TW201133912A - Fabricating method of thin film solar cell - Google Patents

Fabricating method of thin film solar cell Download PDF

Info

Publication number
TW201133912A
TW201133912A TW099107836A TW99107836A TW201133912A TW 201133912 A TW201133912 A TW 201133912A TW 099107836 A TW099107836 A TW 099107836A TW 99107836 A TW99107836 A TW 99107836A TW 201133912 A TW201133912 A TW 201133912A
Authority
TW
Taiwan
Prior art keywords
light
pattern
conductive layer
layer
solar cell
Prior art date
Application number
TW099107836A
Other languages
Chinese (zh)
Inventor
Chin-Yao Tsai
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW099107836A priority Critical patent/TW201133912A/en
Priority to US13/038,536 priority patent/US20110146794A1/en
Priority to EP11157071A priority patent/EP2367207A2/en
Publication of TW201133912A publication Critical patent/TW201133912A/en
Priority to US13/287,325 priority patent/US20120042948A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A fabricating method of a thin film solar cell is provided. First, a transparent substrate is provided. Next, a first transparent conductive layer is formed on the transparent substrate. Then, a photovoltaic layer is formed on the first transparent conductive layer. Next, a second transparent conductive layer is formed on the photovoltaic layer. Then, a light-reflecting structure having a texture structure is formed on the second transparent conductive layer.

Description

^04twf.doc/n 201133912 六、發明說明: 【發明所屬之技術領域】 作方法 本發明疋有關於-種太陽能電池的製作方法,且特別 是有關於—種可提制膜太陽能電池之光電轉換效率的製 【先前技術】 因此源f缺,人們對環保重要性的認知提高, 也積極研發替代能源與再生能源的相 以及使 1用石化目前人類對於石化能源的依賴程度 源來的影響。在眾多的替代能 矚目。主要原因是太陽h “電池(solarceI1)最受 能,iff二 太%此电池可直接將太陽能轉換成電 :2電過程中不會產生二 質,不會對環境造成污染。 ②飞乳化物寻有害物 一般而言,習知薄膣女 t 序全面堆疊有電極層、光電通常是於-基板上依 外側照射轉膜太陽 、a極層。當光線由 產生自由二 電池時,光電轉換層適於受光能而 電子與電洞會分別往兩層J由所形成的内㈣吏 態,此時若外加負载電路:子種電能的物 電路或裝置it行驅動。 、便可提供電能而使 二:現:=::=:②換效率平均约在 切賴太㈣電池的光電轉換效 201133912 —-—^ •«'wf.doc/n 陽 【發明内容】 本么明提供-種薄膜太陽能電池的製 f;有凹凸結構的光反射結構於膜層上,而可提:形 缚膜太陽能電池内的利用率,進而使薄膜太:=束於 電轉換效率可獲得提升。 、 匕電,也的光 本發明提出-種薄膜太陽能電池的製作方法 =一透光基板。接著,形成—第—透光導電層於透光基 。而後,形成一光伏層於第一透光導電層上。然 形成一第二透光導電層於光伏層上。接著,於第二^光^ 電層上形成具有一凹凸結構的一光反射結構。 、在本發明之一實施例中,上述之形成光反射結構的方 法包括一壓印製程。 在本發明之一實施例中,上述之壓印製程包括於第二 透光導電層上全面地形成一反射材料層。接著,將具有一 凹凸圖案的模具壓印於反射材料層上,以形成具有凹凸結 構的光反射結構。 在本發明之一實施例中,上述之壓印製程包括:於第 一透光導電層上全面地形成一透光材料層。接著,將具有 凹凸圖案的模具壓印於透光材料層上,以使透光材料層 的表面形成有凹凸結構。而後’形成一反射材料層於透光 材料層上。 201133912 〜^^^〇4twf.doc/n 在本發明之一實施例_,上 透光材料層。 、之反射材料層是共形於 在本發明之-實施财,上述 -第-子圖案結構於第 包括:磨印 -工闫安丛投 亢等电層上。接著,壓印一第 在本發明之丨/塌成歧射結構。^04twf.doc/n 201133912 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for fabricating a solar cell, and more particularly to photoelectric conversion of a film-forming solar cell The system of efficiency [previous technology] Therefore, the source of f is lacking, people's awareness of the importance of environmental protection is improved, and the influence of alternative energy and renewable energy sources and the dependence of petrochemicals on the petrochemical energy source. In many alternatives can be noticed. The main reason is that the sun h "battery (solarceI1) is the most energy-efficient, iff two too%. This battery can directly convert solar energy into electricity: 2 electricity will not produce secondary quality, will not cause pollution to the environment. 2 fly emulsion search Hazardous In general, the conventional thin scorpion t-sequence is fully stacked with an electrode layer, and the photoelectric is usually irradiated on the substrate on the outer side of the sun, the a-pole layer. When the light is generated by the free two-cell, the photoelectric conversion layer is suitable. In the case of receiving light energy, the electrons and the holes will be separated into two layers by the internal (four) state. At this time, if a load circuit is added: the circuit or device of the sub-type electric energy is driven, the electric energy can be supplied. :Now:=::=:2 The efficiency of the conversion is about the same as the photoelectric conversion effect of the battery of the solar cell. 201133912 —-—^ •«'wf.doc/n Yang [Invention] This is a thin film solar cell. The light-reflecting structure having the concave-convex structure is on the film layer, and it can be mentioned that the utilization rate in the solar cell of the bound film is increased, so that the film is too:=the beam can be improved in electrical conversion efficiency. The invention proposes a thin film solar cell The manufacturing method is as follows: a transparent substrate is formed. Then, a light-transmissive conductive layer is formed on the transparent substrate, and then a photovoltaic layer is formed on the first transparent conductive layer, thereby forming a second transparent conductive layer on the photovoltaic layer. Then, a light reflecting structure having a concave-convex structure is formed on the second optical layer. In an embodiment of the invention, the method for forming the light reflecting structure comprises an imprinting process. In an embodiment of the invention, the embossing process comprises forming a reflective material layer on the second light-transmissive conductive layer. Then, a mold having a concave-convex pattern is imprinted on the reflective material layer to form the concave and convex portions. The light-reflecting structure of the structure. In an embodiment of the invention, the embossing process comprises: forming a light-transmissive material layer on the first light-transmissive conductive layer. Then, stamping the mold having the concave-convex pattern The light transmissive material layer is formed on the surface of the light transmissive material layer to form a concave-convex structure, and then a reflective material layer is formed on the light transmissive material layer. 201133912 ~^^^〇4twf.doc/n In one embodiment of the present invention example_ The upper light transmissive material layer is conformal to the present invention, and the above-mentioned -th sub-pattern structure is included on the first electrical layer: grinding-worker Yan Anchong. The first in the present invention is collapsed into a disproportionate structure.

括直條狀、條狀、二二、柊S之J反射結構的形狀包 赛克形狀。^ 邊格子狀、菱形狀、蜂寫狀或馬 法包實麵+,上紅軸歧射結構的方 呈有實施财,上述之網目製程包括:配置 圓宰且有的—模具於第二透光導電層上,其令網狀 露出第二透光導電層的開口。接著,形成 第而r=r料層填入一與 結構的光反而後,移除模具,以形成具有凹四 二、秀=發明之—實施例中,上述之網目製程包括:於第 :齡:Ϊ層上全面地形成一透光材料層。接著,將具有 θ/、的模具網印於透光材料層上,以使透光材料層 表面形成有網狀圖案的結構。錢,移除模具。而後, 形成一反射材料層於透光材料層上。 在明之—實施例中,上述之網目製程包括:配置 具有第—網狀圖案的一第一模具於第二透光導電層上, 201133912 3^jv;Hiwf.doc/n 其中第-網狀圖案具有多個暴露出第二透 開口。接著,形成-第-子圖案結構於第—模=的= 第-子,案結構與部分第二透光導電層連接。然後,酉^ 具有:第二網狀圖案的—第二模具於第一子圖案結 =第二網狀圖案具有多個第二開口,且第二二晨 ==開二•形成-第二子圖案結構^ 賽克形狀。 ❿狀蜂萬狀或馬 選自m:例中’上述之光反射结構的材質是 組成之物ϊί中=、一金屬氧化物以及-有機材料所 取〈物質群中延擇的-種或多種物質。 鍅、鈮、錮、‘、釕、2、:、鎳、銅、鋅、鎵、鍺、纪、 此,、紐、鹤、:、:、:、,、鑛、銦、錫、錄、鑭、 金所構成之族群。白、金、銘、錯以及其合 銦、::=之:實施:1中,上述之金屬氧化物包括氧化 氧化切、化鎮、氧化紐、氧化欽、 錫酸鎘(Cd s Ω x氧化鋁、氧化銓、氧化銦錫、 或摻氟的‘:亞4錫:銅的錫酸鎘、氧化亞錫(Stannic oxide ) —^4twf.d〇c/n 201133912 =發明之-實施财,上述之有機㈣包括_ (dye)或疋顏料(pigment)。 在本發明之-實施例中,上述之透光基板具有一 面,光束適於經由入光面進入薄膜太陽能電池中, 透光ΐϊ、第一透光導電層、光伏層以及第二 _奈米至ιΐ0。奈米之間的至少 近紅施例中,上述之部分繼括紅光、 作方法本ί 上述之薄膜太陽能電池的製 透光基板與透光基;進=於_結構上’以將—背 第二膜太,能電池的製作方法是於 加光束在薄膜太陽"j凹凸結構的光反射結構,以增 提高光束通過光伏声^光:破反射的機會。如此-來,可 收的機會,而產^多的電二=增^束被光伏層吸 薄膜太陽能電池的製作方=子電,輯。換吕之’本發明之 太陽能電池的光束利,,、,可有效地提高所製造之薄膜 電池的光電轉換效率。、躺提升所製造之帛膜太陽能 舉實下《僅’下文特 .wf.doc/n 201133912 【實施方式】 圖1A至圖id為本發明之一實施例之一種薄膜太陽 能電池的製作流裎的剖面示意圖,其中圖1C為另一實施 例之形成具有凹凸結構之光反射結構的剖面示意圖。請參 考圖1A,首先,提供一透光基板u〇,其中透光基板11〇 具有一入光面112,且透光基板11〇例如是一玻璃基板。 接著’依序形成一第一透光導電層12〇、一光伏層130以 及一苐一透光導電層140於透光基板11〇之背向入光面 112的另一表面114上。 在本實施例中,第一透光導電層12〇形成於透光基板 110上’其中第一透光導電層120的材質是採用銦錫氧化 物(indium tin oxide,IT0)、钢辞氧化物(indium zinc oxide, IZO)、銦錫鋅氧化物(indium tin zinc oxide,ITZO)、氧化鋅 (zinc oxide)、銘錫氧化物(aluminum tin oxide,ΑΤΟ)、在呂鋅 氧化物(aluminum zinc oxide, AZO)、編銦氧化物(cadmium indium oxide,CIO)、锡鋅氧化物(cadmium zinc oxide, CZO)、鎵鋅氧化物(GZO)及錫氟氧化物(FTO)之類的透光 導電材料’或上述的組合。此外,形成第一透光導電層12〇 的方式可以是使用藏鐘法(sputtering)、金屬有機化學氣 相沈積(metal organic chemical vapor deposition,MOCVD ) 法、或蒸鑛法.(evaporation)。 請繼續參考圖ΙΑ,光伏層130形成於第一透光導電 層120上,其中光伏層130可以是一 IV族薄膜、一ΙΠ_ν 族化合物半導體薄膜、一 II-VI族化合物半導體薄膜或一 201133912 … 一…u4twf.doc/n 有機化合物半導體薄膜。 詳細而言’ IV族薄膜例如是包含有a_si、HC_Si、、 a-SiGe、μο-SiGe、a-SiC、μο-SiC、堆疊式(tandem) IV 族 薄膜(如:堆疊式矽薄膜)或三層(triple) IV族薄膜(如: 三層矽薄膜)至少其一。III-V族化合物半導體薄膜例如是 包含有砷化镓(GaAs)、鱗化銦鎵(LiGaP)或其組合。 ii-vi族化合物半導體薄膜例如是包含有銅銦砸(CIS)、 銅銦鎵砸(CIGS)、編化蹄(CdTe)或其組合。有機化合 物半導體薄膜例如是包含有3-己烧嗟吩 (p〇ly (3-hexylthiophene),P3HT)與奈米碳球(pCbm)混合 物。 在本實施例中,形成光伏層130的方法例如採用射頻 電漿輔助化學氣相沉積法(Radio Frequency PlasmaThe shape of the J reflection structure including straight strips, strips, 22s, and 柊S is in the shape of the Sike. ^ The side lattice shape, the diamond shape, the bee writing shape or the Mafa package surface +, the upper red axis of the framing structure is implemented. The above-mentioned mesh process includes: configuration of the round slaughter and some - the mold is in the second On the photoconductive layer, the mesh is exposed to the opening of the second light-transmissive conductive layer. Next, forming a first r=r layer is filled with a light of the structure, and then removing the mold to form a recessed mold, a show=invention. In the embodiment, the mesh process includes: A layer of light transmissive material is formed over the crucible layer. Next, a mold having θ/, is screen printed on the light-transmitting material layer to form a structure having a mesh pattern on the surface of the light-transmitting material layer. Money, remove the mold. Then, a reflective material layer is formed on the light transmissive material layer. In an embodiment, the mesh process includes: arranging a first mold having a first mesh pattern on the second light-transmissive conductive layer, 201133912 3^jv; Hiwf.doc/n wherein the first mesh pattern There are a plurality of exposed second through openings. Next, the -first sub-pattern structure is formed in the first mode = the first sub-substrate, and the structure is connected to a portion of the second light-transmissive conductive layer. Then, 酉^ has: a second mesh pattern--the second mold is in the first sub-pattern knot=the second mesh pattern has a plurality of second openings, and the second second morning==open two•form-second child Pattern structure ^ Sike shape. The bee-like bee or the horse is selected from the group consisting of m: in the above, the material of the above-mentioned light-reflecting structure is composed of the substance 、ί, = a metal oxide, and - the organic material is selected from the substance group or a plurality of substances.鍅, 铌, 锢, ', 钌, 2,: nickel, copper, zinc, gallium, bismuth, Ji, this, New Zealand, crane,:,:,:,,,,,,,,,,,,,,,,,, And the ethnic group formed by the gold. White, gold, Ming, wrong and its indium, ::=: Implementation: 1, the above metal oxides include oxidative oxidation, chemical, oxidized, oxidized, cadmium stannate (Cd s Ω x oxidation Aluminum, yttria, indium tin oxide, or fluorine-doped ':Asian 4 tin: copper cadmium stannate, stannous oxide —^4twf.d〇c/n 201133912=Invention - Implementation, above The organic (4) includes _ (dye) or 疋 pigment. In the embodiment of the invention, the transparent substrate has one side, and the light beam is adapted to enter the thin film solar cell via the light incident surface, a light-transmissive conductive layer, a photovoltaic layer, and at least a near-red embodiment between nanometers and nanometers, wherein the above part is followed by red light, and the light-emitting method of the thin film solar cell described above is used. The substrate and the light-transmissive base; the in-frame structure is to be-backed to the second film too, and the energy-making method is to add a light beam to the light-reflecting structure of the film sun "j concave-convex structure to increase the light beam through the photovoltaic Sound ^ light: the opportunity to break the reflection. So - come, the opportunity to receive, and the production of more than two electricity = increase ^ bundle The production method of the vacant layer-absorbing thin film solar cell is sub-electric, and the light beam of the solar cell of the invention is improved, and the photoelectric conversion efficiency of the manufactured thin film battery can be effectively improved.帛 太阳能 太阳能 太阳能 《 下文 下文 下文 下文 下文 下文 下文 下文 下文 w w w w w w w w w w w 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 339 1C is a schematic cross-sectional view of a light reflecting structure having a concave-convex structure according to another embodiment. Referring to FIG. 1A, firstly, a transparent substrate u is provided, wherein the transparent substrate 11 has a light incident surface 112 and is transparent. The substrate 11 is, for example, a glass substrate. Then, a first light-transmissive conductive layer 12, a photovoltaic layer 130, and a light-transmissive conductive layer 140 are sequentially formed on the back surface 112 of the transparent substrate 11 In the present embodiment, the first transparent conductive layer 12 is formed on the transparent substrate 110. The material of the first transparent conductive layer 120 is made of indium tin oxide. IT0), steel oxygen Indium zinc oxide (IZO), indium tin zinc oxide (ITZO), zinc oxide, aluminum tin oxide (ΑΤΟ), aluminum zinc oxide (aluminum zinc) Oxide, AZO), cadmium indium oxide (CIO), cadmium zinc oxide (CZO), gallium zinc oxide (GZO), and tin oxyfluoride (FTO) Material 'or a combination of the above. Further, the first light-transmitting conductive layer 12A may be formed by using a sputtering method, a metal organic chemical vapor deposition (MOCVD) method, or an evaporation method. Please continue to refer to the figure, the photovoltaic layer 130 is formed on the first light-transmissive conductive layer 120, wherein the photovoltaic layer 130 can be a group IV film, a ΙΠ ν family compound semiconductor film, a II-VI compound semiconductor film or a 201133912 ... A...u4twf.doc/n organic compound semiconductor film. In detail, the 'IV group thin film includes, for example, a_si, HC_Si, a-SiGe, μο-SiGe, a-SiC, μο-SiC, a tandem type IV film (eg, a stacked tantalum film) or three. At least one of a group IV film (eg, a three-layer film). The III-V compound semiconductor thin film contains, for example, gallium arsenide (GaAs), indium gallium telluride (LiGaP), or a combination thereof. The ii-vi compound semiconductor thin film includes, for example, copper indium bismuth (CIS), copper indium gallium bismuth (CIGS), braided hoof (CdTe), or a combination thereof. The organic compound semiconductor thin film contains, for example, a mixture of p〇ly (3-hexylthiophene, P3HT) and a nanocarbon sphere (pCbm). In this embodiment, the method of forming the photovoltaic layer 130 is, for example, radio frequency plasma assisted chemical vapor deposition (Radio Frequency Plasma).

