TW201122153A - Method of producing nanometer structure. - Google Patents

Method of producing nanometer structure. Download PDF

Info

Publication number
TW201122153A
TW201122153A TW098144459A TW98144459A TW201122153A TW 201122153 A TW201122153 A TW 201122153A TW 098144459 A TW098144459 A TW 098144459A TW 98144459 A TW98144459 A TW 98144459A TW 201122153 A TW201122153 A TW 201122153A
Authority
TW
Taiwan
Prior art keywords
metal
pattern
type
organic molecules
group
Prior art date
Application number
TW098144459A
Other languages
English (en)
Other versions
TWI415969B (zh
Inventor
Yu-Xu Zhang
jia-xin Wang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW098144459A priority Critical patent/TWI415969B/zh
Priority to US12/794,855 priority patent/US20110151211A1/en
Publication of TW201122153A publication Critical patent/TW201122153A/zh
Application granted granted Critical
Publication of TWI415969B publication Critical patent/TWI415969B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

201122153 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種奈米結構的製作方法,特別是指 一種利用沾筆式奈米技術(Dip Pen Nanolithography)製作奈 米結構的方法。 【先前技術】
由於科技的蓬勃發展,相關的半導體工業製程亦隨著 需求而迅速發展,元件的尺寸隨著科技的發展亦愈來愈 微型化’因此如何製作微型化的電路結構,其技術發 展亦越來越受到重視,而其中沾筆式奈米微影技術 (Dip Pen Nan〇lith〇graphy,以下簡稱DPN)則為近十年 來發展用以製備分子電路的微影技術之一。 以疋利用吸附有機分子的探針與基材接觸,並 利用有機分子的自組裝(self_assembledm性在基材表面 形成奈米圖案的微影技術,例如,參閱圖】,利用吸附具有 :醇S此基之有機分子2的掃描式顯微鏡(spM)探針在 金屬層11之基材1表面移動,利用有機分… :屬層11結合形成一預設圖案2,接著,以渴式蝕刻方 U進㈣刻,將未吸附有機…的金屬層 奈形::=分:21與金屬⑴構成之金屬 製程形成結構可控制尺寸與位置。 帛由^過钱刻
㈣ϋ 2’另—制用DpN 方法則是將—具有金2 =結構圖案的 1先浸置於一含有硫醇 201122153 吕^基之有機分子21(例如正十二烷基硫醇,SH_(CH2)n· CH3)的’容液中’利用有機分子21於該金屬層11表面形成 ’且裝單分子溥膜(self-assembled monolayer,SAM)之保 護膜 2 接 £ ° 、 傻,再以掃描式顯微鏡探針001將預定區域之單分 子薄膜刮除’讓該部分之金屬層11的裸露出,即可在該基 形成如圖2所示之金屬/分子奈米級分子電路圖案, ^ 、此方法形成之奈米圖案,由於是藉由探針將該金屬 層上預定區域之有機分子刮除,因此,露出之金屬層u的 均一性較不易控制’且探針亦容易在刮除的過程中耗損。 隨著科技的發展預計元件的尺寸將縮小至分子的 大小,因此分子電子學(molecular electronics)的研究亦 越來愈文到重視,而如何提供更方便且可更為精確控 制刀子電路形成之方式’以利未來之研究發展,則為 此技術領域研究者努力發展的重要目標之一。 【發明内容】 、因此,本發明之㈣,即在提供一種奈米結構的製作 於是,本發明一種奈米結構的製作方&包含以下 步驟》 首先,在一奈采級探針上吸附多數第一型有機分子, 其中’該等第-型有機分子的結構是SH_RrXi,Ri是選自
Cl〜C3〇的燒基,Xl是硫醇基、經基、幾酸基、胺基,或酿 胺基。 接著,準備H由金以子構成之金屬層的基 201122153 材。 :後’移動該吸附有該等第一型有機分子的探針使 有機分子分別以其硫醇基與該金屬層之預定位 Μ κ 第一型有機分子轉連結至該 寺金屬原子上而形成一第—圖案。 再接著,將形成有該第-圖案的基材浸到一含有多數 第二型有機分子的溶液中,謓兮笪 凰路甘 專第二型有機分子與該金
