KR20030052828A - Fabricating method of metal wire in semiconductor - Google Patents

Fabricating method of metal wire in semiconductor Download PDF

Info

Publication number
KR20030052828A
KR20030052828A KR1020010082944A KR20010082944A KR20030052828A KR 20030052828 A KR20030052828 A KR 20030052828A KR 1020010082944 A KR1020010082944 A KR 1020010082944A KR 20010082944 A KR20010082944 A KR 20010082944A KR 20030052828 A KR20030052828 A KR 20030052828A
Authority
KR
South Korea
Prior art keywords
forming
tungsten
metal wiring
insulating film
film
Prior art date
Application number
KR1020010082944A
Other languages
Korean (ko)
Inventor
김형윤
정병현
Original Assignee
동부전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부전자 주식회사 filed Critical 동부전자 주식회사
Priority to KR1020010082944A priority Critical patent/KR20030052828A/en
Publication of KR20030052828A publication Critical patent/KR20030052828A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for forming a metal line of a semiconductor device is provided to be capable of improving the contact characteristic between a tungsten plug and a metal line by removing remaining tungsten oxides using a deoxidation gas or plasma process. CONSTITUTION: After sequentially forming the first insulating layer(202) and the first metal line(203) on a substrate(201), the second insulating layer(204) is formed on the entire surface of the resultant structure. A via hole is then formed by selectively etching the second insulating layer(204) for exposing the predetermined portion of the first metal line. After filling the via hole with an anti-diffusing layer(206) and a tungsten plug(207), a tungsten oxide layer(208) is removed by carrying out a cleaning process on the entire surface of the resultant structure. Then, the second metal line is formed on the resultant structure. Preferably, the cleaning process is carried out by using deoxidation gas or plasma.

Description

반도체 소자의 금속 배선 형성 방법{Fabricating method of metal wire in semiconductor}Fabrication method of metal wire in semiconductor

본 발명은 반도체 소자의 금속 배선 형성 방법에 관한 것으로서, 특히 FSG(Fluorine doped Silicate Glass)를 사용하는 다층 배선 구조에서 CMP(Chemical Mechanical Polishing) 후 금속막의 증착 전 잔류 텅스텐 산화물을 제거하여 플러그와 금속 배선간의 접촉 특성을 향상시키는 안정적인 금속 배선을 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wirings in semiconductor devices. In particular, in a multilayer wiring structure using Fluorine doped Silicate Glass (FSG), a plug and a metal wiring are removed by removing residual tungsten oxide before deposition of a metal film after CMP A method of forming a stable metal wiring to improve the contact characteristics of the liver.

최근 디자인 룰(design rule)이 0.25㎛ 이상으로 반도체 소자가 고집적됨에 따라 반도체 소자 제조시 다층의 배선이 요구되고, 이에 따라 배리어 메탈(barrier metal), 텅스텐 플러그, CMP, 금속 배선 형성 등의 공정 조합으로 이루어진 다층 금속 배선 공정의 적용이 대부분 사용되고 있다.As semiconductor devices are highly integrated with a design rule of 0.25 μm or more, multilayer wiring is required in the manufacture of semiconductor devices, and accordingly, a process combination such as barrier metal, tungsten plug, CMP, and metal wiring is formed. The application of the multilayer metal wiring process which consists of these is used mostly.

또한, 소자의 고직접화가 될수록 접촉 저항 및 RC 딜레이 시간(RC delay time)이 중요해지고 있고, 상기 RC 딜레이 시간을 줄이기 위해서 층간절연막으로 저유전율을 갖는 FSG(Fluorine doped Silicate Glass)를 많이 사용하고 있다.In addition, contact resistance and RC delay time become more important as the device becomes more directly connected, and in order to reduce the RC delay time, many FDO (Fluorine doped Silicate Glass) having low dielectric constant is used as the interlayer insulating film. .

상기 FSG는 종래 USG(Undoped Silicate Glass)나 TEOS(Tetra Ethyl Ortho Silicate)에 비해 유전율 특성이 좋으나 FSG 막 내에 포함되어 있는 불소(F) 성분이 배리어 메탈(barrier metal)에 침투하거나 상부의 메탈층에 침투하여 금속 배선의 특성을 저하시키는 단점이 있다.The FSG has better dielectric constant than conventional Undoped Silicate Glass (USG) or Tetra Ethyl Ortho Silicate (TEOS), but the fluorine (F) component contained in the FSG film penetrates the barrier metal or is formed on the upper metal layer. It penetrates and deteriorates the characteristics of the metal wiring.

특히, 텅스텐 플러그 형성한 다음, CMP 수행한 후에 텅스텐 산화막이 존재할 경우 상기 텅스텐 산화막은 FSG의 F 성분과 반응하여 상부의 금속 배선과의 접촉을 저하시켜 접촉 저항의 증가 및 단선을 유발하게 된다.In particular, when a tungsten oxide film is present after the formation of the tungsten plug and the CMP is performed, the tungsten oxide film reacts with the F component of the FSG to lower the contact with the upper metal wiring, thereby causing an increase in contact resistance and disconnection.

이는 소자가 고집적화됨에 따라 비아 홀의 크기가 미세해짐에 따른 결과이다.This is a result of the size of via holes becoming finer as the device becomes more integrated.

이하, 도면을 참조하여 종래 기술에 따른 반도체 소자의 금속 배선 형성 방법을 상세히 설명한다.Hereinafter, a metal wire forming method of a semiconductor device according to the prior art will be described in detail with reference to the accompanying drawings.

도 1a 내지 1c는 종래 기술에 따른 반도체 소자의 금속 배선 형성 방법을 설명하기 위한 공정단면도이다.1A to 1C are cross-sectional views illustrating a method of forming metal wirings of a semiconductor device according to the related art.

도 1a에 도시한 바와 같이, 기판의 베이스(101) 상에 제 1 절연막(102)을 형성하고 상기 제 1 절연막(102) 상에 제 1 금속배선(103)을 스퍼터링 공정을 이용하여 전면에 증착한 다음, 선택적으로 패터닝하여 형성한다.As shown in FIG. 1A, a first insulating film 102 is formed on a base 101 of a substrate, and a first metal wiring 103 is deposited on the entire surface of the first insulating film 102 using a sputtering process. And then selectively patterned to form.

이어, 상기 제 1 금속배선(103)을 포함한 기판 전면에 화학기상증착법을 이용하여 FSG막(104a)과 TEOS(Tetra Ethyl Ortho Silicate)막(104b)을 차례로 증착하여 제 2 절연막(104)을 형성한다. 여기서, 상기와 같이 절연막을 FSG막(104)과 TEOS막(104b)의 이중막으로 구성하는 이유는 RC 딜레이 시간을 줄이기 위한 것이다.Subsequently, an FSG film 104a and a TEOS (Tetra Ethyl Ortho Silicate) film 104b are sequentially deposited on the entire surface of the substrate including the first metal wiring 103 by chemical vapor deposition to form a second insulating film 104. do. Here, the reason why the insulating film is composed of the double film of the FSG film 104 and the TEOS film 104b as described above is to reduce the RC delay time.

이어, 도 1b에 도시한 바와 같이 상기 제 1 금속배선(103)의 소정 영역이 드러나도록 상기 FSG막(104a)과 TEOS막(104b)을 식각하여 비아 홀(via hole)(105)을 형성한다.Subsequently, as shown in FIG. 1B, the FSG film 104a and the TEOS film 104b are etched to form a via hole 105 so that a predetermined region of the first metal wiring 103 is exposed. .

상기 비아 홀(105)을 포함한 기판 전면 상에 타이타늄과 타아타늄 질화물로 구성되는 확산방지막(106)을 증착한 후, 기판 전면에 WF6가스를 이용한 물리기상증착법(Physical Vapor Deposition)으로 상기 비아 홀(105)을 충분히 채우도록 텅스텐 플러그(107)를 형성한다.After depositing a diffusion barrier film 106 composed of titanium and itanium nitride on the entire surface of the substrate including the via hole 105, the vias were deposited by physical vapor deposition using WF 6 gas on the entire surface of the substrate. The tungsten plug 107 is formed to fill the hole 105 sufficiently.

마지막으로 도 1c에 도시한 바와 같이, 상기 제 2 절연막(104) 상에 증착되어 있는 텅스텐 층(107) 및 확산방지막(106)을 제 2 절연막(104)이 드러나도록 CMP공정을 통하여 제거하고 상기 텅스텐 플러그(107)에 상응하는 부분에 제 2 금속배선(108)을 형성한다. 이후, 상기 제 2 금속배선(108)을 포함한 기판 전면상에 제 2 절연막(104)과 같은 FSG막(109a)과 TEOS막(109b)으로 구성되는 제 3 절연막(109)을 형성한다.Finally, as shown in FIG. 1C, the tungsten layer 107 and the diffusion barrier layer 106 deposited on the second insulating layer 104 are removed through the CMP process so that the second insulating layer 104 is exposed. The second metal wiring 108 is formed in a portion corresponding to the tungsten plug 107. Thereafter, a third insulating film 109 including the FSG film 109a and the TEOS film 109b such as the second insulating film 104 is formed on the entire surface of the substrate including the second metal wiring 108.

이와 같은 공정을 반복 수행함으로써 다층 배선을 구현하게 된다.By repeating such a process, a multilayer wiring is realized.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로써, 다층 배선 구조에서 콘택(contact)이나 비아(via)의 플러그와 금속배선 간의 접촉 특성을 향상시켜 콘택 및 비아와 금속 배선간의 접촉 저항을 개선시킬 뿐만 아니라 안정적인 금속배선을 형성할 수 있는 반도체 소자의 금속 배선 형성 방법을 제공하는데 목적이 있다.The present invention has been made to solve the above problems, improves the contact characteristics between the contact (via) or the plug of the via (via) and the metal wiring in the multilayer wiring structure to improve the contact resistance between the contact and the via and the metal wiring It is an object of the present invention to provide a method for forming a metal wiring of a semiconductor device which can not only improve but also form a stable metal wiring.

도 1a 내지 1c는 종래 기술에 따른 반도체 소자의 금속배선 형성 방법을 설명하기 위한 공정단면도.1A to 1C are cross-sectional views illustrating a method of forming metal wirings of a semiconductor device according to the related art.

도 2a 내지 2d는 본 발명에 따른 반도체 소자의 금속배선 형성 방법을 설명하기 위한 공정단면도.2A through 2D are cross-sectional views illustrating a method of forming metal wirings in a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

201 : 기판 202 : 제 1 절연막201: substrate 202: first insulating film

203 : 제 1 금속배선 204 : 제 2 절연막203: first metal wiring 204: second insulating film

206 : 확산 방지막 207 : 텅스텐 플러그206: diffusion barrier 207: tungsten plug

208 : 텅스텐 산화물208: Tungsten Oxide

상기와 같은 목적을 달성하기 위한 본 발명의 반도체 소자의 금속 배선 형성 방법은 기판 상에 제 1 절연막을 형성하는 공정과, 상기 제 1 절연막 상의 소정 영역에 제 1 금속 배선을 형성하는 공정과, 상기 제 1 금속배선을 포함한 기판 전면에 제 2 절연막을 형성하는 공정과, 상기 제 1 금속배선의 소정 부위가 드러나도록 상기 제 1 절연막을 선택적으로 식각하여 비아 홀을 형성하는 공정과, 상기 비아 홀을 포함한 기판 전면에 확산 방지막을 형성하는 공정과, 상기 비아 홀 내에 충분히 채워지도록 텅스텐을 매립하여 텅스텐 플러그를 형성하는 공정과, 상기 텅스텐 플러그를 포함한 기판 전면에 세정 공정을 통하여 텅스텐 산화물을 제거하는 공정과, 상기 텅스텐 플러그에 상응하는 영역에 제 2 금속배선을 형성하는 공정을 포함하여 이루어지는 것을 특징으로 한다.The metal wiring forming method of the semiconductor device of the present invention for achieving the above object comprises the steps of forming a first insulating film on a substrate, forming a first metal wiring in a predetermined region on the first insulating film, Forming a second insulating film on the entire surface of the substrate including the first metal wiring, selectively etching the first insulating film so that a predetermined portion of the first metal wiring is exposed, and forming a via hole; Forming a diffusion barrier film on the entire surface of the substrate, forming a tungsten plug by embedding tungsten to be sufficiently filled in the via hole, and removing tungsten oxide through a cleaning process on the entire surface of the substrate including the tungsten plug; And forming a second metal wiring in a region corresponding to the tungsten plug. And a gong.

