TW589449B - Micro-current sensing chip - Google Patents

Micro-current sensing chip Download PDF

Info

Publication number
TW589449B
TW589449B TW92129743A TW92129743A TW589449B TW 589449 B TW589449 B TW 589449B TW 92129743 A TW92129743 A TW 92129743A TW 92129743 A TW92129743 A TW 92129743A TW 589449 B TW589449 B TW 589449B
Authority
TW
Taiwan
Prior art keywords
electrode
aforementioned
micro
sensing chip
current sensing
Prior art date
Application number
TW92129743A
Other languages
Chinese (zh)
Inventor
Chi-Wen Jiang
Yan-Jie Shie
Ji-Nan Li
Rung-Chuan Chen
Original Assignee
Eps Bio Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eps Bio Technology Corp filed Critical Eps Bio Technology Corp
Priority to TW92129743A priority Critical patent/TW589449B/en
Application granted granted Critical
Publication of TW589449B publication Critical patent/TW589449B/en

Links

Abstract

The present invention provides a kind of micro-current sensing chip. In the invention, metal oxide semiconductor materials such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), tin selenium oxide (SSO), are mainly used to form the electrode, so as to perform electrochemical reaction, oxidation and reducing reaction, and biochemistry reaction for detecting the biochemical content containing in the tested body.

Description

王久、發明說明: 【發明所屬之技術領域】 電極 、本發明係關於一種感測晶片,係利用金屬氧化物半 進行電化學分析,檢測檢體中生化成分之含量。 【先前技術】 生物亿學篁檢測方法基本分為兩大類。—類是感測器檢法, Μ用感測||將生物化學量轉換為電量進行測量。另—類是試劑 法’即利用化學㈣或試紙檢測生物化學成分 二 術料行定量測量。第-種方法具有測量簡便、裝置小型 快、容易實現在體測量和多參數同時測量,沒有試劑污毕等優 點。而第二種方法定量性好’適合大批量樣品的檢查,因而在自 動生化分析儀中廣泛應用,成為目前研究最主要的生化檢測方 法.;其缺點是設備㈣,不能進行在體和動態測量,試劑對環境 有污染,操作亦較複雜。 π生醫感測n主要是將生理參數透過感測器或換能器的轉換為 電器訊號輸出,可被視為生理i統與電子儀表的介面,故而必須 不影響二者的功能。在應用上主要可分為物理性與化學性用途, 物理性包括肌肉收縮長度變化、血壓、體溫、血流、心電圖、視 力等,化學性包括呼吸氣體成分參數、血糖、酸鹼度、質量、層 析等。。利用μ器的生物化學量測方法,其關鍵技術是生物化^ 感測為。生物化學感測器主要分為生物感測器和電化學感測器兩 大满。生物感測為是把生物識別物質如酶、抗體、抗原、微生物、 細胞器等固定在選擇性透過膜上,與電化學感測器組合在一起而 成,因而又稱作生物一電化學感測器。生物感測器測量的資訊主 要是生物物質中各種合成分子成分。根據其利用的生物識別物質 的不同,生物感測器主要分為兩大類。其一是生物催化感測器, 589449 是利用酶、細胞、組織等具有輔酶性質的物質作為生物識別物 質,如酶感測器、微生物感測器、組織感測器等,其原理是這些 具有辅酶性質物質能選擇性識別被測物質而形成過渡複合物,然 後迅速轉化酶生成物,並在轉化生成物過程中產生電信號。其二 . 是生物吸附感測器,是利用抗體、結合蛋白質、激素受體^ dna; ·Wang Jiu, Description of the invention: [Technical field to which the invention belongs] Electrode The present invention relates to a sensing wafer, which uses a metal oxide half to perform an electrochemical analysis to detect the content of biochemical components in a specimen. [Previous Technology] The detection methods of Biology Yixue are basically divided into two categories. —The category is the sensor detection method, which uses the sensing || to convert the biochemical quantity into electricity for measurement. The other type is the reagent method, which uses chemical rhenium or test paper to detect biochemical components. The first method has the advantages of simple measurement, small and fast device, easy measurement in vivo and multi-parameter simultaneous measurement, and no reagent contamination. The second method is of good quantification and is suitable for the inspection of large quantities of samples. Therefore, it is widely used in automatic biochemical analyzers and has become the most important biochemical detection method in current research. Its disadvantage is that the equipment is too large to perform in-vivo and dynamic measurements. Reagents are polluting the environment and the operation is more complicated. π biomedical sensing n mainly converts physiological parameters into electrical signal output through sensors or transducers. It can be regarded as the interface between the physiological system and electronic instruments, so it must not affect the functions of the two. In application, it can be divided into physical and chemical uses. Physical properties include changes in muscle contraction length, blood pressure, body temperature, blood flow, electrocardiogram, vision, etc. Chemical properties include parameters of respiratory gas components, blood glucose, pH, mass, and chromatography. Wait. . The key technology of the biochemical measurement method using the μ device is biochemical sensing. Biochemical sensors are mainly divided into biosensors and electrochemical sensors. Biosensing is a combination of biorecognition substances such as enzymes, antibodies, antigens, microorganisms, and organelles fixed on a selectively permeable membrane and combined with electrochemical sensors. Tester. The information measured by biosensors is mainly various synthetic molecular components in biological substances. According to the different biometric substances they use, biosensors fall into two main categories. The first is a biocatalytic sensor. 589449 uses substances with coenzyme properties such as enzymes, cells, and tissues as biometric substances, such as enzyme sensors, microbial sensors, and tissue sensors. The principle is that these sensors have Coenzyme substances can selectively recognize the test substance to form a transition complex, and then quickly convert the enzyme product, and generate an electrical signal in the process of transforming the product. The second is a biosorption sensor, which uses antibodies, binding proteins, and hormone receptors ^ dna;

RNA等與生物體具有親和性的物f作為生物識別物質,如免疫感 測為、叉體感測為、DNA感測器等,其原理是這些物質選擇性識 別被測物質而成穩定的複合物,複合物形成前後膜電位的變化用 電化學感測器測量。 I 電化學感測的基本結構是由檢測待測物質引起的電流或電 位變化信號的導體器件與包覆其表而的選擇性透過膜組成,其中 具代表性的有氧電極和離子選擇性電極等研究經㈣用的㈣ 技術。電化學感測器在檢測體液中的PH值、血液中氧和二氧化 碳氣體含量、血液或尿液_賴離子、鉀離子、觸子 k 等電解質含量等方面已達到實用化程度,並形成血氣分析儀和電 解質分析儀等生化儀器。 · 但是,市售感測器例如血糖測試晶片,其利用電化學進行债 測的電極為避免與生化試劑發生自發反應,其材料通常使用I φ (Au) ’ # (Pt),錄(Rh)或把(pd)等貴重金屬,這些貴 ,金屬使得相關制產品之價格居高不下,而具有價格低廉及不 文生化試劑影響等優點的石墨(graphjtecaf>bQn)雖可取代貴重 金屬’但其應用於生化電極時卻具有其缺點,如第四圖所示之石 墨/銀表面在50倍光學顯微鏡下之放大情形,由其中可觀察發;見 石銀電極表面粗縫度高、表面之針孔狀物構型複雜,利用接觸 式溥膜測厚儀(a_steppe「)測量厚度與表面粗缝度,其結果如 第六圖’可得知在石墨平均厚度2Q#m時’其最大厚度與最小厚 度是除以二所得之距離為2、m,顯示其表面明顯粗链,也因此 6 造成石墨/銀電極之不笑 ·· conductivity) ( non-isotroP'c electrical 的昂貴及石墨的低^再現性不佳等缺點等。為克服貴重金屬 要研究方向之一。〇〇貝,電極材料的開發研究為感測器領域的重 【發明内容】 本發明之目的係担μ —種微電流感測晶片,其係包含以下組 成·一 I板,一工作雷士 另-端為電極作輯;°—綠於前述基板上,—端為連接端子, ^ ^ ^ jii ^ ’參考電極,係位於前述基板上,一端為 連接知子,另-端為電極作用區;―間隔板,係位於前述基板、 工作電極及參考雷;μ • 罗一 w ^上方,並於電極作用區上方具有一開放狹 縫,及设盍平板,係位於前述間隔板上方,具有一開孔可與間 板狹縫①成㈣連結;其中前述王作電極及參考電極係利用金 屬氧化物半導體所製成。 刚述金屬氧化物半導體係由金屬氧化物摻入具提供電子特性 之不,.屯物以幵y成負型半導體(n_type semhc〇nc|uct〇r)或摻入具 接文電子特性之不純物以形成正型半導體(p_type sem卜conductor),或者同時摻入兩特性之不純物以形成攜有電子 -電洞之雙極半導體(bi-p〇iar semi-conductor),以提升金屬氧化 物半導體電極之導電度。前述金屬氧化物係選自以下群組:氧化 銦(ln2〇3)、氧化錫(sn〇2)及氧化辞(ZnO)。 前述工作電極與參考電極之材料係選自以下群組:銦錫氧化 物(Indium Tin Oxide,IT〇)、銦鋅氧化物(Indium Zinc Oxide , IZ〇)、鋁鋅氧化物(A山minum Zinc Oxide,AZ〇)、鎵辞氧化 物(Gallium Zinc Oxide,GZ〇)及石西錫氧化物(Sn SeleniumRNA and other substances that have affinity with organisms are used as biological identification substances, such as immune sensing, fork body sensing, and DNA sensors. The principle is that these substances selectively identify the test substance and form a stable compound. Changes in the membrane potential before and after the formation of complexes and complexes were measured with electrochemical sensors. I The basic structure of electrochemical sensing is composed of a conductive device that detects the current or potential change signal caused by the substance to be measured and a selective transmission membrane covering the surface of the device. Among them, representative aerobic electrodes and ion selective electrodes And so on. The electrochemical sensor has reached the practical level in detecting the pH value of body fluids, the content of oxygen and carbon dioxide gas in blood, the content of electrolytes such as blood or urine _ lysine, potassium ion, and contactor k, etc., and forms a blood gas analysis Instrument and electrolyte analyzer and other biochemical instruments. · However, commercially available sensors such as blood glucose test wafers use electrochemical electrodes for debt measurement to avoid spontaneous reactions with biochemical reagents. The materials are usually I φ (Au) '# (Pt), recorded (Rh) Or precious metals such as (pd), which make the price of related products high, and graphite (graphjtecaf > bQn), which has the advantages of low price and the influence of uncultured and biochemical reagents, can replace precious metals', but its When applied to biochemical electrodes, it has its disadvantages. As shown in the fourth figure, the magnification of the graphite / silver surface under a 50x optical microscope can be observed from it. See the surface of the stone silver electrode with high roughness and surface needles. The structure of the holes is complicated. The thickness and surface thickness of the surface are measured using a contact step thickness gauge (a_steppe “). The result is shown in the sixth figure. The minimum thickness is a distance of 2, m obtained by dividing by two, which shows that the surface is obviously thick chain, and therefore 6 causes the graphite / silver electrode to not laugh · conductivity) (non-isotroP'c electrical is expensive and graphite is low ^ Reproducibility Disadvantages such as poorness, etc. One of the research directions to overcome precious metals. 〇〇Bay, the development and research of electrode materials is the focus of the sensor field [Abstract] The purpose of the present invention is to provide a micro-current sensing chip It consists of the following components: an I-plate, a working NVC, and the other end is an electrode compilation; ° -green on the aforementioned substrate, and-the end is a connection terminal, ^ ^ ^ jii ^ 'Reference electrode, located on the aforementioned substrate On one side, the connecting end is connected, and the other side is the electrode action area; the spacer is located on the aforementioned substrate, working electrode and reference lightning; μ • Luo Yi w ^, and has an open slit above the electrode action area, The slab and the slab are located above the spacer plate and have an opening to be connected to the slab ① of the spacer plate. The king electrode and the reference electrode are made of metal oxide semiconductors. Semiconductors are doped with metal oxides to provide electronic characteristics. The semiconductors are formed into negative semiconductors (n_type semhcnc / uct〇r) or doped with impure electronic characteristics to form positive semiconductors. p_type sem (conductor), or doped with two impurities at the same time to form a bi-poiar semi-conductor with electron-holes to improve the conductivity of metal oxide semiconductor electrodes. The oxide system is selected from the following groups: indium oxide (ln2 03), tin oxide (sno2), and oxide (ZnO). The materials of the aforementioned working electrode and reference electrode are selected from the following group: indium tin oxide (Indium Tin Oxide, IT〇), Indium Zinc Oxide (IZ〇), Aluminum Zinc Oxide (Aminum Zinc Oxide, AZ〇), Gallium Zinc Oxide (GZ〇), and 1. Sn Selenium

Oxide,SS〇),較佳係為銦錫氧化物。 前述工作電極與參考電極係透過濺鍍技術、平板印刷技術或 蝕刻技術形成於前述基板之上。 589449 前述基板係為耐濺鍍法溫度之電絕緣材料,前述電絕緣材料 係可為聚氧乙烯對苯二酸(polyethylene terephthalate,PET)、 聚碳酸(polycarbonate,PC)、聚丙稀(polypropylene,PP)、 聚氣乙烯(polyvinyl chloride,PVC )、軟性印刷電路板(FLEXIBLE PRINTED CIRCUIT BOARD,FPC)、玻璃纖維增强聚碳酸酯 (GFPC)或電木(bakelite)。 前述工作電極與參考電極係具有操作端及線路終端,當提供 一^電位差於工作電極與參考電極之操作端’檢體生化分子產生之 響應電流(response current)係透過電極之連接端子與一偵測 單元之連接端子接合傳遞至偵測單元;前述偵測單元係可將偵測 之響應電流強度轉換為檢體生化分子之濃度。 以金屬氧化物半導體電極取代傳統貴重金屬電極及石墨電 極,可降低電極沈積與型態設計之困難度,且金屬氧化物半導體 電極可抗酸鹼及抗藥物化性,其偵測圖形再現性佳,電極導電度 良好,利用金屬氧化物半導體製作電極之感測晶片可有效降低製 作成本。 【實施方式】 第一圖及第二圖係分別顯示本發明提供一種微電流感測晶片 1之立體圖及分解圖。該微電流感測晶片1係包含一基板1 〇 ; — 位於前述基板10上之工作電極11; 一位於前述基板10上之參考 電極12; —位於前述基板10、工作電極11及參考電極12上方 之間隔板15及一位於間隔板15上方之覆蓋平板16 ;其中前述 工作電極11與參考電極12係利用電絕緣材料或空間區隔;前述 微電流生化感測晶片1係利用金屬氧化物半導體構成工作電極11 及參考電極12,使其進行電化學反應、氧化還原反應及生物化學 反應,藉此檢測檢體中生化成分之含量。 前述微電流感測晶片1係為條狀,也可為其他形狀,並不受 8 589449 限制’其可區分為電極作用區5及基底區6 ,兩+ π从+ 1 ^ 屯極作用區5包含 工作笔極11與環繞於工作電極11外之參考蕾 句人丁从+ . 極12’基底區6 匕5工作電極連接端子13及參考電極連接端 , 4 4,其中工作電 極11與工作電極連接端子13形成電氣連結, /、 ^ ^ ^ ± $考電極12與參 号电極連接端子14形成電氣連結,前述間隔板 17 a 99 巧蚁15係具有一狹縫 17及間隔板開孔19,間隔板15係覆蓋於工作带 1 〇 L· ^ 免極11、參考電 枝12上方,間隔板15保留基底區6之卫作電極連接端子η盘 參=電極連接端子U可與偵測單元連接端子4形成電氣連結=Oxide, SS0), is preferably indium tin oxide. The working electrode and the reference electrode are formed on the substrate by a sputtering technique, a lithography technique, or an etching technique. 589449 The substrate is an electrically insulating material that is resistant to the temperature of the sputtering method. The electrically insulating material may be polyethylene terephthalate (PET), polycarbonate (PC), or polypropylene (PP). ), Polyvinyl chloride (PVC), flexible printed circuit board (FLEXIBLE PRINTED CIRCUIT BOARD, FPC), glass fiber reinforced polycarbonate (GFPC) or bakelite. The aforementioned working electrode and reference electrode have an operating terminal and a line terminal. When a potential difference between the working electrode and the operating terminal of the reference electrode is provided, the response current generated by the biochemical molecules of the sample is transmitted through the connection terminal of the electrode and a detector. The connection terminals of the measurement unit are connected to the detection unit; the detection unit can convert the detected response current intensity to the concentration of the biochemical molecules in the sample. Metal oxide semiconductor electrodes replace traditional precious metal electrodes and graphite electrodes, which can reduce the difficulty of electrode deposition and shape design, and metal oxide semiconductor electrodes can resist acid and alkali and drug resistance, and its detection pattern reproducibility is good The electrode has good electrical conductivity, and the use of metal oxide semiconductors to make electrode sensing wafers can effectively reduce manufacturing costs. [Embodiment] The first and second figures respectively show a perspective view and an exploded view of a microcurrent sensing chip 1 provided by the present invention. The micro-current sensing wafer 1 includes a substrate 10;-a working electrode 11 on the aforementioned substrate 10; a reference electrode 12 on the aforementioned substrate 10;-above the aforementioned substrate 10, working electrode 11 and reference electrode 12 A partition plate 15 and a cover plate 16 above the spacer plate 15; the aforementioned working electrode 11 and the reference electrode 12 are separated by an electrically insulating material or space; the aforementioned microcurrent biochemical sensor wafer 1 is formed by a metal oxide semiconductor The working electrode 11 and the reference electrode 12 are subjected to an electrochemical reaction, a redox reaction, and a biochemical reaction, thereby detecting the content of biochemical components in the specimen. The aforementioned microcurrent sensing chip 1 is strip-shaped, and may be of other shapes, and is not limited by 8 589449. It can be divided into an electrode active area 5 and a base area 6, two + π from + 1 ^ Tun pole active area 5 Contains the working pen pole 11 and the reference Lei Congren Ding Cong + surrounding the working electrode 11. The pole 12 'base area 6 the 5 working electrode connection terminal 13 and the reference electrode connection terminal, 4 4 of which the working electrode 11 and the working electrode The connection terminal 13 forms an electrical connection. /, ^ ^ ^ ± $ The test electrode 12 and the reference electrode connection terminal 14 form an electrical connection. The aforementioned spacer plate 17 a 99 Qiao 15 has a slit 17 and a spacer plate opening 19 The spacer plate 15 covers the working belt 10 〇 · ^ free pole 11. Above the reference electrode 12, the spacer plate 15 retains the guard of the base area 6 as the electrode connection terminal η disc parameter = electrode connection terminal U can be connected to the detection unit Connection terminal 4 forms an electrical connection =

取得響應電流訊號,如第三圖所示。前述間隔板15係由電絕緣 材料製成。前述覆蓋平板16其上係具有一開孔18,當覆蓋=板 16、間隔板15及基板10結合為微電流感測晶片j時田檢體係可 由間隔板開孔19被吸入’並沿著間隔板15之狹縫17抵^電極 作用區5,而空氣可經由覆蓋平板開孔18排出。 前述工作電極11、參考電極12、工作電極連接端子13及參 考電極連接端子14之材料係選自以下群組:銦錫氧化物(丨ndiumObtain the response current signal, as shown in the third figure. The aforementioned spacer 15 is made of an electrically insulating material. The cover plate 16 has an opening 18 thereon. When the cover plate 16, the spacer plate 15, and the substrate 10 are combined into a micro-current sensing chip, the field inspection system can be sucked in through the spacer plate openings 19 and along the spacer plate. The slit 17 of 15 abuts the electrode active region 5 and air can be discharged through the cover plate opening 18. The materials of the aforementioned working electrode 11, reference electrode 12, working electrode connection terminal 13 and reference electrode connection terminal 14 are selected from the following group: indium tin oxide (丨 ndium

Tin Oxide,IT〇)、銦鋅氧化物(Indium Zinc Oxide,IZ〇)、 紹鋅氧化物(Aluminum Zinc Oxide,AZ〇)、鎵鋅氧化物(Gallium Zinc Oxide,GZ〇)及石西锡氧化物(Sn Selenium Oxide,SS〇), 較佳係為銦錫氧化物。 前述工作電極11、參考電極12、工作電極連接端子13及參 考電極連接端子14係透過賤鐘技術(sputtering)、平板印刷技 術(lithography)或蝕刻技術(etching)形成於基板1〇之上。 前述基板10係為耐濺鍍法溫度之電絕緣材料,前述電絕緣材料 係可為聚氧乙烯對苯二酸(polyethylene terephthalate,PET)、 聚碳酸(polycarbonate,PC)、聚丙烯(polypropylene,PP)、 聚氣乙稀(polyvinyl chloride,PVC)、軟性印刷電路板(FLEXIBLE PRINTED CIRCUIT,FPC)、玻璃纖維增强聚碳S复酯(GFPC) 9 589449 或電木(bakelite)。Tin Oxide (IT〇), Indium Zinc Oxide (IZ〇), Aluminum Zinc Oxide (AZ〇), Gallium Zinc Oxide (GZ〇), and Stone Tin Oxide (Sn Selenium Oxide, SS), preferably indium tin oxide. The working electrode 11, the reference electrode 12, the working electrode connection terminal 13, and the reference electrode connection terminal 14 are formed on the substrate 10 by using a sputtering technique, a lithography technique, or an etching technique. The substrate 10 is an electrical insulation material that is resistant to the temperature of the sputtering method. The electrical insulation material may be polyethylene terephthalate (PET), polycarbonate (PC), or polypropylene (PP). ), Polyvinyl chloride (PVC), flexible printed circuit board (FLEXIBLE PRINTED CIRCUIT, FPC), glass fiber reinforced polycarbon S compound (GFPC) 9 589449 or bakelite.