Enhanced Chemical Vapor Deposition,RF PECVD)、超高 頻電漿輔助化學氣相沉積法(Very High Frequency PlasmaEnhanced Chemical Vapor Deposition (RF PECVD), Ultra High Frequency Plasma Assisted Chemical Vapor Deposition (Very High Frequency Plasma)

Enhanced Chemical Vapor Deposition,VHF PECVD)或者是 •ί政波氣聚辅助化學氣相、;儿積法(Microwave PlasmaEnhanced Chemical Vapor Deposition, VHF PECVD) or • ί政波气聚辅助Chemical gas phase;

Enhanced Chemical Vapor Deposition,MW PECVD ) 〇 於形成光伏層130之後,再形成第二透光導電層14〇 於光伏層130上,如圖1A所示。在本實施例中,形成第 二透光導電層140的方式同於上述形成第一透光導電層 120的方式’意即形成第二透光導電層14〇的方法亦可使 用上述濺鍍法、金屬有機化學氣相沈積法、或蒸鍍法,而 其材質例如是前述之第一透光導電層12〇的材質,在此便 201133912 -------Avf.doc/n 不再贅述。 接著’請再參考圖ΙΑ,於第二透光導電層140上全 面地形成一反射材料層162,其中反射材料層162完全覆 盍第二透光導電層140。接著,提供一具有凹凸圖案ρ的 才吴具ΝΙ1於反射材料層162的上方。 然後’將具有凹凸圖案Ρ的模具Ml利用機械力壓印 的方式壓印於反射材料層162上,如圖1B所示。接著’ 固化反射材料層162a’則可形成一種具有凹凸結構p的光 反射結構150。也就是說,模具M1壓印且固化後,具有 凹凸結構P的反射材料層162a即為一種光反射結構。 當然,於其他實施例中,請參考圖1C,將具有凹凸圖案p, 的模具ΜΓ壓印於反射材料層162上,亦可形成另一種暴 露出部分第二透光導電層140的光反射結構i5〇a。意即 模具Ml’且固化壓印後,具有凹凸結構p,且暴露出部份第 —透光導電層140的反射材料層i62b即為另一種光反射会士 構150a。承上述可知,本實施例可透壓印製程來形成光反 射結構150、150a,其中機械力壓印所施加的力量亦可決 定光反射結構150、150a的型態。 此外,光反射結構150的材質可以是選自由—白漆、 一金屬、一金屬氧化物以及一有機材料所組成之物質群中 選擇的一種或多種物質。其中,金屬是選自由鋁、銃、鈦、 釩、鉻、錳、鐵、鈷、鎳、銅、鋅、鎵、鍺、釔、鉛、鈮、 鉬、鉻、釕、铑、鈀、銀、鎘、銦、錫、銻、鑭、釓、铪、 !旦、鎢、銖、锇、錶、鉑、金、銳、錯以及其合金所構成 10 201133912 j^.j〇4twf.doc/n 之族群金屬氧化物可以是選擇氧化銦、氧化錫⑴n 〇Xlde)、>氧切、氟化鎂、氧化组、氧化鈦、氧化鎂、氧 化錯氮化石夕、氧化铭、氧化給、氧化銦錫、錫酸鑛(Cd2Enhanced Chemical Vapor Deposition, MW PECVD) After forming the photovoltaic layer 130, a second light-transmissive conductive layer 14 is formed on the photovoltaic layer 130, as shown in FIG. 1A. In this embodiment, the manner of forming the second transparent conductive layer 140 is the same as the manner of forming the first transparent conductive layer 120. That is, the method of forming the second transparent conductive layer 14 can also use the above sputtering method. , metal organic chemical vapor deposition method, or vapor deposition method, and the material thereof is, for example, the material of the first light-transmitting conductive layer 12 前述, here 201133912 -------Avf.doc/n no longer Narration. Next, please refer to FIG. ΙΑ, a reflective material layer 162 is formed on the second transparent conductive layer 140, wherein the reflective material layer 162 completely covers the second transparent conductive layer 140. Next, a embossed pattern ρ is provided above the reflective material layer 162. Then, the mold M1 having the uneven pattern 压 is imprinted on the reflective material layer 162 by mechanical force embossing as shown in Fig. 1B. Next, the cured reflective material layer 162a' can form a light reflecting structure 150 having a textured structure p. That is, after the mold M1 is stamped and cured, the reflective material layer 162a having the uneven structure P is a light reflecting structure. Of course, in other embodiments, referring to FIG. 1C, the mold having the concave-convex pattern p is stamped on the reflective material layer 162, and another light-reflecting structure exposing a portion of the second transparent conductive layer 140 may be formed. I5〇a. That is, after the mold M1' is cured and imprinted, the reflective material layer i62b having the concave-convex structure p and exposing part of the first light-transmitting conductive layer 140 is another light-reflecting structure 150a. As can be seen from the above, this embodiment can form a light-reflecting structure 150, 150a through a embossing process, wherein the force exerted by the mechanical force embossing can also determine the type of the light-reflecting structure 150, 150a. Further, the material of the light reflecting structure 150 may be one or more selected from the group consisting of white paint, a metal, a metal oxide, and an organic material. Wherein the metal is selected from the group consisting of aluminum, bismuth, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, antimony, bismuth, lead, antimony, molybdenum, chromium, bismuth, antimony, palladium, silver, Cadmium, indium, tin, antimony, bismuth, antimony, antimony, dendritic, tungsten, antimony, bismuth, epitaxy, platinum, gold, sharp, wrong, and alloys thereof 10 201133912 j^.j〇4twf.doc/n The metal oxide of the group may be selected from indium oxide, tin oxide (1) n 〇 Xlde), > oxygen dicing, magnesium fluoride, oxidation group, titanium oxide, magnesium oxide, oxidized rock nitride, oxidized, oxidized, indium tin oxide. , stannic acid mine (Cd2

Sn〇4 )、摻鋼的錫酸鎘、氧化亞錫(stannic oxide)或摻氟的 氧化亞錫而有機材料可以是染料(dye)或是顏料 (^i^ment)。特別是,當光反射結構15〇的材質為金屬時, 第一透光導電層14〇與光反射結構15〇之間亦可再配置— 透光絕緣層。 於完成圖1B之步驟後,移除模具M1,且覆蓋一黏著 層no於光反射結構150上,以將一背透光基板18〇與透 ,基板110進行封裝,如圖1D所示。在本實施例中,黏 著層170的材質例如是使用乙烯醋酸乙烯酯(eva)、聚乙 烯醇縮Ί^(ΡνΒ)、輯煙(PQly 〇跑)、絲氨醋㈣之 類的黏著劑。背透光基板18〇例如是一玻璃基板。其中, 使用黏著層170將透光基板i1G與背透光機板⑽進行封 裝的方式為本領域之通常之知識者所熟知之技術與步驟, 在此不%述。至此,大致完成一種薄膜太陽能電池1〇如 的製作。. 如圖1D所示,由於本實施例之薄膜太陽能電池1〇〇& 具有光反射結構150’因此當光束li經由透光基板11〇的 入光面112進入薄膜太陽能電池1〇〇a時,光束u會依序 通過透光基板110、第一透光導電層12〇與光伏層13〇,其 中部分未被光伏層130吸收的光束L1會再通過第二透光 導電層140而傳遞至反射材料層162a。此時,光束u便 201133912 a j/3u^rwf.doc/n 容易被反射材料層162a的凹凸結構P反射並散射反射後的 光束L2,而可提高通過光伏層丨3〇之光束L2的光路徑, 進而增加光束L2被光伏層130吸收的機會,從而可^升 整體的光電轉換效率。其中,凹凸結構卩反射並散射反射 之光束L2的波長範圍實質上介於6〇〇奈米至11〇〇奈米之 間,且光束L2例如是紅光、近紅外光與遠紅外光。 換έ之,透過具有凹凸結構P之反射材料層162a可 影響光束L1的行徑方向,使光束L1在反射材料層162a 與第二透光導電層140的界面上產生反射與散射的現象。 因此’反射材料層162a可增加光束L1在薄膜太陽能電池 l〇〇a中被反射的機會’而提升光束L1通過光伏層13〇的 光路徑,進而增加光束L1被光伏層13〇吸收的機會。換 5之,薄膜太陽能電池l〇〇a便可有效吸收光束Li,並將 其轉換成電能,而產生較高的光電轉換效率。 以下以多個不同實施例來說明薄膜太陽能電池1〇〇b 〜100g的製作方法。在此必須說明的是,下述實施例沿用 前述實施例的元件標號與部分内容,其中採用相同的標號 來表示相同或近似的元件,並且省略了相同技術内容的說 明。關於省略部分的說明可參考前述實施例,下述實施例 不再重複贅述。 圖2A至圖2D為本發明另一實施例之一種薄膜太陽 能電池的製作流程的剖面示意圖。形成薄膜太陽能電池 i〇〇b的方式與形成薄膜太陽能電池l〇〇a的方式類似,惟 二者不同處可參考以下說明。 12 U4twf.d〇〇/n 201133912 請參考圖2A,形成第二透光導電層140於光伏層130 之後,全面地形成一透光材料層164於第二透光導電層14〇 上。接著’請參考圖2B,將具有凹凸圖案P的模具Ml壓 印於透光材料層164上,然後,固化透光材料層164a,而 使透光材料層164a的表面形成有凹凸結構P。接著,請參 考圖2C ’移除模具]^〗,且形成一反射材料層ι66於透光 材料層164a上,其中反射材料層166是共形於透光材料層 164a上。此時,共形的反射材料層ι66與透光材料層164a 可視為一種光反射結構15〇b。而後,請參考圖2D,在將 覆盍黏著層170於光反射結構150b上,以將背透光基板 180與透光基板11〇進行封裝,而可完成一種薄膜太陽能 電池100b的製作。 在本實施例中’由於透光材料層164a與其上共形之 反射材料層166的堆疊結構可視為光反射結構15〇b,因此 當光束L1傳遞至此光反射結構丨50b時,透光材料層164a 表面的凹凸結構P同樣可影響光束L1的行徑方向,使光 束L1在透光材料層164a與第二透光導電層14〇的界面上 產生反射與政射的現象。同時,部分未被凹凸結構p反射 與散射的光束L1會再通過透光材料層164a,而被反射材 料層166反射為光束L3,如此通過光伏層13〇的光束L2、 L3的光路徑會變長,而可提升光束L2、u被光伏層13〇 吸收的機會,從而可提升整體的光電轉換效率。換言之, 薄膜太陽能電池100b可有效吸收光束li,並將其轉換成 電能,而可產生較高的光電轉換效率。 13 201133912 v i «Avf.doc/n 圖3A至圖3C為本發明之另一實施例之一種薄膜太陽 能電池的製作流程的剖面示意圖。形成薄膜太陽能電池 100c的方式與形成薄膜太陽能電池100a的方式類似,惟 二者不同處可參考以下說明。 請參考圖3A’於形成第二透光導電層140於光伏層 130之後,壓印一第一子圖案結構154於第二透光導電層 140上’其中第一子圖案結構154暴露出部分第二透光導 電層140。接著,壓印一第二子圖案結構156於第一子圖 案結構154上,其中第二子圖案結構156與第一子圖案結 構154至少部分重疊,以構成一種光反射結構15〇c,如圖 3B所示。而後,在覆蓋黏著層17〇於光反射結構15〇c上, 以將背透光基板180與透光基板110進行封裝,而可完成 如圖3C所繪示之薄膜太陽能電池1〇〇c的製作。 值得一提的是,在本實施例中,光反射結構15〇c的 形狀例如是由第一子圖案結構154與第二子圖案結構156 垂直相父所形成之格子形狀,如圖4A所示;或者是由第 一子圖案結構15 4與第二子圖案結構u 6沿著一角度相交 所形成之菱形狀’如圖4B所示;又或者是由第一子圖案 結構154與第二子圖案結構156平行排列且部分重疊所形 成之直條狀(請參相4C)、制或核則的條狀(未繪 不3或橫條狀(未繪示);再或者是由第—子圖案結構154 與第二子圖案結構1S6的結齡贼則或非糊排列所形 成之馬赛克形狀(請參考圖4D)或蜂窩狀(未緣示)。換 言之,此第一子圖案結才冓154與第二子圖案結構156的排 14 04twf.doc/n 201133912Sn〇4), steel-doped cadmium stannate, stannic oxide or fluorine-doped stannous oxide and the organic material may be a dye or a pigment. In particular, when the material of the light-reflecting structure 15A is metal, the first light-transmitting conductive layer 14A and the light-reflecting structure 15A may be further disposed with a light-transmitting insulating layer. After the step of FIG. 1B is completed, the mold M1 is removed, and an adhesive layer no is covered on the light reflecting structure 150 to package the back transparent substrate 18 and the substrate 110, as shown in FIG. 1D. In the present embodiment, the material of the adhesive layer 170 is, for example, an adhesive such as ethylene vinyl acetate (eva), polyvinyl alcohol (ΊνΒ), smoky (PQly 〇), or silk vinegar (4). The back transparent substrate 18 is, for example, a glass substrate. The manner in which the transparent substrate i1G and the back light transmissive plate (10) are sealed by using the adhesive layer 170 is a technique and a step well known to those skilled in the art, and is not described herein. So far, the fabrication of a thin film solar cell 1 has been substantially completed. As shown in FIG. 1D, since the thin film solar cell 1& of the present embodiment has the light reflecting structure 150', when the light beam li enters the thin film solar cell 1A via the light incident surface 112 of the transparent substrate 11 The light beam u passes through the transparent substrate 110, the first light-transmissive conductive layer 12, and the photovoltaic layer 13 , and a portion of the light beam L1 that is not absorbed by the photovoltaic layer 130 is transferred to the second transparent conductive layer 140 to Reflective material layer 162a. At this time, the light beam u 201138312 aj/3u^rwf.doc/n is easily reflected by the uneven structure P of the reflective material layer 162a and scatters the reflected light beam L2, thereby improving the light path of the light beam L2 passing through the photovoltaic layer 丨3〇. In turn, the opportunity for the light beam L2 to be absorbed by the photovoltaic layer 130 is increased, so that the overall photoelectric conversion efficiency can be improved. The wavelength range of the light beam L2 reflected and scattered by the concave-convex structure 实质上 is substantially between 6 〇〇 nanometer and 11 〇〇 nanometer, and the light beam L2 is, for example, red light, near-infrared light and far-infrared light. Alternatively, the reflective material layer 162a having the uneven structure P can affect the direction of the light beam L1, so that the light beam L1 is reflected and scattered at the interface between the reflective material layer 162a and the second light-transmitting conductive layer 140. Therefore, the 'reflective material layer 162a can increase the chance that the light beam L1 is reflected in the thin film solar cell 10' to enhance the light path of the light beam L1 through the photovoltaic layer 13〇, thereby increasing the chance that the light beam L1 is absorbed by the photovoltaic layer 13〇. In the case of 5, the thin film solar cell l〇〇a can effectively absorb the light beam Li and convert it into electric energy, thereby generating high photoelectric conversion efficiency. Hereinafter, a method of manufacturing the thin film solar cells 1 〇〇 b to 100 g will be described in a plurality of different embodiments. It is to be noted that the following embodiments use the same reference numerals and parts of the above-mentioned embodiments, and the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. The description of the omitted portions can be referred to the foregoing embodiment, and the following embodiments will not be repeated. 2A to 2D are schematic cross-sectional views showing a manufacturing process of a thin film solar cell according to another embodiment of the present invention. The manner in which the thin film solar cell i〇〇b is formed is similar to the manner in which the thin film solar cell 10a is formed, but the differences between the two can be referred to the following description. 12 U4twf.d〇〇/n 201133912 Referring to FIG. 2A, after the second transparent conductive layer 140 is formed on the photovoltaic layer 130, a transparent material layer 164 is formed on the second transparent conductive layer 14A. Next, referring to Fig. 2B, the mold M1 having the uneven pattern P is stamped on the light-transmitting material layer 164, and then the light-transmitting material layer 164a is cured, and the surface of the light-transmitting material layer 164a is formed with the uneven structure P. Next, please refer to FIG. 2C 'Removal Mold>, and a reflective material layer ι66 is formed on the light transmissive material layer 164a, wherein the reflective material layer 166 is conformed on the light transmissive material layer 164a. At this time, the conformal reflective material layer ι66 and the light transmissive material layer 164a can be regarded as a light reflecting structure 15〇b. Then, referring to FIG. 2D, a thin film solar cell 100b can be fabricated by encapsulating the adhesive layer 170 on the light reflecting structure 150b to package the back transparent substrate 180 and the transparent substrate 11A. In the present embodiment, 'the stacked structure of the light-transmissive material layer 164a and the conformal reflective material layer 166 thereon can be regarded as the light-reflecting structure 15〇b, so when the light beam L1 is transmitted to the light-reflecting structure 丨50b, the light-transmitting material layer The concave-convex structure P on the surface of the 164a can also affect the direction of the light beam L1, so that the light beam L1 is reflected and ejected at the interface between the light-transmitting material layer 164a and the second light-transmitting conductive layer 14A. At the same time, part of the light beam L1 that is not reflected and scattered by the uneven structure p will pass through the light transmissive material layer 164a, and be reflected by the reflective material layer 166 as the light beam L3, so that the light paths of the light beams L2 and L3 passing through the photovoltaic layer 13 will change. Long, and the opportunity for the light beam L2, u to be absorbed by the photovoltaic layer 13〇 can be increased, thereby improving the overall photoelectric conversion efficiency. In other words, the thin film solar cell 100b can effectively absorb the light beam li and convert it into electric energy, which can produce high photoelectric conversion efficiency. 13 201133912 v i «Avf.doc/n FIG. 3A to FIG. 3C are schematic cross-sectional views showing a manufacturing process of a thin film solar cell according to another embodiment of the present invention. The manner in which the thin film solar cell 100c is formed is similar to the manner in which the thin film solar cell 100a is formed, but the differences between the two can be referred to the following description. Referring to FIG. 3A′, after forming the second transparent conductive layer 140 on the photovoltaic layer 130, a first sub-pattern structure 154 is embossed on the second transparent conductive layer 140, wherein the first sub-pattern structure 154 is exposed. Two light-transmissive conductive layers 140. Next, a second sub-pattern structure 156 is embossed on the first sub-pattern structure 154, wherein the second sub-pattern structure 156 and the first sub-pattern structure 154 at least partially overlap to form a light reflecting structure 15〇c, as shown in the figure. 3B is shown. Then, the cover adhesive layer 17 is disposed on the light reflecting structure 15〇c to package the back transparent substrate 180 and the transparent substrate 110, and the thin film solar cell 1cc as shown in FIG. 3C can be completed. Production. It is to be noted that, in this embodiment, the shape of the light reflecting structure 15〇c is, for example, a lattice shape formed by the vertical phase of the first sub-pattern structure 154 and the second sub-pattern structure 156, as shown in FIG. 4A. Or a diamond shape formed by the first sub-pattern structure 154 and the second sub-pattern structure u 6 intersecting at an angle as shown in FIG. 4B; or by the first sub-pattern structure 154 and the second sub- The pattern structure 156 is arranged in parallel and partially overlapped to form a straight strip (see phase 4C), a strip or a strip (not drawn or stripe (not shown); or The pattern structure 154 and the mosaic pattern of the second sub-pattern structure 1S6 or the non-stick arrangement form a mosaic shape (please refer to FIG. 4D) or a honeycomb shape (not shown). In other words, the first sub-pattern is 154 Row with the second sub-pattern structure 156 14 04twf.doc/n 201133912

列方式與結構可依使用者的需求而作調整,上述僅為兴 說明,非限於此。 ’牛JThe column mode and structure can be adjusted according to the needs of the user. The above is only for illustrative purposes, and is not limited thereto. ‘牛J

由於本實施例可透過第—子圖案結構154與第二子 案結構156的堆4結構可辟絲u的行财向,使I 束L1在光反射結構15〇c與第二透光導電層14〇的界面上 產生反射及散射的現象而形成光束L2。因此,光反射結構 150c可增加光束L1在薄膜太陽能電池1〇沘中被反射=機 會’而提升光束L2通過光伏層13〇的光路徑,進而増加 光束L2被光伏層130吸收的機會。如此,薄膜太陽^電 池100c便可有效吸收光束U,並將其轉換成電能,而產 生較高的光電轉換效率。 、圖5A至圖5B為本發明另一實施例之一種薄膜太陽能. 電池的製作流程的剖面示意圖。形成薄膜太陽能電池i〇〇d 的方式與形成薄膜太陽能電池100c的方式類似,惟二者不 同處可參考以下說明。 請參考圖5A,壓印第一子圖案結構154a於第二透光 導電層140上之前,形成一凹凸結構ρι於第一子圖案結 構154a ’其中凹凸結構pi位於第一子圖案結構j “a與第 二透光導電層140接觸的一表面上。此時,第一子圖案結 構154a是整面覆蓋第二透光導電層14〇。然後,請再參考 圖5B,依序壓印第二子圖案結構156a於第一子圖案結構 l54a上以及覆蓋黏著層170於第二子圖案結構156a上, 以將背透光基板180與透光基板110進行封裝,而完成薄 膜太陽能電池l〇〇d的製作。其中,第二子圖案結構156a 15 201133912 〜-^wriwf.doc/n 整面覆蓋第一子圖案結構154a,且第一子圖案結構154a 與第二子圖案結構156a的堆疊結構可視為一種光反射結 構 150d。 在本實施例中’第一子圖案結構l54a與第二透光導 電層140接觸的表面為凹凸結構pi,其中此凹凸結構pl 例如是形成於第一子圖案結構154a表面上的表面微結 構。當然,於其他未繪示的實施例中,凹凸結構pl亦可 以是形成於第二透光導電層140表面上之表面微結構。另 外,於一未緣示的實施例中,第二子圖案結構與第一子圖 案結構接觸的表面亦可為凹凸結構,而此凹凸結構可以是 形成於第一子圖案結構或第二子圖案結構上的表面微結 構,在此並不以此為限。 由於第一子圖案結構154a與第二透光導電層140接 .觸的表面為凹凸結構P1,因此,當光束傳遞至此凹凸 結構P1時,光束L1便容易被此凹凸結構P1反射並散射 反射後的光束L2 ’如此通過光伏層13〇之光束[2的光路 控會變長’而可提升光束L2被光伏層130吸收的機會, 從而可提升整體的光電轉換效率。此外,光束L1中光波 波長範圍介於600奈米至11〇〇奈米之間的光束L2可直接 被光反射結構15〇d反射至光伏層130。換言之,第一子圖 案結構154a與第二子圖案結構156a可影響光束L1的行徑 方向’使光束L1在第一子圖案結構154a與第二透光導電 層140接觸的表面上產生反射並散射反射的現象,或者, 透過第二子圖案結構156a而產生反射現象。如此一來,可 16 201133912 •j j 」^04twf.doc/n 增加光束Ll在薄膜太陽能電池100d中的被反射的 以提高光束L1通過光伏層130的光路徑,進而增加:圭 L1被*光伏層130吸收的機會,而產生較多的電子 故’薄膜太陽能電池1_可有效提高光束L1的 進而提升其光電轉換效率。 平’ 值得-提的是,於-未繪示的實施例中’光反射結構 亦可是由多個第1合物材料與多個第二聚合物材料之Since the present embodiment can transmit the banknotes of the first sub-pattern structure 154 and the second sub-structure 156, the I beam L1 is in the light-reflecting structure 15〇c and the second light-transmitting conductive layer. The phenomenon of reflection and scattering occurs at the interface of 14 而 to form the light beam L2. Therefore, the light reflecting structure 150c can increase the light path of the light beam L1 reflected in the thin film solar cell 1 而 and enhance the light path of the light beam L2 through the photovoltaic layer 13 , thereby increasing the chance that the light beam L2 is absorbed by the photovoltaic layer 130. Thus, the thin film solar cell 100c can effectively absorb the light beam U and convert it into electric energy, thereby generating high photoelectric conversion efficiency. 5A-5B are schematic cross-sectional views showing a manufacturing process of a thin film solar cell according to another embodiment of the present invention. The manner of forming the thin film solar cell i〇〇d is similar to that of forming the thin film solar cell 100c, but the differences between the two can be referred to the following description. Referring to FIG. 5A, before the first sub-pattern structure 154a is embossed on the second light-transmissive conductive layer 140, a concave-convex structure ρι is formed on the first sub-pattern structure 154a', wherein the concave-convex structure pi is located in the first sub-pattern structure j"a A first surface of the second light-transmissive conductive layer 140 is covered. The first sub-pattern structure 154a covers the second transparent conductive layer 14A. Then, referring to FIG. 5B, the second is sequentially printed. The sub-pattern structure 156a is on the first sub-pattern structure 154a and covers the adhesive layer 170 on the second sub-pattern structure 156a to package the back transparent substrate 180 and the transparent substrate 110 to complete the thin film solar cell. The second sub-pattern structure 156a 15 201133912 〜^wriwf.doc/n covers the first sub-pattern structure 154a, and the stack structure of the first sub-pattern structure 154a and the second sub-pattern structure 156a can be regarded as A light-reflecting structure 150d. In the present embodiment, the surface of the first sub-pattern structure 154a that is in contact with the second light-transmissive conductive layer 140 is a concave-convex structure pi, wherein the uneven structure pl is formed, for example, on the surface of the first sub-pattern structure 154a. on The surface microstructure is of course. In other embodiments not shown, the uneven structure pl may also be a surface microstructure formed on the surface of the second light-transmissive conductive layer 140. Further, in an embodiment not shown, The surface of the second sub-pattern structure contacting the first sub-pattern structure may also be a concave-convex structure, and the concave-convex structure may be a surface microstructure formed on the first sub-pattern structure or the second sub-pattern structure, which is not Since the first sub-pattern structure 154a and the second transparent conductive layer 140 are in contact with each other, the surface is a concave-convex structure P1. Therefore, when the light beam is transmitted to the concave-convex structure P1, the light beam L1 is easily reflected by the concave-convex structure P1. And scattering and reflecting the light beam L2' so that the light path of the photovoltaic layer 13 [the optical path of the light source 2 becomes longer" can enhance the chance that the light beam L2 is absorbed by the photovoltaic layer 130, thereby improving the overall photoelectric conversion efficiency. The light beam L2 having a wavelength of light ranging from 600 nm to 11 nm in L1 can be directly reflected by the light reflecting structure 15 〇d to the photovoltaic layer 130. In other words, the first sub-pattern structure 154a and the second sub-pattern The structure 156a may affect the traveling direction of the light beam L1 to cause reflection and scattering reflection of the light beam L1 on the surface of the first sub-pattern structure 154a and the second light-transmissive conductive layer 140, or to pass through the second sub-pattern structure 156a. The reflection phenomenon is generated. In this way, the light beam L1 is reflected in the thin film solar cell 100d to increase the light path of the light beam L1 through the photovoltaic layer 130, thereby increasing: L1 is absorbed by the photovoltaic layer 130, and more electrons are generated. Therefore, the thin film solar cell 1_ can effectively increase the light beam L1 and further improve its photoelectric conversion efficiency. It is worthwhile to mention that, in the embodiment not shown, the light reflecting structure may also be composed of a plurality of first composite materials and a plurality of second polymeric materials.

替排列所形成之聚合層,其巾第—聚合物㈣例如是声基 乙酸化聚對苯二曱酸乙二g旨或經基乙酸化聚對苯二甲酸乙 二醋之共聚物’而第二聚合物材料例如是聚萃二曱酸乙二 ^或聚萘m之共聚物。上述材料僅為舉顺 ϋ要所㈣之光反射結構15Gd的材質至少能反射光波 波長乾圍介於_奈米至丨⑽奈米之間姑束,皆屬本發 明所欲保護之範圍。 心ΐ、6Α至圖6D為本發明之另一實施例之一種薄膜太 =%池的製作流程的剖面示意圖。形成薄膜太陽能電池 一 e的方式與形成薄膜太陽能電池丨.的方式類似,惟 一者不同處可參考以下說明。 明參考圖6A ’於形成第二透光導電層14〇之後,配 置具有-網狀圖案200的-模具奶於第二透光導電層14〇 上其中網狀圖案2GG具有多個暴露出第二透光導電層14〇 =口 202。接著’請參考圖紐,形成_反射材料層162。 二〉具M2上’且部分反射材料層162c填入開口 202而與 弟-透光導電層MG連接。然後’請參考圖6C,移除模具 17 201133912 一〜一 .v\vf.doc/n M2’以形成具有凹凸結構P2的一光反射結構15〇e。而後, 請苓考圖6D,在覆蓋黏著層no於光反射結構15〇e上, 以將月透光基板180與透光基板11〇進行封裝,而完成一 種薄膜太陽能電池100e的製作。 簡言之,本實施例是藉由網目製程來形成光反射結構 150e’其中反射材料層i62c可透過網狀圖案2〇〇隨意填入 於開口 202中,而於第二透光導電層mo上形成具有凹凸 結構P2的光反射結構l5〇e。由於光反射結構丨5〇e具有凹 凸結構P2’因此可增加光束L1在薄膜太陽能電池1〇〇e中 的被反射與散射的機會,以提高光束L2通過光伏層13〇 的光路徑,進而增加光束L2被光伏層130吸收的機會, 而產生較多的電子電洞對。如此一來,薄膜太陽能電池 100e可有效提高光束L1的利用率,進而提升其光電轉換 效率。 圖7A至圖7D為本發明之另一實施例之一種薄膜太 陽能電池的製作流程的剖面示意圖。形成薄膜太陽能電池 100f的方式與形成薄膜太陽能電池100e的方式類似,惟 二者不同處可參考以下說明。 請參考圖7A ’於形成第二透光導電層14〇之後,全 面地形成一透光材料層164於第二透光導電層140上。接 著,请參考圖7B,將具有網狀圖案200的模具m2網印於 透光材料層164上。然後,請參考圖7C,固化透光材料層 164b後,移除模具M2,使透光材料層164b的表面形成有 網狀圖案200的結構。之後,請參考圖7D,形成反射材料 18 /04twf.doc/n 201133912 層166於透光材料層164b上,其中反射材料層166整面地 覆蓋透光材料層164b與部份第二透光材料層14〇。此處之 透光材料層164b與反射材料層166的堆疊結構可視為一光 反射結構150f。而後,請再參考圖7D,在覆蓋黏著層17〇 於光反射結構150f上,以將背透光基板18〇與透光基板 110進行封裝,而完成薄膜太陽能電池10沉的製作。 圖8A至圖8E為本發明之另一實施例之一種薄膜太陽 能電池的製作流輯剖面示意圖,成薄膜太陽能電池 l〇〇g的方式與形成薄膜太陽能電池100e的方式類似,惟 二者不同處可參考以下說明。 请參考圖8A,於形成第二透光導電層14〇之後,配 置具有一第一網狀圖案21〇的一第一模具M3於第二透光 導=140上’其中第一網狀圖案21〇具有多個暴露出第 二?電層14。的第—開σ 212。接著,請參考圖8β, /弟子圖案結構154b於第一模具m3上,豆中第一 構⑽與部分第二透光導電層14〇連接、。接著, :M3且8=第—子圖案結構⑽後,移除第-模 二笛-4置有一第二網狀圖案220的一第二模具M4 個笛-pa圖案結構154b上’其中第二網狀圖案220具有多 口 212二瓜,且第二開° 222至少暴露出部分第一開 4、、、'後,請參考圖8D,形成一第二子圖案結構156b 案結構154b上,其中第二子圖案結構㈣與 案結構l54b至少部分重疊,以構成—種光反射結 g。而後,請參考圖8E,在覆蓋黏著層17〇於光反 19 201133912wfdoc/n 射結構150g上,以將背透光絲⑽與透光紐-進行 封裝,而完成薄膜太陽能電池1〇〇£的製作。 f然’上述所述之多種製程僅是作為舉例說明之用, 部分y驟為目前常見的技術。本賴For arranging the formed polymer layer, the towel-polymer (4) is, for example, a sonicated acetic acid-polyethylene terephthalate or a copolymer of a peracetic acid-containing polyethylene terephthalate. The dipolymer material is, for example, a copolymer of polyextracted bismuth diacetate or polynaphthalene m. The above materials are only for the light reflection structure 15Gd of the device (4). The material of the light reflection structure 15Gd can reflect at least the wavelength of the wavelength between _ nanometer and 丨(10) nanometer, which is the range to be protected by the present invention. The palpitations, 6Α to 6D are schematic cross-sectional views showing a manufacturing process of a thin film too %% cell according to another embodiment of the present invention. The manner in which the thin film solar cell is formed is similar to the manner in which the thin film solar cell is formed. The only difference is the following description. Referring to FIG. 6A ' after forming the second light-transmissive conductive layer 14 ,, the mold milk having the - mesh pattern 200 is disposed on the second light-transmissive conductive layer 14 , wherein the mesh pattern 2GG has a plurality of exposed second The light-transmissive conductive layer 14〇=port 202. Next, please refer to the figure 纽 to form a _reflective material layer 162. The second reflective layer 162c is filled in the opening 202 to be connected to the transparent conductive layer MG. Then, referring to Fig. 6C, the mold 17 201133912 - a .v\vf.doc / n M2' is removed to form a light reflecting structure 15〇e having the uneven structure P2. Then, referring to FIG. 6D, a thin film solar cell 100e is fabricated by encapsulating the moon light-transmissive substrate 180 and the light-transmitting substrate 11A on the cover layer no. In short, in this embodiment, the light reflecting structure 150e' is formed by a mesh process, wherein the reflective material layer i62c can be randomly filled in the opening 202 through the mesh pattern 2, and on the second transparent conductive layer mo. A light reflecting structure l5〇e having the uneven structure P2 is formed. Since the light reflecting structure 丨5〇e has the concave-convex structure P2', the opportunity for the light beam L1 to be reflected and scattered in the thin film solar cell 1〇〇e can be increased to increase the light path of the light beam L2 through the photovoltaic layer 13〇, thereby increasing The opportunity for beam L2 to be absorbed by photovoltaic layer 130 produces more pairs of electron holes. In this way, the thin film solar cell 100e can effectively improve the utilization rate of the light beam L1, thereby improving its photoelectric conversion efficiency. 7A to 7D are schematic cross-sectional views showing a manufacturing process of a thin film solar cell according to another embodiment of the present invention. The manner in which the thin film solar cell 100f is formed is similar to the manner in which the thin film solar cell 100e is formed, but the differences between the two can be referred to the following description. Referring to FIG. 7A', after the second transparent conductive layer 14 is formed, a light transmissive material layer 164 is formed on the second transparent conductive layer 140. Next, referring to Fig. 7B, the mold m2 having the mesh pattern 200 is screen printed on the light transmissive material layer 164. Then, referring to FIG. 7C, after the light-transmitting material layer 164b is cured, the mold M2 is removed, and the surface of the light-transmitting material layer 164b is formed with the structure of the mesh pattern 200. Thereafter, referring to FIG. 7D, a reflective material 18 / 04 twf.doc / n 201133912 layer 166 is formed on the light transmissive material layer 164b, wherein the reflective material layer 166 covers the transparent material layer 164b and a portion of the second light transmissive material over the entire surface. Layer 14〇. Here, the stacked structure of the light transmissive material layer 164b and the reflective material layer 166 can be regarded as a light reflecting structure 150f. Then, referring to FIG. 7D, the cover adhesive layer 17 is disposed on the light reflecting structure 150f to package the back transparent substrate 18A and the transparent substrate 110 to complete the fabrication of the thin film solar cell 10 sink. 8A-8E are schematic cross-sectional views showing a fabrication process of a thin film solar cell according to another embodiment of the present invention. The manner of forming a thin film solar cell is similar to that of forming a thin film solar cell 100e, but the difference between the two is different. Please refer to the following instructions. Referring to FIG. 8A, after forming the second light-transmissive conductive layer 14A, a first mold M3 having a first mesh pattern 21A is disposed on the second light-transmitting guide=140, wherein the first mesh pattern 21 〇 Have multiple exposed second? Electrical layer 14. The first - open σ 212. Next, referring to FIG. 8β, the disciple pattern structure 154b is on the first mold m3, and the first structure (10) of the beans is connected to a portion of the second light-transmissive conductive layer 14〇. Next, after M3 and 8=the first sub-pattern structure (10), the second mold M4 with a second mesh pattern 220 is removed, and the second mold M4 is on the flute-pa pattern structure 154b. The mesh pattern 220 has a plurality of ports 212 and two melons, and the second opening 222 exposes at least a portion of the first opening 4, , and 'after, please refer to FIG. 8D to form a second sub-pattern structure 156b structure 154b, wherein The second sub-pattern structure (4) at least partially overlaps with the case structure l54b to constitute a light reflection junction g. Then, referring to FIG. 8E, the cover adhesive layer 17 is placed on the light-reflecting layer 19g, and the back light-transmitting wire (10) and the light-transmitting button are packaged to complete the thin film solar cell. Production. However, the various processes described above are for illustrative purposes only, and some of them are currently common techniques. Ben Lai

m 略或增加可能的步驟,以符合製程Jm slightly or increase the possible steps to comply with the process J

Saa 5 ΐ述。此外’於其他未綠示的實施例中,本 ί 2、而51 丁士員虽可參照上述實施例的說明,依據實際需 求’而士選心述構件,以達到所需的技術效果。 笛-’本發0狀薄敎陽能電池的製作方法是於 ^電層上形成具有凹凸結構的光反射結構 ,以增 接:土 *賴太陽電池巾被反射的機會。如此一來,可 二奋通過Ϊ伏層的光路徑’進而增加光束被光伏層吸 ==,而產生較多的電子電洞對。換言之,本發明之 = = 製作方法,可有效地提高所製造之薄膜 雷、也的絲&引用率,進而提升所製造之薄膜太陽能 電池的光電轉換效率。 ^、、、^明已以貫施例揭露如上,然其並非用以限定 發明之保_當視‘以;==本 【圖式簡單說明】 能带、1的制1D為本發明之—實施例之—種薄膜太陽 月匕包池的製作流程的剖面示意圖。 20 201133912 ^〇4tw£doc/n 圖2A至圖2D為本發明之另一實施例之一種 陽能電池的製作流程的剖面示意圖。 、又 圖3A至ffi3C為本發明之另—實施例之—種薄膜太 能電池的製作流程的剖面示意圖。 、 圖4A至圖4D為多種不同實施例之光反射 視示意圖。 舟幻爾Saa 5 details. In addition, in other embodiments that are not green, the present invention can refer to the description of the above embodiments, and according to the actual needs, the members are selected to achieve the desired technical effects. The whistle-'this hair-shaped thin-yang solar cell is formed by forming a light-reflecting structure having a concave-convex structure on the electric layer to increase the chance that the solar cell towel is reflected. In this way, the second light can pass through the light path of the undulating layer to increase the beam by the photovoltaic layer ==, resulting in more pairs of electron holes. In other words, the == manufacturing method of the present invention can effectively increase the film density of the manufactured film, the wire and the reference rate, thereby improving the photoelectric conversion efficiency of the manufactured thin film solar cell. ^, , , ^明 has been exposed as above in the example, but it is not used to limit the invention of the protection _ when the 'to; = = this [simplified description of the diagram] can be, 1 system 1D is the invention - A cross-sectional view of a production process of a thin film solar moon pack pool of an embodiment. 20 201133912 ^〇4tw£doc/n FIG. 2A to FIG. 2D are schematic cross-sectional views showing a manufacturing process of a solar cell according to another embodiment of the present invention. 3A to Ffi3C are cross-sectional views showing a manufacturing process of a thin film solar cell according to another embodiment of the present invention. 4A through 4D are schematic views of light reflections of various different embodiments. Boat magic

圖5Α至圖5Β為本發明之另—實施例之—種薄膜 能電池的製作流程的剖面示意圖。 、W 圖6A至圖6D為本發明之另一實施例之—種 陽能電池的製作流程的剖面示意圖。 、太 圖7A至圖7D為本發明之另一實施例之— 陽能電池的製作流程的剖面示意圖。 、太 圖SA至圖犯為本發明之另一實施例之一種 能電池的製作流程的剖面示意圖。 、双險 【主要元件符號說明】 112 114 120 130 140 150 100a〜100g:薄膜太陽能電池 110 :透光基板 入光面 另一表面 第一透光導電層 光伏層 第二透光導電層 150a〜150g:光反射結構 21 201133912 wf.doc/n 154、154a、154b :第一子圖案結構 156a、156b :第二子圖案結構 162、162a、162b、162c :反射材料層 164、164a、164b :透光材料層 166 :反射材料層 170 :黏著層 180 : t透光基板 200 :網狀圖案 202 :開 π ® 210 :第一網狀圖案 212 :第一開口 220 :第二網狀圖案 222 :第二開口 ΜΙ、ΜΓ、M2、M3 :模具 P、P’、P卜P2 :凹凸結構 LI、L2、L3 :光束 • 225A to 5B are cross-sectional views showing a manufacturing process of a thin film energy battery according to another embodiment of the present invention. FIG. 6A to FIG. 6D are schematic cross-sectional views showing a manufacturing process of a solar cell according to another embodiment of the present invention. 7A to 7D are cross-sectional views showing a manufacturing process of a solar cell according to another embodiment of the present invention. A diagram of a cross section of a battery manufacturing process according to another embodiment of the present invention is shown in the drawings. Double risk [Main component symbol description] 112 114 120 130 140 150 100a~100g: Thin film solar cell 110: light-transmitting substrate light-in surface, other surface, first light-transmitting conductive layer, photovoltaic layer, second light-transmitting conductive layer 150a~150g Light reflecting structure 21 201133912 wf.doc/n 154, 154a, 154b: first sub-pattern structure 156a, 156b: second sub-pattern structure 162, 162a, 162b, 162c: reflective material layer 164, 164a, 164b: light transmission Material layer 166: reflective material layer 170: adhesive layer 180: t transparent substrate 200: mesh pattern 202: open π® 210: first mesh pattern 212: first opening 220: second mesh pattern 222: second Opening ΜΙ, ΜΓ, M2, M3: Mold P, P', P Bu P2: Concave structure LI, L2, L3: Beam • 22

Claims (1)

.u4twf.doc/n 201133912 七、申請專利範圍: 1. -種薄膜太陽能電池的製作方法,包括·· 提供一透光基板; 形成一第—透光導電層於該透光基板上; 形成一光伏層於該第一透光導電層上; 形成一第二透光導電層於該光伏層上;以及 於該第二透光導電層上形成具有1凸結構的 反射結構。 ,2.如中請專利範圍第丨項所述之薄膜太陽能電池的 製作方法’其中形成該光反射結構的方法包括—壓印製程。 3. 如申請專利範圍第2項所述之薄膜太陽能電池的 製作方法’該壓印製程包括: 於5亥苐一透光導電層上全面地形成一反射材料層;以 及 將具有一凹凸圖案的模具壓印於該反射材料層上,以 形成具有該凹凸結構的該光反射結構。 4. 如申請專利範圍第2項所述之薄膜太陽能電池的 製作方法’該壓印製程包括: 於該苐二透光導電層上全面地形成一透光材料層; 將具有一凹凸圖案的模具壓印於該透光材料層上,以 使該透光材料層的表面形成有該凹凸結構;以及 形成一反射材料層於該透光材料層上。 5. 如申請專利範圍第4項所述之薄膜太陽能電池的 製作方法’其中該反射材料層是共形於該透光材料層。 23 201133912 —―一 .:wf.doc/n 6.如申請專利範圍第2項所述之薄 製作方法,該壓印製程包括: W電池的 壓印一第一子圖案結構於該第二透光導電層上·以及 上外壓印一第二子圖案結構於該第一子圖案結^上j其中 该弟二子圖案結構與該第一子圖案結構至少 ,、 構成該光反概構。 ^如㈣專利第6項所述之_太陽能電池的 中該光反射結構的形狀包括直條狀、條狀、 ”余狀、格子狀、菱形狀、蜂窩狀或馬赛克形狀。 8·、如中請專利範圍第i項所述之薄膜太陽能電池的 方法,形成5亥光反射結構的方法包括—網目製程。 9·如中請專利範圍第8項所述之薄膜太陽能電池的 衣作方法,該網目製程包括: 配置具有一網狀圖案的一模具於該第二透光導電層 上,其中該網狀圖案具有多個暴露出該第二透光導電層的 開口; 曰 形成一反射材料層於該模具上,且部分該反射材料層 填入該些開口而與該第二透光導電層連接;以及 移除該模具,以形成具有該凹凸結構的該光反射結 構。 1〇.如申請專利範圍第8項所述之薄膜太陽能電池的 欠作方法,該網目製程包括: 於該第二透光導電層上全面地形成一透光材料層; 將具有一網狀圖案的模具網印於該透光材料層上,以 24 201133912 … 〜一 _J4twf.doc/n 使該透光材料層的表面形成有該網狀圖案的結構; 移除該模具;以及 形成一反射材料層於該透光材料層上。 11. 如申請專利範圍第8項所述之薄膜太陽能電池的 製作方法,該網目製程包括·. 配置具有一第一網狀圖案的一第一模具於該第二透 光導電層上,其中該第一網狀圖案具有多個暴露出該第二 透光導電層的第一開口; — 形成一第一子圖案結構於該第一模具上,其中該第— 子圖案結構與部份該第二透光導電層連接; 配置具有-第二網狀圖案的—第二模具於該第 ,其中該第二網狀圖案具有多個第二開口,且 5亥二第二開口至少暴露出部分該些第-開口;以及 形成一第二子圖案結構於該第一 ,子圖案結構與該第一子圖案結構】; 構成該光反射結構。 稱至刀重豐,以 12. 如申清專利範圍第11項戶日 的製作方法,1中談#M钍媒AA、、之溥膜太除能電池 橫,.、:子F菱?狀:’;高狀:包賽括克 =、條狀、 ::方法’其;丄陽能電池的 種材料所二 14.如申請專利範圍第13 的4作方法,其中該金屬是選自由^賴太陽能電池 、氚、鈦、釩、鉻、 25 wf.d〇c/n 201133912 f、f、鈷、鎳、銅、鋅、鎵、鍺、釔、鍅、鈮、鉬、饮 蚀了、雜、鈀、銀、鎘、銦、錫、銻、鑭、釓、铪、鈕、、 銖、鐵、銥、鉑、金、始、么L丨、,R甘人入 t鎢、 15.如㈣僧二二及其合金所構成之族群。 月專利範圍弟13項所述之薄膜女 的製作方法,JL中料領太以能電池 oxide) ^ , t 化結、氮化Η化:、氧 =氧 =參鋼的錫一亞錫(~= 16·如申請專利範圍第13項所述之薄 的製作方法,1中以_4;^ #膜太W電池 (pigment)。 機材枓包括染料咖)或是顏料 制作Hr纖圍第丨摘叙_鴻能電池的 其中該透光基板具有-入光面,該光束適於妳 由戎入光面進入該薄膜太陽能電池中,且該 二π 過該透光基板、該第-透光導電層、該光^以及 後傳遞至該光反射結構,而該光反射Ϊ構ΐ 反射4先束中波長範圍實質上介於_奈米至丄⑽太 間的至少部分該光束。 不木之 18.如申請專利範圍第17項所 =作方法’其中該部分光束包括紅先 外光。 請專利範㈣1項所述之_;^ 製作方法,更包括覆蓋一黏著層於該光 -背透光基板與該透光基板進行縣’以將 26.u4twf.doc/n 201133912 VII. Patent application scope: 1. A method for manufacturing a thin film solar cell, comprising: providing a transparent substrate; forming a first light-transmissive conductive layer on the transparent substrate; forming a The photovoltaic layer is on the first light-transmissive conductive layer; a second light-transmissive conductive layer is formed on the photovoltaic layer; and a reflective structure having a convex structure is formed on the second light-transmissive conductive layer. 2. The method of fabricating a thin film solar cell according to the above-mentioned patent scope, wherein the method of forming the light-reflecting structure comprises an imprint process. 3. The method of fabricating a thin film solar cell according to claim 2, wherein the embossing process comprises: forming a reflective material layer on a transparent conductive layer of 5 Å; and having a concave-convex pattern A mold is imprinted on the reflective material layer to form the light reflecting structure having the uneven structure. 4. The method for fabricating a thin film solar cell according to claim 2, wherein the imprint process comprises: forming a light transmissive material layer on the second light-transmissive conductive layer; and forming a mold having a concave-convex pattern Embossing on the light transmissive material layer such that the surface of the light transmissive material layer is formed with the concavo-convex structure; and forming a reflective material layer on the light transmissive material layer. 5. The method of fabricating a thin film solar cell according to claim 4, wherein the reflective material layer is conformal to the light transmissive material layer. 23 201133912—“1.:wf.doc/n 6. The thin manufacturing method described in claim 2, the imprint process includes: imprinting a W battery with a first sub-pattern structure in the second through And embossing a second sub-pattern structure on the photoconductive layer and on the first sub-pattern structure, wherein the second sub-pattern structure and the first sub-pattern structure at least constitute the light inverse structure. ^ The shape of the light reflecting structure in the solar cell according to the fourth aspect of the invention includes a straight strip shape, a strip shape, a "residual shape, a lattice shape, a diamond shape, a honeycomb shape or a mosaic shape. The method for forming a thin-film solar cell according to the invention of claim i, wherein the method for forming a 5 glare reflective structure comprises a mesh process. 9. The method for fabricating a thin film solar cell according to claim 8 of the patent scope, The mesh process includes: arranging a mold having a mesh pattern on the second light-transmissive conductive layer, wherein the mesh pattern has a plurality of openings exposing the second light-transmissive conductive layer; and forming a reflective material layer And a part of the reflective material layer is filled in the openings to be connected to the second light-transmissive conductive layer; and the mold is removed to form the light-reflecting structure having the concave-convex structure. The method for processing a thin film solar cell according to the eighth aspect, wherein the mesh process comprises: forming a light transmissive material layer on the second light-transmissive conductive layer; and forming a mold mesh having a mesh pattern On the light transmissive material layer, the surface of the light transmissive material layer is formed with the structure of the mesh pattern by 24 201133912 ... -1 - J4twf.doc / n; removing the mold; and forming a reflective material layer thereon 11. The method of fabricating a thin film solar cell according to claim 8, wherein the mesh process comprises: arranging a first mold having a first mesh pattern in the second light transmission On the conductive layer, wherein the first mesh pattern has a plurality of first openings exposing the second light-transmissive conductive layer; forming a first sub-pattern structure on the first mold, wherein the first sub-pattern structure Connecting with a portion of the second light-transmissive conductive layer; arranging a second mold having a second mesh pattern, wherein the second mesh pattern has a plurality of second openings, and the second opening is 5 Forming at least a portion of the first-openings; and forming a second sub-pattern structure in the first, sub-pattern structure and the first sub-pattern structure; constituting the light-reflecting structure. Such as Shen Qing patent scope The production method of 11 households, 1 in the talk #M钍 media AA, the 溥 film too de-energy battery horizontal, .,: sub-F diamond shape: '; high shape: package 克 =, strip, The method of the invention is the same as the method of the invention. The metal is selected from the group consisting of solar cells, germanium, titanium, vanadium, chromium, 25 wf. D〇c/n 201133912 f, f, cobalt, nickel, copper, zinc, gallium, germanium, antimony, bismuth, antimony, molybdenum, etched, miscellaneous, palladium, silver, cadmium, indium, tin, antimony, antimony,釓, 铪, button, 铢, iron, 铱, platinum, gold, 初, 丨 L丨,, R Gan people into t-tungsten, 15. such as (four) 僧 two two and its alloys constitute the ethnic group. The production method of the film female mentioned in the 13th item, the JL medium material is too energy to battery oxide) ^, t smelting, nitriding: oxygen = oxygen = tin steel tin-tin (~= 16·such as In the thin manufacturing method described in claim 13 of the patent application, 1 is a _4; ^ #膜太Wpigment. The material 枓 includes a dye coffee or a pigment to make a Hr fiber 丨 丨 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And the two π passes through the transparent substrate, the first light-transmissive conductive layer, the light and the light are transmitted to the light-reflecting structure, and the light-reflecting structure reflects the wavelength range of the first beam substantially At least part of the beam from the meter to the 丄(10). Not the wood 18. As claimed in the scope of claim 17 = as a method 'where the part of the beam includes red light. Please refer to the method described in the first paragraph of the patent (4), which further includes covering an adhesive layer on the light-back transparent substrate and the light-transmissive substrate to carry out the county's
TW099107836A 2010-03-17 2010-03-17 Fabricating method of thin film solar cell TW201133912A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW099107836A TW201133912A (en) 2010-03-17 2010-03-17 Fabricating method of thin film solar cell
US13/038,536 US20110146794A1 (en) 2010-03-17 2011-03-02 Thin-film solar cell and manufacture method thereof
EP11157071A EP2367207A2 (en) 2010-03-17 2011-03-04 Thin film solar cell and manufacturing method thereof
US13/287,325 US20120042948A1 (en) 2010-03-17 2011-11-02 Thin-film solar cell and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099107836A TW201133912A (en) 2010-03-17 2010-03-17 Fabricating method of thin film solar cell

Publications (1)

Publication Number Publication Date
TW201133912A true TW201133912A (en) 2011-10-01

Family

ID=46751316

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099107836A TW201133912A (en) 2010-03-17 2010-03-17 Fabricating method of thin film solar cell

Country Status (1)

Country Link
TW (1) TW201133912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575766B (en) * 2015-05-05 2017-03-21 飛立威光能股份有限公司 Photovoltaic system and the manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575766B (en) * 2015-05-05 2017-03-21 飛立威光能股份有限公司 Photovoltaic system and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2367207A2 (en) Thin film solar cell and manufacturing method thereof
JP5225511B2 (en) Thin film solar cell module and manufacturing method thereof
US20120073641A1 (en) Solar cell apparatus having the transparent conducting layer with the structure as a plurality of nano-level well-arranged arrays
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
CN106025087A (en) Tandem solar cell and manufacturing method thereof
WO2012037379A2 (en) Single and multi-junction light and carrier collection management cells
TW201115762A (en) Solar cell and method for fabricating the same
JP2013120863A (en) Method for manufacturing solar cell
TW201304172A (en) Photo-electric conversion element
WO2015146333A1 (en) Photoelectric converter
CN112786730A (en) Laminated photovoltaic device
TW201133912A (en) Fabricating method of thin film solar cell
JP2011054971A (en) Solar cell
CN204332980U (en) A kind of HIT solar cell
KR20120082542A (en) Thin film solar cell and manufacturing method thereof
CN114175278A (en) Wafer solar cell, solar module and method for producing a wafer solar cell
TWI380459B (en)
KR20110128616A (en) Tandem solar cell and method for fabricating the same
CN117412617B (en) Laminated solar cell, manufacturing method thereof, photovoltaic module and photovoltaic system
JP2012164712A (en) Multi-junction type thin film solar cell
TW201101506A (en) Thin film solar cell and manufacturing method thereof
TWI422051B (en) Solar cell module
TW201133880A (en) Thin film solar cell
TW201133878A (en) Thin film solar cell
TW201248883A (en) Thin film solar cell module and method of forming thereof