KR102730292B1 - Catalyst for Preparing Carbon Nanotubes - Google Patents
Catalyst for Preparing Carbon Nanotubes Download PDFInfo
- Publication number
- KR102730292B1 KR102730292B1 KR1020190119114A KR20190119114A KR102730292B1 KR 102730292 B1 KR102730292 B1 KR 102730292B1 KR 1020190119114 A KR1020190119114 A KR 1020190119114A KR 20190119114 A KR20190119114 A KR 20190119114A KR 102730292 B1 KR102730292 B1 KR 102730292B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- carbon nanotubes
- producing
- producing carbon
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 138
- 239000003054 catalyst Substances 0.000 title claims abstract description 125
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 124
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 124
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 239000002243 precursor Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 9
- 238000001694 spray drying Methods 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 239000012018 catalyst precursor Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 239000003426 co-catalyst Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 229910001593 boehmite Inorganic materials 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- -1 oxides Chemical class 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000004067 aliphatic alkene group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 229910052599 brucite Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002055 nanoplate Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910001747 quintinite Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009491 slugging Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8472—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 판상형 미립자 금속 지지체를 이용한 탄소나노튜브 제조용 촉매에 관한 것으로, 본 발명의 촉매는 유동성이 우수하여 유동층 반응기를 통한 탄소나노튜브 합성 반응에 적용되기에 특히 바람직하다.The present invention relates to a catalyst for producing carbon nanotubes using a plate-shaped particulate metal support. The catalyst of the present invention has excellent fluidity and is therefore particularly preferable for application to a carbon nanotube synthesis reaction using a fluidized bed reactor.
Description
본 발명은 탄소나노튜브 제조용 촉매, 상기 촉매의 제조방법 및 상기 촉매를 이용한 탄소나노튜브 제조방법에 관한 것이다.The present invention relates to a catalyst for producing carbon nanotubes, a method for producing the catalyst, and a method for producing carbon nanotubes using the catalyst.
탄소나노소재는 소재의 모양에 따라 퓰러렌(Fullerene), 탄소나노튜브(Carbon Nanotube; CNT), 그래핀(Graphene), 흑연 나노 플레이트(Graphite Nano Plate) 등이 있으며, 이 중 탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연 면이 나노 크기의 직경으로 둥글게 말린 거대 분자이다.Carbon nanomaterials include fullerene, carbon nanotubes (CNT), graphene, and graphite nanoplates, depending on the shape of the material. Among these, carbon nanotubes are giant molecules in which a hexagonal honeycomb-shaped graphite sheet, in which one carbon atom is bonded to three other carbon atoms, is rolled up to a nano-sized diameter.
탄소나노튜브는 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 말려진 형태에 따라서 단층벽 탄소나노튜브(Single-Walled Carbon Nanotube; SWCNT), 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT), 다발형 탄소나노튜브(Rope Carbon Nanotube)로 구분되기도 한다.Carbon nanotubes are hollow and light, have electrical conductivity as good as copper, thermal conductivity as good as diamond, and tensile strength as good as steel. Depending on the rolled shape, they are classified into single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and rope carbon nanotubes.
최근에는 한 번에 많은 양의 탄소나노튜브를 합성할 수 있는 탄소나노튜브 합성 기술에 대한 연구가 활발히 진행 중인 상황이며, 다양한 방법 중 유동층 반응기를 이용한 열화학 기상 증착법의 경우, 쉽게 연속적으로 많은 양의 탄소나노튜브를 합성할 수 있다는 점에서 특히 선호되고 있다.Recently, research on carbon nanotube synthesis technology capable of synthesizing a large quantity of carbon nanotubes at one time is being actively conducted, and among various methods, thermochemical vapor deposition using a fluidized bed reactor is particularly preferred because it can easily and continuously synthesize a large quantity of carbon nanotubes.
다만 유동층 반응기를 이용한 탄소나노튜브 합성에서는 반응기 내부의 촉매 입자를 균일하게 유동화시키기 위해 유동 조건에 알맞은 촉매 입자의 모양이나 사이즈를 균일하게 유지해야 하며, 이에 따라 유동층 반응기에 필요한 조건에 부합하는 물성이나 특성을 갖는 촉매 개발이 필요하다. 특히 유동층 반응기 내부에서의 촉매 유동성이 떨어지는 경우, 슬러깅 및 채널링 등의 문제가 발생할 수 있으며, 이는 반응기 내부의 온도 불균일성으로 이어져 최종적인 탄소나노튜브 제품의 균일하지 못한 품질이 나타날 수 있고, 유동층 반응기 내부의 분산판이 촉매로부터 생성되는 케이크에 의하여 막힘으로써 반응이 완전히 수행될 수 없도록 할 수 있다.However, in carbon nanotube synthesis using a fluidized bed reactor, the shape and size of the catalyst particles must be uniformly maintained under the fluidization conditions in order to uniformly fluidize the catalyst particles inside the reactor. Accordingly, it is necessary to develop a catalyst having properties or characteristics that meet the conditions required for the fluidized bed reactor. In particular, if the catalyst fluidity inside the fluidized bed reactor is poor, problems such as slugging and channeling may occur, which may lead to temperature unevenness inside the reactor, resulting in uneven quality of the final carbon nanotube product. In addition, the dispersion plate inside the fluidized bed reactor may be blocked by a cake generated from the catalyst, preventing the reaction from being performed completely.
따라서, 촉매 입자 자체의 유동성이 높아 이와 같은 문제점을 최소화할 수 있으면서도 준수한 수준의 탄소나노튜브 제품의 물성 및 수율을 나타낼 수 있는 탄소나노튜브 제조용 촉매에 관한 추가적인 연구가 필요한 상황이다.Therefore, there is a need for additional research on a catalyst for producing carbon nanotubes that can minimize such problems while exhibiting satisfactory properties and yields of carbon nanotube products due to the high fluidity of the catalyst particles themselves.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 본 발명은 유동성이 뛰어나 유동층 반응기 내에서의 온도 균일성을 유지할 수 있으면서도 원활하게 탄소나노튜브를 제조할 수 있는 탄소나노튜브 제조용 촉매의 제공을 목적으로 한다. The present invention is intended to solve the above problems, and an object of the present invention is to provide a catalyst for producing carbon nanotubes which has excellent fluidity and can maintain temperature uniformity within a fluidized bed reactor while smoothly producing carbon nanotubes.
본 발명은 복수 개의 판상형 미립자 금속 지지체가 조립된 담지체, 및 상기 담지체에 담지되어 있는 주촉매 성분 및 조촉매 성분을 포함하며, 상기 판상형 미립자 금속 지지체의 수 평균 입도는 10㎛ 이하인 탄소나노튜브 제조용 촉매를 제공한다.The present invention provides a catalyst for producing carbon nanotubes, comprising a support in which a plurality of plate-shaped particulate metal supports are assembled, and a main catalyst component and a cocatalyst component supported on the support, wherein the number average particle size of the plate-shaped particulate metal support is 10 ㎛ or less.
또한, 본 발명은 주촉매 전구체, 조촉매 전구체 및 멀티카르복실산이 혼합된 담지 용액과 복수 개의 판상형 미립자 금속 지지체를 혼합하여 혼합물을 수득하는 단계, 상기 혼합물을 분무 건조하여 촉매 중간체를 수득하는 단계 및 상기 촉매 중간체를 소성하여 탄소나노튜브 제조용 촉매를 수득하는 단계를 포함하는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.In addition, the present invention provides a method for producing a catalyst for producing carbon nanotubes, comprising the steps of mixing a supporting solution containing a main catalyst precursor, a cocatalyst precursor and a multicarboxylic acid and a plurality of plate-shaped particulate metal supports to obtain a mixture, spray drying the mixture to obtain a catalyst intermediate, and calcining the catalyst intermediate to obtain a catalyst for producing carbon nanotubes.
또한, 본 발명은 상기의 탄소나노튜브 제조용 촉매와 베드용 탄소나노튜브를 유동층 반응기에 주입하는 단계 및 상기 유동층 반응기에 탄소원 가스와 유동 가스를 공급하고 반응시켜 탄소나노튜브를 제조하는 단계를 포함하는 탄소나노튜브의 제조방법을 제공한다.In addition, the present invention provides a method for producing carbon nanotubes, including a step of injecting the above-described catalyst for producing carbon nanotubes and carbon nanotubes for a bed into a fluidized bed reactor, and a step of supplying a carbon source gas and a fluidizing gas to the fluidized bed reactor and reacting them to produce carbon nanotubes.
본 발명의 탄소나노튜브 제조용 촉매는 유동성이 우수하여 유동층 반응기를 통한 탄소나노튜브의 합성 과정 중에서의 분산판 막힘 현상이나, 온도 불균일성 현상을 최소화할 수 있다.The catalyst for producing carbon nanotubes of the present invention has excellent fluidity, and thus can minimize the phenomenon of blockage of the dispersion plate or temperature unevenness during the process of synthesizing carbon nanotubes using a fluidized bed reactor.
도 1은 본 발명의 실시예 1에 따른 탄소나노튜브 제조용 촉매를 SEM 이미지로 관찰한 것이다.
도 2는 본 발명의 비교예 2에 따른 탄소나노튜브 제조용 촉매를 SEM 이미지로 관찰한 것이다.Figure 1 is a SEM image of a catalyst for producing carbon nanotubes according to Example 1 of the present invention.
Figure 2 is a SEM image of a catalyst for producing carbon nanotubes according to Comparative Example 2 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims should not be interpreted as limited to their usual or dictionary meanings, but should be interpreted as having meanings and concepts that conform to the technical idea of the present invention, based on the principle that the inventor can appropriately define the concept of the term in order to explain his or her own invention in the best manner.
탄소나노튜브 제조용 촉매Catalyst for manufacturing carbon nanotubes
본 발명은 복수 개의 판상형 미립자 금속 지지체가 조립된 담지체, 및 상기 담지체에 담지되어 있는 주촉매 성분 및 조촉매 성분을 포함하며 상기 판상형 미립자 금속 지지체의 수 평균 입도는 10㎛ 이하인 탄소나노튜브 제조용 촉매를 제공한다.The present invention provides a catalyst for producing carbon nanotubes, comprising a support in which a plurality of plate-shaped particulate metal supports are assembled, and a main catalyst component and a cocatalyst component supported on the support, wherein the number average particle size of the plate-shaped particulate metal support is 10 ㎛ or less.
본 발명의 발명자는 특정 조건을 만족하는 지지체를 조립하여 촉매의 담지체로 사용할 경우, 최종적으로 제조되는 촉매의 구형도가 높아 촉매 자체의 유동성이 높아질 수 있다는 점을 확인하여 본 발명을 완성하였다.The inventor of the present invention completed the present invention by confirming that when a support satisfying specific conditions is assembled and used as a catalyst carrier, the sphericity of the catalyst finally manufactured can be increased, thereby increasing the fluidity of the catalyst itself.
본 발명이 제공하는 탄소나노튜브 제조용 촉매의 수 평균 입도는 20 내지 100㎛, 바람직하게는 40 내지 80㎛, 특히 바람직하게는 40 내지 60㎛일 수 있다. 탄소나노튜브 제조용 촉매의 수 평균 입도가 이보다 작거나 클 경우, 제조되는 탄소나노튜브의 분산성이나 물성이 떨어질 수 있다. The number average particle size of the catalyst for producing carbon nanotubes provided by the present invention may be 20 to 100 μm, preferably 40 to 80 μm, and particularly preferably 40 to 60 μm. If the number average particle size of the catalyst for producing carbon nanotubes is smaller or larger than this, the dispersibility or physical properties of the carbon nanotubes produced may deteriorate.
본 발명이 제공하는 탄소나노튜브 제조용 촉매의 구형도는 0.4 내지 1, 바람직하게는 0.5 내지 1, 특히 바람직하게는 0.55 내지 1일 수 있다. 상기 구형도는 입자의 형태가 얼마나 구와 가까운 지를 나타내는 지표로, 촉매 입자를 확대 관측하고, 관측된 이미지를 이미지 분석하여 도출할 수 있다. 상기 구형도가 1에 가까울수록 구에 가까움을 의미하며, 구형도가 1인 경우는 구에 해당한다. 본 발명의 탄소나노튜브 제조용 촉매에 있어서, 촉매의 구형도가 작은 경우에는 촉매의 유동성이 떨어져 유동층 반응기 내에서의 퇴적이 발생할 수 있고, 특히 퇴적된 촉매는 분산판을 막거나, 유동층 반응기 내부에서의 온도 균일성을 악화시켜 원활한 탄소나노튜브 제조가 어렵게 할 수 있다.The sphericity of the catalyst for producing carbon nanotubes provided by the present invention may be 0.4 to 1, preferably 0.5 to 1, and particularly preferably 0.55 to 1. The sphericity is an indicator of how close the shape of the particle is to a sphere, and can be derived by magnifying the catalyst particle and analyzing the observed image. The closer the sphericity is to 1, the closer it is to a sphere, and a sphericity of 1 corresponds to a sphere. In the catalyst for producing carbon nanotubes of the present invention, if the sphericity of the catalyst is small, the fluidity of the catalyst may decrease, causing sedimentation within the fluidized bed reactor, and in particular, the deposited catalyst may block the dispersion plate or worsen the temperature uniformity within the fluidized bed reactor, making it difficult to smoothly produce carbon nanotubes.
본 발명의 탄소나노튜브 제조용 촉매는 내부 판상 구조를 갖는 것일 수 있다. 본 발명에서는 판상형 미립자 금속 지지체를 조립하여 담지체로 사용하기 때문에, 촉매의 내부 구조는 판상 구조를 가지며, 이와 같이 촉매의 내부 구조가 판상 구조인 경우에는 탄소나노튜의 배향 성장이 가능하다는 기술적 이점이 있다. The catalyst for producing carbon nanotubes of the present invention may have an internal plate-like structure. In the present invention, since a plate-like fine particle metal support is assembled and used as a carrier, the internal structure of the catalyst has a plate-like structure, and in this case, when the internal structure of the catalyst has a plate-like structure, there is a technical advantage in that oriented growth of carbon nanotubes is possible.
본 발명의 탄소나노튜브 제조용 촉매는 특히 번들형 탄소나노튜브 제조에 사용되기에 적합하다. 상기 번들형 탄소나노튜브는 복수개의 탄소 나노튜브가 일정한 방향으로 나란하게 배열 또는 정렬된 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 갖는 탄소나노튜브를 지칭한다. 번들형 탄소나노튜브는 복수개의 탄소 나노튜브가 방향성 없이 얽힌 구 또는 포테이토 형태의 2차 형상을 갖는 인탱글형 탄소나노튜브에 비해 용매에 대한 분산성이 높아 분산액 형태로 제조되기에 적합하다. 본 발명의 탄소나노튜브 제조용 촉매를 이용할 경우, 촉매의 형태 및 내부의 판상 구조로 인해 번들형의 탄소나노튜브가 더욱 원활하게 제조될 수 있다.The catalyst for producing carbon nanotubes of the present invention is particularly suitable for use in producing bundle-shaped carbon nanotubes. The bundle-shaped carbon nanotubes refer to carbon nanotubes having a secondary shape in the form of a bundle or rope in which a plurality of carbon nanotubes are arranged or aligned in a certain direction. Compared to entangled carbon nanotubes having a secondary shape in the form of a sphere or potato in which a plurality of carbon nanotubes are entangled without directionality, bundle-shaped carbon nanotubes have higher dispersibility in a solvent and are thus suitable for production in the form of a dispersion. When the catalyst for producing carbon nanotubes of the present invention is used, bundle-shaped carbon nanotubes can be produced more smoothly due to the shape of the catalyst and the internal plate-like structure.
담지체carrier
구체적으로, 본 발명이 제공하는 탄소나노튜브 제조용 촉매에 포함되는 담지체는 복수 개의 판상형 미립자 금속 지지체를 포함하며, 판상형 미립자 금속 지지체의 수 평균 입도는 10㎛ 이하이다. Specifically, the support included in the catalyst for producing carbon nanotubes provided by the present invention includes a plurality of plate-shaped particulate metal supports, and the number average particle size of the plate-shaped particulate metal supports is 10 μm or less.
상기 담지체는 복수 개의 판상형 미립자 금속 지지체가 조립되어 형성될 수 있다. 상대적으로 수 평균 입도가 작은 판상형 미립자 금속 지지체를 복수 개 조립하여 담지체로 사용할 경우, 수 평균 입도가 큰 지지체를 사용하는 경우에 비해 담지체 및 촉매의 구형도가 높아질 수 있고, 구형도가 높은 탄소나노튜브 제조용 촉매는 유동층 반응기 내에서의 퇴적이 억제되기 때문에 높은 유동성을 유지할 수 있다.The above-mentioned support may be formed by assembling a plurality of plate-shaped particulate metal supports. When a plurality of plate-shaped particulate metal supports having a relatively small number-average particle size are assembled and used as a support, the sphericity of the support and catalyst may be increased compared to when a support having a large number-average particle size is used, and a catalyst for producing carbon nanotubes having a high sphericity may maintain high fluidity because sedimentation is suppressed in a fluidized bed reactor.
상기 판상형 미립자 금속 지지체의 수 평균 입도는 10㎛이하일 수 있고, 바람직하게는 1 내지 7㎛, 특히 바람직하게는 1 내지 5㎛일 수 있다. 판상형 미립자 금속 지지체의 수 평균 입도가 이보다 작은 경우에는 지지체들 사이의 조립이 원활하게 이루어지지 않아 담지체 자체가 쉽게 부스러지는 등, 내구성의 문제가 발생할 수 있고, 수 평균 입도가 이보다 큰 경우에는 담지체 및 촉매의 구형도가 충분히 높지 않아 촉매의 유동성이 떨어질 수 있다.The number average particle size of the above-mentioned plate-shaped particulate metal support may be 10 ㎛ or less, preferably 1 to 7 ㎛, and particularly preferably 1 to 5 ㎛. If the number average particle size of the plate-shaped particulate metal support is smaller than this, the assembly between supports may not occur smoothly, and thus the support itself may easily crumble, which may cause durability problems. If the number average particle size is larger than this, the sphericity of the support and catalyst may not be sufficiently high, and thus the fluidity of the catalyst may deteriorate.
상기 판상형 미립자 금속 지지체는 마그네슘, 칼슘, 알루미늄 및 실리콘으로 이루어지는 군에서 선택되는 1종 이상의 금속 산화물일 수 있고, 바람직하게는 알루미늄 산화물일 수 있다. 상술한 종류의 금속 지지체를 사용할 경우, 지지체의 내구성이 뛰어나면서도 주촉매 및 조촉매 성분의 담지가 용이하다는 점에서 이점을 갖는다. The above-mentioned plate-shaped particulate metal support may be at least one metal oxide selected from the group consisting of magnesium, calcium, aluminum and silicon, and preferably may be aluminum oxide. When the above-mentioned type of metal support is used, it has the advantage of excellent durability of the support and easy loading of the main catalyst and cocatalyst components.
촉매 성분Catalytic component
본 발명의 탄소나노튜브 제조용 촉매는 촉매 성분으로 주촉매 성분과 조촉매 성분을 포함한다.The catalyst for producing carbon nanotubes of the present invention includes a main catalyst component and a cocatalyst component as catalyst components.
상기 주촉매 성분은 니켈, 코발트 및 철로부터 선택되는 1종 이상일 수 있고, 코발트인 것이 특히 바람직하다. 주촉매 성분은 탄소원 가스로부터 탄소나노튜브가 합성되는 반응의 활성화 에너지를 직접적으로 낮추어 탄소나노튜브 합성 반응을 원활하게 하는 역할을 수행하며, 앞서 설명한 종류의 주촉매 성분을 사용할 경우 제조되는 촉매의 활성이 높으면서도, 내구성 역시 일정 수준 이상으로 확보될 수 있다는 점에서 바람직하다.The above-described main catalyst component may be at least one selected from nickel, cobalt, and iron, and cobalt is particularly preferred. The main catalyst component plays a role in facilitating the carbon nanotube synthesis reaction by directly lowering the activation energy of the reaction in which carbon nanotubes are synthesized from a carbon source gas, and when the type of main catalyst component described above is used, the activity of the catalyst produced is high, and durability can also be secured to a certain level or higher, which is preferable.
상기 조촉매 성분은 몰리브덴 및 바나듐으로부터 선택되는 1종 이상일 수 있고, 바나듐인 것이 특히 바람직하다. 조촉매 성분은 상기 주촉매 성분의 촉매 활성을 더욱 높여주는 역할을 수행하며, 앞서 설명한 조촉매 성분을 사용할 경우, 주촉매 성분과의 시너지 효과가 우수할 수 있으며, 제조 과정에서의 주촉매 성분 간의 뭉침을 방지할 수 있다.The above-described cocatalyst component may be at least one selected from molybdenum and vanadium, and vanadium is particularly preferred. The cocatalyst component plays a role in further enhancing the catalytic activity of the main catalyst component, and when the cocatalyst component described above is used, the synergy effect with the main catalyst component can be excellent, and agglomeration between the main catalyst components can be prevented during the manufacturing process.
본 발명의 일 실시예에 따르면, 본 발명의 탄소나노튜브 제조용 촉매 중 촉매 성분은 하기의 조성을 가질 수 있다.According to one embodiment of the present invention, the catalyst component of the catalyst for producing carbon nanotubes of the present invention may have the following composition.
(Ni, Co, Fe)x (Mo, V)y (Ni, Co, Fe) x (Mo, V) y
상기에서, x는 주촉매 성분의 몰비이고, y는 조촉매 성분의 몰비이며,In the above, x is the molar ratio of the main catalyst component, y is the molar ratio of the cocatalyst component,
1≤x≤10이고, 0<y≤5이다.1≤x≤10 and 0<y≤5.
탄소나노튜브 제조용 촉매의 제조방법Method for producing a catalyst for producing carbon nanotubes
본 발명은 앞서 설명한 탄소나노튜브 제조용 촉매의 제조방법을 제공한다. 구체적으로, 본 발명의 탄소나노튜브 제조용 촉매의 제조방법은 주촉매 전구체, 조촉매 전구체 및 멀티카르복실산이 혼합된 담지 용액과 복수 개의 판상형 미립자 금속 지지체를 혼합하여 혼합물을 수득하는 단계, 상기 혼합물을 분무 건조하여 촉매 중간체를 수득하는 단계 및 상기 촉매 중간체를 소성하여 탄소나노튜브 제조용 촉매를 수득하는 단계를 포함한다.The present invention provides a method for producing a catalyst for producing carbon nanotubes as described above. Specifically, the method for producing a catalyst for producing carbon nanotubes of the present invention includes the steps of mixing a support solution containing a main catalyst precursor, a cocatalyst precursor, and a multicarboxylic acid and a plurality of plate-shaped particulate metal supports to obtain a mixture, spray drying the mixture to obtain a catalyst intermediate, and calcining the catalyst intermediate to obtain a catalyst for producing carbon nanotubes.
기존 담지 촉매의 경우, 지지체의 전구체를 이용하여 담지 촉매를 제조하는 경우가 많았으나, 본 발명에서는 판상형의 미립자 금속 지지체를 직접적으로 사용하여 촉매를 제조한다. 지지체의 전구체를 이용하는 경우에 비해, 본 발명에서와 같이 지지체를 직접 사용할 경우, 지지체의 크기 및 비표면적 등 지지체 자체의 물성 조절이 용이하다는 기술적 이점이 있다.In the case of existing supported catalysts, there are many cases where the supported catalyst is manufactured using a precursor of the support, but in the present invention, the catalyst is manufactured using a plate-shaped particulate metal support directly. Compared to the case where a precursor of the support is used, there is a technical advantage in that the support itself, such as the size and specific surface area of the support, can be easily controlled when the support is directly used as in the present invention.
상기 탄소나노튜브 제조용 촉매의 제조방법에서 사용되는 판상형 미립자 금속 지지체는 판상형을 갖는 마그네슘, 칼슘, 알루미늄 및 실리콘으로 이루어지는 군에서 선택되는 1종 이상의 금속 화합물일 수 있다. 예컨대 판상형의 보헤마이트, 브루사이트 (brucite), 폴트란다이이트 (portlandite), 하이드로탈사이트 (hydrotalcite), 하이드로칼루마이트 (hydrocalumite), 퀸티나이트 (quintinite), 탈크 (talc), 버미큐라이트(vermiculite) 등을 상기 판상형 미립자 금속 지지체로 사용할 수 있고, 판상형의 보헤마이트를 사용하는 것이 특히 바람직하다. 또한, 앞서 촉매 부분에서 설명한 것과 같이 상기 판상형 미립자 금속 지지체의 수 평균 입도는 10㎛이하일 수 있고, 바람직하게는 1 내지 7㎛, 특히 바람직하게는 1 내지 5㎛일 수 있다.The plate-shaped particulate metal support used in the method for producing the above-mentioned catalyst for producing carbon nanotubes may be at least one metal compound selected from the group consisting of plate-shaped magnesium, calcium, aluminum, and silicon. For example, plate-shaped boehmite, brucite, portlandite, hydrotalcite, hydrocalumite, quintinite, talc, vermiculite, etc. may be used as the plate-shaped particulate metal support, and plate-shaped boehmite is particularly preferable. In addition, as described above in the catalyst section, the number average particle size of the plate-shaped particulate metal support may be 10 μm or less, preferably 1 to 7 μm, and particularly preferably 1 to 5 μm.
상기 담지 용액은 담지의 대상이 되는 주촉매 성분의 전구체와 조촉매 성분의 전구체를 포함하며, 이에 더하여 멀티카르복실산을 포함한다. 본 발명에서 사용되는 멀티카르복실산은 카르복실기를 하나 이상 포함하는 화합물로, 착화제(complexing agent)로서 용해성이 높고 침전을 억제하며 촉매의 합성을 용이하게 하고, 활성화제(activator)로서 탄소나노튜브의 합성을 증대시킨다. 상기 멀티카르복실산은 디카르복실산, 트리카르복실산 및 테트라카르복실산중에서 선택된 1 이상일 수 있으며, 예컨대 시트르산, 옥살산, 말론산, 숙신산, 타르타르산 등을 사용할 수 있다.The above-mentioned support solution contains a precursor of a main catalyst component to be supported and a precursor of a cocatalyst component, and in addition, contains a multicarboxylic acid. The multicarboxylic acid used in the present invention is a compound containing at least one carboxyl group, and as a complexing agent, has high solubility, suppresses precipitation, and facilitates the synthesis of a catalyst, and as an activator, increases the synthesis of carbon nanotubes. The above-mentioned multicarboxylic acid may be at least one selected from dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid, and examples thereof include citric acid, oxalic acid, malonic acid, succinic acid, and tartaric acid.
상기 멀티카르복실산은 담지 용액의 총 질량을 기준으로 하여 0.1 내지 1.5 중량%로 포함될 수 있다. 이러한 범위 내에서 담지 용액에서의 주촉매 및 조촉매의 금속 성분 침전이 발생하지 않으며, 이후 소성 과정에서의 크랙 발생 역시 억제될 수 있다.The above multicarboxylic acid may be included in an amount of 0.1 to 1.5 wt% based on the total mass of the support solution. Within this range, precipitation of the metal components of the main catalyst and cocatalyst in the support solution does not occur, and crack occurrence during the subsequent calcination process can also be suppressed.
상기 주촉매 전구체와 조촉매 전구체는 이후 건조 및 소성의 과정을 거쳐 주촉매 성분과 조촉매 성분으로 전환될 수 있는 화합물이라면 특별한 제한 없이 가능하다. 앞서 바람직한 주촉매 성분으로 예시한 니켈, 철 및 코발트의 경우, 주촉매 전구체로써 이들 금속 성분의 염, 산화물, 또는 이들 금속 성분을 포함하는 화합물을 사용할 수 있고, 더욱 구체적으로는 Fe(NO3)2·6H2O, Fe(NO3)2·9H2O, Fe(NO3)3, Fe(OAc)2, Ni(NO3)2·6H2O, Co(NO3)2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)], Co(OAc)2와 같은 물질들을 사용할 수 있다. 앞서 바람직한 조촉매 성분으로 예시한 몰리브덴 및 바나듐의 경우, 조촉매 전구체로써 이들 성분의 염, 산화물 또는 이들 성분을 포함하는 화합물을 사용할 수 있고, 더욱 구체적으로는 NH4VO3, (NH4)6Mo7O24·4H2O, Mo(CO)6, (NH4)MoS4와 같은 물질들을 사용할 수 있다. 앞서 예시한 물질들을 전구체로 사용할 경우, 주촉매 성분 및 조촉매 성분의 담지가 원활하다는 장점이 있다. The above main catalyst precursor and co-catalyst precursor can be any compound that can be converted into the main catalyst component and the co-catalyst component through a subsequent drying and calcination process without any particular limitation. In the case of nickel, iron, and cobalt, which are exemplified as preferable main catalyst components above, salts, oxides, or compounds containing these metal components of these metal components can be used as main catalyst precursors, and more specifically, materials such as Fe(NO 3 ) 2 ·6H 2 O, Fe(NO 3 ) 2 ·9H 2 O, Fe(NO 3 ) 3 , Fe(OAc) 2 , Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 ·6H 2 O, Co 2 (CO) 8 , [Co 2 (CO) 6 (t-BuC=CH)], Co(OAc) 2 can be used. In the case of molybdenum and vanadium, which were previously exemplified as preferable cocatalyst components, salts, oxides, or compounds containing these components can be used as cocatalyst precursors, and more specifically, materials such as NH 4 VO 3 , (NH 4 ) 6 Mo 7 O 24 ·4H 2 O, Mo(CO) 6 , and (NH 4 )MoS 4 can be used. When the previously exemplified materials are used as precursors, there is an advantage in that the main catalyst component and cocatalyst component are smoothly supported.
상기 담지 용액의 용매는 앞서 설명한 주촉매 전구체와 조촉매 전구체를 용해시킬 수 있는 것이라면 특별히 제한되지 않으며, 예컨대 물을 사용하는 것이 바람직하다.The solvent of the above-mentioned supporting solution is not particularly limited as long as it can dissolve the main catalyst precursor and co-catalyst precursor described above, and for example, it is preferable to use water.
상기 과정을 통해 수득된 혼합물은 이후의 분무 건조 과정을 통해 중간체로 전환될 수 있다. 중간체 생성 과정에서 촉매의 최종적인 크기 및 형태가 결정될 수 있으며, 예컨대 상기 중간체는 최종적으로 제조되는 촉매와 유사하게 20 내지 100㎛, 바람직하게는 40 내지 80㎛, 특히 바람직하게는 40 내지 60㎛의 수 평균 입도를 가질 수 있다.The mixture obtained through the above process can be converted into an intermediate through a subsequent spray drying process. The final size and shape of the catalyst can be determined during the intermediate production process, and for example, the intermediate can have a number average particle size of 20 to 100 μm, preferably 40 to 80 μm, and particularly preferably 40 to 60 μm, similar to the catalyst that is finally produced.
본 단계에서 상기 분무 건조는 150 내지 280℃, 바람직하게는 180 내지 250℃의 온도에서 수행될 수 있다. 본 단계에서의 분무 건조를 통해 지지체 바로 위에 주촉매 및 조촉매 성분이 담지될 수 있으며, 상술한 온도 범위에서 분무 건조를 수행할 경우 중간체가 안정적으로 생성될 수 있다.In this step, the spray drying can be performed at a temperature of 150 to 280°C, preferably 180 to 250°C. Through spray drying in this step, the main catalyst and cocatalyst components can be supported directly on the support, and when spray drying is performed in the above-described temperature range, the intermediate can be stably produced.
앞선 단계에서 제조된 중간체는 이후의 최종적인 소성 단계를 거쳐 탄소나노튜브 제조용 촉매로 수득된다. 상기 소성은 500 내지 800℃, 바람직하게는 600 내지 800℃의 온도에서 수행될 수 있고, 이와 같은 온도 범위에서 소성이 수행될 경우 주촉매 전구체 및 조촉매 전구체의 대부분이 주촉매 성분 및 조촉매 성분으로 전환될 수 있다.The intermediate manufactured in the previous step is obtained as a catalyst for manufacturing carbon nanotubes through the final calcination step thereafter. The calcination can be performed at a temperature of 500 to 800°C, preferably 600 to 800°C, and when the calcination is performed in this temperature range, most of the main catalyst precursor and the cocatalyst precursor can be converted into the main catalyst component and the cocatalyst component.
탄소나노튜브의 제조방법Method for manufacturing carbon nanotubes
본 발명은 앞서 설명한 촉매를 이용하여 탄소나노튜브를 제조하는 방법을 제공한다. 구체적으로, 본 발명은 앞서 설명한 탄소나노튜브 제조용 촉매와 베드용 탄소나노튜브를 유동층 반응기에 주입하는 단계 및 상기 유동층 반응기에 탄소원 가스와 유동 가스를 공급하고 반응시켜 탄소나노튜브를 제조하는 단계를 포함하는 탄소나노튜브의 제조방법을 제공한다.The present invention provides a method for producing carbon nanotubes using the catalyst described above. Specifically, the present invention provides a method for producing carbon nanotubes, including the steps of injecting the catalyst for producing carbon nanotubes described above and carbon nanotubes for a bed into a fluidized bed reactor, and the steps of supplying a carbon source gas and a fluidizing gas to the fluidized bed reactor and reacting them to produce carbon nanotubes.
본 발명의 탄소나노튜브 제조용 촉매는 높은 유동성으로 인해 유동층 반응기에 적용되기에 바람직하다. 구체적으로는 본 발명의 탄소나노튜브 제조용 촉매와 베드용 탄소나노튜브를 유동층 반응기에 주입하고, 추가적으로 탄소원 가스와 유동 가스를 유동층 반응기에 공급하여 탄소나노튜브를 제조할 수 있다.The catalyst for producing carbon nanotubes of the present invention is preferably applied to a fluidized bed reactor due to its high fluidity. Specifically, the catalyst for producing carbon nanotubes of the present invention and carbon nanotubes for a bed are injected into a fluidized bed reactor, and additionally, a carbon source gas and a fluidizing gas are supplied to the fluidized bed reactor to produce carbon nanotubes.
상기 탄소원 가스는 고온 상태에서 분해되어 탄소나노튜브를 형성할 수 있는 탄소 함유 가스이고, 구체적인 예로 지방족 알칸, 지방족 알켄, 지방족 알킨, 방향족 화합물 등 다양한 탄소 함유 화합물이 사용 가능하며, 보다 구체적으로는 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 큐멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드, 아세트알데히드 등의 화합물을 사용할 수 있다. The above carbon source gas is a carbon-containing gas that can be decomposed at high temperatures to form carbon nanotubes, and specific examples thereof include various carbon-containing compounds such as aliphatic alkanes, aliphatic alkenes, aliphatic alkynes, and aromatic compounds, and more specifically, compounds such as methane, ethane, ethylene, acetylene, ethanol, methanol, acetone, carbon monoxide, propane, butane, benzene, cyclohexane, propylene, butene, isobutene, toluene, xylene, cumene, ethylbenzene, naphthalene, phenanthrene, anthracene, acetylene, formaldehyde, and acetaldehyde.
상기 유동 가스는 유동층 반응기 내에서 합성되는 탄소나노튜브와 촉매 입자의 유동성을 부여하기 위한 것으로, 탄소원 가스나 탄소나노튜브와 반응하지 않으면서도, 높은 열적 안정성을 갖는 가스를 사용할 수 있다. 예컨대, 질소 가스나 불활성 가스를 상기 유동 가스로 사용할 수 있다.The fluidizing gas is intended to provide fluidity to carbon nanotubes and catalyst particles synthesized in a fluidized bed reactor, and a gas that does not react with the carbon source gas or carbon nanotubes but has high thermal stability can be used. For example, nitrogen gas or an inert gas can be used as the fluidizing gas.
상기 유동층 반응기는 탄소나노튜브 제조에 사용될 수 있는 것으로 알려진 것이라면 특별한 제한 없이 사용할 수 있다.The above fluidized bed reactor can be used without any special restrictions as long as it is known to be usable for producing carbon nanotubes.
본 발명의 탄소나노튜브 제조방법을 통해 제조되는 탄소나노튜브는 번들형 탄소나노튜브일 수 있고, 탄소나노튜브 제조용 촉매와 같이 20 내지 100㎛, 바람직하게는 40 내지 80㎛, 특히 바람직하게는 40 내지 60㎛의 수 평균 입도를 가질 수 있다. The carbon nanotubes produced by the carbon nanotube production method of the present invention may be bundle-shaped carbon nanotubes and, like the catalyst for producing carbon nanotubes, may have a number average particle size of 20 to 100 μm, preferably 40 to 80 μm, and particularly preferably 40 to 60 μm.
본 발명의 탄소나노튜브 제조방법을 통해 제조되는 탄소나노튜브 평균 길이는 5 내지 15㎛, 바람직하게는 8 내지 13㎛, 특히 바람직하게는 8 내지 10㎛일 수 있다. 또한, 상기 탄소나노튜브의 비표면적은 170 내지 300cm2/g, 바람직하게는 230 내지 260cm2/g 일 수 있다. 또한 상기 탄소나노튜브의 벌크 밀도는 15 내지 50kg/m3, 바람직하게는 20 내지 40kg/m3, 특히 바람직하게는 20 내지 30kg/m3일 수 있다. The average length of the carbon nanotube manufactured through the carbon nanotube manufacturing method of the present invention may be 5 to 15 μm, preferably 8 to 13 μm, and particularly preferably 8 to 10 μm. In addition, the specific surface area of the carbon nanotube may be 170 to 300 cm 2 /g, and preferably 230 to 260 cm 2 /g. In addition, the bulk density of the carbon nanotube may be 15 to 50 kg/m 3 , preferably 20 to 40 kg/m 3 , and particularly preferably 20 to 30 kg/m 3 .
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in more detail by way of examples and experimental examples in order to specifically explain the present invention, but the present invention is not limited by these examples and experimental examples. The examples according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the examples described below. The examples of the present invention are provided in order to more completely explain the present invention to a person having average knowledge in the art.
실시예 1Example 1
암모늄 바나데이트(NH4VO3) 9.45g, 시트르산 6.75g 및 질산 코발트 육수화물(Co(NO3)2·6H2O) 235.5g을 증류수 450g에 용해시켜 담지 용액을 제조하였다. 상기 담지 용액을 수 평균 입도가 4㎛인 보헤마이트 입자 300g에 부어 혼합 한 후, 215℃에서 30분 동안 분무 건조하여 중간체를 제조하였다. 수득된 중간체를 670℃에서 1시간 동안 소성하여 탄소나노튜브 제조용 촉매 입자를 수득하였다.A support solution was prepared by dissolving 9.45 g of ammonium vanadate (NH 4 VO 3 ), 6.75 g of citric acid, and 235.5 g of cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O) in 450 g of distilled water. The support solution was poured onto 300 g of boehmite particles having a number average particle size of 4 μm, mixed, and spray dried at 215° C. for 30 minutes to prepare an intermediate. The obtained intermediate was calcined at 670° C. for 1 hour to obtain catalyst particles for producing carbon nanotubes.
실시예 2Example 2
실시예 1에서 보헤마이트 입자로 수 평균 입도가 1.4㎛인 것을 사용하였다는 점을 제외하고는 동일하게 실시하여 탄소나노튜브 제조용 촉매 입자를 수득하였다.A catalyst particle for producing carbon nanotubes was obtained by performing the same procedure as in Example 1, except that boehmite particles having an average particle size of 1.4 μm were used.
비교예 1Comparative Example 1
실시예 1에서 보헤마이트 입자로 수 평균 입도가 24㎛ 인 것을 사용하고, 분무 건조 대신 120℃에서 단순 건조하였다는 점을 제외하고는 동일하게 실시하여 탄소나노튜브 제조용 촉매 입자를 수득하였다.In Example 1, catalyst particles for producing carbon nanotubes were obtained by performing the same procedure as in Example 1, except that boehmite particles having an average particle size of 24 μm were used and simple drying at 120° C. was performed instead of spray drying.
비교예 2Comparative Example 2
비교예 1에서 보헤마이트 입자로 수 평균 입도가 50㎛인 것을 사용하였다는 점을 제외하고는 동일하게 실시하여 탄소나노튜브 제조용 촉매 입자를 수득하였다.Catalyst particles for producing carbon nanotubes were obtained by performing the same procedure as in Comparative Example 1, except that boehmite particles having an average particle size of 50 μm were used.
실험예 1. 제조된 촉매의 형태 및 구형도 확인Experimental Example 1. Confirmation of the shape and sphericity of the manufactured catalyst
상기 실시예 1 및 비교예 2에서 제조한 탄소나노튜브 제조용 촉매 입자의 형태를 SEM 이미지로 관찰하였으며, 100배율의 SEM 이미지로부터 이미지 분석 프로그램(Image J)를 이용하여 구형도를 확인하였다. 관찰된 실시예 1의 SEM 이미지를 도 1로, 비교예 2의 이미지를 도 2로 나타내었으며, 실시예 1의 구형도는 0.56, 비교예 2의 구형도는 0.3 이하의 값을 나타내었다.The morphology of the catalyst particles for manufacturing carbon nanotubes manufactured in the above Example 1 and Comparative Example 2 was observed using SEM images, and the sphericity was confirmed using an image analysis program (Image J) from the SEM images at 100x magnification. The observed SEM image of Example 1 is shown in Fig. 1, and the image of Comparative Example 2 is shown in Fig. 2. The sphericity of Example 1 was 0.56, and the sphericity of Comparative Example 2 was 0.3 or less.
상기 결과로부터, 본 발명의 탄소나노튜브 제조용 촉매는 높은 구형도를 가져 유동층 반응기에 적용 시 높은 유동성을 나태낼 것으로 예상할 수 있음을 확인하였다.From the above results, it was confirmed that the catalyst for producing carbon nanotubes of the present invention has a high sphericity and is expected to exhibit high fluidity when applied to a fluidized bed reactor.
실험예 2. 유동층 반응기에서의 촉매 유동성 확인Experimental Example 2. Confirmation of catalyst fluidity in a fluidized bed reactor
유동층 반응기 내부에서의 상하부 온도 편차가 큰 경우, 유동성이 나쁘며, 편차가 작은 경우에는 유동성이 좋은 것으로 판단되기 때문에, 상기 실시예 및 비교예에서 제조한 탄소나노튜브 제조용 촉매를 유동층 반응기에 주입한 후, 탄소나노튜브 합성 반응 중의 반응기 내부 상하부 온도 편차를 측정하였다. 그 결과를 하기 표 1로 나타내었다.When the upper and lower temperature difference inside the fluidized bed reactor is large, the fluidity is judged to be poor, and when the difference is small, the fluidity is judged to be good. Therefore, after the catalysts for carbon nanotube production manufactured in the above examples and comparative examples were injected into the fluidized bed reactor, the upper and lower temperature difference inside the reactor during the carbon nanotube synthesis reaction was measured. The results are shown in Table 1 below.
상기 결과로부터, 본 발명의 실시예에 따른 탄소나노튜브 제조용 촉매가 비교예 대비 유동성이 우수하여 반응기 내부의 상하부 온도 편차가 작음을 확인하였다.From the above results, it was confirmed that the catalyst for producing carbon nanotubes according to the embodiment of the present invention had excellent fluidity compared to the comparative example, and thus the upper and lower temperature difference inside the reactor was small.
실험예 3. 제조된 탄소나노튜브의 특성 확인Experimental Example 3. Confirmation of the characteristics of manufactured carbon nanotubes
55cm의 직경을 갖는 1.2m 원통형 쿼츠 유동층 반응기에 분산판을 삽입하고, 5g의 베드용 탄소나노튜브와 1g의 촉매를 혼합하여 주입한 후, 질소를 3000sccm으로 주입하였다. 그 후 반응기 내부 온도를 710℃까지 승온 시킨 후, 질소 2740sccm, 에틸렌 가스 460sccm으로 공급하여 1시간 20분 동안 반응시켜 탄소나노튜브를 합성하였다. 상기 실시예와 비교예의 촉매에 따라 합성된 탄소나노튜브의 입도와 벌크 밀도를 측정하여 하기 표 2로 나타내었다.A dispersion plate was inserted into a 1.2 m cylindrical quartz fluidized bed reactor with a diameter of 55 cm, 5 g of carbon nanotubes for a bed and 1 g of a catalyst were mixed and injected, and then nitrogen was injected at 3000 sccm. Thereafter, the internal temperature of the reactor was increased to 710°C, and 2740 sccm of nitrogen and 460 sccm of ethylene gas were supplied to react for 1 hour and 20 minutes to synthesize carbon nanotubes. The particle size and bulk density of the carbon nanotubes synthesized according to the catalysts of the above examples and comparative examples were measured, and the results are shown in Table 2 below.
상기 표 2로부터 본 발명의 촉매를 이용한 탄소나노튜브의 경우, 준수한 평균 입도와 벌크 밀도를 갖는다는 점을 확인하였다.From the above Table 2, it was confirmed that the carbon nanotubes using the catalyst of the present invention have satisfactory average particle size and bulk density.
Claims (15)
상기 담지체에 담지되어 있는 주촉매 성분 및 조촉매 성분;을 포함하며,
상기 판상형 미립자 금속 지지체의 수 평균 입도는 1 내지 10㎛인 탄소나노튜브 제조용 촉매.
A carrier in which a plurality of plate-shaped particulate metal supports are assembled; and
Contains a main catalyst component and a co-catalyst component supported on the above-mentioned support;
A catalyst for producing carbon nanotubes, wherein the average particle size of the plate-shaped particulate metal support is 1 to 10 μm.
상기 촉매의 수 평균 입도는 20 내지 100㎛인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the average particle size of the catalyst is 20 to 100 μm.
상기 촉매의 구형도는 0.4 내지 1인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the sphericity of the catalyst is 0.4 to 1.
상기 촉매는 내부 판상 구조를 갖는 것인 탄소나노튜브 제조용 촉매.
In the first paragraph,
The above catalyst is a catalyst for producing carbon nanotubes having an internal plate-like structure.
상기 판상형 미립자 금속 지지체의 수 평균 입도는 1 내지 5㎛인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the average particle size of the plate-shaped particulate metal support is 1 to 5 μm.
상기 판상형 미립자 금속 지지체는 마그네슘, 칼슘, 알루미늄 및 실리콘으로 이루어지는 군에서 선택되는 1종 이상의 금속 산화물인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the above plate-shaped particulate metal support is at least one metal oxide selected from the group consisting of magnesium, calcium, aluminum, and silicon.
상기 주촉매 성분은 니켈, 코발트 및 철로부터 선택되는 1종 이상인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the main catalyst component is at least one selected from nickel, cobalt, and iron.
상기 조촉매 성분은 몰리브덴 및 바나듐으로부터 선택되는 1종 이상인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, wherein the above-mentioned cocatalyst component is at least one selected from molybdenum and vanadium.
번들형 탄소나노튜브 제조에 사용되는 것인 탄소나노튜브 제조용 촉매.
In the first paragraph,
A catalyst for producing carbon nanotubes, which is used for producing bundled carbon nanotubes.
상기 혼합물을 분무 건조하여 촉매 중간체를 수득하는 단계; 및
상기 촉매 중간체를 소성하여 탄소나노튜브 제조용 촉매를 수득하는 단계;를 포함하는 제1항에 따른 탄소나노튜브 제조용 촉매의 제조방법.
A step of obtaining a mixture by mixing a supporting solution containing a main catalyst precursor, a cocatalyst precursor and a multicarboxylic acid and a plurality of plate-shaped particulate metal supports;
A step of spray drying the above mixture to obtain a catalyst intermediate; and
A method for producing a catalyst for producing carbon nanotubes according to claim 1, comprising the step of calcining the above catalyst intermediate to obtain a catalyst for producing carbon nanotubes.
상기 분무 건조는 150 내지 280℃의 온도에서 수행되는 것인 탄소나노튜브 제조용 촉매의 제조방법.
In Article 10,
A method for producing a catalyst for producing carbon nanotubes, wherein the spray drying is performed at a temperature of 150 to 280°C.
상기 소성은 500 내지 800℃의 온도에서 수행되는 것인 탄소나노튜브 제조용 촉매의 제조방법.
In Article 10,
A method for producing a catalyst for producing carbon nanotubes, wherein the above-mentioned calcination is performed at a temperature of 500 to 800°C.
상기 유동층 반응기에 탄소원 가스와 유동 가스를 공급하고 반응시켜 탄소나노튜브를 제조하는 단계;를 포함하는 탄소나노튜브의 제조방법.
A step of injecting a catalyst for producing carbon nanotubes according to any one of claims 1 to 9 and a carbon nanotube for a bed into a fluidized bed reactor; and
A method for producing carbon nanotubes, comprising the step of supplying a carbon source gas and a fluidizing gas to the fluidized bed reactor and reacting them to produce carbon nanotubes.
상기 탄소나노튜브는 번들형 탄소나노튜브인 탄소나노튜브의 제조방법.
In Article 13,
The above carbon nanotube is a method for manufacturing a carbon nanotube which is a bundle-type carbon nanotube.
상기 탄소나노튜브는 20 내지 100㎛의 수 평균 입도를 갖는 것인 탄소나노튜브의 제조방법.In Article 13,
A method for producing a carbon nanotube, wherein the carbon nanotube has an average particle size of 20 to 100 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190119114A KR102730292B1 (en) | 2019-09-26 | 2019-09-26 | Catalyst for Preparing Carbon Nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190119114A KR102730292B1 (en) | 2019-09-26 | 2019-09-26 | Catalyst for Preparing Carbon Nanotubes |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210036725A KR20210036725A (en) | 2021-04-05 |
KR102730292B1 true KR102730292B1 (en) | 2024-11-15 |
Family
ID=75462202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190119114A Active KR102730292B1 (en) | 2019-09-26 | 2019-09-26 | Catalyst for Preparing Carbon Nanotubes |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102730292B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220083396A (en) * | 2020-12-11 | 2022-06-20 | 주식회사 엘지화학 | Supported Catalyst for Preparing Carbon Nanotubes |
CN115806287A (en) * | 2021-09-15 | 2023-03-17 | 江苏天奈科技股份有限公司 | Arrayed carbon nanotubes and method for preparing arrayed carbon nanotubes and sheet catalyst |
KR20230061633A (en) | 2021-10-28 | 2023-05-09 | 주식회사 엘지화학 | Method for Preparing Catalyst for Manufacturing Carbon Nanotubes |
EP4338837A4 (en) * | 2022-01-13 | 2024-10-16 | LG Chem, Ltd. | PROCESS FOR PREPARING A CATALYST FOR THE PRODUCTION OF CARBON NANOTUBES |
US20240286116A1 (en) * | 2022-01-13 | 2024-08-29 | Lg Chem, Ltd. | Catalyst for producing carbon nanotubes |
CN114570380B (en) * | 2022-02-28 | 2024-07-23 | 诺瑞(深圳)新技术有限公司 | Catalyst for growing ultra-high specific surface area and small wall carbon nano tube and application thereof |
KR20240056880A (en) * | 2022-10-21 | 2024-05-02 | 금호석유화학 주식회사 | Preparing method of catalyst for preparing low-diameter carbon nanotube and preparing method of carbon nanotube using same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101508101B1 (en) | 2013-09-30 | 2015-04-07 | 주식회사 엘지화학 | Carbon nanotubes having high specific surface area and Process for preparing same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090125368A (en) | 2008-06-02 | 2009-12-07 | 현대중공업 주식회사 | Jig for drilling and reaming work |
EP2500091A1 (en) * | 2011-03-18 | 2012-09-19 | Nanocyl S.A. | Catalytic composition for synthesising carbon nanotubes |
KR101440417B1 (en) * | 2012-10-11 | 2014-09-15 | 주식회사 효성 | Manufacturing method of catalyst for synthesis of carbon nanotubes using ultrasonic pyrolysis and carbon nanotubes using the same |
KR101605621B1 (en) * | 2013-07-10 | 2016-03-22 | 주식회사 엘지화학 | Supported catalyst and carbon nanotubes preparing by using same |
KR101620194B1 (en) * | 2013-09-30 | 2016-05-12 | 주식회사 엘지화학 | Process for preparing carbon nanotube agglomerates having a controlled bulk density |
KR101608477B1 (en) * | 2014-03-11 | 2016-04-04 | 한화케미칼 주식회사 | Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof |
KR101781252B1 (en) * | 2014-09-26 | 2017-09-22 | 주식회사 엘지화학 | Process for preparing aggregates of carbon nanotubes |
-
2019
- 2019-09-26 KR KR1020190119114A patent/KR102730292B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101508101B1 (en) | 2013-09-30 | 2015-04-07 | 주식회사 엘지화학 | Carbon nanotubes having high specific surface area and Process for preparing same |
Non-Patent Citations (5)
Title |
---|
Feng Li et al, Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co-Al layered double hydroxide precursor, Catalysis Letters 99, 151~156쪽, 2005.2.발행* |
M.M. Shaijumon et al, Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties, Applied Surface Science 242, 1-2, 192~198쪽, 2004.9.25.온라인 공개 |
Meng-Qiang Zhao et al, Layered double hydroxides as catalysts for the efficient growth of ~ carbon nanotubes in a fluidized bed reactor, Carbon 48, 11, 3260~3270쪽, 2010.5.15.온라인 공개 |
Qiang Zhang et al, Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition, Carbon 48, 4, 1196~1209쪽, 2009.11.26.온라인 공개 |
Xu Xiang et al, Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes, Applied Clay Science 42, 3-4, 405~409쪽, 2008.4.26.온라인 공개 |
Also Published As
Publication number | Publication date |
---|---|
KR20210036725A (en) | 2021-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102730292B1 (en) | Catalyst for Preparing Carbon Nanotubes | |
US11752493B2 (en) | Supported catalyst, carbon nanotube assembly, and preparation method therefor | |
CN104918881B (en) | The method of the bulk density of control carbon nanotube agglomerate | |
US10758898B2 (en) | Method for manufacturing carbon nanotube agglomerate having controlled bulk density | |
EP3053877B1 (en) | Method for manufacturing bundle-type carbon nanotubes having a large specific surface area | |
KR101358264B1 (en) | Catalyst System for Multi-Walled Carbon Nanotube Production Process | |
KR101605621B1 (en) | Supported catalyst and carbon nanotubes preparing by using same | |
TW202239472A (en) | Supported catalyst for producing carbon nanotubes | |
KR101778834B1 (en) | Process for preparing carbon nanotubes and carbon nanotubes produced therfrom | |
JP2023533655A (en) | Improved catalyst for producing MWCNT | |
KR20230062780A (en) | Method for Preparing Catalyst for Manufacturing Carbon Nanotubes | |
KR101605938B1 (en) | Supported catalyst and carbon nanotubes prepared by using same | |
KR20200012563A (en) | Method for preparing carbonnanotube | |
KR20230061633A (en) | Method for Preparing Catalyst for Manufacturing Carbon Nanotubes | |
KR20240083847A (en) | Supported catalyst for preparing entangled carbon nano tube and method for preparing entangled carbon nano tube using the same | |
KR20240063802A (en) | Catalyst for manufacturing carbon nanotubes and method for preparing the same | |
KR20230114426A (en) | Method for preparing catalyst for manufacturing carbon nanotubes, catalyst for manufacturing carbon nanotubes, and method for preparing carbon nanotubes using the same | |
KR20220161847A (en) | Catalyst Composition for Preparing Carbon Nanotubes | |
KR20250060607A (en) | Carbon Nanotubes and Method for Preparing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190926 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20220302 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20190926 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240220 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241025 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241111 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241112 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |