TW201131228A - Crystal fiber fusing method - Google Patents

Crystal fiber fusing method Download PDF

Info

Publication number
TW201131228A
TW201131228A TW99107022A TW99107022A TW201131228A TW 201131228 A TW201131228 A TW 201131228A TW 99107022 A TW99107022 A TW 99107022A TW 99107022 A TW99107022 A TW 99107022A TW 201131228 A TW201131228 A TW 201131228A
Authority
TW
Taiwan
Prior art keywords
fiber
cross
section
buffer film
crystal
Prior art date
Application number
TW99107022A
Other languages
Chinese (zh)
Other versions
TWI416183B (en
Inventor
Yi-Jen Chiu
Tsu-Hsiu Wu
Jui-Pin Wu
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW99107022A priority Critical patent/TWI416183B/en
Publication of TW201131228A publication Critical patent/TW201131228A/en
Application granted granted Critical
Publication of TWI416183B publication Critical patent/TWI416183B/en

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

A crystal fiber fusing method includes the steps of: forming a first cross-cut surface for a first crystal fiber; forming a buffering film to cover the first cross-cut surface; forming a second cross-cut surface for a second fiber; aligning the first and second cross-cut surfaces with each other; and heatedly fusing the first cross-cut surface with the second cross-cut surface.

Description

201131228 六、發明說明: 【發明所屬之技術領域】 本發明側於-種光纖之轉方法;_是關於一種晶 體光纖之熔接方法,於晶體光纖的橫切面上形成一緩衝膜,藉 此使晶體光纖容易與其他光纖熔接。 【先前技術】 傳統光纖、職的方法’是以高壓放電的方式,將兩段欲 熔接光纖的端面熔化,而後將兩光纖靠近,使之接合在一起。 上述以炫接_光_方法,具有健人損从及高反射損失 等優點,已廣為業界所採用。 然而’當欲採㈣祕接的方祕㈣紐〔C㈣ fiber〕與傳統的玻璃光纖接續在—起時,由於晶體光纖的纖心 〔_〕與纖衣〔dadding〕係為不同的材質容易導致溶接 後產生商***損失或甚至是溶接失敗。因而存在適當改善傳統 光纖熔接方法之需求。 有鑑於此,本發明為了滿足上述需求,其提供一種晶體 光’’歲熔接H係於炼接前晶體光纖的橫切面上形成一緩衝 膜’藉此使晶體光纖容易與其他光纖溶接。 【發明内容】 本毛明之目的係提供一種晶體光纖炫接方法 ’係於晶體 光纖的橫切面上形成—緩触,藉此使晶體光齡易與其他光 纖熔接。 為了達成±述目的’本發明較佳實施例之晶體光纖溶接 3 201131228 方法,包含下列步驟: 於一第一晶體光纖形成一第一橫切面; 形成一緩衝膜包覆該第一橫切面; 於一第二光纖形成一第二橫切面; 將形成有該緩衝膜之第一橫切面與該第二橫切面對位; 及 熱熔接該第一橫切面與該第二橫切面。 • 本發明較佳實施例之晶體光纖熔接方法,其中該緩衝膜 之材質與該第一光纖之一纖衣的材質相同。 本發明較佳實施例之晶體光纖熔接方法,其中該緩衝膜 之材質係為二氧化石夕。 本發明較佳實施例之晶體光纖熔接方法,其中該緩衝膜 係以濺鍍、熱蒸鍍或電子槍蒸鍍方法形成。 本發明較佳實施例之晶體光纖熔接方法,其中該第二光 © 纖係為矽基底光纖。 本發明較佳實施例之晶體光纖熔接方法,其中該第二光 纖係為玻璃光纖、單膜光纖、多膜光纖、摻鈦光纖、摻铒光纖 及色散位移光纖中之一者。 本發明較佳實施例之晶體光纖熔接方法,其中熱熔接該 第一橫切面與該第二橫切面之方法係為電弧熔燒。 I Si 本發明較佳實施例之晶體光纖熔接方法,更包含: 將一熱縮套管包覆該第一橫切面與該第二橫切面間之一 4 201131228 熔接面外圍。 本發明較佳實施例之晶體光纖熔接方法,其中當該第二 光纖為一晶體光纖時’另包含: 形成一緩衝膜包覆該第二橫切面。 【實施方式】 為了充分瞭解本發明,於下文將例舉較佳實施例並配合 所附圖式作詳細說明,且其並非用以限定本發明。 φ 第1至6圖揭示本發明較佳實施例之晶體光纖熔接方法 之步驟。首先,將一晶體光纖110截斷並加以研磨,使其形成 有一平整的橫切面112〔參照第1圖〕。而後,將晶體光纖n〇 置入真空系統中,利用例如濺鍍、熱蒸鍍或電子搶蒸鍍的方 法,形成包覆橫切面112的一緩衝膜1H〔參照第2圖〕。為 了使日曰體光纖11 〇容易與石夕基底光纖〔siiic〇n base(j仙沉〕炼 接’緩衝膜114的材質較佳係與該晶體光纖11〇的纖衣的材質 _ 相同,例如為二氧化矽〔Si〇2〕。 接著,將另一光纖120的端面做處理,例如可以切割刀 對光纖120進行切割,使其亦形成有一平整的橫切面122〔參 照第3圖〕。而後,將兩光纖110、120進行對位,並使用高 壓放電的方式產生電弧,以對光纖11〇、12〇的橫切面112、 122進行熔燒〔參照第4圖〕。接著將熔燒後的兩光纖、 120靠近,使之熱熔接在一起〔參照第5圖〕。最後,為了保 護熔接的部分,可以一熱縮套管13〇包覆光纖11〇、12〇的橫 201131228 切面112、122間的溶接面外圍〔參照第6圖〕。 根據本發明之晶體光·接方法,可與晶體光纖削炫 接之光纖120主要為錄底麵,例如可為單膜絲、多膜光 纖、摻鈦光纖、掺斜光纖、色散位移光纖或其他種類的玻璃光 纖。 除此之外,光纖120同樣可為晶體光纖,這時亦可形成 —緩衝膜m包覆晶體光纖120的橫切面122。當兩晶體光纖 110、120的橫切面112、122上包覆有緩衝膜114、124時,即 可將兩晶體光纖110、120進行對位,準備熱炫接在一起〔參 照第7圖〕。同樣地,包覆橫切面122的緩衝膜124亦可由二 氧化矽所構成。另一實施利中,可於該第一橫切面112或該第 二橫切面122其中之一形成緩衝膜。 根據本發明之晶體光纖炼接方法,由於事先在晶體光纖 的熔接面上形成緩衝膜,使得晶體光纖容易與其他異質材料的 光纖溶接,解決了習知晶體光纖不易與其他光纖熔接的問題。 前述較佳實施例僅舉例說明本發明及其技術特徵,該實 施例之技術仍可適當進行各種實質等效修飾及/或替換方式予 以實施;因此’本發明之權利範圍須視後附申請專利範圍所界 定之範圍為準。 201131228 【圖式簡單說明】 第1至6圖:本發明較佳實施例之晶體光纖熔接方法之 步驟。 第7圖:本發明較佳實施例之晶體光纖熔接方法,其中 兩欲熱熔接之光纖皆為晶體光纖,且其橫切面上皆包覆有緩衝 膜。 【主要元件符號說明】 110 晶體光纖 112 橫切面 114 緩衝膜 120 光纖 122 橫切面 130 熱縮套管201131228 VI. Description of the Invention: [Technical Field] The present invention relates to a method for converting a fiber; _ is a method for welding a crystal fiber, forming a buffer film on a cross section of the crystal fiber, thereby making the crystal The fiber is easily fused to other fibers. [Prior Art] The conventional optical fiber and service method is to melt the end faces of two segments of the fiber to be fused by high-voltage discharge, and then bring the two fibers close together to join them together. The above-mentioned splicing_light_method has the advantages of health loss and high reflection loss, and has been widely used in the industry. However, when the secret of the (4) secret (4) New [C (four) fiber] is connected with the traditional glass fiber, the fiber [_] and the fiber [dadding] are different materials. A quotient insertion loss or even a failure of dissolution after dissolution. Therefore, there is a need to appropriately improve the conventional optical fiber fusion method. In view of the above, the present invention provides a crystal light in which a buffer film is formed on a cross section of a crystal fiber before refining, whereby the crystal fiber is easily fused with other fibers. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a method for splicing a crystal fiber to form a slow-contact on a cross-section of a crystal fiber, whereby the crystal light age is easily fused with other fibers. The method of the present invention comprises the steps of: forming a first cross-section on a first crystal fiber; forming a buffer film to cover the first cross-section; a second optical fiber forms a second cross-section; a first cross-section of the buffer film is formed to face the second cross-section; and the first cross-section and the second cross-section are thermally fused. In the crystal fiber fusion method of the preferred embodiment of the present invention, the material of the buffer film is the same as the material of the fiber of the first optical fiber. In the crystal fiber fusion method of the preferred embodiment of the present invention, the material of the buffer film is sulphur dioxide. A crystal fiber fusion bonding method according to a preferred embodiment of the present invention, wherein the buffer film is formed by sputtering, thermal evaporation or electron gun evaporation. A crystal optical fiber fusion method according to a preferred embodiment of the present invention, wherein the second optical fiber is a 矽 base optical fiber. A crystal optical fiber fusion bonding method according to a preferred embodiment of the present invention, wherein the second optical fiber is one of a glass optical fiber, a single film optical fiber, a multi-film optical fiber, a titanium-doped optical fiber, an erbium-doped optical fiber, and a dispersion-shifted optical fiber. In the crystal fiber fusion bonding method of the preferred embodiment of the present invention, the method of thermally welding the first cross section and the second cross section is arc melting. I Si The crystal fiber fusion method of the preferred embodiment of the present invention further comprises: wrapping a heat shrinkable sleeve around the periphery of the first cross section and the second cross section 4 201131228. In the crystal fiber fusion method of the preferred embodiment of the present invention, when the second optical fiber is a crystal optical fiber, the method further comprises: forming a buffer film to cover the second cross-section. The present invention will be described in detail below with reference to the preferred embodiments of the invention, and is not intended to limit the invention. φ Figures 1 through 6 illustrate the steps of a crystal fiber fusion method in accordance with a preferred embodiment of the present invention. First, a crystal fiber 110 is cut and ground to form a flat cross section 112 (refer to Fig. 1). Then, the crystal optical fiber n〇 is placed in a vacuum system, and a buffer film 1H covering the cross-section 112 is formed by, for example, sputtering, thermal evaporation or electron squeezing (see Fig. 2). In order to make the corona fiber 11 〇 easy to be the same as the material of the fiber coating of the siiic 〇n base fiber, the material of the fiber 〇 is the same as the material _ of the crystal fiber 11 ,, for example Next, it is ruthenium dioxide [Si〇2]. Next, the end surface of the other optical fiber 120 is treated, for example, the optical fiber 120 can be cut by a dicing blade to form a flat cross-sectional surface 122 (refer to Fig. 3). The two optical fibers 110 and 120 are aligned, and an arc is generated by high-voltage discharge to fuse the cross-sections 112 and 122 of the optical fibers 11〇 and 12〇 (refer to FIG. 4). The two optical fibers and 120 are close to each other to be heat-sealed together (refer to Fig. 5). Finally, in order to protect the welded portion, a heat shrinkable sleeve 13 can be wrapped to cover the cross-sections of the optical fibers 11〇, 12〇, 201131228, 112, 122 According to the crystal light connection method of the present invention, the optical fiber 120 which can be spliced with the crystal optical fiber is mainly a recording bottom surface, for example, a single film wire, a multi-film fiber, or a blending Titanium fiber, doped fiber, dispersion shifted fiber Other types of glass fibers. In addition, the fiber 120 can also be a crystal fiber, and a buffer film m can be formed to cover the cross-section 122 of the crystal fiber 120. When the cross-sections 112, 122 of the two crystal fibers 110, 120 When the buffer films 114 and 124 are coated thereon, the two crystal fibers 110 and 120 can be aligned, and the heat is spliced together (see Fig. 7). Similarly, the buffer film 124 covering the cross-section 122 is also It may be composed of cerium oxide. In another embodiment, a buffer film may be formed on one of the first cross-section 112 or the second cross-section 122. The crystal fiber splicing method according to the present invention is preceded by a crystal fiber A buffer film is formed on the soldering surface, so that the crystal fiber is easily fused with the fibers of other heterogeneous materials, which solves the problem that the conventional crystal fiber is not easily fused with other fibers. The foregoing preferred embodiment merely illustrates the present invention and its technical features. The technology of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives as appropriate; therefore, the scope of the invention is defined by the scope of the appended claims. 201131228 [Simplified description of the drawings] Figures 1 to 6: steps of a crystal fiber fusion method according to a preferred embodiment of the present invention. FIG. 7 is a perspective view of a crystal fiber fusion method according to a preferred embodiment of the present invention, wherein two desires are used. The heat-spliced fibers are all crystal fibers, and the cross-sections are covered with a buffer film. [Main component symbol description] 110 crystal fiber 112 cross-section 114 buffer film 120 fiber 122 cross-section 130 heat-shrinkable sleeve

