KR20200128279A - 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법 - Google Patents

밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법 Download PDF

Info

Publication number
KR20200128279A
KR20200128279A KR1020190051724A KR20190051724A KR20200128279A KR 20200128279 A KR20200128279 A KR 20200128279A KR 1020190051724 A KR1020190051724 A KR 1020190051724A KR 20190051724 A KR20190051724 A KR 20190051724A KR 20200128279 A KR20200128279 A KR 20200128279A
Authority
KR
South Korea
Prior art keywords
solution
carbon nanotubes
walled carbon
milling
metal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020190051724A
Other languages
English (en)
Other versions
KR102254960B1 (ko
Inventor
박수영
Original Assignee
극동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동대학교 산학협력단 filed Critical 극동대학교 산학협력단
Priority to KR1020190051724A priority Critical patent/KR102254960B1/ko
Publication of KR20200128279A publication Critical patent/KR20200128279A/ko
Application granted granted Critical
Publication of KR102254960B1 publication Critical patent/KR102254960B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에 관한 것으로서, 상세하게는 기계적 밀링을 이용하여 분산성이 향상된 다중벽 탄소나노튜브 전도성 분산액의 제조방법에 관한 것이다. 이를 위하여 본 발명은, Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)과 Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O)를 혼합하여 교반한 제1용액과 Ammonium Carbonate((NH₄)₂CO₃)를 용해한 제2용액을 제조한 후, Aluminum Hydroxide(Al(OH)₃)를 용해한 제3용액에 혼합하여 교반한 후 여과 및 건조하여 금속촉매를 만드는 금속촉매제조단계; 상기 금속촉매를 CVD 합성장치에 넣고 탄소나노튜브를 합성하는 합성단계; 상기 탄소나노튜브를 밀링장치에 넣고 수계분산제, 소포제 및 용매를 첨가하여 밀링처리하여 탄소나노튜브용액을 만드는 밀링단계; 및 상기 탄소나노튜브용액에 분산제, 바인더, 보조용매제, 습윤제 및 용매를 분산시켜 전도성 분산액을 만드는 분산단계; 를 포함하는 것을 특징으로 하는 것이 바람직하다.

Description

밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법 {Synthetic method of multi-walled carbon nanotubes conductive dispersion liquid using milling process}
본 발명은 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에 관한 것으로서, 상세하게는 기계적 밀링을 이용하여 분산성을 향상시킨 다중벽 탄소나노튜브 전도성 분산액의 제조방법에 관한 것이다.
탄소나노튜브는 우수한 전기적, 기계적, 광학적인 특성으로 인하여 전자, 환경, 센서, 에너지, 디스플레이 등의 소재로 사용되는 등 폭넓고 다양한 분야에서 각광을 받고 있다. 탄소나노튜브는 직경이 수 nm인데 비하여 길이는 마이크로미터 단위로서 종횡비(길이/직경)가 큰 일차원적 형상과 더불어 튜브형태의 독특한 구조를 가지는 나노소재로, 그래파이트의 변형된 형태이며 튜브형태로 감겨져 있는 한 겹의 구조를 단일벽 탄소나노튜브라 하며, 여러 겹의 튜브 형태로 감겨져 있는 소재의 경우 다중벽 탄소나노튜브라 칭한다.
탄소나노튜브는 나노 크기의 입자로 점성이 높기 때문에 탄소나노튜브를 균일하게 분산시키기가 어려우므로 고유 특성을 제대로 이용할 수 없는 어려움을 가지고 있기 때문에, 낮은 분산성을 개선하기 위해서는 튜브 사이의 반 데르 발스 결합을 끊어주어 응집을 억제하여야 한다.
또한 탄소나노튜브를 금속이나 고분자와 함께 복합체로 제조할 때 고체 표면에 액체가 퍼지는 정도인 젖음성이 좋지 않아 복합체를 제조하기 어려운 문제점을 가지고 있다. 따라서 탄소나노튜브를 이용하여 우수한 복합체를 만들기 위하여 표면개질의 개선방법이나 분산화방법 등의 복합체의 구조를 용도에 맞게 개량하는 많은 연구들이 진행되고 있다.
복합체를 제조하기 위한 방법 중의 하나로 기계적 교반 방법이 있으며, 이는 강한 전단력으로 탄소나노튜브의 표면을 물리적으로 기능화하기 때문에 분산성이 향상되는 장점이 있어 기계적 교반 방법에 대한 연구가 지속적으로 이루어지고 있으며 탄소나노튜브의 분산상태가 복합체 물성에 영향을 미친다고 보고되었다. 또한, 탄소나노튜브 분산의 상태에 따른 물성의 특징을 파악할 수 있는 방법을 개발하는 것은 탄소나노튜브의 응용에 있어 중요한 부분이기 때문에 탄소나노튜브를 효과적으로 분산하여 재료와 혼합하는 방법으로 밀링하는 방식에 대한 많은 연구가 진행되고 있다.
한편, 액제를 분말제 형태로 바꾸는 가장 일반적인 방법 중의 하나인 SD(Spray Drying, 분무건조)법은 콜로이드 상태의 유체를 미세한 액적(스프레이) 형태로 발생시키고, 높은 온도의 가스 매개체를 활용하여 건조시켜 구형의 분말입자를 얻는 공정이다. 일반적으로는 미세한 분말을 얻기 위해 이류체 노즐(two fluid nozzle)을 활용하게 되며, 이류체 노즐은 수십에서 수백 마이크론 크기의 액적들을 대량으로 발생시킬 수 있는 장점을 가지고 있다.
SD법으로 얻어지는 금속촉매분말들의 특성은 유체와 높은 온도의 가스 매개체를 분사시키는 이류체 노즐의 압력 및 분무용액의 특성에 크게 의존한다. 이러한 제조 조건을 변화시킴으로서 치밀한 입자, 속이 빈 입자, 기공이 많은 입자 등 다양한 특성을 가지는 금속촉매입자들의 제조가 가능하다. SD법으로 제조한 금속촉매 분말은 표면적이 넓어져 금속촉매의 앞뒤로 다중벽 탄소나노튜브 성장핵이 형성될 수 있기 때문에 높은 탄소나노튜브 합성수율을 얻게 되어 생산성이 향상될 수 있는 효과가 있다.
또 다른 금속촉매제조 방법인 DP법(Deposition precipitation)은 금속촉매의 전구체염용액과 pH 조절제가 담지체 분산액 내에서 반응하여 침전체가 생성되고, 이들이 담지체 표면에 흡착 및 고화되는데 이는 기존의 공침법 및 함침법에 의해 제조된 금속촉매들과는 비교할 수 없는 금속촉매의 균일도와 탄소나노튜브의 합성 수율이 현저함을 보여 탄소나노튜브 제조용 금속촉매의 제조에 가장 적당한 방법이라 할 수 있다.
또한, 탄소나노튜브의 길이와 직경분포를 최소화 하기 위해서는 기계적 밀링 처리 공정 중 하나인 볼밀링 처리를 사용할 수 있다. 볼밀링 과정을 통해 탄소나노튜브의 bendng 결합과 나노튜브간의 접촉 증가가 탄소나노튜브의 전기적 성질을 변화시키게 되어 다중벽 탄소나노튜브의 저항도 증가시키며, 볼밀링 처리 시간이 길어질수록 탄소나노튜브의 길이가 지수함수적으로 감소한다. 이렇게 길이가 짧아진 탄소나노튜브는 우수한 분산력이 가지기 때문에 분산액을 제조하는데 적합하며, 때문에 볼밀링은 탄소나노튜브를 분산시키거나 타재료와 혼합하여 복합화 시킬 수 있는 효과적인 공정으로 여겨진다. 또한, 탄소나노튜브 소재의 보관과 사용상의 편리성이 더욱 증가되는 장점이 있어 이에 대한 많은 연구가 행해져 왔다.
이러한 밀링 방식에도 어트리터밀, 수평밀, 진동밀, 수평식밀 등의 다양한 밀링방식이 있으며 장치에 따라 상당히 다른 결과를 얻을 수 있으며, 탄소나노튜브의 습식 밀링처리 공정의 경우 수계 밀링처리 및 유기 밀링처리 등 첨가제의 공정과 작업공정조건 등 연구자마다의 조건이 다르기 때문에 다양하고 체계적인 연구가 필요한 실정이다.
분산제는 일반적으로 분산작용이 요구되는 용도에 사용되는 계면활성제의 총칭이며, 고체와 액체의 성질에 현저한 변화를 주어 분산효과를 나타내는 것을 분산제라 부른다. 분산제는 분산매(dispersion medium)내에 고체 입자들을 젖게 하고, 분쇄를 도우며 입자들의 재응집을 방지하는 기능을 가진다. 분산의 안정화에 미치는 중요인자로서 분산제의 종류와 농도 등을 들 수 있으며, 분산제는 고체 입자 표면에 흡착되어 전하를 띄거나 입체 안정화 효과를 유발하여 고체 입자들 간의 충돌로 인한 응집을 막아주는 역할을 한다.
Junya Suehiro, Guangbin Zhou and Masanori Hara, Fabrication of a carbon nanotube based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, Journal of Physics D: Applied Physics, 36 (2003) 21 Imran Shakir, Muhammad Shahid, Serhiy Cherevko, Chan-Hwa Chung, Dae Joon Kang, Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3-MWCNT nanocomposites, Electrochimica Acta 58 30 (2011) 76-80 Parveen Saini, Veena Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding, Materials Chemistry and Physics 113 2-3 15 (2009) 919-926 Jiaxi Guo, Yanjun Liu, Ricardo Prada*?*Silvy, Yongqiang Tan, Samina Azad, Beate Krause, Petra Potschke, Brian P. Grady, Aspect ratio effects of multi*?*walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites, Journal of Polymer Science Part B: Polymer Physics 52 (2013) 1 Don-Young Kim, Young Soo Yun, Hyeonseong Bak, Se Youn Cho, Hyoung-Joon Jin, Aspect ratio control of acid modified multiwalled carbon nanotubes, Current Applied Physics 10 4 (2010) 1046-1052 Shao-Ning Pu, Wen-Yan Yin, Jun-Fa Mao, Qing H. Liu, Crosstalk Prediction of Single- and Double-Walled Carbon-Nanotube (SWCNT/DWCNT) Bundle Interconnects, IEEE Transactions on Electron Devices 56 2 4 (2009) 560 - 568 Florian H. Gojny, Malte H.G. Wichmann, Bodo Fiedler, Ian A. Kinloch, Wolfgang Bauhofer, Alan H. Windle, Karl Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer 47 6 8 (2006) 2036-2045 A. Tugrul Seyhan, Florian H. Gojny, Metin Tanoglu, Karl Schulte, Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites, European Polymer Journal 43 2 (2007) 374-379 Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology 63 11 (2003) 1517-1524 L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids 54 11 (2006) 2436-2452 Linqin Jiang, Lian Gao, Jing Sun, Production of aqueous colloidal dispersions of carbon nanotubes, Journal of Colloid and Interface Science 260 1 (2003) 89-94 D. Mac Kernan and W. J. Blau, Exploring the mechanisms of carbon-nanotube dispersion aggregation in a highly polar solvent, EPL (Europhysics Letters) 83 6 (2008) Hisao Uozumi, Kenta Kobayashi, Kota Nakanishi, Tadashi Matsunaga, Kenji Shinozaki, Hiroki Sakamoto, Takayuki Tsukada, Chitoshi Masuda, Makoto Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting, Materials Science and Engineering: A 495 1-2 (2008) 282-287 R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scripta Materialia 53 10 (2005) 1159 1163 A. Kiran Kumar, S. Venkata Mohan, Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation, Separation and Purification Technology 87 (2012) 22-30 F. Aviles, J.V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon 47 13 (2009) 2970-2975 Dirk Lehmhus, Claus Aumund-Kopp, Frank Petzoldt, Dirk Godlinski, Arne Haberkorn, Volker Zollmer, Matthias Busse, Customized Smartness: A Survey on Links between Additive Manufacturing and Sensor Integration, Procedia Technology 26 (2016) 284-301 Yu-Lin Hsin, Jyun-Yi Lai, Kuo Chu Hwang, Shen-Chuan Lo, Fu-Rong Chen, J.J. Kai, Rapid surface functionalization of iron-filled multi-walled carbon nanotubes, Carbon 44 15 (2006) 3328-3335 R. Perez-Bustamante, C.D. Gomez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez, S.A. Perez-Garcia, R. Martinez-Sanchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling, Materials Science and Engineering: A 502 1-2 (2009) 159-163 T. Cetinkaya, M.O. Guler, H. Akbulut, Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling, Microelectronic Engineering 108 (2013) 169-176 A., Indhuja, K.S., Suganthi, S., Manikandan, K.S., Rajan, Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: Influence of MWCNT concentration and temperature, Journal of the Taiwan Institute of Chemical Engineers 44 3 (2013) 474-479 O.S.G.P. Soares, A.G. Goncalves, J.J. Delgado, J.J.M. Orfao, M.F.R. Pereira, Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts, Catalysis Today 249 (2015) 199-203 H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Composites Part A: Applied Science and Manufacturing 43 7 (2012) 1061-1072 Sudipta Chatterjee, Min W. Lee, Seung H. Woo, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresource Technology 101 6 (2010) 1800-1806 Sami-ullah Rather, Renju Zacharia, Sang Woon Hwang, Mehraj-ud-din Naik, Kee Suk Nahm, Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method, Chemical Physics Letters 441 4-6 (2007) 261-267 Dongliang Jiang, Jingxian Zhang, Zhihui Lv, Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminated technology, Journal of the European Ceramic Society 32 7 (2012) 1419-1425q Woo-Sung Cho, Yang Doo Lee, Jinnil Choi, Jong Hun Han, Byeong-Kwon Ju, Effects on the field emission properties by variation in surface morphology of patterned photosensitive carbon nanotube paste using organic solvent, Applied Surface Science 257 6 (2011) 2250-2253 Jessica P. Soares da Silva, Bluma G. Soares, Sebastien Livi, Guilherme M.O. Barra, Phosphonium-based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness, Materials Chemistry and Physics 189 (2017) 162-168 Yu Bai, Il Song Park, Sook Jeong Lee, Tae Sung Bae, Fumio Watari, Motohiro Uo, Min Ho Lee, Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent, Carbon 49 11 (2011) 3663 3671 M.L. Polo-Luque, B.M. Simonet, M. Valcarcel, Functionalization and dispersion of carbon nanotubes in ionic liquids, TrAC Trends in Analytical Chemistry 47 (2013) 99-110
상술한 문제점을 해결하기 위하여 창안된 본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법은, 탄소나노튜브를 다양한 응용분야에 적용할 수 있도록 탄소나노튜브에 대한 밀링공정을 통하여 탄소나노튜브 분산액을 제조함에 있어 가장 이상적인 분산 및 조합을 이룰 수 있는 조건을 찾아 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은, DP법이나 SD법으로 제조한 금속촉매를 사용하여 다중벽 탄소나노튜브를 합성한 후 일정시간 기계적인 밀링 처리를 가해 분산성이 향상된 다중벽 탄소나노튜브 전도성 분산액의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은, 다중벽 탄소나노튜브 전도성 분산액의 제조에 있어 다른 재료와의 혼합이 용이하고 젖음성이 증가한 분산액의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 목적을 달성하기 위해 창안된 본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법은 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)과 Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O)를 혼합하여 교반한 제1용액, Ammonium Carbonate((NH₄)₂CO₃)를 용해한 제2용액 및 Aluminum Hydroxide(Al(OH)₃)를 용해한 제3용액을 각각 제조한 후, 상기 제3용액에 상기 제1용액 및 상기 제2용액을 혼합하여 교반한 혼합용액을 만들고, 상기 혼합용액을 여과 및 건조하여 금속촉매를 만드는 금속촉매제조단계; 상기 금속촉매를 CVD 합성장치에 넣고 700~750℃의 온도로 탄소나노튜브를 합성하는 합성단계; 상기 탄소나노튜브를 밀링장치에 넣고 수계분산제, 소포제 및 용매를 첨가한 후 밀링처리하여 탄소나노튜브용액을 만드는 밀링단계; 및 상기 탄소나노튜브용액에 분산제, 바인더, 보조용매제, 습윤제 및 용매를 분산시켜 전도성 분산액을 만드는 분산단계; 를 포함하는 것을 특징으로 하는 것이 바람직하다.
또한, 상술한 특징에 더하여, 상기 제1용액은 용매 100중량부에 대하여 Iron(Ⅲ) Nitrate Nonahydrate (Fe(NO₃)₃9H₂O) 25.02중량부 및 Cobalt(Ⅱ) Nitrate Hexahydrate (Co(NO₃)₂6H₂O) 7.55중량부를 용해하며, 상기 제2용액은 용매 100중량부에 대하여 Ammonium Carbonate ((NH₄)₂CO₃) 100중량부를 용해하며, 상기 제3용액은 용매 100중량부에 대하여 Aluminum Hydroxide (Al(OH)₃) 50중량부를 용해하는 특징을 더 포함하는 것도 바람직하다.
한편 본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에서 상기 금속촉매제조방법은 상기 금속촉매제조단계는 Iron(Ⅲ) Nitrate Nonahydrate (Fe(NO₃)₃9H₂O), Cobalt(Ⅱ) Nitrate Hexahydrate (Co(NO₃)₂6H₂O)및 Aluminium nitrate nonahydrate (Al(NO₃)₃을 용매에 용해한 금속촉매전구체용액을 공기와 혼합시켜 이류체를 제조한 후, 상기 이류체를 반응로에 투입하여 분사 및 건조하는 것을 특징으로 하는 것도 가능하다.
이 경우, 상기 금속촉매전구체용액의 Iron(Ⅲ) Nitrate Nonahydrate (Fe(NO₃)₃9H₂O), Cobalt(Ⅱ) Nitrate Hexahydrate (Co(NO₃)₂6H₂O)및 Aluminium nitrate nonahydrate (Al(NO₃)₃)의 질량비는 1000: 250: 1200인 것을 포함도록 하고, 상기 반응로의 온도는 800℃이며 상기 이류체의 압력은 3.5kgf인 것을 특징으로 하는 것이 바람직하다.
본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법은 DP법이나 SD법으로 제조한 금속촉매를 사용하여 다중벽 탄소나노튜브를 합성한 후 일정시간 동안 기계적인 밀링 처리를 함으로써 분산성이 향상된 다중벽 탄소나노튜브 전도성 분산액을 얻을 수 있는 효과가 있다.
뿐만 아니라, 본 발명에 의한 기계적 밀링조건을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조 방법은 밀링공정을 진행함으로서 Bulk density가 증가되어 비산성을 향상시키기 때문에 다른 재료와의 혼합이 용이하고 젖음성이 증가한 다중벽 탄소나노튜브 전도성 분산액을 제조할 수 있는 효과가 있다.
또한, 본 발명에 의한 기계적 밀링조건을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조 방법은 밀링처리 공정을 거쳐 비산성이 향상되고 전기전도성이 증가하기 때문에 탄소나노튜브 소재의 사용상 편리성이 증가된 다중벽 탄소나노튜브 전도성 분산액의 제조 방법을 제조할 수 있는 효과가 있다.
이와 더불어 본 발명에 의한 다중벽 탄소나노튜브 전도성 분산액의 제조 방법은 SD법으로 제조한 금속촉매를 사용함으로 인해 금속촉매의 앞뒤로 다중벽 탄소나노튜브 성장핵이 형성될 수 있기 때문에 높은 합성수율을 얻게 되어 생산성이 향상될 수 있는 효과가 있다.
도 1은 본 발명에 의한 다중벽 탄소나노튜브 전도성 분산액 제조방법 중 DP법에 의한 촉매로 제조하는 공정의 흐름도이다.
도 2는 본 발명에 의한 다중벽 탄소나노튜브 전도성 분산액 제조방법 중 SD법에 의한 촉매로 제조하는 공정의 흐름도이다.
도 3는 본 발명의 실시예에서 제조된 분산액의 밀링단계에서 투입된 원료에 대한 함량과 용도를 나타낸 표이다.
도 4는 본 발명의 제조실시예에서 사용된 밀링처리장비의 사진이다.
도 5는 본 발명의 제조실시예 1을 통하여 합성된 다중벽 탄소나노튜브의 주사전자현미경(SEM)사진이다.
도 6은 본 발명의 제조실시예 2를 통하여 합성된 다중벽 탄소나노튜브의 주사전자현미경(SEM)사진이다.
도 7은 본 발명의 실시예 1에 의한 다중벽 탄소나노튜브의 특성을 분석한 표이다.
도 8은 본 발명의 실시예 2에 의한 다중벽 탄소나노튜브의 특성을 분석한 표이다.
도 9는 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 응집체직경 그래프이다.
도 10은 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 번들길이 그래프이다.
도 11은 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 번들직경 그래프이다.
도 12는 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 Bulk density 그래프이다.
도 13은 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 paste점도 그래프이다.
도 14는 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 1 pass 표면 저항 그래프이다.
도 15는 본 발명의 제조실시예 1 및 2에 의해 제조된 다중벽 탄소나노튜브의 2 pass 표면 저항 그래프이다.
이하에서 상술한 목적과 특징이 분명해지도록 본 발명을 상세하게 설명할 것이며, 이에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한 본 발명을 설명함에 있어서 본 발명과 관련한 공지기술 중 이미 그 기술 분야에 익히 알려져 있는 것으로서, 그 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 함을 밝혀두고자 한다. 실시 예들에 대한 설명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 실시 예들을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
실시 예들은 여러 가지 형태로 변경을 가할 수 있고 다양한 부가적 실시 예들을 가질 수 있는데, 여기에서는 특정한 실시 예들이 도면에 표시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 실시 예들을 특정한 형태에 한정하려는 것이 아니며, 실시 예들의 사상 및 기술 범위에 포함되는 모든 변경이나 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다.
다양한 실시 예들에 대한 설명 가운데 “제1”“제2”“첫째”또는“둘째”등의 표현들이 실시 예들의 다양한 구성요소들을 수식할 수 있지만, 해당 구성요소들을 한정하지 않는다. 예를 들어, 상기 표현들은 해당 구성요소들의 순서 및/또는 중요도 등을 한정하지 않는다. 상기 표현들은 한 구성요소를 다른 구성요소와 구분 짓기 위해 사용될 수 있다.
본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법은, 금속촉매를 제조하여 다중벽 탄소나노튜브(MWCNT)를 합성하고, 합성된 다중벽 탄소나노튜브를 밀링처리한 후 이를 분산하여 전도성분산액으로 제조하도록 하는 것이 바람직한데, 본 발명에서는 상기 다중벽 탄소나노튜브의 합성에 사용되는 금속촉매의 제조방법으로서, DP법(deposition precipitation)에 의하여 제조하는 방법과 SD(Spray Drying)법에 의하여 제조하는 방법을 동시에 제시하고 있으며, 두 방법 중 하나를 선택적으로 적용하는 것이 가능하다.
금속촉매제조방법 중에 하나인 DP법에 의하여 제조된 금속촉매를 사용하는 경우, 탄소나노튜브를 합성할 때 합성 수율이 현저하게 좋아지기 때문에 탄소나노튜브의 대량생산에 효과적으로 적용될 수 있으며, 또 다른 방법인 SD법으로 만들어진 금속촉매는, 금속촉매의 앞뒤에 탄소나노튜브의 성장 핵이 형성될 수 있어 뛰어난 탄소나노튜브의 합성수율을 가지고 있고 이로 인해 생산성이 우수해지는 장점이 있기 때문에 고수율로 다중벽 탄소나노튜브를 합성할 수 있다는 효과가 있다. 또한, 다중벽 탄소나노튜브의 밀링처리를 통해 분산액을 제조하는 경우에는 전기전도성과 분산성이 향상되는 장점이 있기 때문에 산업현장에서 다양한 전자, 환경, 센서, 에너지, 디스플레이 소재로 활용될 수 있다.
이하에서는 본 발명에 의한 바람직한 실시예에 의한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에 대하여 첨부된 도면을 참조하여 설명한다. 도 1은 본 발명에 의한 다중벽 탄소나노튜브 전도성 분산액이 제조되는 공정 중 DP법으로 금속촉매를 제조한 후 다중벽 탄소나노튜브 및 분산액을 만드는 공정에 대한 흐름도이다. 도 1에서 보는 바와 같이 본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에서는 먼저 DP법에 의한 금속촉매제조단계(s110~s160)를 수행하도록 하는 것이 바람직하다.
따라서 가장 먼저 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)와 Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O)를 용매에 넣어 용해한 제1용액을 만드는 과정(s110 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 제1용액을 만드는 데 사용되는 용매는 DI water로 하되, 상기 DI water 100중량부에 대하여 상기 Iron(Ⅲ) Nitrate Nonahydrate 25.02중량부와 Cobalt(Ⅱ) Nitrate Hexahydrate 7.55중량부를 순서대로 넣고 Magnetic Stirrer를 사용하여 20분간 용해하는데 완전한 수용액의 상태가 될 때까지 용해하는 것이 바람직하다.
그 다음에는 Ammonium Carbonate((NH₄)₂CO₃)를 용매에 넣어 용해한 제2용액을 만드는 과정(s120 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 제2용액을 만드는 데 사용되는 용매 또한 DI water로 하는 것이 바람직하며, 상기 DI water 100중량부에 대하여 상기 Ammonium Carbonate 100중량부를 넣고 약 2시간 동안 bath sonic을 사용하여 용해하며, 고형분이 완전히 용해되어 완전한 수용액 상태로 될 때까지 용해하도록 하는 것이 바람직하다. 그 다음에는 Aluminum Hydroxide(Al(OH)₃)를 용매에 넣어 용해한 제3용액을 만드는 과정(s130 단계)을 수행하도록 하는 것이 바람직하다. 상기 제3용액을 만드는 데 사용되는 용매 또한 DI water로 하는 것이 바람직하며, 상기 DI water 100중량부에 대하여 상기 Aluminum Hydroxide 50중량부를 넣고 완전히 섞일 때까지 Mechanical Stirrer로 교반하도록 하는 것이 바람직하다. 상기 제1용액, 상기 제2용액 및 상기 제3용액이 만들어진 후에는 상기 제3용액에 상기 제1용액 및 상기 제2용액을 혼합한 혼합용액을 만들어 주는 것이 바람직하다(s140 단계). 상기 혼합용액은 상기 제3용액을 Mechanical Stirrer로 교반하면서 Dropping Funnel을 사용하여 제조된 상기 제1용액 및 상기 제2용액을 가하도록 하는 것이 바람직하다.
그 다음에는 상기 혼합용액을 여과하는 여과과정(s150 단계)을 거치도록 하는 것이 바람직한데, 상기 여과과정은 상기 혼합용액을 Filtering 장치를 이용하여 거르는 것으로서, Buchner Funnel에 여과지를 올리고, 상기 혼합용액을 두세 번에 걸쳐서 나누어 거르도록 하는 것이 바람직하다. 상기 여과과정(s150 단계)을 거친 뒤에는 건조과정(s160 단계)을 거치도록 하는 것이 바람직한데, 상기 건조과정(s160 단계)은 상기 여과지에 걸러진 Cake를 떨어내어 오븐에 넣은 뒤 150도의 온도로 16시간 이상 건조하도록 하는 것이 바람직하다.
본 발명에 의한 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법에서 사용되는 금속촉매는 철(Fe)과 코발트(Co)을 이용하는 것이 바람직하다. 따라서 상술한 바와 같이 철의 전구체물질인 Iron(Ⅲ) Nitrate Nonahydrate와 코발트의 전구체물질인 Cobalt(Ⅱ) Nitrate Hexahydrate를 용해한 상기 제1용액을 제조하여 사용하는 것이다.
한편 상술한 방법에 의하여 제조된 상기 제1용액은 pH조절제인 Ammonium Carbonate를 용해한 상기 제2용액과 혼합 시 금속산화물 또는 금속수산화물입자의 형태로 고화되며, Aluminum Hydroxide를 용해한 상기 제3용액에 섞일 때 상기 제3용액 상에 흡착되며, 금속산화물(또는 금속수산화물)과 상기 제3용액의 혼합물의 금속촉매 입자 형태로 상기 혼합용액 내에서 침전될 수 있다. 따라서 상기 제3용액에 상기 제1용액과 상기 제2용액을 가할 때 바람직한 양을 조절하여 금속촉매를 제조하여야 하며, 이는 전이 금속 전구체로부터 금속산화물 또는 금속수산화물의 침전을 형성하는 데 적정량의 pH조절제를 첨가하여야 금속 성분의 정량 침전을 유도하기 적합하기 때문이다. 따라서, 본 발명에서는 상기 제1용액, 상기 제2용액 및 상기 제3용액의 제조에 사용되는 Iron(Ⅲ) Nitrate Nonahydrate, Cobalt(Ⅱ) Nitrate Hexahydrate, Ammonium Carbonate 및 Aluminum Hydroxide 각각의 성분비(중량)를 250.2: 75.5: 2000: 1000으로 하는 것이 바람직하다.
상기 금속촉매제조단계(s110~s160 단계)를 수행한 뒤에는, 상기 금속촉매를 CVD 합성장치에서 혼합가스를 투입하여 가열하는 탄소나노튜브를 합성하는 합성단계(s170 단계)를 거치도록 하는 것이 바람직하다. 상기 합성단계(s170 단계)에서는 합성온도를 750℃로 하여 약 30분 정도 진행하도록 하는 것이 바람직하다. 상기 합성단계(s170 단계)에서는, 연속공정이 가능한 화학기상증착법(Chemical Vapor Deposition)을 통해 다중벽 탄소나노튜브를 합성하도록 하는 것이 바람직하다.
그 다음에 합성된 다중벽 탄소나노튜브에 대하여 일정시간동안 밀링처리 공정을 거치도록 하여 탄소나노튜브용액을 제조하는 것이 바람직하다(s180). 이를 위하여는, 제조된 다중벽 탄소나노튜브를 원소재로 사용하여 수계분산제 및 소포제 등을 첨가하는 것이 바람직한데, 도 3에 도시된, 밀링과정의 투입원료에 대한 함량 및 용도(S1)에서 보는 바와 같이 탄소나노튜브 3.50%에 대하여 수계 분산제인 Solspers-46000 3.75%와 수계 소포제인 Dynol 604 4.04%를 첨가한 후, 나머지 88.71%를 DI water로 채워준 상태에서 밀링공정을 수행하도록 하는 것이 바람직하다. 도 4는 본 발명의 제조실시예에 사용된 밀링장비에 대한 사진이다.
그 다음에는 상기 탄소나노튜브용액을 분산하여 분산액을 만들어주는 것이 바람직하다(s190). 이를 위하여 분산제, 바인더, 보조용매제, 습윤제 및 물을 첨가하여 탄소나노튜브를 분산시킴으로써 다중벽 탄소나노튜브의 전도성 분산액을 제조하는 것이 바람직한데, 도 3에 도시된, 분산과정의 투입원료에 대한 함량 및 용도(S2)에서 보는 바와 같이 다중벽 탄소나노튜브 분산액 24.66%에 대하여 분산제로서 Disponil 32 1.64%, 바인더로서 HU-580 6.14%, 슬립제로서 IE349 4.09%, 보조용매로 1-PrOH 1.90% 및 NMP 0.23%, 습윤제로 BYK-346 1.06%를 넣고 DI water 60.28%를 첨가하여 분산액을 제조하는 것이 바람직하나, 첨가한 분산제, 바인더, 슬립제, 보조용매, 습윤제 및 용매에 대하여 그 종류가 한정되는 것은 아니다.
도 2는 본 발명에 의한 다중벽 탄소나노튜브 전도성 분산액이 제조되는 공정 중 SD법에 의하여 금속촉매를 제조한 후 다중벽 탄소나노튜브 및 분산액을 제조하는 공정에 대한 흐름도이다. 여기에서도 먼저 도 2에서 보는 바와 같이 SD법에 의한 금속촉매제조단계(s210~s230 과정)를 수행하도록 하는데, 가장 먼저 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O), Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O) 및 Aluminium nitrate nonahydrate(Al(NO₃)₃)을 용매에 넣어 용해한 금속촉매전구체용액을 만드는 과정(s210 단계)을 수행하도록 하는 것이 바람직하다. 여기서 상기 금속촉매전구체용액을 만드는 데 사용되는 용매는 DI water로 하되, 상기 DI water 10kg(10L)에 대하여 상기 Iron(Ⅲ) Nitrate Nonahydrate, Cobalt(Ⅱ) Nitrate Hexahydrate 및 Al(NO₃)₃)의 질량이 각각 1000g, 250g 및 1200g이 되도록 하여 섞은 후, 완전히 섞일 때까지 Mechanical Stirrer로 교반하도록 하는 것이 바람직하다(s210 과정). 그 다음에는 상기 금속촉매전구체용액을 반응로에 공기와 함께 동시 투입하여 건조하는 것이 바람직하며(s220~s230 과정), 이때 금속촉매의 크기를 5~8μm로 일정하게 조정할 수 있도록 하기 위하여 반응로의 온도는 800℃로 항상 유지시키는 것이 바람직하다.
그 다음에는 상기 금속촉매를 CVD 합성장치에서 혼합가스를 투입하여 가열하는 탄소나노튜브를 합성하는 합성단계(s240 단계)를 거치도록 하는 것이 바람직하다. 상기 합성단계(s240 단계)에서는 합성온도를 750℃로 하여 약 30분 정도 진행하도록 하는 것이 바람직하다. 상기 합성단계(s240 단계)에서는, 연속공정이 가능한 화학기상증착법(Chemical Vapor Deposition)을 통해 다중벽 탄소나노튜브를 합성하도록 하는 것이 바람직하다.
또한, 여기서도 DP법을 통한 전도성 분산액의 제조방법과 마찬가지로 합성된 다중벽 탄소나노튜브에 대하여 일정시간동안 밀링처리 공정을 거치도록 하여 탄소나노튜브용액을 제조하는 것이 바람직하다(s250). 이를 위하여는, 제조된 다중벽 탄소나노튜브를 원소재로 사용하여 수계분산제 및 소포제 등을 첨가하는 것이 바람직한데, 도 3에 도시된, 밀링과정의 투입원료에 대한 함량 및 용도(S1)에서 보는 바와 같이 탄소나노튜브 3.50%에 대하여 수계 분산제인 Solspers-46000 3.75%와 수계 소포제인 Dynol 604 4.04%를 첨가한 후, 나머지 88.71%를 DI water로 채워준 상태에서 밀링공정을 수행하도록 하는 것이 바람직하다.
이렇게 밀링처리된 탄소나노튜브용액를 분산하여 분산액을 만들어주는 것이 바람직하다(s260). 밀링처리는 3시간, 6시간 및 9시간으로 하였으며, 이를 위하여 분산제, 바인더, 보조용매제, 습윤제 및 용매로서 물을 첨가하여 다중벽 탄소나노튜브를 분산시킴으로써 다중벽 탄소나노튜브의 전도성 분산액을 제조하는 것이 바람직한데, 도 3에 도시된, 분산과정의 투입원료에 대한 함량 및 용도(S2)에서 보는 바와 같이 다중벽 탄소나노튜브 분산액 24.66%에 대하여 분산제로서 Disponil 32 1.64%, 바인더로서 HU-580 6.14%, 슬립제로서 IE349 4.09%, 보조용매로 1-PrOH 1.90% 및 NMP 0.23%, 습윤제로 BYK-346 1.06% 를 넣고 DI water 60.28%를 첨가하여 분산액을 제조하는 것이 바람직하다.
분산제를 첨가하여 탄소나노튜브 분산액을 제조하는 이유는 나노크기의 탄소나노튜브가 반데르발스 작용으로 인해 응집하려는 특성이 있어 분산제가 탄소나노튜브 번들에 침투되어 튜브와 튜브 사이의 상호작용을 약화시킴으로써 탄소나노튜브의 분산을 향상시키고 분산액의 점도를 제어하는 역할을 하기 때문으로, 분산제는 경계면의 장력을 완화시키는 계면활성제나 수계 분산제 등을 사용하는 것이 바람직하다,
분산성으로 높이기 위해서 분산액에 더 첨가할 수 있는 첨가제의 종류로는 습윤제, 슬립제, 소포제, 바인더 등이 있으며, 습윤제는 고체 물질이 물에 젖기 쉬운 표면 에너지를 감소시키는 계면 활성제이며, 슬립제 또한 필름이나 시트가 잘 미끄러지도록 하기 위한 첨가제로서 마찰계수를 줄이는데 필요한 윤활작용을 해주고, 소포제는 계면활성제보다 더 강력한 흡착성질을 갖는 또 다른 계면활성 물질이며, 바인더(결합제)는 탄력성과 점착성을 높여 강도를 증가시키기 위해 첨가하는 물질이다. 본 발명에 의해 제조되는 분산액의 분산성을 증강시키는 목적으로 첨가한 첨가제는 앞서 서술한 특정 용액 외에 같은 효과를 가지는 용액은 무엇이든 사용 가능하여 본 발명에 의한 첨가한 분산제, 바인더, 슬립제, 소포제, 습윤제 및 용매에 대하여 상술한 물질로 특정되는 것은 아니다.
이하에서는 실시예, 실험예 및 제조실시예 등을 통하여 본 발명을 보다 상세하게 설명한다. 이하에서 설명되는 실시예 등은 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 일 실시예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 이와 같이 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] DP법으로 제조한 금속촉매로 다중벽 탄소나노튜브 합성
DP법을 이용하여 금속촉매를 제조하였다. 원재료 중 Iron(Ⅲ) Nitrate Nonahydrate (이하 FeN)으로 대정사 제품이며, Cobalt(Ⅱ) Nitrate Hexahydrate (이하 CoN)의 제조사는 JUNSEI, Ammonium Carbonate (이하 NH₄)의 제조사는 삼전, Aluminum Hydroxide (이하 Al(OH)₃)은 KC사 제품을 이용하였다.
(1) 1L 의 DI water에 FeN 250.2g과 CoN 75.5g을 순서대로 넣고 Magnetic Stirrer를 사용하여 20분간 교반하여 완전한 수용액 상태로 만들어 제1용액을 제조하였다. 이때 Impeller의 회전속도는 350으로 설정하였다.
(2) Ammonium Carbonate(이하 NH₄) 2kg을 2L의 DI water에 넣고 용해하여 제2용액을 제조하였는데, 2시간 동안 bath Sonic을 사용하여 완전한 수용액 상태로 만들었다.
(3) 대용량 비커에 2L의 DI water를 넣은 후 Al(OH)₃ 1kg을 넣어 혼합하고 Mechanical Stirrer를 사용하여 5분간 교반함으로써 제3용액을 제조하였다. 이 때 Impeller의 회전속도는 850으로 하였다.
(4) 상기 제3용액을 Mechanical Stirrer로 교반하면서, Dropping Funnel을 사용하여 상기 제1용액과 상기 제2용액을 20분간 떨어뜨려 혼합용액을 제조하였다.
(5) 이렇게 제작된 혼합용액을 진공 Filtering 장치를 사용하여 거르는 과정을 진행하였는데, 2set 의 Buchner Funnel에 필터지를 2장 올리고, 용액을 1/2씩 나누어 거르는 과정을 반복하였다.
(6) 은박 호일에 걸러진 Cake를 떨어내어, Box형 Oven에서 온도를 150℃로 설정하고 16시간 동안 건조하여 금속촉매를 수득하였다.
(7) 상기 금속촉매를 CVD 합성 장치에 넣고 750도에서 30분간 합성하여 다중벽 탄소나노튜브를 수득한다.
[실시예 2] SD법으로 제조한 금속촉매로 다중벽 탄소나노튜브 합성
SD법을 이용하여 다중벽 탄소나노튜브를 합성하였다. 원재료 중 Iron(Ⅲ) Nitrate Nonahydrate(이하 FeN)으로 대정사 제품이며, Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O이하 CoN)의 제조사는 JUNSEI, Aluminium nitrate nonahydrate(이하 AlN)의 대정사의 제품을 사용하였다.
(1) 10L의 DI water에 FeN 1,000g, CoN 250g 및 AIN 1200g을 넣고 Mechanical Stirrer를 사용하여 30분간 교반하여 용해시켜 금속촉매전구체용액을 만들었다. 완전히 수용액 상태가 된 것을 확인하여 고형분이 완전히 녹지 않으면 위의 용해 작업을 완전히 녹을 때까지 반복하여 진행하였다.
(2) 이류체 노즐을 이용하여 상기 금속촉매전구체용액과 공기를 섞어 반응로에 분사하여 건조함으로써 금속촉매를 수득하였는데, 이 때 반응로의 온도는 800℃로 하였다. 반응로 내의 온도를 균일하게 유지할 수 있도록 온도를 상중하 3곳에서 측정하여 800℃의 온도를 계속하여 유지시켰다. 분사되는 금속촉매 크기를 5~8μm로 일정하게 유지할 수 있도록 이류체 노즐의 압력은 3.5kgf로 하여 분사하였다.
(3) 상기 금속촉매를 CVD 합성 장치에 넣고 750℃에서 30분간 합성하여 다중벽 탄소나노튜브를 수득하였다.
[제조실시예 1] 실시예 1에 의하여 제조된 다중벽 탄소나노튜브로 분산액 제조
실시예 1에서 제조된 다중벽 탄소나노튜브를 원소재로 사용하여 다중벽 탄소나노튜브의 전도성 분산액을 제조하였다.
(1) 다중벽 탄소나노튜브 3.50%에 대하여 수계 분산제인 Solspers-46000 3.75% 및 수계 소포제로서 Dynol 604 4.04%을 넣고 나머지 88.71%를 DI water로 혼합액을 만들었다.
(2) 혼합액을 3등분하여 밀링장비에 넣고 각각 밀링처리 하여 탄소나노튜브용액을 만들었는데, 각각에 대한 밀링시간은 3시간, 6시간 및 9시간으로 달리하였다.
(3) 밀링처리된 3종류의 탄소나노튜브용액에 각각에 대하여 분산제, 바인더, 보조용매제, 습윤제 및 물을 첨가한 후 분산시켜 3종류의 전도성 분산액을 각각 제조하였다. 이 때 배합비율은, 탄소나노튜브용액 24.66%에 대하여 분산제로서 Disponil 32 1.64%, 바인더로서 HU-580 6.14%, 슬립제로서 IE349 4.09%, 보조용매로 1-PrOH 1.90%, NMP 0.23%, 습윤제로 BYK-346 1.06%을 넣고 DI water 60.28%가 첨가하였다.
[제조실시예 2] 실시예 2에 의하여 제조된 다중벽 탄소나노튜브로 분산액 제조
실시예 2에 의하여 제조된 다중벽 탄소나노튜브에 대하여, 제조실시예 1에 사용한 방법과 동일한 방법으로, 밀링처리과정을 거쳐 3종류의 전도성 분산액을 각각 제조하였다.
제조된 다중벽 탄소나노튜브 분산액들 각각에 대하여 다양한 실험을 실시하였는데, 밀링처리공정에서 밀링시간에 따른 분산의 정도와 형상을 파악하여 최적의 밀링공정 시간을 찾을 수 있었으며, 합성된 다중벽 탄소나노튜브에 대하여 Bulk density, 응집체직경, 번들길이 및 번들직경 등의 형상과 특성의 차이를 분석하였다. 그리고 탄소나노튜브가 가지는 형상에 대항 외형적인 특성인 Bulk density, 번들길이, 번들직경 및 응집체직경을 파악하기 위하여 SEM사진을 분석하였다. 또한 밀링처리된 다중벽 탄소나노튜브를 고분자수지와 혼합하여 압출기 공정을 진행한 후 얻은 복합체 시트에 대하여 면 저항을 분석하였다. 이와 더불어 복합체 시트를 태워서 내부에서 탄소나노튜브가 분산된 형상을 관찰하여 분산성과의 상관관계를 파악하고 밀링처리에 따른 소재의 변화를 알아보았다. 이하에서는 각각의 실험예와 그 결과에 대하여 설명한다.
[실험예 1] SEM 사진 관찰
탄소나노튜브가 가지는 형상에 대한 외형적인 특성인 Bulk density, 번들길이, 번들직경 및 응집체직경을 파악하기 위하여 SEM사진을 분석하였다. 도 5는 DP법으로 제조된 금속촉매로 다중벽 탄소나노튜브를 합성한 것에 대한 사진이며, 도 6은 SD법으로 제조된 금속촉매로 다중벽 탄소나노튜브를 합성한 것에 대한 사진으로서, 각각에 대하여 밀링 전의 다중벽 탄소나노튜브의 외형과 3시간, 6시간 및 9시간 동안 밀링처리 한 후의 다중벽 탄소나노튜브 각각에 대하여 100배 및 1000배의 SEM 이미지로 응집체직경, 번들길이 및 번들직경을 관찰한 사진이다.
관찰된 다중벽 탄소나노튜브의 형상을 볼 때 밀링처리 후 번들이 둥글게 뭉쳐있는 이미지를 보여주고 있는데, 이것은 밀링공정시 물리적인 힘에 의하여 응집체 및 번들이 분쇄되어 다중벽 탄소나노튜브가 짧아지게 되고, 건조 과정에서 분쇄된 다중벽 탄소나노튜브 등이 재 응집되는 성질을 가지고 있는 것에 기인한 것으로 판단되었다.
[실험예 2] Bulk density 측정
Bulk density는 다중벽 탄소나노튜브의 가장 중요한 특성 가운데 하나로다중벽 탄소나노튜브의 응용에 있어 적정 수준의 부피밀도가 필요하다. 따라서 Bulk density의 측정을 위해 메스실린더를 이용하여 다중벽 탄소나노튜브 무게를 측정하였고, 탭핑을 100회 진행한 후에 눈금을 확인하여 용량을 확인함으로써 Bulk density를 측정하였다.
도 7에는 제조실시예 1을 통한 DP법을 적용하여 만든 다중벽 탄소나노튜브에 대한 밀링처리 전후의 Bulk density 측정결과와 오차범위가 도시되어 있으며, 도 8에는 제조실시예 2을 통한 SD법을 적용하여 만든 다중벽 탄소나노튜브에 대한 밀링처리 전후의 Bulk density 측정결과가 오차범위와 함께 도시되어 있다. 그리고 도 12에는 제조실시예 1에 의하여 제조된 다중벽 탄소나노튜브와 제조실시예 2에 의하여 제조된 다중벽 탄소나노튜브에 대한 Bulk density를 비교한 그래프이다. 도 7, 도 8 및 도 12에서 보듯이 Bulk Density는 밀링처리 시간이 늘어남에 따라 함께 증가함을 확인할 수 있었다.
[실험예 3] 응집체직경, 번들직경 및 번들길이 측정
SEM(Scanning Electron Microscope)을 이용하여 밀링 전의 다중벽 탄소나노튜브의 외형과 밀링처리공정을 3시간, 6시간 및 9시간으로 나누어 진행 한 후에 100, 1000배의 이미지를 찍었다. 그리고 SEM이미지를 분석하여 응집체직경, 번들길이, 번들직경을 측정하였다. 도 7에는 제조실시예 1을 통한 DP법을 적용하여 만든 다중벽 탄소나노튜브에 대한 밀링처리 전후의 측정결과와 오차범위가 도시되어 있으며, 도 8에는 제조실시예 2를 통한 SD법을 적용하여 만든 다중벽 탄소나노튜브에 대한 밀링처리 전후의 측정결과가 오차범위와 함께 도시되어 있다,
도 7에서 보는 바와 같이 제조실시예 1에서 다중벽 탄소나노튜브의 응집체 직경은 밀링처리 전부터 밀링처리 후 6시간까지 약 32.2μm에서 23.3μm으로 감소하였으며 9시간의 밀링처리 시에는 응집체직경이 다시 26.1μm로 상승함을 알 수 있었다. 번들길이는 밀링처리 전부터 밀링처리 시간에 따라 각각 45.1μm, 55.5μm, 33.7μm 및 44.2μm으로 밀링처리 3시간에서 증가하였다가 밀링처리 6시간에서 감소하였고, 9시간 밀링처리 시 다시 증가하는 것을 확인할 수 있었다. 번들직경의 경우 밀링처리 전부터 밀링처리 시간에 따라 각각 6.2μm, 5.1μm, 3.5μm 및 4.8μm로서 밀링처리 후 6시간까지 감소하였다가 9시간 밀링처리 시 다시 증가하는 것을 확인할 수 있었다.
그리고 도 8에서 보는 바와 같이 제조실시예 2에서 다중벽 탄소나노튜브의 응집체 직경은 밀링처리 전 48.0μm에서 밀링처리 3시간과 6시간에서 각각 40.4μm, 36.3μm으로 줄어들었으며 밀링처리 9시간에서는 36.6μm으로 6시간과 비교하였을 때 변화가 거의 없었다. 번들길이는 밀링처리 전 79.2μm에서 밀링처리 후 3시간과 6시간에서 각각 35.8μm과 27.3μm으로 줄어들었으며, 밀링처리 9시간 이후부터는 번들길이가 30.4μm로 다시 늘어나는 경향을 나타내고 있었다. 그리고 번들직경의 경우 밀링처리 전 8.8μm 에서 밀링처리 3시간과 6시간 후에는 각각 1.6μm과 1.1μm으로 작아졌으며, 이후 밀링처리 9시간 후에는 1.2μm으로 6시간과 비교하여 큰 변화를 보이지 않았다.
측정결과를 볼 때 제조실시예 1과 제조실시예 2에서 얻은 다중벽 탄소나노튜브 중 6시간의 밀링처리 공정을 통해 얻어진 다중벽 탄소나노튜브의 응집체직경은 각각 23.3μm과 36.3μm이며 번들직경은 3.5μm와 1.1μm번들길이가 33.7μm과 27.3μm로서 다중벽 탄소나노튜브의 특성이 가장 우수한 것으로 파악되었다. 또한 이러한 외형적인 분석을 통하여, 분산에 영향을 미치는 외형적인 요소를 분석하였는데, 외형의 특성이 반데르발스 힘과 상관관계가 있음을 알 수 있었다. 즉 제조실시예1 과 2를 통해 합성된 다중벽 탄소나노튜브는 밀링처리를 통하여 물리적인 분쇄가 이루어진 후 건조 시 뭉치는 현상이 약해지는 것을 보였는데, 이는 반데르발스 힘에 의해 응집이 약하게 형성되는 것으로 판단되다. 따라서 다중벽 탄소나노튜브는 밀링처리 되었을 때 밀링처리 전보다 응집력은 더 낮고 분산력이 더 높아지는 것으로 판단되었다.
[실험예 4] 점도특성
Brookfield사의 cone/paste viscometer를 이용하여 점도특성을 측정하였는데, 다중벽 탄소나노튜브에 대하여 밀링처리 전후를 비교하였으며, 3.7%의 함량으로 제조된 paste를 이용하여 측정하였다.
점도특성 측정결과 또한 도 7 및 도 8에 도시되어 있는데, 도 7에서 보는 바와 같이 제조실시예 1에서 다중벽 탄소나노튜브의 점도특성을 살펴보면, 밀링처리 3시간 후 다중벽 탄소나노튜브가 7,656cP로 밀링처리 전인 7,084cP보다 높은 점도 값을 나타내었다. 이는 밀링처리가 되면서 다중벽 탄소나노튜브의 번들길이가 짧아지면서 비표면적이 증가하며 이로 인하여 증가된 비표면적에 용매가 더 많이 소요되기 때문에 점도가 증가하는 현상이 발생한다고 판단했다. 하지만 6시간 밀링처리 후에는 점도가 급격히 낮아져 3,559cP가 된 것을 확인할 수 있었으며 9시간 밀링처리 이후에는 4,520cP으로 점도가 다소 상승하는 것을 확인할 수 있었다. 이렇게 밀링처리 6시간에서 급격한 점도의 감소가 이루어지는 것은 3시간 밀링처리 후에 다중벽 탄소나노튜브의 길이가 물리적 힘에 의하여 더욱 짧아지면서 분산되어 균일한 분포가 형성되어 유동성이 향상되기 때문에 점도가 낮아지며, 결과적으로 점도가 낮아짐으로 인해 젖음성이 증가하는 결과를 가져올 것으로 판단되었다.
그리고 도 8에서 보는 바와 같이 제조실시예 2에서 다중벽 탄소나노튜브의 점도특성을 살펴보면, 밀링처리 전의 12,250cP에서 밀링처리 3시간 공정 시에는 13,512cP로 다소 증가하였으며 밀링처리 6시간 후에는 5,640cP으로 급격히 낮아졌다. 그리고 9시간 밀링공정 후에는 7,825cP로 다시 증가하는 현상을 보여주고 있었다. 이러한 현상은 제조실시예 1로 제조된 다중벽 탄소나노튜브의 점도특성과 유사한 결과를 나타내고 있었다. 결과적으로 볼 때 밀링처리 시 물리적 힘에 의하여 다중벽 탄소나노튜브의 번들길이가 짧아지면서 비표면적이 증가하여 증가된 비표면적에 용매가 더 많이 소요되어 점성이 증가하는 것으로 판단되었다.
[실험예 5] 면저항 특성
제조실시예 1과 2에서 각각 제조된 각각의 다중벽 탄소나노튜브(MWCNT) 2wt%에 LDPE5321의 폴리에틸렌(Polyethylene, PE)을 twin 압출기에 투입시켜 각각의 펠렛을 생성하였다. Twin Extruder의 장비로 진행하였으며, 멜팅온도를 150℃에서 진행하였다. feeder와 Twin Extruder 자체 rpm은 각각 5와 200으로 설정하였으며 펠렛 형태를 핫프레스에서 sheet형태로 MWCNT/PE 복합체를 제작하여 면저항을 측정하였다. 핫프레스 공정은 펠렛 100g을 계량하여 180℃ 온도로 약 2분간 가열하고 2분간 냉각모드를 진행하여 sheet를 만들었다. 이렇게 만들어진 sheet는 4-probe 면저항 측정장비로 9곳의 상중하부의 3곳씩 면저항값을 측정하여 전기전도성을 분석하였다. MWCNT/PE 복합체 내의 전기전도성을 알아보기 위하여 압출평가를 밀링 전과 밀링처리 시간별로 3,6 및 9시간으로 진행하였으며, 압출평가는 1pass와 2pass로 나누어 진행하였다.
면저항 측정결과 또한 도 7 및 도 8에 도시되어 있는데, 도 7에 보는 바와 같이 제조실시예 1에 의해 제조된 MWCNT/PE 복합체로 압출평가를 진행 시 1pass의 경우는 밀링처리 전 4.33Ω/㎡에서 밀링처리 3시간 후는 3.62Ω/㎡, 밀링처리 6시간 후 3.08Ω/㎡로 점차 감소하였으며, 9시간 밀링처리 후에는 3.48Ω/㎡로 다시 상승하는 결과를 보였다. 다만 2pass의 경우 밀링처리 전 2.84Ω/㎡에서 3시간 밀링처리 후 2.96Ω/㎡과 6시간 밀링처리 후 2.55Ω/㎡로 1pass의 면저항의 변화 폭보다 적음을 알 수 있었다. 밀링 시간에 따른 면저항 특성이 변화하는 현상은 밀링처리를 통한 MWCNT의 물리적 분쇄를 통하여 소재의 길이가 짧아지고 복합체 내의 네트워크를 형성하기 적절한 수준으로 존재하기 때문으로 판단되었다. 따라서 6시간의 밀링처리 후 다중벽 탄소나노튜브 분산액을 제조하게 되면 면저항이 작기 때문에 분산력이 우수한 분산액을 제조할 수 있다.
도 8에서 보는 바와 같이 제조실시예 2에 의한 밀링처리 전후의 다중벽 탄소나노튜브를 이용하여 압출평가 진행 시, 압출평가 1pass의 경우 밀링처리 전 4.81Ω/㎡ 보다 밀링처리 3시간 공정에서 6.13Ω/㎡으로 면저항값이 높아짐을 보였다. 하지만 6시간의 밀링공정 이후에는 4.11Ω/㎡로 낮아지는 결과값을 확인할 수 있었으며, 9시간 밀링처리 후에는 다시 5.49Ω/㎡로 높아짐을 알 수 있었다. 압출평가 2pass의 경우도 1pass 와 유사한 결과값을 보이고 있으며, 밀링처리 전의 2.65Ω/㎡에서 3시간 밀링처리 후 3.29Ω/㎡ 면저항값이 높아졌으나 6시간 밀링처리시 2.37Ω/㎡로 밀링처리 전 MWCNT/PE 복합체의 포면저항값이 낮아지는 것을 확인할 수 있었다. 하지만 밀링처리 9시간 이후부터는 다시 면저항값이 2.87Ω/㎡로 증가함을 보였다. 압출평가를 통하여 밀링처리 후 6시간 공정에서 MWCNT/PE 복합체의 면저항값이 가장 우수하게 관찰되어 밀링처리가 6시간이 가장 적절한 공정조건임을 확인할 수 있었다.
도 9에서부터 도 15까지는 DP법과 SD법으로 제조된 다중벽 탄소나노튜브를 밀링처리하여 각각의 특성별로 비교하여 그래프로 나타내었다. 분석한 항목들은 분산 등에 영향을 미치는 인자들로서도 9는 응집체직경, 도 10은 번들길이, 도 11은 번들직경, 도 12는 Bulk density, 도 13은 점도, 도 14는 압출평가 1pass, 도 15는 압출평가(2pass)에 대해서 다중벽 탄소나노튜브의 특성을 비교하였다.
도 9에서는 응집체직경을 다중벽 탄소나노튜브의 종류에 따라 비교하여 나타내었다. 도 9에서도 보듯이 응집체직경의 크기 차이는 있으나 두 소재의 특성이 비슷한 경향성을 보이고 있음을 알 수 있다. 도 10에서는 밀링처리 시간이 증가함에 따라 Bulk density도 같이 증감함을 나타내고 있으며, 도 11와 도 12에서는 번들길이와 번들직경으로 두 가지 모두 밀링처리 시간이 6시간 공정일 때 가장 짧은 길이를 나타내고 있으며 9시간 이후에 다시 증감함을 보이고 있다. 도 13의 점도특성의 경우도 두 소재의 특성값이 밀링처리 후 3시간 공정은 점도가 오히려 상승하였으며 6시간과 9시간의 공정처리에서는 점도가 낮아지는 것을 확인할 수 있었다. 또한 도 14와 도 15에 도시된 압출평가 결과는 다중벽 탄소나노튜브 소재별과 1pass, 2pass에 대해서 각각 비교하였을 때, 6시간 밀링처리를 진행했던 다중벽 탄소나노튜브의 복합체가 면저항이 낮아 가장 우수한 결과값을 보여주고 있다.
실험의 결과들을 토대로 다중벽 탄소나노튜브의 외형적인 특성으로는 응집체직경, 번들직경, 번들길이가 작아질수록 소재의 응용이 필요한 고분자 복합체 및 paste에서 분산성이 증가함을 알 수 있었으며, Bulk density의 증가로 다중벽 탄소나노튜브의 비산성 또한 증가하게 되어 사용상의 불편이 개선되는 결과를 얻을 수 있었다. 이렇게 다중벽 탄소나노튜브를 6시간의 밀링처리를 거치게 되면 밀링처리 전의 소재보다 분산성과 젖음성이 높아지며 사용상의 편의성이 훨씬 더 좋아지기 때문에 이러한 장점을 가진 다중벽 탄소나노튜브 전도성 분산액을 제조할 수 있을 것이다.
상술한 여러 가지 예로 본 발명을 설명하였으나, 본 발명은 반드시 이러한 예들에 국한되는 것이 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.

Claims (5)

  1. Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O)과 Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O)를 혼합하여 교반한 제1용액, Ammonium Carbonate((NH₄)₂CO₃)를 용해한 제2용액 및 Aluminum Hydroxide(Al(OH)₃)를 용해한 제3용액을 각각 제조한 후, 상기 제3용액에 상기 제1용액 및 상기 제2용액을 혼합하여 교반한 혼합용액을 만들고, 상기 혼합용액을 여과 및 건조하여 금속촉매를 만드는 금속촉매제조단계;
    상기 금속촉매를 CVD 합성장치에 넣고 700~750℃의 온도로 탄소나노튜브를 합성하는 합성단계;
    상기 탄소나노튜브를 밀링장치에 넣고 수계분산제, 소포제 및 용매를 첨가한 후 밀링처리하여 탄소나노튜브용액을 만드는 밀링단계; 및
    상기 탄소나노튜브용액에 분산제, 바인더, 보조용매제, 습윤제 및 용매를 분산시켜 전도성 분산액을 만드는 분산단계; 를 포함하는 것을 특징으로 하는 다중벽 탄소나노튜브 전도성 분산액의 제조 방법
  2. 제1항에 있어서,
    상기 제1용액은 용매 100중량부에 대하여 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O) 25.02중량부 및 Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O) 7.55중량부를 용해하며, 상기 제2용액은 용매 100중량부에 대하여 Ammonium Carbonate((NH₄)₂CO₃) 100중량부를 용해하며, 상기 제3용액은 용매 100중량부에 대하여 Aluminum Hydroxide(Al(OH)₃) 50중량부를 용해하는 것을 특징으로 하는 다중벽 탄소나노튜브 전도성 분산액의 제조 방법
  3. 제1항에 있어서,
    상기 금속촉매제조단계는 Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O), Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O) 및 Aluminium nitrate nonahydrate(Al(NO₃)₃)을 용매에 용해한 금속촉매전구체용액을 공기와 혼합시켜 이류체를 제조한 후, 상기 이류체를 반응로에 분사 및 건조하여 금속촉매를 만드는 것을 특징으로 하는 다중벽 탄소나노튜브 전도성 분산액의 제조 방법
  4. 제3항에 있어서,
    상기 금속촉매전구체용액는 용매, Iron(Ⅲ) Nitrate Nonahydrate(Fe(NO₃)₃9H₂O), Cobalt(Ⅱ) Nitrate Hexahydrate(Co(NO₃)₂6H₂O) 및 Aluminium nitrate nonahydrate(Al(NO₃)₃) 각각의 질량비가 10000: 1000: 250: 1200인 것을 특징으로 하는 다중벽 탄소나노튜브 전도성 분산액의 제조 방법
  5. 제3항에 있어서,
    상기 반응로의 온도는 800℃이며 상기 이류체의 분사압력은 3.5kgf인 것을 특징으로 하는 다중벽 탄소나노튜브 전도성 분산액의 제조 방법
KR1020190051724A 2019-05-02 2019-05-02 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법 Active KR102254960B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190051724A KR102254960B1 (ko) 2019-05-02 2019-05-02 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190051724A KR102254960B1 (ko) 2019-05-02 2019-05-02 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법

Publications (2)

Publication Number Publication Date
KR20200128279A true KR20200128279A (ko) 2020-11-12
KR102254960B1 KR102254960B1 (ko) 2021-05-24

Family

ID=73398595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190051724A Active KR102254960B1 (ko) 2019-05-02 2019-05-02 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법

Country Status (1)

Country Link
KR (1) KR102254960B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408364A (zh) * 2020-11-30 2021-02-26 青岛科技大学 一种废弃热固性塑料催化热解制备碳纳米管的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112088A (ja) * 2010-11-02 2012-06-14 Mitsubishi Materials Corp カーボンナノファイバー分散液、ならびに塗料組成物およびペースト組成物
KR20120107403A (ko) * 2011-03-21 2012-10-02 (주)월드튜브 방열용 조성물 및 이를 이용한 방열제품
KR20150010607A (ko) * 2013-07-19 2015-01-28 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
KR20160147263A (ko) * 2014-09-08 2016-12-22 메이세이 카가쿠고교 가부시키가이샤 분산제, 분산 조성물 및 섬유 시트
KR20170053808A (ko) * 2015-11-06 2017-05-17 계명대학교 산학협력단 메조포러스 실리카 탄소나노섬유 복합체의 제조방법 및 이를 이용한 이차전지 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112088A (ja) * 2010-11-02 2012-06-14 Mitsubishi Materials Corp カーボンナノファイバー分散液、ならびに塗料組成物およびペースト組成物
KR20120107403A (ko) * 2011-03-21 2012-10-02 (주)월드튜브 방열용 조성물 및 이를 이용한 방열제품
KR20150010607A (ko) * 2013-07-19 2015-01-28 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
KR20160147263A (ko) * 2014-09-08 2016-12-22 메이세이 카가쿠고교 가부시키가이샤 분산제, 분산 조성물 및 섬유 시트
KR20170053808A (ko) * 2015-11-06 2017-05-17 계명대학교 산학협력단 메조포러스 실리카 탄소나노섬유 복합체의 제조방법 및 이를 이용한 이차전지 제조방법

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
A. Kiran Kumar, S. Venkata Mohan, Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation, Separation and Purification Technology 87 (2012) 22-30
A. Tugrul Seyhan, Florian H. Gojny, Metin Tanoglu, Karl Schulte, Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites, European Polymer Journal 43 2 (2007) 374-379
A., Indhuja, K.S., Suganthi, S., Manikandan, K.S., Rajan, Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: Influence of MWCNT concentration and temperature, Journal of the Taiwan Institute of Chemical Engineers 44 3 (2013) 474-479
Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology 63 11 (2003) 1517-1524
D. Mac Kernan and W. J. Blau, Exploring the mechanisms of carbon-nanotube dispersion aggregation in a highly polar solvent, EPL (Europhysics Letters) 83 6 (2008)
Dirk Lehmhus, Claus Aumund-Kopp, Frank Petzoldt, Dirk Godlinski, Arne Haberkorn, Volker Zollmer, Matthias Busse, Customized Smartness: A Survey on Links between Additive Manufacturing and Sensor Integration, Procedia Technology 26 (2016) 284-301
Dongliang Jiang, Jingxian Zhang, Zhihui Lv, Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminated technology, Journal of the European Ceramic Society 32 7 (2012) 1419-1425q
Don-Young Kim, Young Soo Yun, Hyeonseong Bak, Se Youn Cho, Hyoung-Joon Jin, Aspect ratio control of acid modified multiwalled carbon nanotubes, Current Applied Physics 10 4 (2010) 1046-1052
F. Aviles, J.V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon 47 13 (2009) 2970-2975
Florian H. Gojny, Malte H.G. Wichmann, Bodo Fiedler, Ian A. Kinloch, Wolfgang Bauhofer, Alan H. Windle, Karl Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer 47 6 8 (2006) 2036-2045
H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Composites Part A: Applied Science and Manufacturing 43 7 (2012) 1061-1072
Hisao Uozumi, Kenta Kobayashi, Kota Nakanishi, Tadashi Matsunaga, Kenji Shinozaki, Hiroki Sakamoto, Takayuki Tsukada, Chitoshi Masuda, Makoto Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting, Materials Science and Engineering: A 495 1-2 (2008) 282-287
Imran Shakir, Muhammad Shahid, Serhiy Cherevko, Chan-Hwa Chung, Dae Joon Kang, Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3-MWCNT nanocomposites, Electrochimica Acta 58 30 (2011) 76-80
Jessica P. Soares da Silva, Bluma G. Soares, Sebastien Livi, Guilherme M.O. Barra, Phosphonium-based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness, Materials Chemistry and Physics 189 (2017) 162-168
Jiaxi Guo, Yanjun Liu, Ricardo Prada*?*Silvy, Yongqiang Tan, Samina Azad, Beate Krause, Petra Potschke, Brian P. Grady, Aspect ratio effects of multi*?*walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites, Journal of Polymer Science Part B: Polymer Physics 52 (2013) 1
Junya Suehiro, Guangbin Zhou and Masanori Hara, Fabrication of a carbon nanotube based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, Journal of Physics D: Applied Physics, 36 (2003) 21
L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids 54 11 (2006) 2436-2452
Linqin Jiang, Lian Gao, Jing Sun, Production of aqueous colloidal dispersions of carbon nanotubes, Journal of Colloid and Interface Science 260 1 (2003) 89-94
M.L. Polo-Luque, B.M. Simonet, M. Valcarcel, Functionalization and dispersion of carbon nanotubes in ionic liquids, TrAC Trends in Analytical Chemistry 47 (2013) 99-110
O.S.G.P. Soares, A.G. Goncalves, J.J. Delgado, J.J.M. Orfao, M.F.R. Pereira, Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts, Catalysis Today 249 (2015) 199-203
Parveen Saini, Veena Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding, Materials Chemistry and Physics 113 2-3 15 (2009) 919-926
R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scripta Materialia 53 10 (2005) 1159 1163
R. Perez-Bustamante, C.D. Gomez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez, S.A. Perez-Garcia, R. Martinez-Sanchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling, Materials Science and Engineering: A 502 1-2 (2009) 159-163
Sami-ullah Rather, Renju Zacharia, Sang Woon Hwang, Mehraj-ud-din Naik, Kee Suk Nahm, Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method, Chemical Physics Letters 441 4-6 (2007) 261-267
Shao-Ning Pu, Wen-Yan Yin, Jun-Fa Mao, Qing H. Liu, Crosstalk Prediction of Single- and Double-Walled Carbon-Nanotube (SWCNT/DWCNT) Bundle Interconnects, IEEE Transactions on Electron Devices 56 2 4 (2009) 560 - 568
Sudipta Chatterjee, Min W. Lee, Seung H. Woo, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresource Technology 101 6 (2010) 1800-1806
T. Cetinkaya, M.O. Guler, H. Akbulut, Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling, Microelectronic Engineering 108 (2013) 169-176
Woo-Sung Cho, Yang Doo Lee, Jinnil Choi, Jong Hun Han, Byeong-Kwon Ju, Effects on the field emission properties by variation in surface morphology of patterned photosensitive carbon nanotube paste using organic solvent, Applied Surface Science 257 6 (2011) 2250-2253
Yu Bai, Il Song Park, Sook Jeong Lee, Tae Sung Bae, Fumio Watari, Motohiro Uo, Min Ho Lee, Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent, Carbon 49 11 (2011) 3663 3671
Yu-Lin Hsin, Jyun-Yi Lai, Kuo Chu Hwang, Shen-Chuan Lo, Fu-Rong Chen, J.J. Kai, Rapid surface functionalization of iron-filled multi-walled carbon nanotubes, Carbon 44 15 (2006) 3328-3335

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408364A (zh) * 2020-11-30 2021-02-26 青岛科技大学 一种废弃热固性塑料催化热解制备碳纳米管的方法

Also Published As

Publication number Publication date
KR102254960B1 (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
Yang et al. Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites
KR101414560B1 (ko) 전도성 필름의 제조방법
Khan et al. Carbon nanotube-based polymer composites: synthesis, properties and applications
He et al. Facile synthesis of silver-decorated reduced graphene oxide as a hybrid filler material for electrically conductive polymer composites
EP1924631A2 (en) Conductive silicone and methods for preparing same
KR102166230B1 (ko) 전도성 필러 및 그의 제조 방법, 및 전도성 페이스트 및 그의 제조 방법
WO2014046471A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
Bao et al. Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites
EP3052442B1 (en) High carbon nanotube content fluids
Xiao et al. Study on the phase change thermal storage performance of palmitic acid/carbon nanotubes composites
KR20140134142A (ko) 고분산성 탄소나노구조체와 그 제조방법 및 고분산성 탄소나노구조체를 포함하는 고분자 복합체
Fu et al. One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes
Saidina et al. Synthesis and characterization of graphene-based inks for spray-coating applications
Johnson et al. Dispersion and film properties of carbon nanofiber pigmented conductive coatings
KR102254960B1 (ko) 밀링공정을 이용한 다중벽 탄소나노튜브 전도성 분산액의 제조방법
Ali et al. Facile microwave synthesis of multi‐walled carbon nanotubes for modification of elastomer used as heaters
Malikov Potential semiconductor material based on the multiwall carbon nanotube-maleic anhydride-1-octene/SnS nanocomposite
KR101853179B1 (ko) 열 플라즈마 처리를 이용하는 탄소 소재 기능화 방법, 그 방법을 통해 제조되는 조성물 및 그 조성물을 이용하는 emi 차폐 소재
KR102288026B1 (ko) 다중벽 탄소나노튜브의 합성방법
KR101608477B1 (ko) 탄소나노튜브 제조용 금속촉매의 제조방법 및 이를 이용한 탄소나노튜브의 제조방법
Araujo et al. Influence of chemical treatment on the morphology and functionalization of carbon nanotubes
Jia et al. A multifunctional integrated carbon nanotubes/polyphenylene sulfide composite: preparation, properties and applications
CN113754927B (zh) 碳纳米纤维复合体的制造方法和碳纳米纤维复合体
CN100427547C (zh) 一种合成纳米氮化铬/聚吡咯复合材料的方法
Park et al. Dispersion of multi-walled carbon nanotubes mechanically milled under different process conditions

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190502

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210419

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210506

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210517

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210517

End annual number: 3

Start annual number: 1

PG1601 Publication of registration