如第三圖所示,進行偵測時將微電流感測晶片1之基底區6 ***偵測單元2之插孔3中,插孔3具有偵測單元連接端子4可 與试電流感測晶片1之工作電極連接端子13及參考電極連接端 子14形成電氣連結,當檢體接觸間隔板開孔19時,檢體將夢由 毛細現象沿間隔板15之狹縫17抵達電極作用區5 (參考第二 圖),而空氣可經由覆蓋平板開孔18排出。此時提供一電位差於 工作電極11與參考電極12時,一響應電流將生成,透過偵測單 元2之偵測可將響應電流之大小轉換為檢體中生化分子之濃度。 第五圖為銦錫氧化物(ITO)半導體電極薄膜之光學顯微鏡放 大圖,在5x10光學倍率下觀察形成於PET基板上之銦錫氧化物 (ITO)半導體電極薄膜,圖中ITO兩電極薄膜距離為3〇〇#m, 其薄膜層邊界十分光滑,利用接觸式薄膜測厚儀( 分析得銦錫氧化物(|T0)半導體電極薄膜,其結果如第七圖, 測得數據顯示但導體電極薄膜之厚度小於,電極表面㈣ ㈣依基板材質有所變動,但在表面粗糙度大於Q Q心⑴的一 ,基板製得之銦錫氧化物(|T〇)半導體電極其最大厚度與最小As shown in the third figure, the base area 6 of the microcurrent sensing chip 1 is inserted into the jack 3 of the detection unit 2 during detection, and the jack 3 has the detection unit connection terminal 4 to connect with the test current sensing chip. The working electrode connection terminal 13 and the reference electrode connection terminal 14 of 1 form an electrical connection. When the specimen contacts the opening 19 of the spacer plate, the specimen will reach the electrode action area 5 from the capillary phenomenon along the slit 17 of the spacer plate 15 (reference The second figure), and the air can be discharged through the cover plate opening 18. At this time, when a potential difference is provided between the working electrode 11 and the reference electrode 12, a response current will be generated, and the detection current of the detection unit 2 can be used to convert the magnitude of the response current into the concentration of biochemical molecules in the sample. The fifth image is an enlarged optical microscope image of an indium tin oxide (ITO) semiconductor electrode film. An indium tin oxide (ITO) semiconductor electrode film formed on a PET substrate is observed at an optical magnification of 5x10. The distance between the two ITO electrode films in the figure It is 30.0 # m, and the boundary of the film layer is very smooth. The contact film thickness gage (analyzed indium tin oxide (| T0) semiconductor electrode film is obtained. The result is shown in the seventh figure. The measured data shows but the conductor electrode The thickness of the film is less than that of the electrode. The surface of the electrode may vary depending on the material of the substrate. However, if the surface roughness is greater than that of QQ, the maximum thickness and minimum of the indium tin oxide (| T〇) semiconductor electrode made of the substrate

厚ί是除!^二所得之距料2.5/zm,顯示其表面粗糙度較小,由 第=圖及第七圖之比較結果可證實本發明利用銦錫氧化物(丨丁〇 ) 半導體構成之電極,具有較石墨/銀電極光滑之表面,提升電化學 分析之精準度。 旅a雖拉發Μ已讀佳實施例揭露如上,然其並非用以限定 "任何熟悉此技藝者,在不脫離本發明之精神和範圍内,The thickness is 2.5 / zm, which is obtained by dividing the thickness. It shows that the surface roughness is small, and the comparison results of the seventh graph and the seventh graph can confirm that the present invention uses an indium tin oxide (丨 丁 〇) semiconductor composition The electrode has a smoother surface than graphite / silver electrodes, improving the accuracy of electrochemical analysis. Although Lufa ’s read embodiment has been disclosed as above, it is not intended to limit " any person familiar with the art, without departing from the spirit and scope of the invention,

St::更動與潤飾,因此,本發明之保護範圍,當視後附 申明專利乾圍所界定者為準。 10 589449 【圖式簡單說明】 第一圖係為微電流感應晶片之立體示意圖。 第二圖係為微電流感應晶片之分解示意圖。 弟二圖係為彳政電流感應晶片與读測單元結合示意圖。 第四圖係為銀網狀結構披覆一石墨層之光學顯微鏡放大圖。 第五圖係為銦錫氧化物(ITO)半導體電極薄膜之光學顯微鏡 放大圖。 第六圖係為接觸式薄膜測厚儀測量石墨/銀電極表面分析圖。 第七圖係為接觸式薄膜測厚儀測量銦錫氧化物(丨τ〇)半導體 鲁 電極薄膜表面分析圖。 a [主要元件符號] 1微電流感測晶片 2偵測單元 3插孔 4偵測單元連接端子 5電極作用區 6基底區 10 基板 11 工作電極 12 參考電極 13 工作電極連接端子 14 參考電極連接端子 15 間隔板 16 覆蓋平板 17 狹縫 18 覆蓋平板開孔 19 間隔板開孔St :: Modifications and retouching. Therefore, the scope of protection of the present invention shall be determined as defined in the attached patent patent. 10 589449 [Brief description of the diagram] The first diagram is a three-dimensional schematic diagram of a micro current sensing chip. The second figure is an exploded view of the micro current sensing chip. The second figure is a schematic diagram of the combination of the current sensing chip and the reading and measuring unit. The fourth figure is an enlarged optical microscope view of a silver mesh structure covered with a graphite layer. The fifth image is an enlarged view of an optical microscope of an indium tin oxide (ITO) semiconductor electrode film. The sixth figure is the analysis chart of the graphite / silver electrode surface measured by the contact film thickness gauge. The seventh figure is an analysis chart of the surface of an indium tin oxide (丨 τ〇) semiconductor electrode film measured by a contact film thickness gauge. a [Symbol of main component] 1 Microcurrent sensing chip 2 Detection unit 3 Jack 4 Detection unit connection terminal 5 Electrode active area 6 Base area 10 Substrate 11 Working electrode 12 Reference electrode 13 Working electrode connection terminal 14 Reference electrode connection terminal 15 Spacer 16 Cover plate 17 Slot 18 Cover plate opening 19 Spacer plate opening

Claims (1)

589449 拾、申請專利範圍: 1·—種微電流感測晶片,包含: 一基板; 該工作電極之一端為連 該芩考電極之一端為連 一 4作電極,係位於前述基板上 接端子,一端為電極作用區; 一參考電極,係位於前述基板上 接端子,一端為電極作用區;589449 The scope of patent application: 1. A micro-current sensing wafer, including: a substrate; one end of the working electrode is connected to the test electrode and one of the four electrodes is connected to the terminal on the substrate, One end is an electrode active area; a reference electrode is located on the aforementioned substrate to connect a terminal, and one end is an electrode active area; ” 一間隔板,係位於前述基板、工作電極及參考電極上方, 並於電極作用區上方具有一開放狹縫;及 -覆蓋平板’係位於間隔板上方’具有_開孔與前述間隔 反狹縫幵^/成二間連結,纟巾前述卫作電極及參考電極係、由金屬 氧化物半導體製成。 2. 如申請專利範圍第i項之微電流感測晶片,其中前述金屬氧化 物半導體係由金屬氧化物摻入具提供電子特性之不純物以形成 負型半導體(n-type semi-conductor)。"A spacer plate is located above the aforementioned substrate, working electrode and reference electrode, and has an open slit above the electrode active area; and-the covering plate 'is located above the spacer plate' has _ openings and the aforementioned reverse slit幵 ^ / into two links, the aforementioned health working electrode and reference electrode system are made of metal oxide semiconductor. 2. For example, the micro current sensing wafer of the item i of the patent application scope, wherein the aforementioned metal oxide semiconductor system Impurities having electronic characteristics are doped with metal oxides to form a n-type semi-conductor. 3. 如申:專利範圍第1項之微電流感測晶片,其中前述金屬氧化 物半導體係由金屬氧化物摻入具接受電子特性之不純物以形成 正型半導體(P,type semi-conductor)。 4·如申請專利範圍第1項之微電流感測晶片,其中前述金屬氧化 物半V紅:係由金屬氧化物同時摻入兩特性之不純物以形成攜有 電子電洞之雙極半導體(b卜p〇|ar semj_c〇nduct〇r)。 5.如申請專利範圍第2至4項中任一項之微電流感測晶片,其中 月’J述金屬氧化物係選自以下群組:氧化銦(丨n2〇3 )、氧化錫 (Sn02)及氧化鋅(Zn〇)。 6·如申請專利範圍第1項之微電流感測晶片,其中前述工作電極 吳爹考電極之材料係選自以下群組:銦錫氧化物(indjum Tjn 〇Xlde ’ 丨丁〇)、銦鋅氧化物(Indium Zinc Oxide,IZO)、紹鋅 L2 589449 氧化物(Aluminum Zinc Oxide,AZ〇)、鎵鋅氧化物(Gallium Zinc Oxide,GZ〇)及硒錫氧化物(Sn Selenium Oxide,SS〇)。 7. 如申請專利範圍第6項之微電流感測晶片,其中前述工作電極 與參考電極之材料係為銦錫氧化物(Indium Tin Oxide,IT〇)。 8. 如申請專利範圍第1項之微電流感測晶片,其中前述基材之材 質係選自下列群組:聚氧乙烯對苯二酸(Polyethylene terephthalate,PET)、聚石炭酸(polycarbonate,PC)、聚丙烯 (polypropylene,PP)、聚氯乙浠(polyvinyl chloride,PVC )、 軟性印刷電路板(FLEXIBLE PRINTED CIRCUIT,FPC)、玻 璃纖維增强聚碳酸酯(GFPC)或電木(bakelite)。 9. 如申請專利範圍第1項之微電流感測晶片,其係可進一步結合 一偵測裝置,以偵測工作電極及參考電極產生之響應電流 (response current) ° 10. 如申請專利範圍第1項之微電流感測晶片,其係用於偵測電化 學反應、氧化還原反應及生物化學反應,藉此檢測檢體中生化 成分之含量。 11 ·如申請專利範圍第1項之微電流感測晶片,其中前述間隔板係 由電絕緣材料製成。3. As claimed: The microcurrent sensing chip of item 1 of the patent scope, wherein the aforementioned metal oxide semiconductor is a type semi-conductor (P, type) in which an impurity having an electron-accepting characteristic is doped with a metal oxide. 4. The micro-current sensing chip according to item 1 of the scope of the patent application, wherein the aforementioned metal oxide half V red: the metal oxide is simultaneously doped with two characteristics of impurities to form a bipolar semiconductor with an electron hole (b Bu p ar semj_conductor). 5. The micro-current sensing chip according to any one of claims 2 to 4, wherein the metal oxide system described above is selected from the following groups: indium oxide (n2〇3), tin oxide (Sn02 ) And zinc oxide (Zn0). 6. The micro-current sensing chip according to item 1 of the scope of patent application, wherein the material of the aforementioned working electrode Wu Dao Kao electrode is selected from the following group: indium tin oxide (indjum Tjn 〇Xlde ′ 丁 〇), indium zinc Indium Zinc Oxide (IZO), Zinc Oxide L2 589449 (Aluminum Zinc Oxide, AZ〇), Gallium Zinc Oxide (GZ〇), and Selenium Tin Oxide (Sn Selenium Oxide, SS〇) . 7. The micro-current sensing chip according to item 6 of the patent application, wherein the material of the aforementioned working electrode and reference electrode is Indium Tin Oxide (IT0). 8. For the micro-current sensing chip of the first scope of the patent application, wherein the material of the aforementioned substrate is selected from the following groups: Polyethylene terephthalate (PET), polycarbonate (PC) , Polypropylene (PP), polyvinyl chloride (PVC), flexible printed circuit board (FLEXIBLE PRINTED CIRCUIT, FPC), glass fiber reinforced polycarbonate (GFPC) or bakelite. 9. If the micro current sensing chip in the first item of the patent application scope, it can be further combined with a detection device to detect the response current generated by the working electrode and the reference electrode ° 10. The microcurrent sensing chip of item 1 is used to detect the electrochemical reaction, redox reaction and biochemical reaction, thereby detecting the content of biochemical components in the specimen. 11 · The micro-current sensing chip according to item 1 of the patent application, wherein the aforementioned spacer is made of an electrically insulating material.
TW92129743A 2003-10-27 2003-10-27 Micro-current sensing chip TW589449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92129743A TW589449B (en) 2003-10-27 2003-10-27 Micro-current sensing chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92129743A TW589449B (en) 2003-10-27 2003-10-27 Micro-current sensing chip

Publications (1)

Publication Number Publication Date
TW589449B true TW589449B (en) 2004-06-01

Family

ID=34059663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92129743A TW589449B (en) 2003-10-27 2003-10-27 Micro-current sensing chip

Country Status (1)

Country Link
TW (1) TW589449B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593964B (en) * 2016-08-26 2017-08-01 超極生技股份有限公司 Probe type detecting device and module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593964B (en) * 2016-08-26 2017-08-01 超極生技股份有限公司 Probe type detecting device and module

Similar Documents

Publication Publication Date Title
TWI396844B (en) Electrode for biosensor, manufacturing method thereof and biosensor thereof
KR101723395B1 (en) Fill sufficiency method and system
EP2873969B1 (en) Hematocrit measurement system and measurement method using the same
CN103048462B (en) Multi-parameter electrochemical immunosensor based on electrode array and preparation method thereof
US20190204321A1 (en) Field effect sensor for colon cancer
CN102033087A (en) Multi-analyte test strip with inline working electrodes and shared opposing counter/reference electrode
JP2011099849A (en) Dual-chamber multi-analyte test strip including counter electrode
Pandey et al. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients
US11307162B2 (en) Highly sensitive biomarker biosensors based on organic electrochemical transistors
CN101929977A (en) Enzyme bioelectrochemical sensing chip and preparation and using methods thereof
Fan et al. Smartphone-based electrochemical system with multi-walled carbon nanotubes/thionine/gold nanoparticles modified screen-printed immunosensor for cancer antigen 125 detection
CN104684473B (en) System and method for determining the concentration of glucose insensitive to hematocrit
CN209086198U (en) A kind of blood glucose, the difunctional electrochemical test strip of uric acid
CN1710418A (en) Biological sensor for quickly detecting hemoglobin and detecting method thereof
TW201007164A (en) Potentiometric biosensor and the forming method thereof
Zhao et al. Ultra-sensitive electrochemical determination of carcinoembryonic antigen by a sandwich immunosensor graphene oxide (GO)-Gold substrate and a silver-coated bovine serum albumin (BSA)-platinum nanocomposite on a glassy carbon electrode (GCE)
CN112229884A (en) Vitamin detection printed electrode based on carbon paste modification process and preparation process thereof
TW589449B (en) Micro-current sensing chip
TW200930809A (en) Apparatus for cell number and cellular protein detecting and method thereof
TWI329738B (en)
TW416005B (en) Biosensor with multiple sampling ways
CN113866235B (en) Electrochemiluminescence-colorimetric dual-mode sensing detection device based on closed bipolar electrode and construction method and application thereof
TWI244550B (en) Electrochemistry test unit, biological sensor, the manufacturing method, and the detector
CN113655099A (en) Electrochemical sensor and application thereof in human body physiological and biochemical index detection
US20110111488A1 (en) Biosensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees