 1申請專__〗項所述之奈米翁絲針接合之製 作方法,其中’該溶液環境係包括有異丙醇。 7.如申請專利範圍第!項所述之奈米碳管與探針接合之製 ,方,’其中該奈米碳管係藉凡得瓦力附著於該探針之 W端處。 8.—種奈米碳管與探針接合之結構,包括有: 基底,該基底上並形成有至少一探針丨 一導電層,其敍少於該探針之尖端處,該導電層 上之預定區域處更覆蓋有一非導電物質層,而且該探 =尖端處之導電層並不被該非導電物f層所覆蓋而暴 露於外界,·以及,” 至少-奈米碳管,其細雜該探針的线上,且該太 米碳管係平行於該探針之延伸方向。 不 ^如申請翻翻第8術叙奈錢針接合之处 構,其中,該基底材質係為矽。 1293766 (專利申請第〇93101013號發明專利申請案說明書修正) 10. 如申請專利範圍第8項所述之奈米碳管與探針接合之結 構,其中,探針材質係為氮化矽。 11. 如申請專利範圍第8項所述之奈米碳管與探針接合之結 構,其中,該非導電物質為光阻。 16_tt members clearly indicate whether the original substance will be changed after the revision of the original text 1293766 (specialist fiber cutting G1GI3 _______ pick, patent scope: carbon tilt probe joint manufacturing method, including the following steps: (8) edge for a material base; (9) sequentially forming a nitride layer and a barrier layer, and opening a plurality of openings σ at the position to expose the nitride layer of the opening portion to the outside; (0 side, the nitrogen of the opening portion The layer is invaded and then invaded, and then the barrier layer is removed; (9) the nitrogen layer is anisotropic, and the probe structure is at least one nitride-stone material; - domain (8) is Wei or The surface of the _Saki-style syllabus is covered with a conductive layer; (f) except for the conductive layer at the tip of the probe, a non-conductive layer is formed on the remaining cover; covering (g) the probe has a probe and conducts The substrate of the layer and the non-conductive material layer is placed in a solution environment containing the dispersed carbon nanotubes, and an electrode is additionally disposed in the liquid environment; and (h) a predetermined voltage is applied between the conductive layer and the electrode , at least one carbon nanotube is directed toward the probe The tip of the probe moves and is attached to the tip of the probe. 2. The method for fabricating a carbon nanotube and a probe as described in the scope of the patent application, wherein the electrode is exposed to the area of the solution environment The tip of the needle is exposed to the area of the solution environment., ', 3 · The carbon nanotube and probe joint system described in item 1 of the patent application scope 1 1293766 G 10 Π ________ into a group, steps to avoid the dissolution The method for producing a nanowire carbon wire needle joint according to the first aspect, wherein the non-conductive material is a photoresist. ... + 'the screaming system includes a cation binder, = riding on the carbon nanotube table - a layer of negative charge, red, the conduction system is a positive electrode to which a predetermined voltage is applied. 1 A method for producing a nanowire wire needle joint according to the application, wherein the solution environment includes isopropyl alcohol. 7. The method of joining a carbon nanotube and a probe according to the scope of the patent application, wherein the carbon nanotube is attached to the W end of the probe by van der Waals force. a structure in which a carbon nanotube is bonded to a probe, comprising: a substrate, the Forming at least one probe and a conductive layer on the substrate, which is less than the tip end of the probe, and a predetermined area on the conductive layer is covered with a layer of non-conductive material, and the conductive layer at the tip is Not covered by the layer of non-conducting material f and exposed to the outside, and, "at least - a carbon nanotube, which is finely lined with the probe, and the carbon nanotube is parallel to the extension of the probe Directions. If the application is to turn over the 8th Suzanne money needle joint structure, the base material is 矽. 1293766 (patent application No. 931010113 invention patent application amendment) 10. If the patent application scope The structure in which the carbon nanotubes and the probes are joined in the eighth aspect, wherein the probe material is tantalum nitride. 11. The structure of a carbon nanotube and a probe bonded as described in claim 8 wherein the non-conductive material is a photoresist. 16
TW093101013A 2004-01-14 2004-01-14 A method for assembling carbon nanotubes and micro-probe and an apparatus thereof TWI293766B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW093101013A TWI293766B (en) 2004-01-14 2004-01-14 A method for assembling carbon nanotubes and micro-probe and an apparatus thereof
US10/815,842 US20050150767A1 (en) 2004-01-14 2004-04-02 Method for assembling carbon nanotubes and microprobe and an apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093101013A TWI293766B (en) 2004-01-14 2004-01-14 A method for assembling carbon nanotubes and micro-probe and an apparatus thereof

Publications (2)

Publication Number Publication Date
TW200523976A TW200523976A (en) 2005-07-16
TWI293766B true TWI293766B (en) 2008-02-21

Family

ID=34738213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093101013A TWI293766B (en) 2004-01-14 2004-01-14 A method for assembling carbon nanotubes and micro-probe and an apparatus thereof

Country Status (2)

Country Link
US (1) US20050150767A1 (en)
TW (1) TWI293766B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281164B1 (en) * 2006-11-21 2013-07-02 삼성디스플레이 주식회사 Wire grid type polarizer and method for manufacturing the same
US7964143B2 (en) * 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
KR101122044B1 (en) 2010-09-13 2012-03-12 단국대학교 산학협력단 Microbial fuel cell
KR101241340B1 (en) 2011-03-25 2013-03-11 단국대학교 산학협력단 Microbial fuel cell having micro probe array
TWI539164B (en) 2013-11-22 2016-06-21 財團法人工業技術研究院 Coated probe and method of fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968585A (en) * 1989-06-20 1990-11-06 The Board Of Trustees Of The Leland Stanford Jr. University Microfabricated cantilever stylus with integrated conical tip
EP1054249B1 (en) * 1998-12-03 2007-03-07 Daiken Chemical Co. Ltd. Electronic device surface signal control probe and method of manufacturing the probe
KR100314094B1 (en) * 1999-08-12 2001-11-15 김순택 Method for fabricating a carbon nanotube field emitter using electrophoresis process
AU2002344814A1 (en) * 2001-06-14 2003-01-02 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
TW516061B (en) * 2001-09-12 2003-01-01 Ind Tech Res Inst Manufacturing method for triode-type electron emitting source
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US7082683B2 (en) * 2003-04-24 2006-08-01 Korea Institute Of Machinery & Materials Method for attaching rod-shaped nano structure to probe holder

Also Published As

Publication number Publication date
US20050150767A1 (en) 2005-07-14
TW200523976A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
Dujardin et al. Self-assembled switches based on electroactuated multiwalled nanotubes
KR100398276B1 (en) Probe for operating surface signal in an electronic device and method for manufacturing the same
US7082683B2 (en) Method for attaching rod-shaped nano structure to probe holder
Dong et al. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes
Nagahara et al. Directed placement of suspended carbon nanotubes for nanometer-scale assembly
US7964143B2 (en) Nanotube device and method of fabrication
US20110162966A1 (en) Systems and methods for making and using nanoelectrodes
JP2002538606A (en) Nanostructured devices and equipment
EP1495163A1 (en) Selectively aligning nanometer-scale components using ac fields
Palapati et al. Single nanowire manipulation within dielectrophoretic force fields in the sub-crossover frequency regime
US20060123628A1 (en) Method of manufacturing a carbon nanotube device
TWI293766B (en) A method for assembling carbon nanotubes and micro-probe and an apparatus thereof
JP3441397B2 (en) Fusion probe for surface signal operation of electronic device and method of manufacturing the same
US20110000703A1 (en) Carbon nanotube supporting body and process for producing the carbon nanotube supporting body
JP2006263908A (en) Method for manufacturing carbon nanotube-based nanocircuit
US8362618B2 (en) Three dimensional nanoscale circuit interconnect and method of assembly by dielectrophoresis
Lipomi et al. Integrated fabrication and magnetic positioning of metallic and polymeric nanowires embedded in thin epoxy slabs
Subramanian et al. Micro and Nanorobotic Assembly Using Dielectrophoresis.
JP4076223B2 (en) Method of joining nanotubes to SPM tip
Kim et al. A nickel silicide nanowire microscopy tip obtains nanoscale information
Wang et al. A novel and facile way to synthesize diamondoids nanowire cluster array
Schuerle et al. Fabricating devices with dielectrophoretically assembled, suspended single walled carbon nanotubes for improved nanoelectronic device characterization
Chen et al. Integration of single-walled carbon nanotubes on to CMOS circuitry with Parylene-C encapsulation
Ingole et al. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires
CN109946340B (en) Preparation method of two-dimensional layered material sample electrical testing microelectrode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees