KR20150084503A - Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof - Google Patents

Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof Download PDF

Info

Publication number
KR20150084503A
KR20150084503A KR1020140004594A KR20140004594A KR20150084503A KR 20150084503 A KR20150084503 A KR 20150084503A KR 1020140004594 A KR1020140004594 A KR 1020140004594A KR 20140004594 A KR20140004594 A KR 20140004594A KR 20150084503 A KR20150084503 A KR 20150084503A
Authority
KR
South Korea
Prior art keywords
organic solvent
membrane
chloride
present
forming
Prior art date
Application number
KR1020140004594A
Other languages
Korean (ko)
Inventor
이정재
임성한
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020140004594A priority Critical patent/KR20150084503A/en
Publication of KR20150084503A publication Critical patent/KR20150084503A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a manufacturing method for an organic solvent resistant membrane and a nanomembrane, comprising: dissolving 3 to 10 wt% of polyolefin keton in metallic chloride composed of lithium chloride, zinc chloride and calcium chloride; spraying the mixture to non-woven fabric; immersing the the same in a condensation tank containing water and a slight amount of metallic chloride in order to manufacture a ultrafiltration membrane; and having diamine monomer and dicarbnoxylic acid monomer interfacial-polymerized on the top of the manufactured polyolefin keton ultrafiltration membrane in order to manufacture a polyamid separation layer. The membrane and the nanomembrane manufactured by using the method according to the present invention can yield excellent organic solvent stability, a higher rate of rejection and penetration performance compared to the existing technologies, eventually leading to reduction of costs required for the organic solvent separation process.

Description

내유기용매성 나노여과막의 제조방법 및 그에 의해 제조된 나노여과막{Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof}Technical Field [0001] The present invention relates to a method for producing an organic solvent-based nanofiltration membrane and a nanofiltration membrane produced thereby,

본 발명은 내유기용매성 나노여과막의 제조방법 및 그에 의해 제조된 나노여과막에 관한 것으로, 더욱 상세하게는 유기용매 내성이 뛰어난 폴리올레핀케톤을 지지층으로 사용하고, 폴리아미드를 지지층 표면에서 계면중합하여 복합막을 형성함으로써, 유기용매 내성이 강하고, 투과성능이 우수하며 기존 기술 대비 제조비용이 저렴한 유기용매용 나노여과막의 제조방법 및 이에 의해 제조된 나노여과막에 관한 것이다.
The present invention relates to a process for producing an organic solvent-soluble nanofiltration membrane and a nanofiltration membrane produced thereby, and more particularly to a nanofiltration membrane using a polyolefin ketone having excellent resistance to organic solvents as a support layer, The present invention relates to a method for producing a nanofiltration membrane for an organic solvent and a nanofiltration membrane produced by the method.

식품, 제약 등 많은 화학 산업에서 유기용매를 사용한 합성공정을 거치며, 이의 정제, 분리, 회수 등에 증류법, 막분리법이 사용되고 있다.In many chemical industries, such as food, pharmaceuticals, etc., a synthetic process using an organic solvent is used. Distillation method and membrane separation method are used for purifying, separating and recovering.

막분리법의 경우 증류법에 비해 저온에서 진행되기 때문에 분리대상물의 온도에 의한 변성이 적고, 에너지가 적게 드는 장점이 있다.In the case of the membrane separation method, since it proceeds at a lower temperature than the distillation method, the separation object is less denatured by the temperature, and energy is less.

그러나, 대부분의 고분자 분리막 소재는 유기용매 내성이 부족하여 공정 적용이 어려워 세라믹 등 무기계 분리막을 적용하였으나 가격이 비싸고, 나노여과 수준의 작은 기공을 형성하기 어려운 단점이 있다.However, since most of the polymer membrane materials have insufficient organic solvent resistance, they are difficult to apply to processes, and inorganic membranes such as ceramics have been applied. However, they are expensive and difficult to form small pores with nano filtration level.

이를 극복하기 위해 가교된 폴리이미드, 폴리벤지미다졸, 폴리테트라플루오로에틸렌 등 유기용매 내성을 지닌 고분자 소재를 적용하여 유기용매용 분리막을 제조하고 있으나, 이러한 고분자 소재 역시 고가이며, 단일막으로 제조 시 투과성능을 확보하면서 나노여과 수준 이하의 분리능력을 확보하기 어려운 단점이 있다. In order to overcome this problem, a separation membrane for an organic solvent is prepared by applying a polymer material having an organic solvent resistance such as crosslinked polyimide, polybenzimidazole, and polytetrafluoroethylene, but such a polymer material is also expensive, It is difficult to secure the separation ability below the nanofiltration level while securing the permeation performance at the time.

한편 나노 수준 이하의 작은 기공과 투과성능을 동시에 확보하는 방법으로는 대부분의 역삼투막 및 나노여과막에서 사용되고 있는 폴리아미드 계면중합에 의한 복합막 제조방법이 있으나, 분리층인 폴리아미드 층을 지지하는 한외여과막 지지층이 내유기용매성을 갖지 못하여 유기용매 분리공정에 적용이 불가능한 문제점이 있다.
On the other hand, as a method for securing small pores and permeability below the nano level, there is a method of producing a composite membrane by polyamide interfacial polymerization which is used in most reverse osmosis membranes and nanofiltration membranes. However, There is a problem in that the support layer can not be applied to the organic solvent separation process because it has no organic solventability.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 유기용매 내성이 강하고, 투과 성능이 우수하며, 제조비용이 저렴한 유기용매용 역삼투압 및 나노여과막의 제조방법을 제공하는 것이다.
Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above problems occurring in the prior art, and it is an object of the present invention to provide a method for producing reverse osmosis and nanofiltration membranes for organic solvents having high resistance to organic solvents, excellent permeation performance, .

상기와 같은 목적을 달성하기 위한 본 발명의 하나의 양상은, 폴리올레핀케톤을 사용하여 지지층을 형성하는 단계 및 상기 지지층 표면에서 폴리아미드를 계면중합하여 분리층을 형성하는 단계를 포함하여 이루어지는 내유기용매성 나노여과막의 제조방법에 관한 것이다.According to one aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a support layer using a polyolefin ketone; and forming a separation layer by interfacially bonding polyamide to the surface of the support layer, The present invention relates to a method for producing a gaseous nano-filter membrane.

본 발명의 일 구현예에 따른 나노여과막의 제조방법에 있어서, 상기 지지층을 형성하는 단계는 3~10 중량%의 폴리올레핀케톤을 염화리튬, 염화아연, 염화칼슘의 조합으로 이루어진 금속염에 용해시켜 부직포 위에 도포한 후 물과 소량의 금속염 조합으로 구성된 응고조에 침지하여 한외여과막을 형성하는 것을 특징으로 한다.In the method of manufacturing a nanofiltration membrane according to an embodiment of the present invention, the step of forming the support layer may be performed by dissolving 3 to 10% by weight of a polyolefin ketone in a metal salt of a combination of lithium chloride, zinc chloride and calcium chloride, And then immersed in a coagulation bath composed of a combination of water and a small amount of metal salt to form an ultrafiltration membrane.

본 발명의 일 구현예에 따른 나노여과막의 제조방법에 있어서, 상기 한외여과막은 기공의 크기는 10∼50 nm, 분획분자량(molecular weight cut-off, MWCO)는 5,000∼100,000인 것을 특징으로 한다.In the method of manufacturing a nanofiltration membrane according to an embodiment of the present invention, the ultrafiltration membrane has a pore size of 10 to 50 nm and a molecular weight cut-off (MWCO) of 5,000 to 100,000.

본 발명의 일 구현예에 따른 나노여과막의 제조방법에 있어서, 상기 분리층을 형성하는 단계는 지지층 위에 디아민 단량체와 디카르복시산 단량체를 계면중합하여 폴리아미드 분리층을 형성하는 것을 특징으로 한다.In the method of manufacturing a nanofiltration membrane according to an embodiment of the present invention, the step of forming the separation layer is characterized in that a polyamide separation layer is formed by interfacing a diamine monomer and a dicarboxylic acid monomer on a support layer.

본 발명의 또 하나의 양상은, 상기와 같은 제조방법에 의해 제조되는 역삼투막 및 나노분리막에 관한 것이다.
Another aspect of the present invention relates to a reverse osmosis membrane and a nanocomposite membrane produced by the above production method.

상기와 같은 본 발명에 따른 제조방법에 의해 제조되는 역삼투막 및 나노분리막은 종래 기술에 의한 유기용매용 분리막에 비해 저렴한 가격으로 우수한 유기용매 안정성과 높은 배제율 및 투과성능의 확보가 가능하여 유기용매 분리공정 비용을 절감할 수 있는 효과가 있다.
The reverse osmosis membrane and nano separator manufactured by the method of the present invention as described above can provide excellent stability of organic solvent, high rejection rate and permeation performance at a lower cost than conventional separators for organic solvents, It is possible to reduce the process cost.

이하, 본 발명의 바람직한 구현예에 대하여 실시예 및 첨부된 도면 등을 참조하여 더욱 상세히 설명한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to embodiments and accompanying drawings. In the following description of the present invention, a detailed description of known general functions or configurations will be omitted.

본 발명은 유기용매 내성이 뛰어난 폴리올레핀케톤을 지지층으로 사용하고, 폴리아미드를 지지층 표면에서 계면중합하여 복합막을 형성함으로써, 유기용매 내성이 강하고, 투과성능이 우수하며 기존 기술 대비 제조비용이 저렴한 유기용매용 나노여과막의 제조방법에 관한 것이다.INDUSTRIAL APPLICABILITY The polyolefin ketone excellent in resistance to organic solvents is used as a support layer and the composite membrane is formed by interfacial polymerization of polyamide on the surface of the support layer to provide an organic solvent having a high resistance to organic solvents, The present invention relates to a method for producing a nanofiltration membrane.

본 발명에 따른 내유기용매성 나노여과막의 제조방법은, 폴리올레핀케톤을 사용하여 지지층을 형성하는 단계 및 상기 지지층 표면에서 폴리아미드를 계면중합하여 분리층을 형성하는 단계를 포함하여 이루어진다. The method for preparing an organic solvent-soluble nanofiltration membrane according to the present invention comprises the steps of forming a support layer using polyolefin ketone and forming a separation layer by interfacial bonding of polyamide to the surface of the support layer.

본 발명의 제조방법에 있어서, 상기 지지층을 형성하는 단계는 3~10 중량%의 폴리올레핀케톤을 염화리튬, 염화아연, 염화칼슘의 조합으로 이루어진 금속염에 용해시켜 고분자 용액을 제조한 다음, 이를 부직포 위에 도포한 후 물과 소량의 금속염 조합으로 구성된 응고조에 침지하여 한외여과막을 제조한다.In the production method of the present invention, the step of forming the support layer may include preparing a polymer solution by dissolving 3 to 10% by weight of a polyolefin ketone in a metal salt of a combination of lithium chloride, zinc chloride and calcium chloride, And then immersed in a coagulation tank composed of a combination of water and a small amount of metal salt to prepare an ultrafiltration membrane.

상기 한외여과막의 기공의 크기가 너무 작을 때는 투수성이 저하되며 너무 클때는 복합막 제조가 잘 되지 않는다. 따라서 기공의 크기는 10∼50 nm, 분획분자량(molecular weight cut-off, MWCO)는 5,000∼100,000인 지지체용 한외여과막(ultrafiltration membrane)이 가장 적합하다. If the pore size of the ultrafiltration membrane is too small, the permeability decreases. If the pore size of the ultrafiltration membrane is too large, the composite membrane is not produced well. Therefore, ultrafiltration membranes for supports with a pore size of 10 to 50 nm and a molecular weight cut-off (MWCO) of 5,000 to 100,000 are most suitable.

특히, 다공성 지지체로서 고유점도(Intrinsic viscosity)가 3~7인 폴리올레핀케톤이 유기용매 저항성에 관한 측면에서 보다 바람직하다.In particular, a polyolefin ketone having an intrinsic viscosity of 3 to 7 as a porous support is more preferable in terms of organic solvent resistance.

이어서, 제조된 폴리올레핀케톤 한외여과막 위에 디아민 단량체와 디카르복시산 단량체를 계면중합하여 폴리아미드 분리층을 제조한다.Then, a polyamide separating layer is prepared by interfacial polymerization of a diamine monomer and a dicarboxylic acid monomer on the prepared polyolefin ketone ultrafiltration membrane.

본 발명에 따른 제조방법에 있어서, 폴리아미드 합성을 위한 계면중합에 사용되는 디아민 단량체로는 방향족 디아민, 지방족 디아민, 지방족 사이클로디아민 등 통상의 폴리아미드 중합에 적용되는 단량체 중에서 선택된 것으로, 1종 또는 2종 이상의 혼합물로 사용할 수 있다. 방향족 디아민은 2,4-디아미노톨루엔, 2,4-디아미노벤조산, p-페닐렌디아민, m-페닐렌 디아민, 1,3,5-트리아미노벤젠, 아미돌(amidol) 등이 포함되고, 지방족 디아민은 에틸렌디아민, 프로필렌디아민 등이 포함되고, 지방족 사이클로디아민은 피페라진, 1,3-디아미노시클로헥산, 1,4-디아미노시클로헥산 등이 포함될 수 있다.In the production process according to the present invention, the diamine monomers used in the interfacial polymerization for polyamide synthesis are selected from monomers applicable to conventional polyamide polymerization such as aromatic diamines, aliphatic diamines, aliphatic cyclodiamines and the like. Mixtures of more than two species may be used. The aromatic diamine includes 2,4-diaminotoluene, 2,4-diaminobenzoic acid, p-phenylenediamine, m-phenylenediamine, 1,3,5-trinaminobenzene, amidol and the like , Aliphatic diamines include ethylenediamine, propylenediamine and the like, and aliphatic cyclodiamines may include piperazine, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, and the like.

폴리아미드 합성을 위한 계면중합에 사용되는 디카르복시산 단량체로는 디카르복시산 화합물, 카르복시산 이무수물, 디아실 할라이드 등 통상의 폴리아미드 중합에 적용되는 단량체 중에서 선택된 것으로, 1종 또는 2종 이상의 혼합물로 사용될 수 있다. 디아실 할라이드는 2개 이상의 반응성 아실할라이드를 갖는 방향족 또는 지방족 화합물로서, 방향족 아실할라이드는 트리메조일 클로라이드, 테레프탈산 클로라이드, 이소프탈산 클로라이드 등이 포함되고, 지방족 아실할라이드는 시클로부탄카르복시산 클로라이드, 시클로펜탄카르복시산 클로라이드, 시클로헥산카르복시산 클로라이드, 시클로부탄트리카르복시산 클로라이드, 시클로부탄테트라카르복시산 클로라이드 등이 포함될 수 있다.Examples of the dicarboxylic acid monomer used in the interfacial polymerization for polyamide synthesis include dicarboxylic acid compounds, carboxylic acid dianhydrides, diacyl halides, and other monomers used in conventional polyamide polymerization. These dicarboxylic acid monomers may be used alone or as a mixture of two or more thereof. have. The diacyl halide is an aromatic or aliphatic compound having two or more reactive acyl halides wherein the aromatic acyl halide includes trimesoyl chloride, terephthalic acid chloride, isophthalic acid chloride, etc., and the aliphatic acyl halide includes cyclobutanecarboxylic acid chloride, cyclopentanecarboxylic acid chloride, Chloride, cyclohexanecarboxylic acid chloride, cyclobutanetricarboxylic acid chloride, cyclobutanetetracarboxylic acid chloride, and the like.

상기한 폴리아미드 계면 중합반응에는 폴리이소시아네이트 또는 실리카계통의 가교제를 첨가할 수도 있다.To the polyamide interfacial polymerization reaction, a polyisocyanate or a silica-based crosslinking agent may be added.

상기한 분리층 형성과정을 보다 구체적으로 설명하면 다음과 같다. 먼저, 다공성 지지체를 디아민 단량체가 0.1 ∼ 10 중량% 농도로 함유된 디아민 수용 액에 침지시킨 후에, 디카르복시산 단량체 0.005 ∼ 5 중량% 농도로 함유된 이소파라핀 용액에 침지시킨다. 그리고, 상온 내지 70 ℃ 온도에서 건조시키고, 최종적으로 10 ∼ 80 중량%의 에탄올 수용액에 침지시켜 나노복합막을 제조한다.
The separation layer forming process will be described in more detail as follows. First, the porous support is immersed in a diamine aqueous solution containing the diamine monomer at a concentration of 0.1 to 10 wt%, and then immersed in an isoparaffin solution containing the dicarboxylic acid monomer at a concentration of 0.005 to 5 wt%. Then, it is dried at a temperature from room temperature to 70 ° C, and finally immersed in an ethanol aqueous solution of 10 to 80% by weight to prepare a nanocomposite film.

이하에서 실시예를 들어 본 발명을 보다 자세하게 설명하고자 하나 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the present invention.

<< 실시예Example > >

고유점도 6.2의 폴리올레핀케톤 5중량%를 염화리튬 10 중량%, 염화아연 20 중량%, 염화칼슘 30 중량%의 조합으로 이루어진 금속염 수용액에 용해시켜 고분자 용액을 제조하였다. 이어서 이를 부직포 위에 캐스팅 방법에 의해 도포한 후 물과 소량의 금속염 조합으로 구성된 온도 20 ℃ 의 응고조에 침지하여 한외여과막을 제조하였다. A polymer solution was prepared by dissolving 5 wt% of a polyolefin ketone having an intrinsic viscosity of 6.2 in an aqueous metal salt solution comprising 10 wt% of lithium chloride, 20 wt% of zinc chloride, and 30 wt% of calcium chloride. Then, it was coated on a nonwoven fabric by a casting method, and then immersed in a coagulation bath having a temperature of 20 ° C composed of a combination of water and a small amount of metal salt to prepare an ultrafiltration membrane.

이어서 0.25 중량% 농도의 m-페닐렌디아민(MPD), 0.25 중량% 농도의 트리에틸아민, 0.5 중량% 농도의 디에틸렌글리콜 디메틸 에테르, 0.001 중량% 농도의 소듐 도데실설페이트가 포함되도록 디아민 수용액을 제조하였다. 제조한 디아민 수용액은 다공성 폴리올레핀케톤 지지체 막 위에 수 분간 접촉시킨 후 과다하게 남아있는 용액을 제거시켰다. 계면중합된 막을 꺼내어 90 ℃의 건조오븐에서 수 시간 건조시켰다. 결과적으로 지지체 표면에 폴리아미드가 코팅된 복합막을 제조하였다. 제조된 복합막을 50 중량% 에탄올 수용액에 수 초간 침지하였다.An aqueous solution of diamine was then added so that m-phenylenediamine (MPD) at a concentration of 0.25 wt%, triethylamine at a concentration of 0.25 wt%, diethylene glycol dimethyl ether at a concentration of 0.5 wt%, and sodium dodecyl sulfate at a concentration of 0.001 wt% . The prepared aqueous solution of diamine was contacted with the porous polyolefin ketone support membrane for several minutes to remove excess solution. The interfacially polymerized membrane was taken out and dried in a drying oven at 90 캜 for several hours. As a result, a composite membrane coated with polyamide on the surface of the support was prepared. The prepared composite membrane was immersed in a 50 wt% aqueous ethanol solution for several seconds.

<< 비교예Comparative Example >>

분자량 50만 Da의 폴리설폰(Udel-3500, Solvay사) 18중량%를 디메틸포름아마이드에 용해시킨 고분자 용액을 부직포 위에 캐스팅 방법으로 도포한 후 온도 20 ℃ 의 수조에 침지하여 한외여과막을 제조한 것을 제외하고, 실시예와 동일한 방법으로 복합막을 제조하고, 제조된 복합막을 50 중량% 에탄올 수용액에 수 초간 침지하였다. A polymer solution prepared by dissolving 18% by weight of polysulfone (Udel-3500, Solvay) having a molecular weight of 500,000 Da in dimethylformamide was cast on a nonwoven fabric by a casting method and immersed in a water bath at 20 ° C to prepare an ultrafiltration membrane , A composite membrane was prepared in the same manner as in Examples, and the composite membrane thus prepared was immersed in a 50 wt% aqueous ethanol solution for several seconds.

< 실험예 > : 유기용매 침지 후 물성 변화 비교 < Experimental Example >: Comparison of changes in physical properties after immersion in an organic solvent

분리막의 유기용매 내성을 측정하기 위하여, 2000 ppm 황산마그네슘(magnesium sulfate)이 포함된 수용액을 제조하여 10기압의 압력과 25 ℃ 온도 조건으로 투과장치에서 투과속도 및 용질배제율을 측정한 후 투과장치를 해체하여 분리막을 순수로 닦아내고, 유기용매인 디메틸포름아마이드 50%와 물 50%로 구성된 용액에 1시간 침지하였다. 이후 분리막을 다시 꺼내어 순수로 닦아내고, 50 중량% 에탄올 수용액에 수 초간 침지한 후 투과장치에서 투과속도 및 용질배제율을 측정하여, 유기용매 용액 침지 전후의 분리막 성능을 비교하였다.To measure the organic solvent resistance of the membrane, an aqueous solution containing 2000 ppm magnesium sulfate was prepared. The permeation rate and the solute rejection rate were measured at a pressure of 10 atm and a temperature of 25 ° C. in a permeator, The separator was wiped off with pure water and immersed in a solution composed of 50% of dimethylformamide and 50% of water as an organic solvent for 1 hour. Then, the separator was taken out again, wiped with pure water, immersed in a 50% by weight aqueous ethanol solution for several seconds, and the permeation rate and solute excretion rate were measured in a permeation device and the performance of the separator before and after the immersion in the organic solvent solution was compared.

분리막의 투과속도 및 용질배제율은 다음 수학식 1 및 2에 의해서 계산하였다.The permeation rate and solute rejection rate of the membrane were calculated by the following equations (1) and (2).

Figure pat00001
Figure pat00001

[표 1][Table 1]

Figure pat00002
Figure pat00002

상기 실시예에 의해 제조된 본 발명의 제조방법에 따른 나노분리막은 배제율 97.3%, 투과속도 0.27m3/m2.day로 상용 나노분리막의 통상 조성으로 제조된 비교예와 동일한 성능을 나타내었으며, 유기용매에 심각하게 회손되어 분리막으로서의 역할을 할 수 없는 비교예와 달리 유기용매 침지 후에도 침지 전과 동일한 성능을 유지하여 우수한 내유기용매성을 가짐을 알 수 있다.
The nanofiber separator according to the present invention produced according to the present invention had an exclusion rate of 97.3% and a permeation rate of 0.27 m 3 / m 2 .day, which showed the same performance as that of the comparative example manufactured by the ordinary composition of commercial nanofiber separator , It can be understood that the same performance as before immersion is maintained even after immersing the organic solvent, and thus excellent organic solvent solubility is obtained, unlike the comparative example in which the organic solvent does not act as a separation membrane.

이상에서 본 발명의 바람직한 구현예를 들어 본 발명을 상세하게 설명하였으나 본 발명은 상술한 구현예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 본 발명이 속하는 기술분야의 당업자에 의해 많은 변형이 가능함은 자명할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. This will be obvious.

Claims (6)

폴리올레핀케톤을 사용하여 지지층을 형성하는 단계; 및
상기 지지층 표면에서 폴리아미드를 계면중합하여 분리층을 형성하는 단계를 포함하여 이루어지는 내유기용매성 나노여과막의 제조방법.
Forming a support layer using a polyolefin ketone; And
And forming a separation layer by interfacial polymerization of polyamide on the surface of the support layer.
제 1항에 있어서, 상기 지지층을 형성하는 단계는 3~10 중량%의 폴리올레핀케톤을 염화리튬, 염화아연, 염화칼슘의 조합으로 이루어진 금속염에 용해시켜 부직포 위에 도포한 후 물과 소량의 금속염 조합으로 구성된 응고조에 침지하여 형성하는 것을 특징으로 하는 내유기용매성 나노여과막의 제조방법.
The method of claim 1, wherein the supporting layer is formed by dissolving 3 to 10 wt% of a polyolefin ketone in a metal salt of a combination of lithium chloride, zinc chloride, and calcium chloride, and then coating the resultant on a nonwoven fabric. Wherein the organic solvent-soluble nanofiltration membrane is immersed in a coagulation bath to form an organic solvent-soluble nanofiltration membrane.
제 2항에 있어서, 상기 지지층은 한외여과막인 것을 특징으로 하는 내유기용매성 나노여과막의 제조방법.
[3] The method according to claim 2, wherein the support layer is an ultrafiltration membrane.
제 3항에 있어서, 상기 한외여과막은 기공의 크기는 10∼50mm, 분획분자량(molecular weight cut-off, MWCO)는 5,000∼100,000인 것을 특징으로 하는 내유기용매성 나노여과막의 제조방법.[4] The method of claim 3, wherein the ultrafiltration membrane has a pore size of 10 to 50 mm and a molecular weight cut-off (MWCO) of 5,000 to 100,000. 제 1항에 있어서, 상기 분리층을 형성하는 단계는 상기 지지층 위에 디아민 단량체와 디카르복시산 단량체를 계면중합하여 폴리아미드 분리층을 형성하는 것을 특징으로 하는 내유기용매성 나노여과막의 제조방법.
The method of claim 1, wherein forming the separation layer comprises: forming a polyamide separation layer by interfacially bonding a diamine monomer and a dicarboxylic acid monomer on the support layer.
제 1 항 내지 제 5항 중 어느 한 항의 제조방법에 의하여 제조된 나노여과막.

A nanofiltration membrane produced by the method of any one of claims 1 to 5.

KR1020140004594A 2014-01-14 2014-01-14 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof KR20150084503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140004594A KR20150084503A (en) 2014-01-14 2014-01-14 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140004594A KR20150084503A (en) 2014-01-14 2014-01-14 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof

Publications (1)

Publication Number Publication Date
KR20150084503A true KR20150084503A (en) 2015-07-22

Family

ID=53874439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140004594A KR20150084503A (en) 2014-01-14 2014-01-14 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof

Country Status (1)

Country Link
KR (1) KR20150084503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351192A (en) * 2018-12-21 2019-02-19 滁州学院 A kind of anise alcohol solvent-resistant compound nanofiltration membrane and preparation method thereof
CN109876677A (en) * 2019-04-16 2019-06-14 济宁安瑞生物科技有限公司 A kind of vanillic aldehyde solvent-resistant compound nanofiltration membrane and its preparation method and application
CN110548422A (en) * 2019-08-27 2019-12-10 武汉艾科滤膜技术有限公司 Organic solvent-resistant ultrafiltration membrane and preparation method and application thereof
KR20220081278A (en) 2020-12-08 2022-06-15 주식회사 퓨어멤 Crosslinked polyimide organic solvent nanofiltration membrane and preparation method thereof
KR102598050B1 (en) 2022-12-21 2023-11-06 주식회사 퓨어멤 Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof
KR102598051B1 (en) 2022-12-21 2023-11-06 주식회사 퓨어멤 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof
CN117777517A (en) * 2023-12-27 2024-03-29 苏州奥美材料科技有限公司 Hinge film and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351192A (en) * 2018-12-21 2019-02-19 滁州学院 A kind of anise alcohol solvent-resistant compound nanofiltration membrane and preparation method thereof
CN109351192B (en) * 2018-12-21 2021-07-20 滁州学院 Anethol solvent-resistant composite nanofiltration membrane and preparation method thereof
CN109876677A (en) * 2019-04-16 2019-06-14 济宁安瑞生物科技有限公司 A kind of vanillic aldehyde solvent-resistant compound nanofiltration membrane and its preparation method and application
CN110548422A (en) * 2019-08-27 2019-12-10 武汉艾科滤膜技术有限公司 Organic solvent-resistant ultrafiltration membrane and preparation method and application thereof
CN110548422B (en) * 2019-08-27 2022-02-08 武汉艾科滤膜技术有限公司 Organic solvent-resistant ultrafiltration membrane and preparation method and application thereof
KR20220081278A (en) 2020-12-08 2022-06-15 주식회사 퓨어멤 Crosslinked polyimide organic solvent nanofiltration membrane and preparation method thereof
KR20220081283A (en) 2020-12-08 2022-06-15 주식회사 퓨어멤 Crosslinked polyimide organic solvent nanofiltration membrane and preparation method thereof
KR102598050B1 (en) 2022-12-21 2023-11-06 주식회사 퓨어멤 Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof
KR102598051B1 (en) 2022-12-21 2023-11-06 주식회사 퓨어멤 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof
CN117777517A (en) * 2023-12-27 2024-03-29 苏州奥美材料科技有限公司 Hinge film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR20150084503A (en) Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof
US6833073B2 (en) Composite nanofiltration and reverse osmosis membranes and method for producing the same
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
US10786786B2 (en) Method for manufacturing membrane using selective layer prepared through support-free interfacial polymerization
CA2805782A1 (en) Solvent resistant polyamide nanofiltration membranes
EP3215258A1 (en) Improved method for synthesis of polyamide composite membranes
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR101103384B1 (en) High chlorine resistant and hydrophilic reverse osmosis membrane and method of preparing the same
CN107708846B (en) Water treatment membrane and method for manufacturing the same
JP2014000533A (en) Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
JP2009226320A (en) Composite semi-permeable membrane and its manufacturing method
KR102045108B1 (en) Reverse osmosis membrane and method manufacturing same
JP2000093771A (en) Fluid separation membrane and its manufacture
KR101334924B1 (en) Polyester reverse osmosis composite membrane and preparation method thereof
KR102182178B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR20170090816A (en) Composition for interfacial polymerizing polyamide, method for preparing water treatment separation membrane using the same, and water treatment separation membrane and water treatment module
JP2000015067A (en) Preparation of composite semipermeable membrane
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
EP1356856A1 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
KR20150087579A (en) Manufacturing method for polyamide-based reverse osmosis membrane
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
KR20190076245A (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane
KR102270472B1 (en) Membrane, water treatment module, method of manufacturing membrane and composition for modifying active layer of membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application