KR20190111496A - Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process - Google Patents
Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process Download PDFInfo
- Publication number
- KR20190111496A KR20190111496A KR1020180033684A KR20180033684A KR20190111496A KR 20190111496 A KR20190111496 A KR 20190111496A KR 1020180033684 A KR1020180033684 A KR 1020180033684A KR 20180033684 A KR20180033684 A KR 20180033684A KR 20190111496 A KR20190111496 A KR 20190111496A
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- nanopowder
- mixture
- reaction
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 62
- 239000002184 metal Substances 0.000 title claims abstract description 62
- 239000011858 nanopowder Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 239000001257 hydrogen Substances 0.000 title claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 14
- 230000008569 process Effects 0.000 title abstract description 10
- 230000009467 reduction Effects 0.000 title abstract description 8
- 230000001404 mediated effect Effects 0.000 title abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims abstract description 48
- 239000000843 powder Substances 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 238000002485 combustion reaction Methods 0.000 claims abstract description 14
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 13
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 12
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 10
- 150000004678 hydrides Chemical class 0.000 claims abstract description 5
- 230000000977 initiatory effect Effects 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 21
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 9
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 229910000882 Ca alloy Inorganic materials 0.000 claims description 2
- 229910001507 metal halide Inorganic materials 0.000 claims description 2
- 150000005309 metal halides Chemical class 0.000 claims description 2
- 238000005453 pelletization Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000035484 reaction time Effects 0.000 abstract description 4
- 238000005049 combustion synthesis Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009767 auto-combustion synthesis reaction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- -1 crystalline water Chemical class 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B22F1/0007—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/07—Dielectric layers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명에 따른 자전연소합성법을 기반으로 한 수소화물 매개 금속 열 환원(Hydrogen mediated metllothermic reduction: HMMR) 공정을 이용한 망상의 금속 나노분말의 제조방법은 금속 산화물, 환원제, 및 수소 함유 무기 화합물을 포함하는 혼합물을 준비하는 단계(S1); 상기 혼합물의 연소반응을 개시하는 단계(S2); 반응을 종료하는 단계(S3); 및 상기 금속 산화물로부터 환원된 금속 분말을 수득하는 단계(S4);를 포함하여 망상 금속 나노분말을 제조하는 특징이 있다. 본 발명에 따른 제조방법은 고표면적의 금속 나노분말을 효과적으로 제조할 수 있는 장점이 있다. 또한, 기존의 제조 공정에 비해 수초 내지 수분 이내로 반응하여 공정시간이 짧고, 공정이 단순하며, 열효율 및 생산성이 우수하여 제조 원가를 크게 절감할 수 있으며, 대량생산이 가능하다는 장점이 있다.The method for preparing a network metal nanopowder using a hydride mediated metllothermic reduction (HMMR) process based on the autogenous combustion synthesis method according to the present invention includes a metal oxide, a reducing agent, and a hydrogen-containing inorganic compound. Preparing a mixture (S1); Initiating a combustion reaction of the mixture (S2); Terminating the reaction (S3); And obtaining a reduced metal powder from the metal oxide (S4). The production method according to the present invention has the advantage of effectively producing a high surface area metal nanopowder. In addition, compared to the conventional manufacturing process, the reaction time is within a few seconds to several minutes, the process time is short, the process is simple, excellent thermal efficiency and productivity can greatly reduce the manufacturing cost, there is an advantage that mass production is possible.
Description
본 발명은 자전연소합성법(Self-propagating High temperature Synthesis; SHS)을 기반으로 한 수소화물 매개 금속 열 환원(Hydrogen mediated metllothermic reduction: HMMR) 공정을 이용한 금속 분말의 제조방법에 관한 것이다. 또한 Ta2O5 등의 금속 산화물, 환원제 및 수소 함유 무기 첨가제를 자전연소 반응을 통해 금속 산화물을 금속 분말로 환원시킴과 동시에 그 금속의 형상과 입경을 망상(net-shaped) 구조의 나노(nm) 사이즈로 제어해 콘덴서용 유전체 금속 분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing metal powder using a hydride mediated metllothermic reduction (HMMR) process based on a self-propagating high temperature synthesis (SHS). In addition, metal oxides, reducing agents, and hydrogen-containing inorganic additives, such as Ta 2 O 5 , are reduced to metal powders through a self-burning reaction, and the shape and particle diameter of the metals are net-shaped. The present invention relates to a method for producing dielectric metal powder for capacitors by controlling the size.
일반적으로 자전연소합성법은 두 개 이상의 혼합 원료를 반응 가능한 온도로 가열하여 초기 합성반응을 유도하고, 국부적으로 발생한 초기 합성 반응에서 발생한 반응 생성열에 의해 그 합성 반응이 원료 전체로 스스로 전파되는 반응이 진행, 완료되는 방법이다. 이때, 반응물들의 생성 반응열을 이용함으로써, 반응열이 큰 물질일 경우 외부에서 에너지를 공급하지 않아도 자발적으로 반응이 전파하면서 지속되는 현상을 이용하여 고체-고체, 고체-액체, 고체-기체 사이의 반응을 통해 규화물, 탄화물, 질화물 및 붕화물 등의 세라믹이나 금속간 화합물을 합성하는 방법으로, 고온로 없이 소재를 합성할 수 있는 경제적인 방법이다. 자전연소 합성법은 높은 반응 온도와 빠른 반응 속도로 공정제어에 어려움이 있으나, 반응물의 성형밀도, 반응 시 압력, 원료분말의 입도, 기타 첨가물질 등 공정변수를 조절하여 요구되는 생성물을 얻을 수 있다.In general, the autogenous combustion synthesis method induces an initial synthesis reaction by heating two or more mixed raw materials to a temperature at which they can be reacted, and a reaction in which the synthesis reaction propagates itself to the entire raw material by the heat of reaction generated from the locally generated initial synthesis reaction That's how it is done. In this case, by using the heat of reaction of the reactants, the reaction between solid-solid, solid-liquid, and solid-gas is carried out by using a phenomenon in which a large reaction heat is spontaneously propagated even without supplying energy from the outside. It is a method of synthesizing ceramic or intermetallic compounds such as silicides, carbides, nitrides and borides, and is an economical way to synthesize materials without a high temperature furnace. The autocombustion synthesis method is difficult to control the process due to high reaction temperature and fast reaction speed, but the required product can be obtained by adjusting process variables such as molding density of reactant, pressure during reaction, particle size of raw powder, and other additives.
