RU2533511C1 - Способ получения пористого стекломатериала из редкометальных руд - Google Patents

Способ получения пористого стекломатериала из редкометальных руд Download PDF

Info

Publication number
RU2533511C1
RU2533511C1 RU2013136614/03A RU2013136614A RU2533511C1 RU 2533511 C1 RU2533511 C1 RU 2533511C1 RU 2013136614/03 A RU2013136614/03 A RU 2013136614/03A RU 2013136614 A RU2013136614 A RU 2013136614A RU 2533511 C1 RU2533511 C1 RU 2533511C1
Authority
RU
Russia
Prior art keywords
melt
sio
cao
rare
metal
Prior art date
Application number
RU2013136614/03A
Other languages
English (en)
Inventor
Пётр Михайлович Гаврилов
Владимир Викторович Бондин
Игорь Геннадьевич Ефремов
Владимир Николаевич Алексеенко
Василий Филиппович Шабанов
Владимир Иванович Кузьмин
Вячеслав Фролович Павлов
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат"
Общество с ограниченной ответственностью "ПИРОМЕТАЛЛ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат", Общество с ограниченной ответственностью "ПИРОМЕТАЛЛ" filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат"
Priority to RU2013136614/03A priority Critical patent/RU2533511C1/ru
Application granted granted Critical
Publication of RU2533511C1 publication Critical patent/RU2533511C1/ru

Links

Landscapes

  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к комплексной переработке железистых редкометальных руд с получением пористого стекломатериала. Технический результат изобретения заключается в расширении сырьевой базы для получения стекломатериала. Шихту состава на основе руды, мас. %: SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, при содержании углерода до 0,5 мас.% сверх 100% плавят в слабо восстановительной среде при температуре 1300°C и при соотношении SiO2/CaO=5,6. Содержание Na2O в руде доводят до 3 мас.%. Происходит разделение расплава и удаление металлической высокофосфористой части расплава на основе железа. В оставшемся расплаве доводят содержание углерода до 15 мас.% сверх 100% углем для создания сильно восстановительной среды. Соотношение SiO2/CaO доводят до 0,9 известняком, повышают температуру до 1600°C, плавят до образования карбида кремния. Осуществляют разделение расплава на металлическую и силикатную части. Удаляют низкофосфористый чугун и охлаждают силикатную часть расплава термоударом для получения пористого химически активного стекломатериала, обогащенного окислами редкоземельных металлов, эффективного для дальнейшей переработки. 2 пр.

Description

Изобретение относится к прямой комплексной переработке железистых редкометальных руд с получением химически активного пористого материала пригодного для извлечения редкоземельных металлов (РЗМ) и другой продукции.
Большое количество редкометальных руд месторождений Боянь-Обо (Китай), Ароша (Бразилия), Чуктукон (Красноярский край), Карасук (Тыва) и других являются комплексными, содержат редкоземельные металлы, ниобий, большое количество железа и другие ценные металлы. Переработка руд в этих странах основана на предварительном их обогащении (флотация, магнитная сепарация и др.), выделении редкометальной составляющей (ниобиевый концентрат, Бразилия, редкоземельный концентрат, Китай) и железной составляющей. Дальнейшая переработка этих концентратов включает очистку и выделение РЗМ и чугуна, легированного ниобием. Легированный чугун является сырьем как для получения ниобиевого концентрата, так и феррониобия. Большинство Российских редкометальных руд являются необогатимыми и требуют других способов их использования.
Известен способ переработки железистых редкометальных руд [В.И. Кузьмин, В.Г. Ломаев, Г.Л. Пашков и др. Переработка руд месторождений кор выветривания карбонатитов - будущее редкометальной промышленности России // Цветные металлы. 2006. №12. С.62-68 (в журнале)] путем магнетизирующего обжига с переводом Fe2O3 в Fe3O4 и восстановление диоксида марганца (MnO2) до оксида (MnO), гидротермального разложения монацита 45% раствором гидрооксида натрия с последующим выщелачиванием РЗМ азотной кислотой. Из магнетитового пека магнитной сепарацией выделяют 3% ниобиевый и магнетитовый концентраты. Недостатком метода является многостадийность, сложность разделения железистого пека и щелочного раствора, большой объем промывных вод, значительный расход химических реагентов.
Известен способ получения пористого стекломатериала, согласно которому плавят шихту следующего состава (мас.%).: SiO2 - 32,5; CaO - 6,86; Al2O3 - 10,75; MgO - 2,52; Fe2O3 - 21,16; MnO - 22,4; P2O5 - 0,9; K2O - 1,0; TiO2 - 0,38; ZnO - 0,57; BaO - 0,62; Cr2O3 - 0,15; CoO - 0,06; NiO - 0,13, при содержании углерода до 0,5 мас.% сверх 100% в слабовосстановительной среде при соотношении SiO2/CaO=4,74 и температуре 1300°C. Проводят разделение расплава и удаляют высокофосфористую часть расплава на основе железа. В оставшемся расплаве доводят содержание углерода до 12 мас.% сверх 100% углем для создания сильновосстановительной среды и соотношение SiO2/CaO до 0,6 известняком. Повышают температуру до 1600°C, плавят до образования карбида кремния и разделения расплава на металлическую и силикатную части. Удаляют низкофосфористый ферромарганец и охлаждают силикатную часть расплава термоударом для получения стекломатериала (патент RU №2365546 C2, МПК C03C 11/00, опубл. 27.08.2009. Бюл. №24).
По технической сущности и достигаемому положительному эффекту этот способ является наиболее близким к заявляемому способу и выбран в качестве прототипа.
Недостаток прототипа заключается в том, что происходит неполное перераспределение фосфора в первоначальный высокофосфористый металл.
Задачей изобретения является повышение эффективности способа комплексной переработки железомарганцевых редкометальных руд, чтобы расширить возможности использования их для дополнительного извлечения редкоземельных оксидов (РЗО) и чугуна, легированного марганцем, ниобием и титаном.
Поставленная задача решается тем, что в способе комплексной переработки железистых редкометальных руд, заключающемся в том, что в руде следующего состава (мас.%): SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, при соотношении SiO2/CaO=5,6, доводится содержание Na2O до 3% карбонатом натрия, а углерода до 0,5 мас.% сверх 100% бурым углем, шихта плавится с разделением расплава при температуре 1300°C сначала в слабовосстановительной среде, достигаемой добавкой углерода до 0,5 мас.% сверх 100% шихты. При этом частично восстановленное железо (попутный металл) содержащее значительное количество фосфора, сливается в изложницы. Затем в оставшемся расплаве с низким содержанием фосфора доводится углем содержание углерода до 15 мас.% сверх 100%, т.е. создается сильновосстановительная среда, повышается температура до 1600°C и плавится при этих условиях до разделения расплава. Затем силикатная часть расплава охлаждается в режиме термоудара выработкой в воду с получением гранулированного шлака, обогащенного оксидами редкоземельных металлов. Металлическая часть расплава (чугун) с низким содержанием фосфора сливается в изложницы. Низкая активность шлакового редкоземельного концентрата с высоким содержанием кремнезема регулируется в процессе глубокого восстановительного плавления известняком и содой. В высококремнистом расплаве с низким содержанием фосфора доводят добавкой угля содержание углерода до 15 мас.% сверх 100%, соотношение содержаний (мас.%) SiO2/CaO до 0,9 известняком, повышение температуры до 1600°C и плавления до образования карбида кремния и разделения расплава на металлическую и силикатную части. Плавят с разделением расплава 2 часа с момента включения электропечи. Затем силикатная часть расплава вырабатывается в воду в режиме термоудара с образованием химически активного пористого шлакового редкоземельного концентрата.
Сущность заявляемого способа заключается в том, что условие первоначального плавления (операция 1): слабовосстановительная среда при содержании углерода 0,5 мас.%; температура 1300°C не способствуют восстановлению окиси марганца и ниобия, поскольку по термодинамическим данным равновесие реакции:
Figure 00000001
при температуре 1300°C сдвинуто влево (константа равновесия Kp(Mn)=0,26, а энергия Гиббса имеет положительную величину ΔG01300C=17,45 кДж), а реакции:
Figure 00000002
константа равновесия при температуре 1300°C равна 0,1, а энергия Гиббса имеет положительную величину, равную 29,5 кДж. Реакция восстановления титана при температуре 1300°C имеет большее предпочтение до его карбида по реакции:
Figure 00000003
Изменение энергии Гиббса равно ΔG01300C=-4,26, а константа равновесия Kp(TiC)=13,86. Откуда следует, что в попутном металле может содержаться незначительное количество карбида титана.
Окись фосфора в этих условиях практически полностью восстанавливается по реакции:
Figure 00000004
Поскольку равновесие этой реакции практически нацело сдвинуто вправо (Kp(p)=9,145, а изменение энергии Гиббса имеет отрицательное значение, равное ΔG01300C=-450,548 кДж). Большая часть фосфора переходит в попутный металл и частично переходит в газовую фазу. Часть окислов железа также восстанавливается до металлического железа при температуре 1300°C, образуя фосфорсодержащий попутный металл на основе железа, на первом этапе плавления, сливаемый в изложницы. Повышение температуры оставшейся части расплава до 1600°C, доведение соотношения содержаний (мас.%) SiO2/CaO до 0,9, а количество углерода до 15 мас.% (операция 2) в условиях формирования и удаления металла на основе железа, приводит к интенсивному образованию карбида кремния по реакции:
Figure 00000005
Карбид кремния участвует в дальнейшем в транспортных реакциях восстановления остаточного железа:
Figure 00000006
(Kp(Fe)=1,65·1010, ΔG01600C=-366,3 кДж), марганца:
Figure 00000007
(Kp(Mn)=1,4·102, ΔG01600C=-77,0 кДж), ниобия:
Figure 00000008
,
(Kp(Nb)=11,07, ΔG01600C=-37,41 кДж).
Повышение температуры до 1600°C, доведение соотношения содержаний мас.% SiO2/CaO до 0,9, обуславливающее наличие в расплаве карбида кремния (SiC), а содержание углерода до 15 мас.% приводит к интенсификации процессов восстановления с разделением расплава, как в результате сдвига вправо равновесия реакции восстановления марганца по реакции (1), (Kp(Mn)=9,013, изменение энергии Гиббса ΔG01600C=-34,236 кДж), ниобия по реакции (2), (Kp(Nb)=3,86, изменение энергии Гиббса ΔG01600C=-21,056 кДж) и титана по реакции:
Figure 00000009
(Kp(TiC)=7,56·102, изменение энергии Гиббса ΔG01600C=-103,22 кДж), так и с участием транспортных реакций (6, 7, 8) с образованием низкофосфористого чугуна, сливаемого в изложницы. Наличие карбида кремния в оставшейся силикатной части расплава состава (мас.%): Na2O - 1,61; K2O - 3,78; MgO - 2,15; Al2O3 - 16,2; SiO2 - 25,7; SO3 - 0,39; CaO - 13,5; Sr - 1,76; Y2O3 - 0,9; ZrO2 - 1,04; La2O3 - 4,0; CeO2 - 6,20; Pr2O3 - 0,64; Nd2O3 - 1,94; Sm2O5 - 1,27 при охлаждении ее в воде в режиме термоудара приводит к взаимодействию паров воды с карбидом кремния с образованием газообразных продуктов (CO, H2) поризующих силикатную часть расплава с образованием пористого стекломатериала, содержащего редкоземельные окислы. Таким образом, совокупность операций 1 и 2 позволяет получить как пористый стекломатериал, содержащий редкоземельные окислы из железомарганцевых редкометальных руд, так и низкофосфористый чугун.
Ниже предлагаемый способ получения пористого стекломатериала, обогащенного РЗО из железомарганцевых редкометальных руд, поясняется конкретным примером его осуществления.
Пример 1. 750 г редкометальной руды следующего состава (мас.%): SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, доводят бурым углем содержание углерода до 0,5 мас.%, сверх 100%, плавят шихту с разделением расплава в слабо восстановительной среде до температуры 1300°C, выдерживают при этой температуре 1 час и сливают высокофосфористый сплав на основе железа в изложницу. В оставшемся расплаве доводят содержание углерода до 15% мас., соотношение содержаний (мас.%) SiO2/CaO до 0,9 известняком, повышение температуры до 1600°C и плавления до образования карбида кремния и разделения расплава на металлическую и силикатную части. Плавят с разделением расплава 0,5 часа. Затем силикатная часть расплава вырабатывается в воду в режиме термоудара с образованием пористого шлакового редкоземельного концентрата. Металлическую часть расплава сливают в изложницу.
Содержание РЗО в пористом стекломатериале (% мас.): La2O3 - 3,61; CeO2 - 5,23; Pr6O11 - 1,05; Nd2O3 - 1,52; Sm2O5 - 0,47.
Состав чугуна (мас.%): Mn - 13; Ti - 12,1; Nb - 3,56; C - 6,88; U - 0,1; остальное - железо.
Состав высокофосфористого металла (мас.%): Fe - 94,6; Mn - 0,9; Nb - 0,26; P - 3,73; S - 1,73; Cr - 0,21; Ti - 0,168; C - 1,03.
Пример 2. 750 г редкометальной руды следующего состава (мас.%): SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, доводят содержание Na2O до 3% карбонатом натрия, а бурым углем содержание углерода до 0,5 мас.% сверх 100%, плавят шихту с разделением расплава в слабовосстановительной среде до температуры 1300°C, выдерживают при этой температуре 1 час и сливают высокофосфористый сплав на основе железа в изложницу. В оставшемся расплаве доводят содержание углерода до 15 мас.%, соотношение содержаний (мас.%) SiO2/CaO до 0,9 известняком, повышают температуру до 1600°C и плавят с разделением расплава 0,5 часа. Силикатную часть расплава охлаждают в режиме термоудара выработкой в воду с получением шлакового гранулята, обогащенного РЗО. Металлическую часть расплава (чугун) сливают в изложницу.
Содержание РЗО в шлаковом концентрате (мас.%): La2O3=4,0; CeO2=6,2; Pr2O3=0,64; Nd2O3=1,94; ThO2=0,2.
Состав чугуна (мас.%): Mn - 5,5; Ti - 0,27; P=1,7; Nb - н.о.; C - 6,88; Fe - 85,65;
Состав высокофосфористого металла (мас.%): Fe - 94,6; Mn - 0,9; Nb - 0,26; P - 3,73; S - 1,73; Cr - 0,21; Ti - 0,168; C - 1,03.

Claims (1)

  1. Способ комплексной переработки железистых редкометальных руд, включающий плавление шихты состава, мас.%: SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, при содержании углерода до 0,5 мас.%сверх 100% в слабовосстановительной среде и при соотношении SiO2/CaO=5,6 и температуре 1300°С, разделение расплава и удаление металлической высокофосфористой части расплава на основе железа, доведение в оставшемся расплаве содержание углерода до 15 мас.%сверх 100% углем для создания сильновосстановительной среды, отличающийся тем, что в руде доводят содержание Na2O до 3 мас.%, а соотношение SiO2/CaO до 0,9 известняком, повышение температуры до 1600°C и плавят до образования карбида кремния и разделения расплава на металлическую и силикатную части, удаление низкофосфористого чугуна и охлаждения силикатной части расплава термоударом для получения пористого химически активного стекломатериала, обогащенного окислами редкоземельных металлов, эффективного для дальнейшей переработки.
RU2013136614/03A 2013-08-05 2013-08-05 Способ получения пористого стекломатериала из редкометальных руд RU2533511C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013136614/03A RU2533511C1 (ru) 2013-08-05 2013-08-05 Способ получения пористого стекломатериала из редкометальных руд

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013136614/03A RU2533511C1 (ru) 2013-08-05 2013-08-05 Способ получения пористого стекломатериала из редкометальных руд

Publications (1)

Publication Number Publication Date
RU2533511C1 true RU2533511C1 (ru) 2014-11-20

Family

ID=53382736

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013136614/03A RU2533511C1 (ru) 2013-08-05 2013-08-05 Способ получения пористого стекломатериала из редкометальных руд

Country Status (1)

Country Link
RU (1) RU2533511C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2211811C2 (ru) * 2001-06-04 2003-09-10 Шабанов Василий Филиппович Способ получения пористых стекломатериалов из нерудного сырья
EA200400328A1 (ru) * 2001-08-20 2004-08-26 Эдванст Минералс Корпорейшн Продукт, представляющий собой улучшенное пеностекло
UA9481U (en) * 2005-07-28 2005-09-15 A method for the preparation of porous glass materials
CN1850682A (zh) * 2006-05-31 2006-10-25 东北大学 利用铁矿石尾矿制备多孔玻璃复合材料的方法
RU2365546C2 (ru) * 2007-10-17 2009-08-27 СПЕЦИАЛЬНОЕ КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ БЮРО "НАУКА" КРАСНОЯРСКОГО НАУЧНОГО ЦЕНТРА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (СКТБ "Наука" КНЦ СО РАН) Способ получения пористого стекломатериала с низким содержанием марганца из бедных и высокофосфористых марганцевых руд

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2211811C2 (ru) * 2001-06-04 2003-09-10 Шабанов Василий Филиппович Способ получения пористых стекломатериалов из нерудного сырья
EA200400328A1 (ru) * 2001-08-20 2004-08-26 Эдванст Минералс Корпорейшн Продукт, представляющий собой улучшенное пеностекло
UA9481U (en) * 2005-07-28 2005-09-15 A method for the preparation of porous glass materials
CN1850682A (zh) * 2006-05-31 2006-10-25 东北大学 利用铁矿石尾矿制备多孔玻璃复合材料的方法
RU2365546C2 (ru) * 2007-10-17 2009-08-27 СПЕЦИАЛЬНОЕ КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ БЮРО "НАУКА" КРАСНОЯРСКОГО НАУЧНОГО ЦЕНТРА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (СКТБ "Наука" КНЦ СО РАН) Способ получения пористого стекломатериала с низким содержанием марганца из бедных и высокофосфористых марганцевых руд

Similar Documents

Publication Publication Date Title
KR102412765B1 (ko) 리튬 농후 야금 슬래그
KR101629598B1 (ko) 비철 야금의 슬래그를 처리하는 방법
CN102388154A (zh) 回收贵金属的等离子体方法和设备
KR102515193B1 (ko) 희토류 원소와 철의 분리 방법 및 희토류 원소 함유 슬래그
US5865872A (en) Method of recovering metals and producing a secondary slag from base metal smelter slag
JP2022528557A (ja) 炭素熱還元プロセスおよび高温湿式製錬プロセスの少なくとも1つを使用して鉄または鋼スラグから目的金属を回収するための方法
RU2449031C2 (ru) Способ получения обесфосфоренного концентрата оолитовых железных руд
CN103484683A (zh) 一种熔融含钛高炉渣综合利用的方法
JP2023533270A (ja) ケイ酸塩固形廃棄物の不純物除去方法及びその応用
RU2533511C1 (ru) Способ получения пористого стекломатериала из редкометальных руд
US4521245A (en) Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
RU2564187C2 (ru) Способ извлечения платиновых металлов из отработанных катализаторов на носителях из оксида алюминия
JP6229846B2 (ja) 希土類元素と鉄の分離回収方法
RU2175022C1 (ru) Способ переработки бедных марганецсодержащих руд
KR101450658B1 (ko) 용융 환원법을 이용한 희토류 농축 방법
Pandey Rare metals extraction from non-ferrous resources in India: Present status and prospects of R&D
US3460937A (en) Method for recovering vanadium from iron-base alloys
RU2365546C2 (ru) Способ получения пористого стекломатериала с низким содержанием марганца из бедных и высокофосфористых марганцевых руд
CN110527839A (zh) 一种利用等离子体回收飞灰中稀土金属的方法
Williams A note on liquid iron in medieval Europe
JP2016108632A (ja) 希土類元素の分離回収方法
Shyrokykh et al. The Recycling of Vanadium from Steelmaking Slags: A Review
Blenau et al. Development of a Process to Recycle NdFeB Permanent Magnets Based on the CaO-Al2O3-Nd2O3 Slag System. Processes 2023, 11, 1783
RU2558588C1 (ru) Способ переработки бериллийсодержащих отходов
RU2639195C1 (ru) Способ переработки никельсодержащих сульфидных медных концентратов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200806