位置的金屬原子結合而形成—與該第—圖案彼此 補的第二圖案,其中,該等第二型有機分子的結構是SH_ R2_:2,R2是選…3。的燒基,X2是甲基或齒素取代之 甲基’較佳地’該X2是選自CH3、CF3、Cci3,或咖。 最後,將前述形成有該第一、二圖案之基材浸入一组 成份包含第-金屬離子的化學難中,讓該第_金屬離子 還原、沉積在該第一型有機分子上,以完成該金屬/有機分 子/金屬奈米結構的製造。 本發明之功效在於:先於金屬層上形成由不同結構的 第一、二型有機分子構成且彼此互補的第一、二圖案藉 以改變金屬層的表面性質後,再以化學鍍方式選擇性心 第-金屬於該等第一型有機分子上,形成金屬/有機分子/金 屬的奈米結構’不僅製程方法簡單且可藉由第一圖案的控 制而精確控制後續形叙第一金屬的形狀及^。 工 【實施方式】 有關本發明之别述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 201122153 清楚的呈現。 種奈米結構的製作方法的 參閱圖3、圖4,本發明 較佳實施例是包含以下六個步_ 首先進行吸附步驟61,A丄 先在一知描式顯微鏡(Scanning Probe Microscopy,SPM)探 4丄, 十上吸附多數第一型有機分子, 更詳細的說,該步驟是將原子力顯微鏡(afm)之探針浸置在 一含有該等第—型有機分子的溶液中,讓該等第-型有機 分子吸附在該探針後備用。 其中,該等第一型有機分子的結構是SH_RiXi,Ri是 選自C】〜C3〇的烷基’ X!是選自硫醇基(SH广羥基(〇H)、羧 酸基(COOH)、胺基(NH2) ’或醯胺基(c〇NH2)。 較佳地’該第一型有機分子是選自11-氫硫基_十一烷基 醇 (1 hmercaptoundcanol)、正己烧基硫醇(6-mercaptohexanol)、16-氫硫基-十六烧基羧酸(16-mercaptohexadecanoic acid,16-MHA)等具官能基之長碳鍵 硫醇。 接著進行準備步驟62,準備一具有一由金屬原子構成 之金屬層的基材。 具體的說,該金屬層是以濺鍍或蒸鍍等方式形成在一 本體上而得到該具有金屬層的基材,該金屬層是選自金、 銀、銅,及纪,該本體是選自矽晶片(wafer)或雲母(mica)片 金屬或金屬氧化物。 接著進行第一圖案形成步驟63,配合參閱圖4(a),移 動該吸附有該等第一型有機分子31的探針,使該等第一型 201122153 :機分子3!分別以其硫醇基與該金屬層u 屬原子相結合,使該等第—型有機分子η轉連== 層11上而形成一第一圖案3。 π至忒金屬 更詳細的說,該步驟是藉由娜機台的操作, ^附有第-型有機分子31的探針⑻丨在 移/ 動,使該等第-型有機分子31八 ^ 11表面移 之褚宗仿罢从刀別以其硫酵基與該金屬層 之預疋位置的金屬原子相結合,且由於
子31為選自分子兩端分別具有官能基之°雙官能機: 此,當該第一型有機分子31以硫醇基 ::應 合形成第-圖…,該第-圖案3之表面性質即::: =型有機分子…官能基的影響而形成_具有極 接著進行第二圖㈣成㈣64,配合參_ 4(b),將 形成有該第一圖案3的基材1浸到-含有多數第二型有機 分子41的溶液中,讓該等第二型有機分子Μ與該金屬層 11、其他位置的金屬原子結合而形成一與該第一圖案3彼此 互補的第二㈣4 ’於本實施例中,該等第二型有機分子 41的結構是SH_R2_x2,R2是選自Ci〜C3。的烧基,χ 自甲基。 較佳地,該第二型有機分子41是丙烷基硫醇 (ch3(ch2)2sh,i-pr〇panethi()1,Ρτ)、正十二烧基” (CH3(CH2)USH ’ 1-dodecanethiol) ’ 或正十八烷基硫醇 (CH3(CH2)i7SH 5 1-octadecanethiol,〇DT)。 詳細的說,該步驟是將形成該第一圖案3的基材丨,浸 201122153 時,:、遺等第二型有機分子41的乙醇溶液約12〜16小 m1w乙醇及去離子沖洗數次,將為物理性吸附在該 &一 第一型有機分子41移除,即可在該金屬層11上形 補之笛^第二型有機分子41構成且與該第—圖案3為互 山、▲圖案4,3亥等第二型有機分子41由於選自其中-一 目能基,另—端則為不具反應性之結構,因此, Z具有硫醇官能基之-端與該金屬層U結合形成該第二 圖案4後,命笛—聞也 ^ 一圖案4之表面性質即會因為該第二型有 機分子41的伴螬报士 保護形成一鈍化的非極性表面,而使得該第一 圖案3與該第二圖案4之表面性質產生差異。 …、後進订活化步驟65,將表面形成有該第…二圖案 =、4的基材1浸人-含有第二金屬離子之活化溶液中,令 遠第-金>1離子選擇性吸附於該等第__型有機分子的^官 能基上。 °羊細的說’於本實施例中,該活化溶液是含有過氯酸 銅的乙醇/合液’该活化溶液中的銅離子可吸附於該第一型 有機刀子@ X,官能基上作為成核點,以確保後續化學鍵製 程的反應性。 最後進行金屬沉積步驟66,配合參閱圖4(c),將前述 經過活化溶液處理後之基材1浸人一組成份包含第一金屬 離子的化學電鐘液中’並讓該第—金屬離子還原成第一金 屬5沉積在該第一型有機分子31上,形成金屬/有機分子/ 金屬的奈米結構,以完成該奈米結構的製造。 詳細的說’於本實施例中該步驟66的化學鍍液是使用 201122153 無電鍍銅液,該無電鍍銅液的製法是先將硫酸銅 (CuS〇4’5H2〇)和酒石酸氫納(s〇diurn hydrogen tartrate)溶於
去離子水中,以超音波震盪20分鐘後,加入氫氧化鈉將pH 值調整到約12〜13,最後加入體積百分比(v/v%)為2 v/v%的 曱醛,即得到該無電鍍銅液,接著,將該基材製入該無電 鍍銅液中靜置一預定時間後,讓該銅離子還原成銅金屬沉 積在該第一型有機分子之&官能基上,以完成本發明奈米 結構的製作方法。 本發明藉由DPN方式,先將具有雙官能基團之第一型 有機分子與該金屬層反應結合形成第一圖案,再以具有單 官能基團之第二型有機分子形成與該第一圖案互補之第二 圖案,利用該第一、二型有機分子的結構選擇,造成該第 一、二圖案之表面性質差異,而得以控制以化學電鍍沉積 第一金屬時,該第一金屬僅會選擇性沉積在該第一型有機 分子上,不僅製程方法簡單且可藉由第一圖案的控制而精 確控制後續形成之第一金屬的形狀及位置,因此可提供於 製作分子電路時一個有效且方便之方法,故確實可達到本 發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一不意圖,說明習知金屬/分子奈米結構; 201122153 圖2是一示意圖,說明習知金屬/分子奈米結構; 圖3是一流程圖,說明本發明奈米結構的製作方法之 較佳實施例;及 圖4是一示意圖,輔助說明圖3。
10 201122153
【主要元件符號說明】 001 探針 1 基材 11 金屬層 3 第一圖案 31 第一型有機分子 4 第二圖案 41 第二型有機分子 5 第一金屬 61 吸附步驟 62 準備步驟 63 第一圖案形成步 64 第二圖案形成步 65 活化步驟 66 金屬沉積步驟

Claims (1)

  1. 201122153 七、申請專利範圍: 1· 種奈米結構的製作方法,包含: (a) 在一奈米級探針上吸附多數第一型有機分子, 其中’該等第一型有機分子的結構是,Rl是 選自CfC^Q的烧基,\是硫醇基、經基、叛酸基、胺 基’或醯胺基; (b) 準備一具有一由金屬原子構成之金屬層的基 材; (c) 移動該吸附有該等第一型有機分子的探針,使 該等第-型有機分子分別以其硫醇基與該金屬層之預$ _ 位置的金屬原子相結合,使該第一型有機分子轉連結至 該等金屬原子上而形成一第一圖案; (句將形成有該第一圖案的基材浸到一含有第二型 有機分子的溶液中,讓該第二型有機分子與該金屬層其 他位置的金屬原子結合而形成一與該第一圖案彼此互補 的第二圖案’其中’該等第二型有機分子的結構是SH_ R2-x2 ’ R2是選自C广C3。的烧基,Χ2是甲基或齒素取代籲 之甲基;及 ⑷將前述形成有言亥第―、m基材浸入一組 成份包含-第-金屬離子的化學錄液中,讓該第一金屬 離子還原成-第一金屬沉積在該第一圖案上以完成該 奈米結構的製造。 2.依據申請專利範圍第i項所述之奈米結構的製作方法, 其中,鹵素取代之甲基是CBr3、CF3,或 12 201122153 3.依據申請專利範圍第!項所述之奈米結構的製作方法 其中,該金屬層是金、銀、銅,或鈀。 (依射請專利範圍第2項所述之奈米結構的製作方法, 其中,該第一金屬離子是金、銀、銅,或鈀。 5·依據中請專利範圍第1項所述之奈米結構的製作方法, 更包含一實施在該步驟⑷之前的步驟⑺,係將形成有 該第一、二圖案的金屬層浸入一含有第二金屬離子的活 化溶液中,於該第一型有機分子的\基團吸附供成核 用之第二金屬離子。 6.依據申請專利範圍第5項所述之奈米結構的製作方法, 其中,該第二金屬離子是銅、金、銀、鈀、鎳、鐵、 紹,或其中之一組合。
    13
TW098144459A 2009-12-23 2009-12-23 Preparation of nanostructures TWI415969B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098144459A TWI415969B (zh) 2009-12-23 2009-12-23 Preparation of nanostructures
US12/794,855 US20110151211A1 (en) 2009-12-23 2010-06-07 Method for making a desired pattern of a metallic nanostructure of a metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098144459A TWI415969B (zh) 2009-12-23 2009-12-23 Preparation of nanostructures

Publications (2)

Publication Number Publication Date
TW201122153A true TW201122153A (en) 2011-07-01
TWI415969B TWI415969B (zh) 2013-11-21

Family

ID=44151534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144459A TWI415969B (zh) 2009-12-23 2009-12-23 Preparation of nanostructures

Country Status (2)

Country Link
US (1) US20110151211A1 (zh)
TW (1) TWI415969B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US10020807B2 (en) * 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
JP6671335B2 (ja) * 2017-12-28 2020-03-25 株式会社小森コーポレーション 機能性膜のパターニング方法、電子デバイスの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL134631A0 (en) * 2000-02-20 2001-04-30 Yeda Res & Dev Constructive nanolithography
KR20090049578A (ko) * 2006-06-28 2009-05-18 노쓰웨스턴유니버시티 에칭 및 홀 어레이
KR20120115813A (ko) * 2011-04-11 2012-10-19 한국전자통신연구원 생체물질의 정량적 검출방법

Also Published As

Publication number Publication date
US20110151211A1 (en) 2011-06-23
TWI415969B (zh) 2013-11-21

Similar Documents

Publication Publication Date Title
TW201122153A (en) Method of producing nanometer structure.
Minaye Hashemi et al. Selective deposition of dielectrics: Limits and advantages of alkanethiol blocking agents on metal–dielectric patterns
Shacham-Diamand et al. 30 years of electroless plating for semiconductor and polymer micro-systems
Carvalho et al. Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing
Bergsman et al. Formation and ripening of self-assembled multilayers from the vapor-phase deposition of dodecanethiol on copper oxide
JP2009533838A (ja) 基板上への金属、金属酸化物および/または半導体材料のパターンの形成方法
TW200933699A (en) Method of creating a template employing a lift-off process
Liu et al. Effect of Multilayer versus Monolayer Dodecanethiol on Selectivity and Pattern Integrity in Area-Selective Atomic Layer Deposition
TW201122154A (en) Solution and method for activating the oxidized surface of a semiconductor substrate
TW200540228A (en) Formation of self-assembled monolayers
KR20130042845A (ko) 화학적으로 개질된 그래핀에 다양한 바이오물질을 흡착시키는 방법
US20140311966A1 (en) Modified surfaces
JP2011079877A (ja) 高分子超薄膜および高分子超薄膜パターン、並びに、パターン形成用組成物
JP2007105822A (ja) 原子スケール金属ワイヤもしくは金属ナノクラスター、およびこれらの製造方法
KR20140081202A (ko) 나노임프린트 리소그래피와 도금 공정을 이용한 나노패턴이 형성된 금속 필름 제조방법
US20120282442A1 (en) Mold Manufacture Method and Mold Formed by Said Method
Osaka et al. Microfabrication of electro-and electroless-deposition and its application in the electronic field
KR101723769B1 (ko) 그래핀의 직접 전사 방법 및 그래핀층 상의 선택적 원자층 증착 방법
TWI619591B (zh) 金屬零件的製造方法及用於其的鑄模及離型膜
JP2005051151A (ja) 導電層の製造方法、導電層を有する基板、および電子デバイス
JP4035752B2 (ja) 微細構造体の製造方法
Kawaji et al. Area selective formation of magnetic nanodot arrays on Si wafer by electroless deposition
US11156914B2 (en) Damascene template for nanoelement printing fabricated without chemomechanical planarization
KR101507155B1 (ko) 구리 무전해 도금을 위한 은 시드층의 형성방법
CN105070658B (zh) 石墨烯图案及其形成方法、显示基板制备方法及显示装置