여기서, 상기 세정 공정은 제 2 금속배선의 형성 전 금속막을 증착하는 장비에, 탈가스를 진행하는 챔버를 장착하여 탈가스 챔버 내에서 수소 환원 가스를 넣어 텅스텐 산화물을 제거하거나 RF(Radio Frequency) 프리클린 챔버를 장착하여 수소 환원 가스를 넣어 플라즈마 처리로 텅스텐 산화물을 제거하는 것을 특징으로 한다.Here, the cleaning process is a device for depositing a metal film before the formation of the second metal wiring, a chamber for degassing is added to the hydrogen reduction gas in the degassing chamber to remove tungsten oxide or RF (Radio Frequency) free It is characterized in that the tungsten oxide is removed by plasma treatment by installing a clean chamber and putting a hydrogen reducing gas.

본 발명에 따른 반도체 소자의 금속배선 형성 방법은 텅스텐 플러깅(pluging)과 CMP 후에 기판 상에 잔류하는 텅스텐 산화물을 환원 가스 또는 플라즈마 처리로 제거할 수 있게 된다.The metallization method of the semiconductor device according to the present invention can remove the tungsten oxide remaining on the substrate after tungsten plugging and CMP by reducing gas or plasma treatment.

이하, 도면을 참조하여 본 발명의 반도체 소자의 금속배선 형성 방법을 상세히 설명하기로 한다.Hereinafter, a method of forming metal wirings of a semiconductor device of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 2d는 본 발명에 따른 반도체 소자의 금속배선 형성 방법을 설명하기 위한 공정단면도이다.2A through 2D are cross-sectional views illustrating a method of forming metal wirings in a semiconductor device according to the present invention.

먼저, 도 2a에 도시한 바와 같이, 반도체 소자를 구성하기 위한 여러 가지 요소가 형성된 반도체 기판(201) 상에 제 1 절연막(202)을 형성하고, 상기 제 1 절연막(202)을 포함한 기판 전면상에 스퍼터링 공정을 이용하여 금속층을 증착한 다음, 선택적으로 패터닝하여 제 1 금속배선(203)을 형성한다.First, as shown in FIG. 2A, a first insulating film 202 is formed on a semiconductor substrate 201 in which various elements for constituting a semiconductor element are formed, and on the substrate front surface including the first insulating film 202. The metal layer is deposited using a sputtering process, and then selectively patterned to form the first metal wiring 203.

이어, 상기 제 1 금속배선(203)을 포함한 기판 전면상에 화학기상증착법을 이용하여 FSG막(204a)과 TEOS막(204b)을 차례로 증착하여 제 2 절연막(204)을 형성한다.Subsequently, the second insulating film 204 is formed by sequentially depositing the FSG film 204a and the TEOS film 204b on the entire surface of the substrate including the first metal wiring 203 by chemical vapor deposition.

상기 제 1 금속배선(203)의 소정 부위가 드러나도록 상기 FSG막(204a)과 TEOS막(204b)으로 구성되는 제 2 절연막(204)을 식각하여 비아 홀(205)을 형성한다. 이후, 상기 비아 홀(205)을 포함한 기판 전면상에 타이타늄과 같은 금속박막층을 형성한 후 열처리하여 타이탸늄/타이타늄 질화물의 이중층 구조를 갖는 확산 방지막(206)을 형성한다.The via hole 205 is formed by etching the second insulating film 204 including the FSG film 204a and the TEOS film 204b so that a predetermined portion of the first metal wiring 203 is exposed. Thereafter, a metal thin film layer such as titanium is formed on the entire surface of the substrate including the via hole 205 and then heat-treated to form a diffusion barrier 206 having a double layer structure of titanium / titanium nitride.

여기서, 상기 열처리는 급속 열처리 공정(RTP : Rapid Thermal Process)을 이용한다.Here, the heat treatment uses a rapid thermal process (RTP).

이어, 도 2b에 도시한 바와 같이, 상기 확산 방지막(206) 전면에 상기 비아 홀(205)을 충분히 채우도록 텅스텐 금속층(207)을 증착한 다음, 상기 제 2 절연막(204)이 드러나도록 상기 텅스텐 금속층(207) 및 확산방지막(206)을 CMP(Chemical Mechanical Polishing) 공정을 이용하여 연마한다.Subsequently, as shown in FIG. 2B, a tungsten metal layer 207 is deposited on the entire surface of the diffusion barrier 206 to sufficiently fill the via hole 205, and then the tungsten is exposed to expose the second insulating layer 204. The metal layer 207 and the diffusion barrier 206 are polished using a chemical mechanical polishing (CMP) process.

이 때, 상기 텅스텐 금속층(207)의 증착은 WF6가스를 사용한 물리적 기상증착법을 이용한다. 또한, 상기 확산 방지막(206)은 상기 WF6가스의 불소(F) 성분의 침투를 막아주는 역할을 한다.At this time, the deposition of the tungsten metal layer 207 uses a physical vapor deposition method using a WF 6 gas. In addition, the diffusion barrier 206 serves to prevent penetration of the fluorine (F) component of the WF 6 gas.

한편, 상기 FSG막(204a)과 TEOS막(204b)으로 구성되는 제 2 절연막(204)은 후속의 금속 배선의 열처리과정을 거치게 되면서, TEOS 막(204b) 내에 함유되어 있는 OH 성분이 FSG막(204a) 내부로 침투하여 FSG막(204a) 내의 불소(F)와 실리콘(Si)의 결합을 끊게 된다. 이 때, 결합에서 이탈한 불소(F) 성분은 상기 텅스텐 금속층의 CMP 공정 후 잔류하게 되는 텅스텐 산화물(도 2c의 208)로 집중하게 되어 텅스텐과 불소(F)의 화합물을 형성하게 되어 후술하는 금속배선에 영향을 미치게 된다.On the other hand, the second insulating film 204 composed of the FSG film 204a and the TEOS film 204b is subjected to a heat treatment process of a subsequent metal wiring, and the OH component contained in the TEOS film 204b is contained in the FSG film ( It penetrates into the inside of 204a and breaks the bond between fluorine (F) and silicon (Si) in the FSG film 204a. At this time, the fluorine (F) component separated from the bond is concentrated to the tungsten oxide (208 in Fig. 2c) remaining after the CMP process of the tungsten metal layer to form a compound of tungsten and fluorine (F) to be described later This will affect the wiring.

또한, 상기 텅스텐과 불소(F)의 화합물은 상기 타이타늄/타이타늄 질화물로 이루어진 확산 방지막(206)과 반응하여 타이타늄 플로라이드(TiF)를 형성한다. 이 타이타늄 플로라이드는 자체적으로 체적을 팽창시켜 비아 홀 내의 텅스텐 플러그(207)와 그 상부에 형성되는 금속배선을 뜯어내어 비아 홀과 금속배선의 접촉면에 공동(void)을 형성하거나 접촉의 저하로 인한 저항의 증가 및 단선을 유발하게 된다.In addition, the compound of tungsten and fluorine (F) reacts with the diffusion barrier 206 made of titanium / titanium nitride to form titanium fluoride (TiF). The titanium fluoride itself expands in volume to tear off the tungsten plug 207 in the via hole and the metal wiring formed thereon to form voids in the contact surface between the via hole and the metal wiring or due to a decrease in contact. It causes an increase in resistance and disconnection.

본 발명은 상기와 같은 텅스텐 산화물로 인해 야기되는 문제점을 제거하는데 특징이 있으며 그 과정은 다음과 같다.The present invention is characterized in eliminating the problems caused by the tungsten oxide as described above and the process is as follows.

도 2c에 도시한 바와 같이, 상기 텅스텐 플러그(207)를 포함한 기판 전면에 얇게 형성되어 있는 텅스텐 산화물(208)을 제거하기 위해 환원 가스를 불어넣어 주거나 플라즈마 처리를 한다.As shown in FIG. 2C, a reducing gas is blown or a plasma treatment is performed to remove the tungsten oxide 208 thinly formed on the entire surface of the substrate including the tungsten plug 207.

상기 환원 가스를 이용한 방법은 후술하는 금속배선을 증착 하기 전에 금속막을 증착하는 장비에 탈가스를 진행해 주는 챔버(chamber)를 장착한 다음, 탈가스 챔버 내에서 수소 환원 가스를 넣어 텅스텐 산화물을 제거하는 방법이다.The method using the reducing gas is equipped with a chamber for degassing the equipment for depositing a metal film before depositing the metal wiring to be described later, and then to remove the tungsten oxide by putting a hydrogen reducing gas in the degassing chamber. Way.