Claims (1)

201131228 七、申請專利範圍: 1、 一種晶體光纖熔接方法,包含下列步驟: 於一第一晶體光纖形成一第一橫切面; 形成一緩衝膜包覆該第一橫切面; 浓—第二光纖形成一第二橫切面; 將形成有該緩衝膜之第一橫切面與該第二橫切面對位;及 熱熔接該第一橫切面與該第二橫切面。 2、 依申請專利範圍第1項所述之方法,其中該緩衝膜之材質 與該第一光纖之一纖衣的材質相同。 3、 依申請專利範圍第1項所述之方法,其中該緩衝膜之材質 係為二氧化矽。 4、 依申請專利範圍第1項所述之方法,其中該緩衝膜係以濺 鍍、熱蒸鍍或電子搶蒸鍍方法形成。 5、 依申請專利範圍第1項所述之方法,其中該第二光纖係為 石夕基底先纖。 6、 依申請專利範圍第5項所述之方法,其中該第二光纖係為 玻璃光纖、單膜光纖、多膜光纖、摻鈦光纖、摻铒光纖及色散 位移光纖中之一者。 7、 依申請專利範圍第1項所述之方法,其中熱熔接該第一橫 切面與該第二橫切面之方法係為電弧熔燒。 8、 依申請專利範圍第1項所述之方法,更包含: 將一熱縮套管包覆該第一橫切面與該第二橫切面間之一熔 201131228 接面外圍。 9、 依申請專利範圍第1項所述之方法,其中當該第二光纖為 一晶體光纖時,另包含: 形成一緩衝膜包覆該第二橫切面。 10、 依申請專利範圍第9項所述之方法,其中該緩衝膜之材質 係為二氧化矽。201131228 VII. Patent application scope: 1. A crystal fiber fusion method comprising the steps of: forming a first cross-section on a first crystal fiber; forming a buffer film to cover the first cross-section; and forming a thick-second fiber a second cross-section; a first cross-section formed with the buffer film and the second cross-cut surface; and thermally fusing the first cross-section and the second cross-section. 2. The method according to claim 1, wherein the material of the buffer film is the same as the material of the fiber of the first optical fiber. 3. The method according to claim 1, wherein the buffer film is made of cerium oxide. 4. The method of claim 1, wherein the buffer film is formed by sputtering, thermal evaporation or electron scavenging. 5. The method according to claim 1, wherein the second optical fiber is a stone substrate. 6. The method of claim 5, wherein the second fiber is one of a glass fiber, a single film fiber, a multi-film fiber, a titanium-doped fiber, an erbium-doped fiber, and a dispersion-shifted fiber. 7. The method of claim 1, wherein the method of thermally fusing the first cross-section and the second cross-section is arc melting. 8. The method of claim 1, further comprising: wrapping a heat shrinkable sleeve over the periphery of the junction of the first cross section and the second cross section. 9. The method of claim 1, wherein when the second optical fiber is a crystalline optical fiber, the method further comprises: forming a buffer film to cover the second cross-section. 10. The method of claim 9, wherein the buffer film is made of cerium oxide.
TW99107022A 2010-03-11 2010-03-11 Crystal fiber fusing method TWI416183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99107022A TWI416183B (en) 2010-03-11 2010-03-11 Crystal fiber fusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107022A TWI416183B (en) 2010-03-11 2010-03-11 Crystal fiber fusing method

Publications (2)

Publication Number Publication Date
TW201131228A true TW201131228A (en) 2011-09-16
TWI416183B TWI416183B (en) 2013-11-21

Family

ID=49990912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107022A TWI416183B (en) 2010-03-11 2010-03-11 Crystal fiber fusing method

Country Status (1)

Country Link
TW (1) TWI416183B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297849A (en) * 2014-11-06 2015-01-21 成磊 Welding method for photonic crystal fibers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652163B2 (en) * 2001-10-31 2003-11-25 Corning Incorporated Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber
JP2003337248A (en) * 2002-05-22 2003-11-28 Totoku Electric Co Ltd Method of fusion splicing polyimide-coated optical fiber and fused fiber
TWI271562B (en) * 2006-01-09 2007-01-21 Univ Nat Sun Yat Sen An inspection instrument and method to observe the splicing plane of the cascaded-fiber
JP2009032910A (en) * 2007-07-27 2009-02-12 Hitachi Cable Ltd Optical fiber for optical fiber laser, method of manufacturing the same and optical fiber laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297849A (en) * 2014-11-06 2015-01-21 成磊 Welding method for photonic crystal fibers
CN104297849B (en) * 2014-11-06 2017-04-19 成磊 Welding method for photonic crystal fibers

Also Published As

Publication number Publication date
TWI416183B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
US6866429B2 (en) Method of angle fusion splicing silica fiber with low-temperature non-silica fiber
US10976492B2 (en) Cable with overcoated non-coplanar groups of fusion spliced optical fibers, and fabrication method
US6705771B2 (en) Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
WO2011065397A1 (en) Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
CN106094111B (en) A kind of processing method of welding optic fibre
US20180045888A1 (en) A structure of an input end of an optical fiber
TW201131228A (en) Crystal fiber fusing method
CN114690322A (en) Optical fiber combiner with different melting points of signal optical fiber and pump optical fiber and preparation method thereof
US20070196046A1 (en) High-Power Fused Collimator and Associated Methods
JP2013205573A (en) Optical fiber end cap junction structure and manufacturing method thereof
WO2018025486A1 (en) Reinforcement structure
JP5607590B2 (en) Reinforcing sleeve and optical fiber core wire fusion splicing method
KR20150027762A (en) Protective sleeve
WO2011004539A1 (en) Structure of binding multiple cores of optical fibers and method for manufacturing same
JP2002243972A (en) Method for splicing photonic crystal fiber, its splicing structure, and photonic crystal fiber
FR2953031A1 (en) Optical fiber splicing device for use in optical communication field, has maintaining device comprising slots for temporarily maintaining parts of optical fiber cores at two sides to pinch components in elastic manner after splicing
JP6243641B2 (en) Manufacturing method of glass structure
JPH0387703A (en) Method for fixing optical fiber end
JP2004361846A (en) Method for fusion-splicing glass fiber
KR102034535B1 (en) Method for connecting between the discharge starting voltage and the discharge delay time of fibre optic fusion connection
JP2011227249A (en) Optical fiber bundle
US6718096B2 (en) Compact and multiple optical fiber coupler and method of making the same
JPH01284806A (en) Erasing method for flaw on surface of optical fiber
JP2004177804A (en) Fusion splicing method of photonic crystal fiber
JP2023051953A (en) Joining members using additive manufacturing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees