RU2676150C1 - Газотурбинный двигатель (варианты) - Google Patents

Газотурбинный двигатель (варианты) Download PDF

Info

Publication number
RU2676150C1
RU2676150C1 RU2017137647A RU2017137647A RU2676150C1 RU 2676150 C1 RU2676150 C1 RU 2676150C1 RU 2017137647 A RU2017137647 A RU 2017137647A RU 2017137647 A RU2017137647 A RU 2017137647A RU 2676150 C1 RU2676150 C1 RU 2676150C1
Authority
RU
Russia
Prior art keywords
fan
gas turbine
turbine engine
gear
section
Prior art date
Application number
RU2017137647A
Other languages
English (en)
Inventor
Уильям Г. ШЕРИДАН
Карл Л. ХЕЙЗЕЛ
Original Assignee
Юнайтед Текнолоджиз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50031222&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2676150(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Юнайтед Текнолоджиз Корпорейшн filed Critical Юнайтед Текнолоджиз Корпорейшн
Application granted granted Critical
Publication of RU2676150C1 publication Critical patent/RU2676150C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/068Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type being characterised by a short axial length relative to the diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Газотурбинный двигатель содержит, среди прочего, вентиляторную секцию, содержащую вентилятор, выполненный с возможностью вращения вокруг оси, и редуктор, взаимодействующий с указанным вентилятором. Указанный редуктор содержит эпициклическую зубчатую передачу привода вентилятора с передаточным отношением планетарной передачи по меньшей мере 2,5. Скорость конца лопасти вентилятора составляет менее 1400 футов в секунду. Турбинная секция низкого давления взаимодействует с указанным редуктором. Причем указанная турбинная секция низкого давления имеет три или четыре ступени и степень двухконтурности, лежащую в интервале от 11,0 до 22,0. Достигается повышение эффективности эксплуатации. 2 н. и 13 з.п. ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к газотурбинному двигателю, в частности, к способу задания передаточного отношения зубчатой передачи привода вентилятора газотурбинного двигателя.
Уровень техники
Газотурбинный двигатель может содержать вентиляторную секцию, компрессорную секцию, камеру сгорания и турбинную секцию. Воздух, входящий в компрессорную секцию, сжимают и доставляют в камеру сгорания, где его смешивают с топливом и воспламеняют для образования высокоскоростного потока отработавшего газа. Высокоскоростной поток отработавшего газа расширяется через турбинную секцию для приведения в действие компрессорной и вентиляторной секций. Среди других вариантов компрессорная секция может содержать компрессоры низкого и высокого давления, и турбинная секция может содержать турбины низкого и высокого давления.
Обычно турбина высокого давления приводит в действие компрессор высокого давления через наружный вал для формирования высокоскоростного каскада компрессора, а турбина низкого давления приводит в действие компрессор низкого давления через внутренний вал для формирования низкоскоростного каскада компрессора. Вентиляторную секцию может также приводить в действие внутренний вал. Газотурбинный двигатель с прямым приводом может содержать вентиляторную секцию, приводимую в действие низкоскоростным каскадом компрессора, так что компрессор низкого давления, турбина низкого давления и вентиляторная секция вращаются с общей скоростью в одном направлении.
Редуктор, который может представлять собой зубчатую передачу привода вентилятора или другой механизм, можно использовать для приведения в действие вентиляторной секции, чтобы обеспечить возможность вращения указанной вентиляторной секции со скоростью, отличной от скорости турбинной секции. Это позволяет, в целом, увеличить тяговый коэффициент полезного действия двигателя. При таких конфигурациях двигателя, вал, приводимый в действие одной из турбинных секций, обеспечивает входной импульс редуктора, который приводит в действие вентиляторную секцию при меньшей скорости, так что и турбинная секция, и вентиляторная секция могут вращаться при скоростях, близких к оптимальным.
Хотя газотурбинные двигатели, оснащенные изменяющими скорость механизмами, в общем, известны как повышающие тяговый коэффициент полезного действия по сравнению с обычными двигателями, производители газотурбинных двигателей продолжают поиск путей повышения производительности таких двигателей, в том числе пути повышения термического, тягового коэффициентов полезного действия и коэффициента полезного действия передачи.
Раскрытие изобретения
Газотурбинный двигатель согласно иллюстративному аспекту настоящего изобретения содержит, среди прочего, вентиляторную секцию, содержащую вентилятор, выполненный с возможностью вращения вокруг оси, и редуктор, взаимодействующий с указанным вентилятором. Указанный редуктор содержит планетарную зубчатую передачу привода вентилятора с передаточным отношением планетарной передачи по меньшей мере 2,5. Скорость конца лопасти вентилятора меньше 1400 футов в секунду.
В другом варианте осуществления вышеуказанного газотурбинного двигателя, не имеющем ограничительного характера, передаточное отношение меньше или равно 5,0.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,7.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,48.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, степень двухконтурности больше приблизительно 6,0.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, степень двухконтурности находится в интервале от приблизительно 11,0 до приблизительно 22,0.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, планетарная передача содержит солнечную шестерню, множество сателлитных шестерней, коронную шестерню и водило.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, каждая из множества сателлитных шестерней содержит по меньшей мере один подшипник.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, коронная шестерня зафиксирована от вращения.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, турбина низкого давления механически прикреплена к солнечной шестерне.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характер, вентиляторная секция механически прикреплена к водилу.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, вход редуктора выполнен с возможностью вращения в первом направлении, и выход редуктора выполнен с возможностью вращения в том же первом направлении.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, турбинная секция низкого давления взаимодействует с редуктором. Указанная турбинная секция низкого давления содержит по меньшей мере три ступени, но не более четырех ступеней.
В другом варианте осуществления любого из вышеуказанных газотурбинных двигателей, не имеющем ограничительного характера, скорость конца лопасти вентилятора больше 1000 футов в секунду.
Способ повышения производительности газотурбинного двигателя согласно другому иллюстративному аспекту настоящего изобретения содержит, среди прочего, определение граничных условий на скорость конца лопасти вентилятора по меньшей мере одной лопасти вентилятора вентиляторной секции и определение граничных условий для ротора турбины низкого давления. Ограничения по уровню напряжений в роторе турбины низкого давления и по меньшей мере одной лопасти вентилятора используют для определения соответствия скорости вращения вентиляторной секции и турбины низкого давления необходимому количеству рабочих циклов. Степень двухконтурности больше приблизительно 6,0.
В другом варианте осуществления вышеуказанного способа редуктор соединяет вентиляторную секцию и турбину низкого давления и имеет передаточное отношение планетарной передачи по меньшей мере приблизительно 2,5, но не больше приблизительно 5,0.
В другом варианте осуществления любого из вышеупомянутых способов, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,7.
В другом варианте осуществления любого из вышеупомянутых способов, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,48.
В другом варианте осуществления любого из вышеуказанных способов, не имеющем ограничительного характера, степень двухконтурности больше приблизительно 11.
В другом варианте осуществления любого из вышеуказанных способов, не имеющем ограничительного характера, скорость конца лопасти вентилятора по меньшей мере одной лопасти вентилятора меньше 1400 футов в секунду.
В другом варианте осуществления любого из вышеуказанных способов, не имеющем ограничительного характера, если уровень напряжений в роторе или по меньшей мере одной лопасти вентилятора слишком высок для соответствия необходимому количеству рабочих циклов, передаточное отношение редуктора уменьшают, а количество ступеней турбины низкого давления увеличивают.
В другом варианте осуществления любого из вышеуказанных способов, не имеющем ограничительного характера, если уровень напряжений в роторе или по меньшей мере одной лопасти вентилятора слишком высок для соответствия необходимому количеству рабочих циклов, передаточное отношение редуктора уменьшают, а кольцевую область турбины низкого давления увеличивают.
Различные отличительные признаки и преимущества настоящего изобретения станут понятны специалисту данной области техники из нижеследующего подробного описания изобретения. Чертежи, сопровождающие данное подробное описание, можно кратко описать следующим образом.
Краткое описание чертежей
На фиг. 1 схематично проиллюстрирован поперечный разрез примера осуществления газотурбинного двигателя.
На фиг. 2 схематично проиллюстрирован вид одной конфигурации низкоскоростного каскада компрессора, которая может быть установлена в газотурбинный двигатель.
На фиг. 3 проиллюстрирована зубчатая передача привода вентилятора, которая может быть установлена в газотурбинный двигатель.
Осуществление изобретения
На фиг. 1 схематично проиллюстрирован газотурбинный двигатель 20. Иллюстративный газотурбинный двигатель 20 представляет собой двухкаскадный турбовентиляторный двигатель, который главным образом содержит вентиляторную секцию 22, компрессорную секцию 24, секцию 26 камеры сгорания и турбинную секцию 28. Альтернативно двигатели могут среди прочих систем или признаков содержать секцию форсажной камеры (не показана). Вентиляторная секция 22 приводит воздух в движение по наружному контуру В, в то время как компрессорная секция 24 приводит воздух в движение по внутреннему контуру С для его сжатия и передачи в камеру сгорания 26. Горячие отработавшие газы, образованные в секции 26 камеры сгорания, расширяются, проходя через турбинную секцию 28. Хотя в данном варианте осуществления изобретения, не имеющем ограничительного характера, раскрыт двухкаскадный турбовентиляторный газотурбинный двигатель, следует понимать, что раскрытые в настоящей заявке идеи не ограничены двухкаскадными турбовентиляторными двигателями, и раскрытый в данном документе изобретательский замысел может быть распространен на другие типы двигателей, в том числе, но не исключительно, на трехкаскадные конструкции двигателей.
Иллюстративный газотурбинный двигатель 20 главным образом содержит низкоскоростной каскад 30 и высокоскоростной каскад 32, установленные с возможностью вращения вокруг продольной центральной оси А двигателя. Низкоскоростной каскад 30 и высокоскоростной каскад 32 могут быть установлены относительно неподвижной конструкции 33 двигателя через посредство нескольких подшипниковых систем 31. Следует понимать, что альтернативно или дополнительно могут быть предусмотрены другие подшипниковые системы 31, причем расположение подшипниковых систем 31 может быть изменено в зависимости от условий применения.
Низкоскоростной каскад 30 по существу содержит внутренний вал 34, который соединяет между собой вентилятор 36, компрессор 38 низкого давления и турбину 39 низкого давления. Внутренний вал 34 может быть соединен с вентилятором 36 через механизм изменения скорости, который в иллюстративном газотурбинном двигателе 20 изображен в виде редукторной конструкции 45, а именно зубчатой передачи 50 привода вентилятора (см. фиг. 2 и 3). Указанный механизм изменения скорости приводит в движение вентилятор 36 с более низкой скоростью, чем низкоскоростной каскад 30. Высокоскоростной каскад 32 содержит наружный вал 35, который связывает между собой компрессор 37 высокого давления и турбину 40 высокого давления. В этом варианте осуществления, внутренний вал 34 и наружный вал 35 опираются в различных местоположениях вдоль оси на подшипниковые системы 31, установленные в неподвижной конструкции 33 двигателя.
Камера сгорания 42 расположена в иллюстративном газотурбинном двигателе 20 между компрессором 37 высокого давления и турбиной 40 высокого давления. По существу между турбиной 40 высокого давления и турбиной 39 низкого давления может быть расположена межтурбинная рама 44. Указанная межтурбинная рама 44 может служить опорой для одной или более подшипниковых систем 31 турбинной секции 28. Межтурбинная рама 44 может содержать один или более аэродинамический профиль 46, проходящий во внутреннем контуре С. Следует иметь в виду, что каждое из положений вентиляторной секции 22, компрессорной секции 24, секции 26 камеры сгорания, турбинной секции 28 и зубчатой передачи 50 привода вентилятора может быть изменено. Например, зубчатая передача 50 может быть расположена за секцией 26 камеры сгорания или даже за турбинной секцией 28, а вентиляторная секция 22 может быть расположена спереди или сзади зубчатой передачи 50.
Внутренний вал 34 и наружный вал 35 выполнены соосными и с возможностью вращения через посредство подшипниковых систем 31 вокруг продольной центральной оси А двигателя, расположенной на одной линии с их продольными осями. Внутренний поток воздуха сжимают посредством компрессора 38 низкого давления и компрессора 37 высокого давления, смешивают с топливом и сжигают в камере 42 сгорания, а затем расширяют при прохождении через турбину 40 высокого давления и турбину 39 низкого давления. В ответ на указанное расширение турбина 40 высокого давления и турбина 39 низкого давления приводят во вращение соответствующие высокоскоростной каскад 32 и низкоскоростной каскад 30.
В одном из вариантов осуществления изобретения, не имеющем ограничительного характера, газотурбинный двигатель 20 представляет собой редукторный самолетный двигатель с высокой степенью двухконтурности. В другом варианте осуществления изобретения степень двухконтурности газотурбинного двигателя 20 больше приблизительно шести (6:1). Редукторная конструкция 45 может содержать эпициклическую зубчатую передачу, например, планетарную зубчатую передачу, планетарную зубчатую передачу с заторможенным водилом или другую зубчатую передачу. Редукторная конструкция 45 обеспечивает работу низкоскоростного каскада 30 на более высоких скоростях, что позволяет повысить эффективность эксплуатации компрессора 38 низкого давления и турбины 39 низкого давления и генерировать повышенное давление в меньшем количестве ступеней.
Степень повышения давления турбины 39 низкого давления может быть измерена перед входным каналом турбины 39 низкого давления относительно давления в выходном канале турбины 39 низкого давления и перед выхлопным соплом газотурбинного двигателя 20. В одном из вариантов осуществления изобретения, не имеющем ограничительного характера, степень двухконтурности газотурбинного двигателя 20 больше приблизительно десяти (10:1), диаметр вентилятора значительно больше, чем диаметр компрессора 38 низкого давления, а турбина 39 низкого давления обладает степенью повышения давления больше приблизительно пяти (5:1). В другом варианте осуществления, не имеющем ограничительного характера, степень двухконтурности более 11 и менее 22, или более 13 и менее 20. Следует понимать, однако, что вышеуказанные параметры приведены в качестве примера двигателя с редукторной конструкцией или другого двигателя, использующего механизм изменения скорости, и что настоящее изобретение применимо к другим газотурбинным двигателям, в том числе турбовентиляторным двигателям с прямым приводом. В одном из вариантов осуществления, не имеющем ограничительного характера, турбина 39 низкого давления содержит по меньшей мере одну ступень и не более восьми ступеней, или по меньшей мере три ступени и не более шести ступеней. В другом варианте осуществления, не имеющем ограничительного характера, турбина 39 низкого давления содержит по меньшей мере три ступени и не более четырех ступеней.
В данном варианте осуществления иллюстративного газотурбинного двигателя 20, значительное количество тяги, за счет высокой степени двухконтурности, обеспечивает внутренний контур В. Вентиляторная секция 22 газотурбинного двигателя 20 предназначена для определенного режима полета - обычно маршевого, со скоростью 0,8 Маха и на высоте около 35000 футов. Такой режим полета, соответствующий оптимальному расходу топлива газотурбинным двигателем 20, также известен как режим полета в области минимума удельного расхода топлива на килограмм тяги в час (TSFC - Thrust Specific Fuel Consumption). TSFC является промышленным стандартным параметром потребления топлива на единицу тяги.
Степень повышения давления в вентиляторе представляет собой степень повышения давления в поперечном направлении лопасти вентиляторной секции 22 без использования выпускной направляющей системы лопастей вентилятора. Согласно одному из вариантов осуществления газотурбинного двигателя 20, не имеющему ограничительного характера, низкая степень повышения давления в вентиляторе маньше 1,45. В другом варианте осуществления газотурбинного двигателя 20, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,38 и больше 1,25. В другом варианте осуществления, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,48. В другом варианте осуществления, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,52. В другом варианте осуществления, не имеющем ограничительного характера, степень повышения давления в вентиляторе меньше 1,7. Низкая приведенная скорость конца лопасти вентилятора представляет собой действительную скорость конца лопасти вентилятора, разделенную на стандартную промышленную температурную поправку [(Tram °R)/(518,7 °R)]0,5, где Т представляет собой температуру окружающей среды в градусах Ранкина. Низкая приведенная скорость конца лопасти вентилятора согласно одному из вариантов осуществления газотурбинного двигателя 20, не имеющему ограничительного характера, меньше приблизительно 1150 футов в секунду (351 м/с). Низкая приведенная скорость конца лопасти вентилятора согласно другому варианту осуществления газотурбинного двигателя 20, не имеющему ограничительного характера, меньше приблизительно 1400 футов в секунду (427 м/с). Низкая приведенная скорость конца лопасти вентилятора согласно другому варианту осуществления газотурбинного двигателя 20, не имеющему ограничительного характера, больше приблизительно 1000 футов в секунду (305 м/с).
На фиг. 2 схематично проиллюстрирован низкоскоростной каскад 30 газотурбинного двигателя 20. Указанный низкоскоростной каскад 30 содержит вентилятор 36, компрессор 38 низкого давления и турбину 39 низкого давления. Внутренний вал 34 соединяет между собой вентилятор 36, компрессор 38 низкого давления и турбину 39 низкого давления. Внутренний вал 34 соединен с вентилятором 36 через зубчатую передачу 50 привода вентилятора. В данном варианте осуществления зубчатая передача 50 привода вентилятора обеспечивает синхронное вращение турбины 39 низкого давления и вентилятора 36. Например, вентилятор 36 вращается в первом направлении D1 и турбина 39 низкого давления вращается в том же направлении D1, что и вентилятор 36.
На фиг. 3 проиллюстрирован один пример варианта осуществления зубчатой передачи 50 привода вентилятора, установленной в газотурбинный двигатель 20 для обеспечения синхронного вращения вентилятора 36 и турбины 39 низкого давления. В данном варианте осуществления изобретения, зубчатая передача 50 привода вентилятора представляет собой планетарную зубчатую передачу, содержащую солнечную шестерню 52, зафиксированную коронную шестерню 54, расположенную вокруг солнечной шестерни 52, и множество сателлитных шестерней 56, содержащих подшипники 57 скольжения и размещенных между солнечной шестерней 52 и коронной шестерней 54. Водило 58 ведет и прикрепляет каждую из указанных сателлитных шестерней 56. В данном варианте осуществления зафиксированная коронная шестерня 54 зафиксирована от вращения и соединена с заземляющей конструкцией 55 газотурбинного двигателя 20.
Солнечная шестерня 52 принимает входящий импульс от турбины 39 низкого давления (см. фиг. 2) и начинает вращаться в первом направлении D1, тем самым поворачивая множество сателлитных шестерней 56 во втором направлении D2, противоположном первому направлению D1. Движение множества сателлитных шестерней 56 передается к водилу 58, выполненному с возможностью вращения в первом направлении D1. Водило 58 соединено с вентилятором 36 для вращения вентилятора 36 (см. фиг. 2) в первом направлении D1.
Передаточное отношение планетарной зубчатой передачи 50 привода вентилятора определяют путем измерения диаметра коронной шестерни 54, деления измеренного значения на диаметр солнечной шестерни 52 и добавления к полученному отношению единицы. В одном варианте осуществления передаточное отношение планетарной зубчатой передачи 50 привода вентилятора находится в интервале от 2,5 до 5,0. Когда передаточное отношение планетарной зубчатой передачи меньше 2,5, то солнечная шестерня 52 намного больше, чем сателлитные шестерни 56. Такая разница в размерах сокращает нагрузку, которую способны выдерживать сателлитные шестерни 56, из-за сокращения размера подшипников 57 скольжения. Когда передаточное отношение передачи выше 5,0, то солнечная шестерня 52 намного меньше, чем сателлитные шестерни 56. Такая разница в размерах увеличивает размер подшипников 57 скольжения сателлитных шестерней 56, но уменьшает нагрузку, которую способна выдерживать солнечная шестерня 52, из-за уменьшения ее размера и количества зубьев. Альтернативно, вместо подшипников 57 скольжения могут быть использованы роликовые подшипники.
Повышение производительности газотурбинного двигателя 20 начинается с определения граничных условий на скорость по меньшей мере одной лопасти вентилятора 36 с целью задания скорости конца лопасти вентилятора. Максимальный диаметр вентилятора определяют на основе прогнозируемого сгорания топлива, получаемого из баланса коэффициента полезного действия двигателя, массы воздуха, проходящего через наружный контур В, и массы двигателя, увеличивающейся в зависимости от размера лопастей вентилятора.
Затем определяют граничные условия для ротора каждой ступени турбины 39 низкого давления для определения скорости концов ротора и определения размера ротора и количества ступеней в турбине 39 низкого давления на основе коэффициента полезного действия турбины 39 низкого давления и компрессора 38 низкого давления.
Ограничения в отношении уровней напряжений в роторе и лопасти вентилятора используют для определения соответствия скорости вращения вентилятора 36 и турбины 39 низкого давления необходимому количеству рабочих циклов. Если уровни напряжений в роторе или лопасти вентилятора слишком высоки, передаточное отношение зубчатой передачи 50 привода вентилятора может быть уменьшено, а количество ступеней турбины 39 низкого давления или кольцевой области турбины 39 низкого давления может быть увеличено.
Хотя различные варианты осуществления изобретения, не имеющие ограничительного характера, проиллюстрированы содержащими конкретные компоненты, варианты осуществления настоящего изобретения не ограничены указанными конкретными комбинациями. Некоторые компоненты или признаки любых описанных вариантов осуществления изобретения, не имеющих ограничительного характера, могут быть использованы в сочетании с признаками или компонентами любых других вариантов осуществления изобретения, не имеющих ограничительного характера.
Следует понимать, что аналогичные номера позиций обозначают соответствующие или аналогичные элементы на нескольких чертежах. Следует также понимать, что хотя в указанных примерах вариантов осуществления раскрыто и изображено конкретное положение компонента, другие конструкции также могут быть усовершенствованы за счет применения идей, изложенных в настоящем изобретении.
Приведенное выше описание следует интерпретировать как иллюстративное и никоим образом не ограничивающее идеи настоящего изобретения. Специалисту данной области техники должно быть понятно, что определенные модификации могут попадать под объем настоящего изобретения. По этим причинам для определения действительного объема и содержания настоящего изобретения должна быть изучена нижеследующая формула изобретения.

Claims (23)

1. Газотурбинный двигатель, содержащий:
вентиляторную секцию, содержащую вентилятор, выполненный с возможностью вращения вокруг оси;
редуктор, взаимодействующий с вентилятором, причем указанный редуктор содержит эпициклическую зубчатую передачу привода вентилятора с передаточным отношением передачи по меньшей мере 2,5, причем скорость конца лопасти вентилятора меньше 1400 футов в секунду; и
турбинную секцию низкого давления, взаимодействующую с указанным редуктором, причем указанная турбинная секция низкого давления имеет три или четыре ступени и
степень двухконтурности, лежащую в интервале от 11,0 до приблизительно 22,0.
2. Газотурбинный двигатель по п. 1, в котором передаточное отношение меньше или равно 5,0.
3. Газотурбинный двигатель по п. 2, имеющий степень повышения давления в вентиляторе менее 1,7.
4. Газотурбинный двигатель по п. 2, имеющий степень повышения давления в вентиляторе меньше 1,48.
5. Газотурбинный двигатель по п. 1, в котором указанная передача содержит солнечную шестерню, множество сателлитных шестерней, коронную шестерню и водило.
6. Газотурбинный двигатель по п. 5, в котором каждая из множества сателлитных шестерней содержит по меньшей мере один подшипник.
7. Газотурбинный двигатель по п. 5, в котором коронная шестерня зафиксирована от вращения.
8. Газотурбинный двигатель по п. 5, в котором турбина низкого давления механически прикреплена к солнечной шестерне.
9. Газотурбинный двигатель по п. 5, в котором указанная вентиляторная секция механически прикреплена к водилу.
10. Газотурбинный двигатель по п. 1, в котором вход редуктора выполнен с возможностью вращения в первом направлении, и выход редуктора выполнен с возможностью вращения в том же первом направлении.
11. Газотурбинный двигатель по п. 1, в котором скорость конца лопасти вентилятора больше 1000 футов в секунду.
12. Газотурбинный двигатель по п. 1, в котором указанная передача содержит планетарную зубчатую передачу с заторможенным водилом.
13. Газотурбинный двигатель, содержащий:
вентиляторную секцию, содержащую вентилятор, выполненный с возможностью вращения вокруг оси;
редуктор, взаимодействующий с указанным вентилятором, причем указанный редуктор содержит эпициклическую зубчатую передачу привода с передаточным отношением передачи по меньшей мере 2,5; и
степень двухконтурности, лежащую в интервале от приблизительно 11,0 до приблизительно 22,0,
причем скорость конца лопасти вентилятора меньше 1400 футов в секунду.
14. Газотурбинный двигатель по п. 13, в котором указанная передача содержит планетарную зубчатую передачу с заторможенным водилом.
15. Газотурбинный двигатель по п. 13, в котором указанная передача содержит планетарную зубчатую передачу.
RU2017137647A 2013-02-04 2017-10-27 Газотурбинный двигатель (варианты) RU2676150C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/758,086 2013-02-04
US13/758,086 US8678743B1 (en) 2013-02-04 2013-02-04 Method for setting a gear ratio of a fan drive gear system of a gas turbine engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2014103719A Division RU2635181C2 (ru) 2013-02-04 2014-02-03 Газотурбинный двигатель (варианты) и способ повышения производительности газотурбинного двигателя

Publications (1)

Publication Number Publication Date
RU2676150C1 true RU2676150C1 (ru) 2018-12-26

Family

ID=50031222

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2014103719A RU2635181C2 (ru) 2013-02-04 2014-02-03 Газотурбинный двигатель (варианты) и способ повышения производительности газотурбинного двигателя
RU2017137647A RU2676150C1 (ru) 2013-02-04 2017-10-27 Газотурбинный двигатель (варианты)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2014103719A RU2635181C2 (ru) 2013-02-04 2014-02-03 Газотурбинный двигатель (варианты) и способ повышения производительности газотурбинного двигателя

Country Status (7)

Country Link
US (2) US8678743B1 (ru)
EP (1) EP2762710A1 (ru)
JP (4) JP2014152778A (ru)
CN (1) CN103967651B (ru)
BR (1) BR102014002650B1 (ru)
CA (2) CA2880937C (ru)
RU (2) RU2635181C2 (ru)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202790D0 (en) * 2012-02-20 2012-04-04 Rolls Royce Plc An aircraft propulsion system
WO2013139926A1 (de) * 2012-03-22 2013-09-26 Alstom Technology Ltd Turbinenschaufel
US8753065B2 (en) * 2012-09-27 2014-06-17 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US8678743B1 (en) * 2013-02-04 2014-03-25 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10060282B2 (en) 2014-06-10 2018-08-28 United Technologies Corporation Geared turbofan with integrally bladed rotor
US11448123B2 (en) 2014-06-13 2022-09-20 Raytheon Technologies Corporation Geared turbofan architecture
US20160186657A1 (en) * 2014-11-21 2016-06-30 General Electric Company Turbine engine assembly and method of manufacturing thereof
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US9915225B2 (en) * 2015-02-06 2018-03-13 United Technologies Corporation Propulsion system arrangement for turbofan gas turbine engine
US10458270B2 (en) * 2015-06-23 2019-10-29 United Technologies Corporation Roller bearings for high ratio geared turbofan engine
US10634237B2 (en) * 2015-06-24 2020-04-28 United Technologies Corporation Lubricant delivery system for planetary fan drive gear system
CN106560605B (zh) * 2015-10-06 2019-04-19 熵零股份有限公司 行星机构桨扇发动机
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US10281025B2 (en) 2015-10-19 2019-05-07 United Technologies Corporation Fixed support and oil collector system for ring gear
US9611034B1 (en) 2015-11-03 2017-04-04 United Technologies Corporation Wide fuselage aircraft with increased boundary layer ingestion
US10508562B2 (en) * 2015-12-01 2019-12-17 United Technologies Corporation Geared turbofan with four star/planetary gear reduction
US10633090B2 (en) 2016-03-17 2020-04-28 United Technologies Corporation Cross flow fan with exit guide vanes
US10472081B2 (en) 2016-03-17 2019-11-12 United Technologies Corporation Cross flow fan for wide aircraft fuselage
WO2018026408A2 (en) * 2016-05-25 2018-02-08 General Electric Company Method and system for a two frame gas turbine engine
FR3065994B1 (fr) * 2017-05-02 2019-04-19 Safran Aircraft Engines Turbomachine a rotor de soufflante et reducteur entrainant un arbre de compresseur basse pression
CN107288908B (zh) * 2017-07-27 2023-08-22 德清京达电气有限公司 行星散热风扇
US10724445B2 (en) 2018-01-03 2020-07-28 Raytheon Technologies Corporation Method of assembly for fan drive gear system with rotating carrier
CN108233617A (zh) * 2018-01-31 2018-06-29 湖北环电磁装备工程技术有限公司 一种无框式永磁同步电机直驱的盾构机刀盘机构
UA123224C2 (uk) * 2018-08-21 2021-03-03 Михайло Анатолійович Кудряшов Газотурбінний двигун з теплообмінником
UA132909U (uk) * 2018-11-13 2019-03-11 Тарас Миколайович Римар Теплоізоляційний неавтоклавний ніздрюватий бетон
GB201819412D0 (en) * 2018-11-29 2019-01-16 Rolls Royce Plc Geared turbofan engine
GB201820945D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Low noise gas turbine engine
GB201820940D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Low noise gas turbine engine
GB201820943D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Gas turbine engine having improved noise signature
GB201820941D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Low noise gas turbine engine
GB201820936D0 (en) * 2018-12-21 2019-02-06 Rolls Royce Plc Low noise gas turbine engine
US10815895B2 (en) 2018-12-21 2020-10-27 Rolls-Royce Plc Gas turbine engine with differing effective perceived noise levels at differing reference points and methods for operating gas turbine engine
US11274729B2 (en) * 2019-07-18 2022-03-15 Rolls-Royce Plc Turbofan gas turbine engine with gearbox
GB201913195D0 (en) * 2019-09-12 2019-10-30 Rolls Royce Plc Gas turbine engine
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system
US11661851B1 (en) 2022-11-14 2023-05-30 General Electric Company Turbomachine and method of assembly
US11852161B1 (en) 2022-11-14 2023-12-26 General Electric Company Turbomachine and method of assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2330170C2 (ru) * 2006-09-11 2008-07-27 Открытое акционерное общество "Авиадвигатель" Двухконтурный газотурбинный двигатель сверхвысокой степени двухконтурности
US20090148272A1 (en) * 2004-12-01 2009-06-11 Norris James W Tip turbine engine and operating method with reverse core airflow
US20100154384A1 (en) * 2008-12-19 2010-06-24 Jan Christopher Schilling Geared differential speed counter-rotatable low pressure turbine
US8297916B1 (en) * 2011-06-08 2012-10-30 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US20120291415A1 (en) * 2006-10-12 2012-11-22 Marshall Richard M Dual function cascade integrated variable area fan nozzle and thrust reverser

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2154532A (en) 1936-05-14 1939-04-18 United Aircraft Corp Propeller drive for oppositely rotating coaxial propellers
GB1487324A (en) * 1973-11-15 1977-09-28 Rolls Royce Gas turbine engines
JPH0677260B2 (ja) * 1986-06-05 1994-09-28 株式会社日立製作所 タ−ボ機械ロ−タの最適設計システム
US4916894A (en) * 1989-01-03 1990-04-17 General Electric Company High bypass turbofan engine having a partially geared fan drive turbine
US5102379A (en) 1991-03-25 1992-04-07 United Technologies Corporation Journal bearing arrangement
US5389048A (en) 1993-03-24 1995-02-14 Zexel-Gleason Usa, Inc. Parallel-axis differential with triplet combination gears
US5466198A (en) 1993-06-11 1995-11-14 United Technologies Corporation Geared drive system for a bladed propulsor
US5685797A (en) 1995-05-17 1997-11-11 United Technologies Corporation Coated planet gear journal bearing and process of making same
JP2001073875A (ja) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd 超高バイパス比エンジン
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6966174B2 (en) * 2002-04-15 2005-11-22 Paul Marius A Integrated bypass turbojet engines for air craft and other vehicles
US7021042B2 (en) * 2002-12-13 2006-04-04 United Technologies Corporation Geartrain coupling for a turbofan engine
US6964155B2 (en) * 2002-12-30 2005-11-15 United Technologies Corporation Turbofan engine comprising an spicyclic transmission having bearing journals
US7845902B2 (en) * 2005-02-15 2010-12-07 Massachusetts Institute Of Technology Jet engine inlet-fan system and design method
US7726113B2 (en) * 2005-10-19 2010-06-01 General Electric Company Gas turbine engine assembly and methods of assembling same
US8667688B2 (en) * 2006-07-05 2014-03-11 United Technologies Corporation Method of assembly for gas turbine fan drive gear system
US7926260B2 (en) * 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US8858388B2 (en) * 2006-08-15 2014-10-14 United Technologies Corporation Gas turbine engine gear train
US20120213628A1 (en) * 2006-08-15 2012-08-23 Mccune Michael E Gas turbine engine with geared architecture
JP5205969B2 (ja) 2006-08-29 2013-06-05 三菱電機株式会社 エレベータの制御装置及び制御方法
US7841165B2 (en) * 2006-10-31 2010-11-30 General Electric Company Gas turbine engine assembly and methods of assembling same
US20120124964A1 (en) * 2007-07-27 2012-05-24 Hasel Karl L Gas turbine engine with improved fuel efficiency
US8277174B2 (en) * 2007-09-21 2012-10-02 United Technologies Corporation Gas turbine engine compressor arrangement
US10151248B2 (en) * 2007-10-03 2018-12-11 United Technologies Corporation Dual fan gas turbine engine and gear train
US8695920B2 (en) * 2008-06-02 2014-04-15 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US8800914B2 (en) * 2008-06-02 2014-08-12 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US8371812B2 (en) * 2008-11-29 2013-02-12 General Electric Company Turbine frame assembly and method for a gas turbine engine
US8517672B2 (en) 2010-02-23 2013-08-27 General Electric Company Epicyclic gearbox
US8360714B2 (en) * 2011-04-15 2013-01-29 United Technologies Corporation Gas turbine engine front center body architecture
US8257024B1 (en) * 2012-01-27 2012-09-04 United Technologies Corporation Geared turbomachine fluid delivery system
US8261527B1 (en) 2012-01-31 2012-09-11 United Technologies Corporation Gas turbine engine with geared turbofan and oil thermal management system with unique heat exchanger structure
US8678743B1 (en) * 2013-02-04 2014-03-25 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148272A1 (en) * 2004-12-01 2009-06-11 Norris James W Tip turbine engine and operating method with reverse core airflow
RU2330170C2 (ru) * 2006-09-11 2008-07-27 Открытое акционерное общество "Авиадвигатель" Двухконтурный газотурбинный двигатель сверхвысокой степени двухконтурности
US20120291415A1 (en) * 2006-10-12 2012-11-22 Marshall Richard M Dual function cascade integrated variable area fan nozzle and thrust reverser
US20100154384A1 (en) * 2008-12-19 2010-06-24 Jan Christopher Schilling Geared differential speed counter-rotatable low pressure turbine
US8297916B1 (en) * 2011-06-08 2012-10-30 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine

Also Published As

Publication number Publication date
BR102014002650A2 (pt) 2019-06-04
JP2017120087A (ja) 2017-07-06
CA2841679C (en) 2016-03-29
EP2762710A1 (en) 2014-08-06
CA2880937A1 (en) 2014-08-04
CN103967651B (zh) 2015-12-30
US20140234078A1 (en) 2014-08-21
CA2841679A1 (en) 2014-08-04
BR102014002650B1 (pt) 2021-11-23
JP2018184964A (ja) 2018-11-22
US8678743B1 (en) 2014-03-25
CN103967651A (zh) 2014-08-06
RU2635181C2 (ru) 2017-11-09
JP2014177948A (ja) 2014-09-25
US8814494B1 (en) 2014-08-26
JP2014152778A (ja) 2014-08-25
CA2880937C (en) 2018-05-01
RU2014103719A (ru) 2015-08-10

Similar Documents

Publication Publication Date Title
RU2676150C1 (ru) Газотурбинный двигатель (варианты)
US20210215101A1 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US9816443B2 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
RU2637159C2 (ru) Газотурбинный двигатель с высокоскоростной турбинной секцией низкого давления
RU2639821C2 (ru) Редукторное устройство для высокоскоростной и малогабаритной турбины привода вентилятора
RU2631955C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
RU2630630C2 (ru) Архитектура редукторного турбовентиляторного газотурбинного двигателя
RU2633218C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
RU2631956C2 (ru) Компоновка редукторного турбовентиляторного газотурбинного двигателя
US9739205B2 (en) Geared turbofan with a gearbox upstream of a fan drive turbine
EP3087267B1 (en) Geared turbofan with a gearbox aft of a fan drive turbine
CA2849372C (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
EP3093473A1 (en) Method for setting a gear ratio of a fan drive gear system of a gas turbine engine