이 때, 챔버 내의 온도는 100∼400℃가 적당하며, 챔버 내의 가스 분위기는 헬륨(He), 아르곤(Ar) 또는 질소(N2) 가스 내에 5∼10% 정도의 수소 가스를 첨가하는 것이 바람직하다.At this time, the temperature in the chamber is suitable 100 ~ 400 ℃, the gas atmosphere in the chamber is preferably added to the hydrogen gas of about 5 to 10% in helium (He), argon (Ar) or nitrogen (N 2 ) gas. Do.

한편, 플라즈마를 이용한 방법은 금속배선을 증착하는 스퍼터링(sputtering) 장비 내에 텅스텐 산화물의 제거를 위한 RF(Radio Frequency) 프리클린(preclean) 챔버를 장착한 후, 수소 환원 가스를 불어 넣은 다음 플라즈마 처리로 텅스텐 산화물을 제거하는 방법이다.On the other hand, the plasma-based method is equipped with a RF (Radio Frequency) preclean chamber for removing tungsten oxide in a sputtering equipment for depositing metal wiring, and then blows hydrogen reduction gas into the plasma treatment. It is a method of removing tungsten oxide.

이 방법에서의 챔버 내 가스 분위기는 헬륨 또는 아르곤 가스 내에 5∼10% 정도의 수소 가스를 넣거나 또는 헬륨 가스 내에 5∼10% 정도의 수소 가스와 3∼5% 정도의 아르곤 가스를 넣은 것이며, 상기 혼합가스를 플라즈마 상태로 활성화하여 상기 텅스텐 산화물을 제거한다.The gas atmosphere in the chamber in this method is about 5 to 10% hydrogen gas in helium or argon gas or about 5 to 10% hydrogen gas and about 3 to 5% argon gas in helium gas. The tungsten oxide is removed by activating the mixed gas in a plasma state.

이어, 도 2d에 도시한 바와 같이, 상기 텅스텐 산화물이 제거된 상태에서 상기 텅스텐 플러그(207)를 포함한 기판 전면상에 제 2 금속배선 물질을 증착한 후 선택적으로 패터닝하여 제 2 금속배선(209)을 형성한다. 그 다음, 상기 제 2 금속배선(209)을 포함한 기판 전면상에 상기 제 2 절연막(204)과 마찬가지로 FSG막(210a)과 TEOS막(210b)으로 구성되는 제 3 절연막(210)을 형성하면 본 발명의 금속 배선 형성 방법은 완료된다.Subsequently, as shown in FIG. 2D, a second metal wiring material is deposited on the entire surface of the substrate including the tungsten plug 207 in the state where the tungsten oxide is removed, and then selectively patterned to form the second metal wiring 209. To form. Next, when the third insulating film 210 including the FSG film 210a and the TEOS film 210b is formed on the entire surface of the substrate including the second metal wiring 209, the second insulating film 204 is formed. The metal wiring formation method of this invention is completed.

상술한 바와 같은 본 발명의 반도체 소자의 금속배선 형성 방법은 다음과 같은 효과가 있다.The metal wiring forming method of the semiconductor device of the present invention as described above has the following effects.

텅스텐 플러깅과 CMP 후의 금속배선 증착 전에 환원가스 또는 플라즈마 처리를 통하여 잔류하는 텅스텐 산화물 제거함으로써 금속배선과 비아 홀의 접촉을 향상시켜 접촉 저항의 향상, 반도체 소자의 속도 증가 및 수율을 증대시킬 수 있다.By removing residual tungsten oxide through reducing gas or plasma treatment prior to tungsten plugging and deposition of metal wires after CMP, the contact between metal wires and via holes can be improved to improve contact resistance, increase speed of semiconductor devices, and increase yield.

Claims (7)

기판 상에 제 1 절연막을 형성하는 공정;Forming a first insulating film on the substrate; 상기 제 1 절연막 상의 소정 영역에 제 1 금속 배선을 형성하는 공정;Forming a first metal wiring in a predetermined region on the first insulating film; 상기 제 1 금속배선을 포함한 기판 전면에 제 2 절연막을 형성하는 공정;Forming a second insulating film on the entire surface of the substrate including the first metal wiring; 상기 제 1 금속배선의 소정 부위가 드러나도록 상기 제 1 절연막을 선택적으로 식각하여 비아 홀을 형성하는 공정;Forming a via hole by selectively etching the first insulating film so that a predetermined portion of the first metal wiring is exposed; 상기 비아 홀을 포함한 기판 전면상에 확산 방지막을 형성하는 공정;Forming a diffusion barrier on the entire surface of the substrate including the via hole; 상기 비아 홀 내에 충분히 채워지도록 텅스텐을 매립하여 텅스텐 플러그를 형성하는 공정;Embedding tungsten to sufficiently fill the via hole to form a tungsten plug; 상기 텅스텐 플러그를 포함한 기판 전면에 세정 공정을 통하여 텅스텐 산화물을 제거하는 공정;Removing tungsten oxide through a cleaning process on the entire surface of the substrate including the tungsten plug; 상기 텅스텐 플러그에 상응하는 영역에 제 2 금속배선을 형성하는 공정을 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.And forming a second metal wiring in a region corresponding to the tungsten plug. 제 1 항에 있어서, 상기 세정 공정을 수행하기 전에 기판 전면에 상기 제 2 절연막이 드러나도록 상기 확산 방지막과 텅스텐 층을 CMP 공정을 통해 연마하는 것을 추가하여 이루어지는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The metal wiring of claim 1, wherein the diffusion barrier layer and the tungsten layer are polished through a CMP process so that the second insulating layer is exposed on the entire surface of the substrate before the cleaning process. Way. 제 1 항에 있어서, 상기 제 2 절연막과 제 3 절연막은 FSG막과 TEOS막의 이중막으로 형성되는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The method of claim 1, wherein the second insulating film and the third insulating film are formed of a double film of an FSG film and a TEOS film. 제 1 항에 있어서, 상기 확산 방지막은 타이타늄과 타이타늄 질화물로 이루어지는 이중막으로 구성되는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The method of claim 1, wherein the diffusion barrier is a double layer made of titanium and titanium nitride. 제 1 항에 있어서, 상기 세정 공정을 통하여 텅스텐 산화물을 제거하는 공정은 환원 가스를 이용한 탈가스 또는 플라즈마를 이용한 탈가스 방법을 이용하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The method of claim 1, wherein the removing of the tungsten oxide through the cleaning process uses a degassing method using a reducing gas or a degassing method using a plasma. 제 5 항에 있어서, 상기 환원 가스를 이용한 탈가스 방법은 100∼400℃의 온도에서 헬륨, 아르곤 또는 질소 가스 내에 5∼10% 정도의 수소 가스를 첨가하여 수행하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The metal of a semiconductor device according to claim 5, wherein the degassing method using the reducing gas is performed by adding about 5 to 10% hydrogen gas in helium, argon or nitrogen gas at a temperature of 100 to 400 ° C. Wiring formation method. 제 5 항에 있어서, 상기 플라즈마를 이용한 탈가스 방법은 헬륨 또는 아르곤 가스 내에 5∼10% 정도의 수소 가스를 넣거나 또는 헬륨 가스 내에 5∼10% 정도의 수소 가스와 3∼5% 정도의 아르곤 가스를 넣어 이용하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.According to claim 5, The degassing method using the plasma is about 5 to 10% hydrogen gas in the helium or argon gas or about 5 to 10% hydrogen gas and 3 to 5% argon gas in the helium gas And forming a metal wire in the semiconductor device.
KR1020010082944A 2001-12-21 2001-12-21 Fabricating method of metal wire in semiconductor KR20030052828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010082944A KR20030052828A (en) 2001-12-21 2001-12-21 Fabricating method of metal wire in semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010082944A KR20030052828A (en) 2001-12-21 2001-12-21 Fabricating method of metal wire in semiconductor

Publications (1)

Publication Number Publication Date
KR20030052828A true KR20030052828A (en) 2003-06-27

Family

ID=29577570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010082944A KR20030052828A (en) 2001-12-21 2001-12-21 Fabricating method of metal wire in semiconductor

Country Status (1)

Country Link
KR (1) KR20030052828A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442964B1 (en) * 2001-12-31 2004-08-04 주식회사 하이닉스반도체 Metal-Line formation Method of Semiconductor Device
KR100602088B1 (en) * 2004-06-22 2006-07-14 동부일렉트로닉스 주식회사 Formation method of metal line of semiconductor device
KR100766704B1 (en) * 2005-09-28 2007-10-11 매그나칩 반도체 유한회사 Method for fabricating semiconductor device
KR200452051Y1 (en) * 2009-03-19 2011-01-28 여형구 Fomentation heat dissipation system
CN113380693A (en) * 2020-03-10 2021-09-10 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163546B1 (en) * 1995-12-18 1999-02-01 김광호 Method of fabricating semiconductor device
KR100197535B1 (en) * 1996-06-27 1999-06-15 김영환 Forming method for metal wiring in semiconductor device
KR100259692B1 (en) * 1995-04-27 2000-06-15 가네꼬 히사시 Semiconductor device manufacturing method having contact structure
JP2001077193A (en) * 1999-08-31 2001-03-23 Matsushita Electronics Industry Corp Formation of contact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100259692B1 (en) * 1995-04-27 2000-06-15 가네꼬 히사시 Semiconductor device manufacturing method having contact structure
KR0163546B1 (en) * 1995-12-18 1999-02-01 김광호 Method of fabricating semiconductor device
KR100197535B1 (en) * 1996-06-27 1999-06-15 김영환 Forming method for metal wiring in semiconductor device
JP2001077193A (en) * 1999-08-31 2001-03-23 Matsushita Electronics Industry Corp Formation of contact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442964B1 (en) * 2001-12-31 2004-08-04 주식회사 하이닉스반도체 Metal-Line formation Method of Semiconductor Device
KR100602088B1 (en) * 2004-06-22 2006-07-14 동부일렉트로닉스 주식회사 Formation method of metal line of semiconductor device
KR100766704B1 (en) * 2005-09-28 2007-10-11 매그나칩 반도체 유한회사 Method for fabricating semiconductor device
KR200452051Y1 (en) * 2009-03-19 2011-01-28 여형구 Fomentation heat dissipation system
CN113380693A (en) * 2020-03-10 2021-09-10 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure

Similar Documents

Publication Publication Date Title
US7480990B2 (en) Method of making conductor contacts having enhanced reliability
KR100482180B1 (en) Fabricating method of semiconductor device
US7871923B2 (en) Self-aligned air-gap in interconnect structures
JP2001319928A (en) Semiconductor integrated circuit device and manufacturing method therefor
US7179747B2 (en) Use of supercritical fluid for low effective dielectric constant metallization
KR20100122701A (en) Method of manufacturing semiconductor device
US7485963B2 (en) Use of supercritical fluid for low effective dielectric constant metallization
EP1330842B1 (en) Low temperature hillock suppression method in integrated circuit interconnects
US7569481B2 (en) Method for forming via-hole in semiconductor device
US7429542B2 (en) UV treatment for low-k dielectric layer in damascene structure
US6465345B1 (en) Prevention of inter-channel current leakage in semiconductors
JP2003508896A (en) Method of manufacturing an integrated circuit having at least one metallization surface
US7541675B2 (en) Semiconductor device including fluorine diffusion barrier layer and method for manufacturing the same
KR20030052828A (en) Fabricating method of metal wire in semiconductor
US6812113B1 (en) Process for achieving intermetallic and/or intrametallic air isolation in an integrated circuit, and integrated circuit obtained
KR20040101008A (en) Manufacturing method for semiconductor apparatus
KR100399909B1 (en) Method of forming inter-metal dielectric in a semiconductor device
KR100480891B1 (en) Method for forming copper line in semiconductor device
KR100688758B1 (en) Method for forming gap fill of metal line for semiconductor
US6627537B2 (en) Bit line and manufacturing method thereof
US8742587B1 (en) Metal interconnection structure
KR100701779B1 (en) Method for fabricating contact of semiconductor device
KR20100036449A (en) Method of manufacturing semiconductor device
KR100720402B1 (en) Method for forming metal line using the dual damascene process
US7459388B2 (en) Methods of forming dual-damascene interconnect structures using adhesion layers having high internal compressive stresses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application