한편, 탄탈륨(Ta)은 융점이 높고 연성 및 내식성 등 우수한 물리적 특성으로 인해 기계, 화공, 의료분야 뿐만 아니라 우주, 군사 및 산업 전반에 걸쳐 광범위하게 사용되고 있는 소재이다. 특히, Ta은 모든 금속 중 가장 안정한 양극산화피막을 형성시킬 수 있는 유전 특성으로 인해 현재 고체전해질 콘덴서의 양극소재로 널리 이용되고 있다. 특히, 탄탈 양극산화피막의 유전율은 알루미늄 양극산화피막의 2.7배나 될 정도로 매우 높아 콘덴서 재료에 아주 적합한 특성을 갖고 있다. 이러한 콘덴서용 Ta 분말의 제조방법은 1) Ta2O5를 Mg, Al, Ca, C를 이용하여 환원하는 방법, TaCl5를 수소 가스로 환원하는 방법, 3) TaCl5를 Mg, Na 등의 환원제 금속으로 환원하는 방법, 4) 중간 원료물질인 K2TaF7을 Na에 의해 환원하는 방법, 5) Ta2O5를 Mg 증기로 환원하는 방법, 6) Ta2O5를 전기화학적으로 환원하는 방법 등으로 요약할 수 있다. 그러나 탄소에 의한 환원은 1500 ℃ 이상의 고온을 필요로 하며, Ta2O5를 환원제 금속으로 환원하는 방법은 빠른 반응성 때문에 분말의 입자 크기 및 형상 제어에 어려움이 있다고 알려져 있다. 또한 TaCl5를 수소로 환원하는 방법은 반응 중 생성되는 HCl의 부식성으로 인해 공업화에 이르지 못하고 있다.On the other hand, tantalum (Ta) is a material that is widely used throughout the space, military and industry as well as mechanical, chemical, medical field due to its high melting point and excellent physical properties such as ductility and corrosion resistance. In particular, Ta is widely used as a cathode material of a solid electrolyte capacitor because of its dielectric property capable of forming the most stable anodized film among all metals. In particular, the dielectric constant of tantalum anodized film is very high, which is 2.7 times higher than that of aluminum anodized film, and has a very suitable property for condenser materials. The method of manufacturing Ta powder for a capacitor includes 1) reducing Ta 2 O 5 using Mg, Al, Ca, and C, reducing TaCl 5 with hydrogen gas, and 3) reducing TaCl 5 to Mg and Na. Reducing agent to metal, 4) Reduction of intermediate material K 2 TaF 7 by Na, 5) Reduction of Ta 2 O 5 to Mg vapor, 6) Electrochemical reduction of Ta 2 O 5 It can be summarized by the method. However, reduction by carbon requires a high temperature of 1500 ° C. or higher, and the method of reducing Ta 2 O 5 to a reducing agent metal is known to have difficulty in controlling the particle size and shape of the powder due to its fast reactivity. In addition, the method of reducing TaCl 5 to hydrogen has not reached industrialization due to the corrosiveness of HCl generated during the reaction.
현재 상용화된 콘덴서용 Ta 분말제조 공정은 TaCl5를 Mg, Na 등의 환원제 금속으로 환원하는 방법과 중간 원료물질인 K2TaF7을 Na로 환원하는 방법이 대표적이다.Currently commercially available Ta powder manufacturing process for condensers is a method of reducing TaCl 5 to a reducing metal such as Mg, Na and a method of reducing the intermediate raw material K 2 TaF 7 to Na.
한편, Ta2O5를 Mg 등을 이용하여 환원하는 방법은 고 표면적, 고른 결정 크기 분포, 및 고순도의 Ta 분말을 제공하는 이점이 있으며, Mg 증기에 의한 직접 환원 방법도 연구되고 있다.On the other hand, the method of reducing Ta 2 O 5 using Mg or the like has the advantage of providing a high surface area, an even crystal size distribution, and a high purity Ta powder, and a direct reduction method using Mg vapor has also been studied.
그러나, 전자 소재의 집적화가 진행되면서, 보다 향상된 표면적과 고른 입도 분포를 가지면서도, 경제적인 방법으로 대량생산이 가능한 나노분말이 요구되고 있으나, 그러한 요구를 모두 충족할 수 있는 나노분말 제조 방법이 제시되지 못하고 있다.However, as the integration of electronic materials has progressed, there is a demand for nanopowders capable of mass production in an economical manner with improved surface area and even particle size distribution, but a method for manufacturing nanopowders capable of meeting all such needs is proposed. I can't.
본 발명의 목적은 입자의 형상이 망상으로 제어된 금속 나노분말의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a metal nanopowder in which the shape of the particles is controlled in a network.
본 발명의 또다른 목적은 고표면적의 금속 나노분말의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a metal nano powder of high surface area.
본 발명의 또다른 목적은 결정화도가 높은 금속 나노분말의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing a metal nanopowder with high crystallinity.
본 발명의 또다른 목적은 순도가 높은 금속 나노분말의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing metal nanopowder having high purity.
본 발명의 또다른 목적은 반응시간이 짧으며, 공정이 단순하고, 친환경적이며, 대량생산이 가능하고, 경제적으로 우수한 금속 나노분말의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a metal nanopowder having a short reaction time, a simple process, environmentally friendly, mass production, and economically excellent.
본 발명은 금속 산화물, 환원제, 및 수소 함유 무기 화합물을 포함하는 원료를 연소합성하여 망상의 금속 나노분말을 수득하는 단계를 포함하는 망상의 금속 나노분말의 제조 방법에 관한 것이다.The present invention relates to a method for producing a network metal nanopowder comprising the step of combustion-synthesizing a raw material comprising a metal oxide, a reducing agent, and a hydrogen-containing inorganic compound to obtain a network metal nanopowder.
보다 상세하게는, 본 발명에 따른 망상의 금속 나노분말의 제조 방법은 금속 산화물, 환원제, 및 수소 함유 무기 화합물을 포함하는 혼합물을 준비하는 단계(S1);More specifically, the method for producing a network metal nanopowder according to the present invention comprises the steps of preparing a mixture comprising a metal oxide, a reducing agent, and a hydrogen-containing inorganic compound (S1);
상기 혼합물의 연소반응을 개시하는 단계(S2);Initiating a combustion reaction of the mixture (S2);
반응을 종료하는 단계(S3); 및Terminating the reaction (S3); And
상기 금속 산화물로부터 환원된 금속 분말을 수득하는 단계(S4);Obtaining a reduced metal powder from the metal oxide (S4);
를 포함하는 망상 금속 나노분말 제조 방법이다.It is a method for producing a network metal nanopowder comprising a.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 연소반응은 자전연소반응일 수 있다.In the production method according to an aspect of the present invention, the combustion reaction may be a self-burning reaction.
본 발명의 일 양태에 따른 상기 제조 방법에서, 단계(S1)의 혼합물이 무기 첨가제를 더 포함할 수 있고, 상기 무기 첨가제는 상기 수득되는 나노분말 금속 1 몰 당 0.1 내지 15 몰, 바람직하게는 0.5 내지 10 몰의 비율로 포함될 수 있다.In the above production method according to an aspect of the present invention, the mixture of step (S1) may further comprise an inorganic additive, the inorganic additive is 0.1 to 15 moles, preferably 0.5 to 1 mole of the nanopowder metal obtained. To 10 moles.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 무기 첨가제는 알칼리 토금속의 할로겐화물일 수 있고, 특히 MgCl2 및 CaCl2 중 어느 하나 이상일 수 있다.In the above production method according to an aspect of the present invention, the inorganic additive may be a halide of an alkaline earth metal, and in particular, at least one of MgCl 2 and CaCl 2 .
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 단계(S1) 후에 상기 혼합물을 펠렛화하는 단계(S1-1)를 더 포함할 수 있다.In the production method according to an aspect of the present invention, after the step (S1) may further comprise the step of pelletizing the mixture (S1-1).
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 연소반응 개시 단계(S2) 전에 상기 혼합물을 예열하는 단계(S1-2)를 더 포함할 수 있다.In the manufacturing method according to an aspect of the present invention, the method may further include a step (S1-2) of preheating the mixture before the start of the combustion reaction (S2).
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 반응 종료 단계(S3) 후에 반응 생성물을 세척하고 건조하는 단계(S3-1)를 더 포함할 수 있고, 상기 세척하고 건조하는 단계(S3-1)의 세척은 산성 용액 세척 및 증류수 세척 공정을 포함할 수 있다.In the production method according to an aspect of the present invention, after the reaction termination step (S3) may further comprise the step of washing and drying the reaction product (S3-1), the washing and drying step (S3-1 Washing may include acidic solution washing and distilled water washing processes.
본 발명의 일 양태에 따른 상기 제조 방법에서, 수득되는 상기 망상 금속 나노 분말의 입경은 1500 nm 이하, 바람직하게는 500 nm 이하, 더 바람직하게는 300 nm 이하, 그보다 더 바람직하게는 200 nm 이하, 그보다 더 바람직하게는 150 nm 이하, 그보다 더 바람직하게는 100 nm 이하, 그보다 더 바람직하게는 70 nm 이하일 수 있다.In the above production method according to one aspect of the present invention, the particle diameter of the obtained reticulated metal nanopowder is 1500 nm or less, preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, Even more preferably, it may be 150 nm or less, even more preferably 100 nm or less, even more preferably 70 nm or less.
본 발명의 일 양태에 따른 상기 제조 방법에서, 수득되는 상기 망상 금속 나노 분말의 입경은 50 내지 1500 nm, 바람직하게는 50 내지 500 nm, 더 바람직하게는 50 내지 300 nm, 그보다 더 바람직하게는 50 내지 200 nm, 그보다 더 바람직하게는 50 내지 150 nm, 그보다 더 바람직하게는 50 내지 100 nm, 그보다 더 바람직하게는 20 내지 70 nm일 수 있다.In the above production method according to an aspect of the present invention, the particle diameter of the reticulated metal nanopowder obtained is 50 to 1500 nm, preferably 50 to 500 nm, more preferably 50 to 300 nm, even more preferably 50 To 200 nm, more preferably 50 to 150 nm, even more preferably 50 to 100 nm, even more preferably 20 to 70 nm.
본 발명의 일 양태에 따른 상기 제조 방법에서, 수득되는 상기 망상 금속 나노 분말의 입경은 100 내지 1500 nm, 바람직하게는 100 내지 500 nm, 더 바람직하게는 100 내지 300 nm, 그보다 더 바람직하게는 100 내지 200 nm, 그보다 더 바람직하게는 100 내지 150 nm일 수 있다.In the above production method according to an aspect of the present invention, the particle diameter of the reticular metal nanopowder obtained is 100 to 1500 nm, preferably 100 to 500 nm, more preferably 100 to 300 nm, even more preferably 100 To 200 nm, more preferably 100 to 150 nm.
본 발명의 일 양태에 따른 상기 제조 방법에서, 수득되는 상기 망상 금속 나노 분말은 유전체 나노분말일 수 있고, 특히 Ta일 수 있다.In the above production method according to an aspect of the present invention, the reticular metal nanopowder obtained may be a dielectric nanopowder, in particular Ta.
상기 입경 범위에서 입자의 높은 표면적이 구현되고, 상기 입경 범위의 유전체 금속 나노분말은 높은 커패시턴스를 가질 수 있게 된다.The high surface area of the particles is realized in the particle size range, and the dielectric metal nanopowder in the particle size range may have a high capacitance.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 환원제는 알칼리 토금속, 특히 Mg, Ca, 및 Mg-Ca 합금 중 어느 하나 이상일 수 있고, 상기 환원제는 수득되는 상기 망상 금속 나노 분말 1 몰 당 5 내지 30 몰, 바람직하게는 1 몰 당 5 내지 20 몰의 비율로 포함될 수 있으며, Mg:Ca이 1:0 내지 0:1의 몰비로 포함될 수 있다.In the above production method according to an aspect of the present invention, the reducing agent may be any one or more of alkaline earth metals, in particular Mg, Ca, and Mg-Ca alloy, the reducing agent is 5 to per mole of the reticular metal nano powder obtained 30 mol, preferably 5 to 20 mol per mole may be included, Mg: Ca may be included in a molar ratio of 1: 0 to 0: 1.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 수소 함유 무기 화합물은 수산화물, 수소화물, 및 결정수를 포함하는 화합물 중 어느 하나 이상일 수 있고, 특히 알칼리 토금속의 수산화물, 알칼리 토금속의 수소화물, 및 결정수를 포함하는 금속 할로겐화물 중 어느 하나 이상일 수 있으며, 특히 Mg(OH)2, Ca(OH)2, MgH2, CaH2, MgCl2·2H2O, 및 CaCl2·2H2O 중 어느 하나 이상일 수 있다.In the above production method according to an aspect of the present invention, the hydrogen-containing inorganic compound may be any one or more of a compound containing a hydroxide, a hydride, and crystal water, in particular a hydroxide of an alkaline earth metal, a hydride of an alkaline earth metal, and It may be any one or more of metal halides including crystalline water, in particular Mg (OH) 2 , Ca (OH) 2 , MgH 2 , CaH 2 , MgCl 2 · 2H 2 O, and CaCl 2 · 2H 2 O There may be more than one.
상기 수소 함유 무기 화합물은 연소반응에 의해 수소 기체를 발생시키고, 발생한 수소 기체에 의해 입자의 성장이 저해되면서, 동시에 망상 구조가 형성되도록 한다. 이에 따라 고표면적의 금속 나노입자가 형성될 수 있게 된다.The hydrogen-containing inorganic compound generates hydrogen gas by combustion reaction, and the growth of particles is inhibited by the generated hydrogen gas, and at the same time, the network structure is formed. As a result, metal nanoparticles having a high surface area can be formed.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 수소 함유 무기 화합물은 수득되는 상기 금속 나노분말 1 몰 당 0.05 내지 1.0 몰, 바람직하게는 1 몰 당 0.1 내지 0.5 몰의 비율로 포함될 수 있다.In the above production method according to an aspect of the present invention, the hydrogen-containing inorganic compound may be included in a ratio of 0.05 to 1.0 mol, preferably 0.1 to 0.5 mol per mol of the metal nanopowder obtained.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 연소반응은 가열 착화(thermal ignition)에 의해 개시될 수 있다.In the production method according to an aspect of the present invention, the combustion reaction may be initiated by thermal ignition.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 연소반응은 아르곤을 포함하는 기체 분위기에서 수행될 수 있고, 상기 기체 분위기에는 수소 또는 질소 기체가 더 포함될 수 있으며, 상기 연소반응은 0.1 내지 50 기압, 바람직하게는 1 내지 10 기압하에서 수행될 수 있다.In the production method according to an aspect of the present invention, the combustion reaction may be performed in a gas atmosphere containing argon, the gas atmosphere may further include hydrogen or nitrogen gas, the combustion reaction is 0.1 to 50 atm , Preferably at 1 to 10 atmospheres.
본 발명의 일 양태에 따른 상기 제조 방법에서, 상기 연소반응은 25 내지 1200 ℃, 바람직하게는 25 내지 800 ℃에서 개시될 수 있다.In the production method according to an aspect of the present invention, the combustion reaction may be initiated at 25 to 1200 ℃, preferably 25 to 800 ℃.
또한 본 발명은 망상 금속 나노분말에 관한 것이다.The present invention also relates to reticulated metal nanopowders.
보다 상세하게는 상기 망상 금속 나노분말의 입경은 1500 nm 이하, 바람직하게는 500 nm 이하, 더 바람직하게는 300 nm 이하, 그보다 더 바람직하게는 200 nm 이하, 그보다 더 바람직하게는 150 nm 이하, 그보다 더 바람직하게는 100 nm 이하, 그보다 더 바람직하게는 50 nm 이하일 수 있다.More specifically, the particle diameter of the reticulated metal nanopowder is 1500 nm or less, preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, even more preferably 150 nm or less. More preferably 100 nm or less, even more preferably 50 nm or less.
본 발명의 일 양태에 따른 상기 망상 금속 나노분말의 입경은 50 내지 1500 nm, 바람직하게는 50 내지 500 nm, 더 바람직하게는 50 내지 300 nm, 그보다 더 바람직하게는 50 내지 200 nm, 그보다 더 바람직하게는 50 내지 150 nm, 그보다 더 바람직하게는 50 내지 100 nm, 그보다 더 바람직하게는 20 내지 70 nm일 수 있다.The particle diameter of the reticulated metal nanopowder according to an aspect of the present invention is 50 to 1500 nm, preferably 50 to 500 nm, more preferably 50 to 300 nm, even more preferably 50 to 200 nm, even more preferred Preferably from 50 to 150 nm, even more preferably from 50 to 100 nm, even more preferably from 20 to 70 nm.
본 발명의 일 양태에 따른 상기 망상 금속 나노분말의 입경은 100 내지 1500 nm, 바람직하게는 100 내지 500 nm, 더 바람직하게는 100 내지 300 nm, 그보다 더 바람직하게는 100 내지 200 nm, 그보다 더 바람직하게는 100 내지 150 nm일 수 있다.The particle diameter of the reticulated metal nanopowder according to an aspect of the present invention is 100 to 1500 nm, preferably 100 to 500 nm, more preferably 100 to 300 nm, even more preferably 100 to 200 nm, even more preferred. Preferably from 100 to 150 nm.
본 발명의 일 양태에 따른 상기 망상 금속 나노 분말은 유전체 나노분말일 수 있고, 특히 Ta일 수 있다.The reticulated metal nanopowder according to an aspect of the present invention may be a dielectric nanopowder, and in particular, may be Ta.
보다 상세하게는 상기 망상 금속 나노분말은 150,000 mFV/g 이상, 상세하게는 150,000 내지 250,000 mFV/g의 커패시턴스를 가질 수 있다.More specifically, the reticulated metal nanopowder may have a capacitance of 150,000 mFV / g or more, specifically 150,000 to 250,000 mFV / g.
또한 본 발명은 상기한 망상의 금속 나노분말을 포함하는 콘덴서에 관한 것이다.The present invention also relates to a capacitor comprising the network metal nanopowder described above.
본 발명에 따른 금속 나노분말의 제조방법은 입자의 형상이 망상으로 제어된 금속 나노분말을 제조한다는 장점이 있다.The method for producing a metal nanopowder according to the present invention has the advantage of producing a metal nanopowder whose particle shape is controlled in a network.
본 발명에 따른 금속 나노분말의 제조방법은 고표면적의 금속 나노분말을 제조한다는 장점이 있다.The method for preparing metal nanopowders according to the present invention has the advantage of producing metal nanopowders having a high surface area.
본 발명에 따른 금속 나노분말의 제조방법은 결정화도가 높은 금속 나노분말을 제조한다는 장점이 있다.The method for preparing metal nanopowders according to the present invention has an advantage of preparing metal nanopowders having high crystallinity.
본 발명에 따른 금속 나노분말의 제조방법은 순도가 높은 금속 나노분말을 제조한다는 장점이 있다.The method for producing a metal nanopowder according to the present invention has an advantage of producing a metal nanopowder having high purity.
본 발명에 따른 금속 나노분말의 제조방법은 반응시간이 짧으며, 공정이 단순하고, 친환경적이며, 대량생산이 가능하고, 경제적으로 우수하다는 장점이 있다.The method for producing a metal nanopowder according to the present invention has a short reaction time, a simple process, environmentally friendly, mass production, and economically excellent.
본 발명에 따른 유전체 금속 나노분말은 망상으로 형상이 제어된다는 장점이 있다.Dielectric metal nanopowder according to the present invention has the advantage that the shape is controlled in a network.
본 발명에 따른 유전체 금속 나노분말은 높은 커패시턴스를 가진다는 장점이 있다.Dielectric metal nanopowder according to the present invention has the advantage of having a high capacitance.
도 1은 실시예 1 내지 3에서 제조된 Ta 분말의 X선 회절(XRD) 결과이다.
도 2는 실시예 1 내지 6에서 제조된 Ta 분말의 주사전자현미경(SEM) 사진이다.1 is an X-ray diffraction (XRD) result of Ta powder prepared in Examples 1 to 3.
2 is a scanning electron microscope (SEM) photograph of Ta powder prepared in Examples 1 to 6. FIG.
본 발명에 따른 망상의 금속 나노분말의 제조 방법은 금속 산화물, 환원제, 및 수소 함유 무기 화합물을 포함하는 혼합물을 준비하는 단계(S1);Method for producing a network metal nanopowder according to the present invention comprises the steps of preparing a mixture comprising a metal oxide, a reducing agent, and a hydrogen-containing inorganic compound (S1);
상기 혼합물의 연소반응을 개시하는 단계(S2);Initiating a combustion reaction of the mixture (S2);
반응을 종료하는 단계(S3); 및Terminating the reaction (S3); And
상기 금속 산화물로부터 환원된 금속 분말을 수득하는 단계(S4);Obtaining a reduced metal powder from the metal oxide (S4);
를 포함하는 망상 금속 나노분말 제조 방법이다.It is a method for producing a network metal nanopowder comprising a.
이하에서는 실시예를 통하여 본 발명에 대해 상세히 설명한다. 하기 실시예는 본 발명의 보다 전반적인 이해를 돕기 위해 제공된 것일 뿐, 본 발명이 하기 실시예에 한정되는 것은 아니다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명에 따른 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, the present invention will be described in detail through examples. The following examples are provided only to assist a more general understanding of the present invention, and the present invention is not limited to the following examples. In addition, unless there is another definition in the technical terms and scientific terms used, it has the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings. The description of well-known functions and configurations that may unnecessarily obscure them will be omitted.
본 발명에 있어, 별다른 정의가 없다면 비(ratio)는 몰비를 의미하는 것으로 해석된다.In the present invention, unless otherwise defined, the ratio is interpreted to mean molar ratio.
[실시예 1]Example 1
Ta2O5, Mg과 Ca 혼합물(Mg:Ca 몰비 9:1), MgCl2, 및 Mg(OH)2를 1:10:5:0.5의 몰비로 혼합하였다. 혼합 원료 분말은 메탈 컵을 이용해 가압하여 직경 50mm, 높이 70mm의 펠렛으로 제조하였다. 제조된 펠렛을 자전연소 반응기 내에 장입한 후, 반응기 내부를 5기압의 아르곤 가스로 충진시켰다. 그리고, 반응기 내부 온도 25 ℃에서, 장입된 펠렛의 상부에 위치한 가열된 니켈/크롬 필라멘트로 펠렛을 국부적으로 점화시켜 연소반응을 진행하였다.Ta 2 O 5 , Mg and Ca mixture (Mg: Ca mole ratio 9: 1), MgCl 2 , and Mg (OH) 2 were mixed in a molar ratio of 1: 10: 5: 0.5. The mixed raw material powder was pressed using a metal cup to prepare pellets having a diameter of 50 mm and a height of 70 mm. After the prepared pellets were charged in the autocombustion reactor, the inside of the reactor was filled with argon gas of 5 atm. At the reactor internal temperature of 25 ° C., the pellets were locally ignited with heated nickel / chromium filaments located on top of the charged pellets to proceed with the combustion reaction.
이후 반응 생성물을 냉각한 후, 염산용액을 이용하여 침출하고, 증류수를 이용하여 수세한 후, 70 내지 80 ℃에서 건조하여 Ta 분말을 제조하였다.Thereafter, the reaction product was cooled, then leached with hydrochloric acid solution, washed with distilled water, and dried at 70 to 80 ° C. to prepare Ta powder.
[실시예 2]Example 2
Ta2O5, Mg과 Ca 혼합물(Mg:Ca 몰비 9:1), MgCl2, 및 Mg(OH)2를 1:10:5:1의 몰비로 혼합하여 혼합 원료 분말을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 Ta 분말을 제조하였다.Except that the mixed raw powder was prepared by mixing Ta 2 O 5 , Mg and Ca mixture (Mg: Ca molar ratio 9: 1), MgCl 2 , and Mg (OH) 2 in a molar ratio of 1: 10: 5: 1. Ta powder was prepared in the same manner as in Example 1.
[실시예 3]Example 3
Ta2O5, Mg과 Ca 혼합물(Mg:Ca 몰비 9:1), MgCl2, 및 Mg(OH)2를 1:10:5:2의 몰비로 혼합하여 혼합 원료 분말을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 Ta 분말을 제조하였다.Except that the mixed raw powder was prepared by mixing Ta 2 O 5 , Mg and Ca mixture (Mg: Ca molar ratio 9: 1), MgCl 2 , and Mg (OH) 2 in a molar ratio of 1: 10: 5: 2. Ta powder was prepared in the same manner as in Example 1.
[실시예 4]Example 4
Ta2O5, Mg과 Ca 혼합물(Mg:Ca 몰비 9:1), MgCl2, 및 Mg(OH)2를 1:10:5:3의 몰비로 혼합하여 혼합 원료 분말을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 Ta 분말을 제조하였다.Except that the mixed raw powder was prepared by mixing Ta 2 O 5 , Mg and Ca mixture (Mg: Ca mole ratio 9: 1), MgCl 2 , and Mg (OH) 2 in a molar ratio of 1: 10: 5: 3. Ta powder was prepared in the same manner as in Example 1.
[실시예 5]Example 5
반응기 내부 온도 350 ℃에서 점화시키는 것을 제외하고 실시예 4와 동일한 방법으로 Ta 분말을 제조하였다.Ta powder was prepared in the same manner as in Example 4 except that the reactor was ignited at a temperature of 350 ° C.
[실시예 6]Example 6
Ta2O5, Mg과 Ca 혼합물(Mg:Ca 몰비 9:1), MgCl2, 및 Mg(OH)2를 1:10:5:5의 몰비로 혼합하여 혼합 원료 분말을 제조한 것을 제외하고 실시예 1과 동일한 방법으로 Ta 분말을 제조하였다.Except that the mixed raw powder was prepared by mixing Ta 2 O 5 , Mg and Ca mixture (Mg: Ca molar ratio 9: 1), MgCl 2 , and Mg (OH) 2 in a molar ratio of 1: 10: 5: 5. Ta powder was prepared in the same manner as in Example 1.
상기 실시예에 의해 제조된 Ta 분말의 X선 회절 결과가 Mg(OH)2 몰비에 따라 도 1에 도시되었고, 역시 상기 실시예에 의해 제조된 Ta 분말의 주사전자현미경 사진들이 도 2에 도시되었다.X-ray diffraction results of the Ta powder prepared by the above example are shown in FIG. 1 according to the Mg (OH) 2 molar ratio, and scanning electron micrographs of the Ta powder prepared by the above example are also shown in FIG. 2. .
도 1은 다른 상(phase)을 함유하지 않은 결정질의 Ta 분말이 제조됨을 보이며, 특히 Ta2O5 1 몰에 대해 Mg(OH)2이 0.5 몰이 혼합된 원료 분말로부터 제조된 Ta 분말이 높은 결정성을 보이고 있다.Fig. 1 shows that a crystalline Ta powder containing no other phase is prepared, in particular a Ta powder prepared from a raw powder containing 0.5 moles of Mg (OH) 2 per 1 mole of Ta 2 O 5. Showing a castle.
또한 도 2는, 상기 실시예 1 내지 6로부터 각각 (a) 100 내지 300 nm (실시예 1), (b) 100 내지 200 nm (실시예 2), (c) 100 내지 150 nm (실시예 3), (d) 50 내지 100 nm (실시예 4), (e) 20 내지 70 nm (실시예 5), 및 (f) 50 내지 1500 nm (실시예 6)의 균일한 입경을 가지는 Ta 분말이 제조되었음을 보여준다.2 shows (a) 100 to 300 nm (Example 1), (b) 100 to 200 nm (Example 2), and (c) 100 to 150 nm (Example 3) from Examples 1 to 6, respectively. ), (d) Ta powder having a uniform particle diameter of 50 to 100 nm (Example 4), (e) 20 to 70 nm (Example 5), and (f) 50 to 1500 nm (Example 6) Shows that it is prepared.
본 발명의 금속 나노분발 제조 방법을 통해, 반응시간이 짧으며, 공정이 단순하고, 친환경적이며, 대량생산이 가능하고, 경제적으로 우수하면서도, 망상 및 나노 사이즈로 그 형상 및 입경이 제어된 금속 나노분말을 제조할 수 있다. 그에 따라 고표면적의 금속 나노분말의 제조가 가능하다. 특히 Ta과 같은 유전체 물질에 응용되어, 고용량 콘덴서를 제조할 수 있다.Through the metal nanopowder production method of the present invention, the reaction time is short, the process is simple, environmentally friendly, mass production, economically superior, while the shape and particle size of the metal nano-controlled in the shape and particle size Powders can be prepared. Thereby, the production of metal nano powder of high surface area is possible. In particular, it can be applied to dielectric materials such as Ta to manufacture high capacity capacitors.
Claims (17)
상기 혼합물의 연소반응을 개시하는 단계(S2);
반응을 종료하는 단계(S3); 및
상기 금속 산화물로부터 환원된 금속 분말을 수득하는 단계(S4);
를 포함하는 망상(net-shaped) 금속 나노분말 제조 방법.
Preparing a mixture including a metal oxide, a reducing agent, and a hydrogen containing inorganic compound (S1);
Initiating a combustion reaction of the mixture (S2);
Terminating the reaction (S3); And
Obtaining a reduced metal powder from the metal oxide (S4);
Net-shaped metal nano powder manufacturing method comprising a.
The method of claim 1, wherein the combustion reaction is a self-burning reaction.
The method of claim 1, wherein the mixture of step S1 further comprises an inorganic additive.
The method of claim 3, wherein the inorganic additive is a halide of an alkaline earth metal.
The method of claim 4, wherein the halide of the alkaline earth metal is at least one of MgCl 2 and CaCl 2 .
The method of claim 1, further comprising pelletizing the mixture (S1-1) after the mixture preparation step (S1).
The method of claim 1, further comprising the step of preheating the mixture (S1-2) before the combustion reaction start step (S2).
The method for producing a network metal nanopowder according to claim 1, wherein a particle diameter of the obtained network metal nanopowder is 500 nm or less.
The method of claim 1, wherein the obtained network metal nanopowder is a dielectric metal nanopowder.
The method of claim 1, wherein the obtained reticular metal nanopowder is Ta nanopowder.
The method of claim 1, wherein the reducing agent is an alkaline earth metal.
The method of claim 1, wherein the reducing agent is at least one of Mg, Ca, and Mg-Ca alloy.
The method of claim 1, wherein the hydrogen-containing inorganic compound is at least one of a hydroxide of an alkaline earth metal, a hydride of an alkaline earth metal, and a metal halide including crystal water.
The network according to claim 1, wherein the hydrogen-containing inorganic compound is any one or more of Mg (OH) 2 , Ca (OH) 2 , MgH 2 , CaH 2 , MgCl 2 · 2H 2 O, and CaCl 2 · 2H 2 O. Metal nano powder production method.
Reticulated dielectric nanopowder having a particle size of 500 nm or less and a capacitance of 150,000 mFV / g or more.
The reticulated dielectric nanopowder of claim 15, wherein the dielectric is Ta.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180033684A KR102355131B1 (en) | 2018-03-23 | 2018-03-23 | Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180033684A KR102355131B1 (en) | 2018-03-23 | 2018-03-23 | Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process |
Publications (3)
Publication Number | Publication Date |
---|---|
KR20190111496A true KR20190111496A (en) | 2019-10-02 |
KR102355131B1 KR102355131B1 (en) | 2022-01-25 |
KR102355131B9 KR102355131B9 (en) | 2023-04-12 |
Family
ID=68422761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180033684A Active KR102355131B1 (en) | 2018-03-23 | 2018-03-23 | Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102355131B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210059051A (en) * | 2019-11-13 | 2021-05-25 | 한국생산기술연구원 | A method for manufacuring tantalum powder using self-propagating high-temperature synthesis |
KR20210086542A (en) * | 2019-12-30 | 2021-07-08 | 충남대학교산학협력단 | Method for producing metal nanoparticles by combustion process |
KR20230078559A (en) | 2021-11-26 | 2023-06-02 | 충남대학교산학협력단 | Method for manufacturing high-purity magnesium reducing agent and method for manufacturing high-purity tantalum powder using the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950185B2 (en) | 1995-03-09 | 1999-09-20 | 住友電装株式会社 | Plug joint assembly equipment |
KR20050009274A (en) * | 2001-09-29 | 2005-01-24 | 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 | A process for preparing tantalum powder and/or niobium powder having high specific surface area |
KR20070051957A (en) * | 2004-10-08 | 2007-05-18 | 하.체. 스타르크 게엠베하 운트 코. 카게 | Method for the Preparation of Valve Metal Powders |
KR20070051779A (en) * | 2004-04-23 | 2007-05-18 | 하.체. 스타르크 게엠베하 | Process for preparing niobium and tantalum powder |
KR20100033696A (en) * | 2008-09-22 | 2010-03-31 | 충남대학교산학협력단 | Fabrication method of fine boron carbide powders by self-propagating high-temperature synthesis |
KR20110007717A (en) * | 2009-07-17 | 2011-01-25 | 충남대학교산학협력단 | Method for preparing nano tantalum powder using auto combustion |
KR20130133376A (en) * | 2012-05-29 | 2013-12-09 | 충남대학교산학협력단 | Fabrication method of low oxygen titanium powders by self-propagating high-temperature synthesis |
US20160059319A1 (en) | 2013-12-10 | 2016-03-03 | Ningxia Orient Tantalum Industry Co., Ltd. | Method for preparing tantalum powder of capacitor grade with high nitrogen content, tantalum powder of capacitor grade prepared by the process, and an anode and a capacitor made of the tantalum powder |
US20170072462A1 (en) | 2014-02-21 | 2017-03-16 | Ningxia Orient Tantalum Industry Co., Ltd. | Process For Preparing Tantalum Powders For Use In An Electrolytic Capacitor With High Reliability and High Specific Capacitance |
JP6171363B2 (en) | 2012-01-31 | 2017-08-02 | 三菱マテリアル株式会社 | Heavy metal-containing water treatment method and heavy metal-containing water treatment apparatus |
-
2018
- 2018-03-23 KR KR1020180033684A patent/KR102355131B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950185B2 (en) | 1995-03-09 | 1999-09-20 | 住友電装株式会社 | Plug joint assembly equipment |
KR20050009274A (en) * | 2001-09-29 | 2005-01-24 | 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 | A process for preparing tantalum powder and/or niobium powder having high specific surface area |
KR20070051779A (en) * | 2004-04-23 | 2007-05-18 | 하.체. 스타르크 게엠베하 | Process for preparing niobium and tantalum powder |
KR20070051957A (en) * | 2004-10-08 | 2007-05-18 | 하.체. 스타르크 게엠베하 운트 코. 카게 | Method for the Preparation of Valve Metal Powders |
KR20100033696A (en) * | 2008-09-22 | 2010-03-31 | 충남대학교산학협력단 | Fabrication method of fine boron carbide powders by self-propagating high-temperature synthesis |
KR20110007717A (en) * | 2009-07-17 | 2011-01-25 | 충남대학교산학협력단 | Method for preparing nano tantalum powder using auto combustion |
JP6171363B2 (en) | 2012-01-31 | 2017-08-02 | 三菱マテリアル株式会社 | Heavy metal-containing water treatment method and heavy metal-containing water treatment apparatus |
KR20130133376A (en) * | 2012-05-29 | 2013-12-09 | 충남대학교산학협력단 | Fabrication method of low oxygen titanium powders by self-propagating high-temperature synthesis |
US20160059319A1 (en) | 2013-12-10 | 2016-03-03 | Ningxia Orient Tantalum Industry Co., Ltd. | Method for preparing tantalum powder of capacitor grade with high nitrogen content, tantalum powder of capacitor grade prepared by the process, and an anode and a capacitor made of the tantalum powder |
US20170072462A1 (en) | 2014-02-21 | 2017-03-16 | Ningxia Orient Tantalum Industry Co., Ltd. | Process For Preparing Tantalum Powders For Use In An Electrolytic Capacitor With High Reliability and High Specific Capacitance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210059051A (en) * | 2019-11-13 | 2021-05-25 | 한국생산기술연구원 | A method for manufacuring tantalum powder using self-propagating high-temperature synthesis |
KR20210086542A (en) * | 2019-12-30 | 2021-07-08 | 충남대학교산학협력단 | Method for producing metal nanoparticles by combustion process |
KR20230078559A (en) | 2021-11-26 | 2023-06-02 | 충남대학교산학협력단 | Method for manufacturing high-purity magnesium reducing agent and method for manufacturing high-purity tantalum powder using the same |
Also Published As
Publication number | Publication date |
---|---|
KR102355131B9 (en) | 2023-04-12 |
KR102355131B1 (en) | 2022-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100404428C (en) | Niobium suboxide, its production method and capacitor containing it | |
US8920762B2 (en) | Synthesis method of transition metal nitride and transition metal nitride | |
KR102355131B1 (en) | Metal nanopowders fabricating method by hydrogen mediated metallothermic reduction (HMMR) process | |
CZ302249B6 (en) | Process for producing metal powders by reduction of oxides with magnesium vapors and metal powder obtained in such a manner | |
JP2008106364A (en) | Metal powder produced by reduction of oxides using gaseous magnesium | |
JP2002544375A (en) | Metal powder produced by reduction of oxides using gaseous magnesium | |
US20060120943A1 (en) | Method for manufacturing nanophase TiC-based composite powders by metallothermic reduction | |
EP2205526B1 (en) | Nanocrystaline spherical ceramic oxides, process for the synthesis and use thereof | |
TW201127747A (en) | Manufacturing method for AlN | |
US20150064094A1 (en) | Method of preparing titanium carbide powder | |
KR101102872B1 (en) | Method for preparing nano tantalum powder using auto combustion | |
KR101352371B1 (en) | Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis | |
JPH10203807A (en) | Boron nitride powder of turbostratic structure and its production | |
KR101053955B1 (en) | Manufacturing method of magnesium-based hydride and magnesium-based hydride prepared using the same | |
KR102359159B1 (en) | Method for producing metal nanoparticles by combustion process | |
KR20080076597A (en) | Method for producing high purity nano tantalum powder using zinc reducing agent in the autogenous combustion reaction | |
Yan et al. | Key developments in magnesiothermic reduction of silica: insights into reactivity and future prospects | |
KR101173020B1 (en) | Manufacturing method of magnesium based hydride using self-propagation high temperature synthesis | |
JP2007046119A (en) | Method for producing Mg2Ni alloy and use thereof | |
AU2008303156B2 (en) | Nanocrystaline spherical ceramic oxides, process for the synthesis and use thereof | |
Lee et al. | In-situ preparation of highly crystallized ZnO nanopowders by ultrasonic spraying combustion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20180323 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20190322 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20180323 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200812 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210420 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20211222 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220120 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220121 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction |
Patent event code: PG17011E01I Patent event date: 20230405 Comment text: Request for Publication of Correction Publication date: 20230412 |
|
PR1001 | Payment of annual fee |
Payment date: 20241231 Start annual number: 4 End annual number: 4 |