KR102268111B1 - 전자기파 방사기 - Google Patents

전자기파 방사기 Download PDF

Info

Publication number
KR102268111B1
KR102268111B1 KR1020170033205A KR20170033205A KR102268111B1 KR 102268111 B1 KR102268111 B1 KR 102268111B1 KR 1020170033205 A KR1020170033205 A KR 1020170033205A KR 20170033205 A KR20170033205 A KR 20170033205A KR 102268111 B1 KR102268111 B1 KR 102268111B1
Authority
KR
South Korea
Prior art keywords
metal layer
electromagnetic wave
ports
emitter
wave emitter
Prior art date
Application number
KR1020170033205A
Other languages
English (en)
Other versions
KR20180085642A (ko
Inventor
백찬욱
파얌 헤이다리
페이만 나자리
Original Assignee
삼성전자주식회사
더 리전트 오브 더 유니버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 더 리전트 오브 더 유니버시티 오브 캘리포니아 filed Critical 삼성전자주식회사
Priority to US15/875,526 priority Critical patent/US10601140B2/en
Publication of KR20180085642A publication Critical patent/KR20180085642A/ko
Priority to US16/805,091 priority patent/US11316275B2/en
Application granted granted Critical
Publication of KR102268111B1 publication Critical patent/KR102268111B1/ko
Priority to US17/708,963 priority patent/US11817625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

원편광된 밀리미터파/테라헤르츠파를 방사하는 전자기파 방사기가 개시된다. 개시된 전자기파 방사기는, 제 1 금속층; 상기 제 1 금속층의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 금속 측벽; 및 상기 제 1 금속층 위에 현가되어 있는 제 2 금속층;을 포함하며, 상기 제 2 금속층은 상기 제 2 금속층의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트 및 직경 방향을 따라 상기 제 2 금속층을 부분적으로 관통하는 다수의 슬롯을 포함한다.

Description

전자기파 방사기 {Electromagnetic wave radiator}
개시된 실시예는 전자기파 방사기에 관한 것으로, 더욱 상세하게는 원편광된 밀리미터파/테라헤르츠파를 방사하는 전자기파 방사기에 관한 것이다.
밀리미터파는 파장이 1~10밀리미터인 전자기파로서 30~300GHz의 주파수를 갖는다. 밀리미터파는 군사용 및 차량용 레이더, 위성 통신, 무선 항행 등 다양한 분야에서 사용되고 있으며, 차세대 5G 초광대역 이동 통신망에서 대용량의 음성, 화상 및 데이터 전송용으로 이용될 것으로 기대되고 있다. 테라헤르츠파는 0.3~3THz의 주파수를 갖는 전자기파로서 보안 및 의료용으로 사용되고 있으며 앞으로 그 용도가 증가할 것으로 전망되고 있다.
이에 따라 밀리미터파와 테라헤르츠파를 효율적으로 송수신하기 위한 다양한 장치가 개발되고 있다. 예를 들어, 밀리미터파/테라헤르츠파용 마이크로스트립 패치 안테나(microstrip patch antenna)는 면적이 크고 Q-인자가 낮다. 이를 개선하기 위해 멀티 포트 구동 안테나, 슬롯 링 진행파 방사기(slot-ring traveling-wave radiator), 방사 코어를 갖는 멀티 포트 구동 안테나(multi-port driven antenna with a radiator core) 등과 같은 장치가 밀리미터파/테라헤르츠파용으로 제안되고 있다. 그러나 이러한 장치들도 여전히 Q-인자가 충분히 높지 않다.
원편광된 밀리미터파/테라헤르츠파를 방사하는 전자기파 방사기를 제공한다.
일 실시예에 따른 전자기파 방사기는, 제 1 금속층; 상기 제 1 금속층의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 금속 측벽; 및 상기 제 1 금속층 위에 현가되어 있는 제 2 금속층;을 포함하며, 상기 제 2 금속층은 상기 제 2 금속층의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트 및 직경 방향을 따라 상기 제 2 금속층을 부분적으로 관통하는 다수의 슬롯을 포함할 수 있다.
상기 다수의 금속 측벽은 인접하는 2개의 금속 측벽 사이에 간격을 두고 배치되어 있으며, 각각의 포트는 상기 인접하는 2개의 금속 측벽 사이의 간격을 통과하도록 배치될 수 있다.
상기 제 1 금속층과 제 2 금속층은 서로 동일한 정다각형의 형태를 가질 수 있다.
각각의 측벽은 상기 제 1 금속층의 한 변의 가장자리에 상기 제 1 금속층의 상부 표면에 대해 수직하게 배치되며, 각각의 측벽의 길이는 상기 제 1 금속층의 한 변의 길이보다 작고, 상기 인접하는 2개의 금속 측벽 사이의 간격은 상기 제 1 금속층의 꼭지점에 위치할 수 있다.
다른 예에서, 상기 제 1 금속층과 제 2 금속층은 서로 동일한 원형의 형태를 가질 수 있다.
이 경우, 각각의 측벽은 상기 제 1 금속층의 가장자리에서 상기 제 1 금속층의 상부 표면에 대해 수직하게 배치되며, 각각의 측벽의 길이는 상기 제 1 금속층의 직경보다 작고, 상기 다수의 측벽 사이의 다수의 간격들은 상기 제 1 금속층의 가장자리를 따라 등간격으로 배치될 수 있다.
또한, 상기 다수의 포트는 각각 상기 다수의 측벽 사이의 다수의 간격들 사이로 상기 제 2 금속층의 직경 방향으로 돌출되며, 상기 다수의 슬롯은 상기 제 2 금속층의 중심과 상기 제 2 금속층의 각각의 꼭지점 사이에 배치될 수 있다.
상기 다수의 포트는 상기 제 2 금속층의 각각의 꼭지점으로부터 직경 방향으로 돌출되며, 상기 다수의 슬롯은 상기 제 2 금속층의 중심과 상기 제 2 금속층의 각각의 꼭지점 사이에 배치될 수 있다.
상기 제 2 금속층은 상기 다수의 측벽에 의해 둘러싸인 공간 내에 배치될 수 있다.
상기 제 2 금속층은 상기 제 2 금속층의 중심 영역을 부분적으로 관통하는 개구를 더 포함할 수 있다.
상기 전자기파 방사기는 상기 다수의 포트에 각각 신호를 제공하는 발진기를 더 포함하며, 상기 발진기는 상기 다수의 포트에 각각 제공되는 신호가 서로 동일한 진폭을 갖고 서로 다른 위상을 갖도록 구성될 수 있다.
인접한 2개의 포트들에 인가되는 신호들 사이의 위상차가 모두 동일할 수 있다.
상기 제 2 금속층은 n개의 포트를 가지며, m번째 포트에 인가되는 신호의 위상은 2mπ/n이고, 여기서 n은 자연수이며 m은 0, 1, ..., n-1이다.
다수의 발진기가 상기 다수의 포트에 서로 일대일로 연결될 수 있다.
하나의 발진기가 다수의 도선을 통해 상기 다수의 포트에 연결되어 있으며, 상기 다수의 도선은 서로 다른 위상 지연을 제공하는 전기적 길이를 각각 가질 수 있다.
상기 제 1 금속층, 상기 다수의 금속 측벽 및 상기 제 2 금속층으로 둘러싸인 공간은 전자기파의 공진을 위한 캐비티를 형성하며, 상기 제 1 금속층, 상기 다수의 금속 측벽 및 상기 제 2 금속층은 상기 캐비티가 공진기, 전력 결합기 및 방사의 역할을 수행하도록 구성될 수 있다.
상기 전자기파 방사기는 인접한 2개의 포트들 사이에 각각 배치된 다수의 증폭 회로를 더 포함하며, 상기 다수의 포트 사이에서 상기 다수의 증폭 회로가 루프의 형태로 배치될 수 있다.
각각의 증폭 회로는 입력 매칭부, 중간 매칭부, 출력 매칭부, 상기 입력 매칭부와 중간 매칭부 사이에 배치된 제 1 공통 이미터 트랜지스터, 및 상기 중간 매칭부와 출력 매칭부 사이에 배치된 제 2 공통 이미터 트랜지스터를 포함할 수 있다.
상기 제 1 공통 이미터 트랜지스터와 제 2 공통 이미터 트랜지스터가 동일할 수 있다.
다수의 포트에 대해 포트 임피던스들이 모두 동일하고 포트 어드미턴스들이 모두 동일할 수 있다.
각각의 포트 어드미턴스는 공진주파수에서 캐비티 부하 임피던스를 상쇄할 수 있는 음의 저항을 갖고, 상기 전자기파 방사기의 전체 어드미턴스는 공진주파수에서 음의 실수부를 가질 수 있다.
상기 전자기파 방사기는 원편광된 밀리미터파/테라헤르츠파를 방사하도록 구성될 수 있다.
또한, 일 실시예에 따른 전자기파 방사기 어레이는 2차원 배열된 다수의 전자기파 방사기를 포함할 수 있다. 여기서, 각각의 전자기파 방사기는, 제 1 금속층; 상기 제 1 금속층의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 금속 측벽; 및 상기 제 1 금속층 위에 현가되어 있는 제 2 금속층;을 포함하고, 상기 제 2 금속층은 상기 제 2 금속층의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트 및 직경 방향을 따라 상기 제 2 금속층을 부분적으로 관통하는 다수의 슬롯을 포함할 수 있다.
개시된 실시예에 따른 전자기파 방사기는 슬롯 안테나, 공진 탱크(resonant tank), 전력 결합 네트워크(power combining network)의 역할을 함께 수행할 수 있기 때문에 매우 작은 크기로 제작이 가능하여 밀리미터파/테라헤르츠파 송수신기의 소형화가 가능하다. 또한, 개시된 실시예에 따른 전자기파 방사기는 Q-인자를 향상시키고 낮은 위상 잡음(phase noise) 및 고효율 발진을 달성할 수 있다.
도 1은 일 실시예에 따른 전자기파 방사기의 분해 사시도를 개략적으로 보인다.
도 2는 일 실시예에 따른 전자기파 방사기의 사시도로서 전자기파 방사기의 각각의 포트에 인가되는 신호의 위상을 예시적으로 보인다.
도 3은 일 실시예에 따른 전자기파 방사기의 등가 회로를 개략적으로 보인다.
도 4는 전자기파 방사기의 하나의 포트에서 공진 회로에 대한 등가 회로를 예시적으로 보인다.
도 5는 전자기파 방사기의 인접한 2개의 포트 사이에 연결된 증폭 회로의 구성를 예시적으로 보인다.
도 6은 전자기파 방사기의 전체 어드미턴스의 실수부와 허수부에 대한 주파수 응답 특성을 예시적으로 보이는 그래프이다.
도 7은 전자기파 방사기에서 방사되는 전자기파의 편광 패턴을 측정한 결과를 보이는 예시적인 그래프이다.
도 8은 전자기파 방사기에서 방사되는 전자기파의 방사 패턴을 측정한 결과를 보이는 예시적인 그래프이다.
도 9는 전자기파 방사기에서 방사되는 전자기파의 스펙트럼 특성을 측정한 결과를 보이는 예시적인 그래프이다.
도 10은 전자기파 방사기에서 방사되는 전자기파의 위상 잡음 특성을 측정한 결과를 보이는 예시적인 그래프이다.
도 11a 내지 도 11e는 전자기파 방사기의 다양한 실시예들을 개략적으로 보인다.
도 12a 및 도 12b는 전자기파 방사기의 각각의 포트와 발진기의 연결 관계에 관한 다양한 실시예들을 개략적으로 보인다.
도 13 다른 실시예에 따른 전자기파 방사기 어레이를 개략적으로 보인다.
이하, 첨부된 도면들을 참조하여, 전자기파 방사기에 대해 상세하게 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 또한, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다. 또한 이하에서 설명하는 층 구조에서, "상부" 나 "상"이라고 기재된 표현은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다.
도 1은 일 실시예에 따른 전자기파 방사기의 분해 사시도를 개략적으로 보인다. 도 1을 참조하면, 일 실시예에 따른 전자기파 방사기(100)는 반도체 기판(101) 상에 배치된 제 1 금속층(110), 제 1 금속층(110)의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 측벽(120), 및 제 1 금속층(110) 위에 현가되어 있는 제 2 금속층(130)을 포함할 수 있다. 반도체 기판(101)은 예를 들어 실리콘이나 화합물 반도체 등과 같은 일반적인 반도체 소자용 재료로 이루어질 수 있다. 도시되지는 않았지만 반도체 기판(101) 상에는 전자기파 방사기(100)와 신호를 주고 받기 위한 회로가 형성될 수 있다. 또한, 제 2 금속층(130)이 제 1 금속층(110)에 대해 현가되도록 지지하기 위한 지지 구조(도시되지 않음)가 반도체 기판(101) 상에 마련될 수 있다.
제 1 금속층(110)은 얇고 납작한 금속판으로 이루어지며 반도체 기판(101)위에 배치될 수 있다. 예를 들어 제 1 금속층(110)의 두께는 약 0.3~0.6 um 범위의 두께를 가질 수 있으며, 약 1~2 mm 범위의 직경을 가질 수 있다. 또한, 제 1 금속층(110)은 원형 또는 정다각형의 형태를 가질 수 있다. 도 1에는 제 1 금속층(110)이 정팔각형의 형태를 갖는 것으로 도시되어 있으나, 반드시 이에 한정되는 것은 아니며, 결합시키고자 하는 신호의 위상 개수에 따라 다른 형태를 가질 수도 있다.
다수의 측벽(120)은 제 1 금속층(110)과 동일한 도전성 금속으로 이루어질 수 있다. 제 1 금속층(110)이 정다각형의 형태를 갖는 경우, 각각의 측벽(120)은 제 1 금속층(110)의 한 변의 가장자리에서 제 1 금속층(110)의 상부 표면에 대해 수직하게 배치될 수 있다. 예를 들어, 각각의 측벽(120)는 약 12~16 um 범위의 높이를 가질 수 있다. 각각의 측벽(120)의 길이는 제 1 금속층(110)의 한 변의 길이보다 작아서 인접한 2개의 측벽(120)들 사이에 간격이 형성될 수 있다. 예를 들어, 인접한 2개의 측벽(120)들 사이의 간격은 제 1 금속층(110)의 각각의 꼭지점에 위치할 수 있다. 또는, 제 1 금속층(110)이 원형의 형태를 갖는 경우에는, 각각의 측벽(120)의 길이는 제 1 금속층(110)의 직경보다 작고, 다수의 측벽(120)들 사이의 다수의 간격들이 제 1 금속층(110)의 가장자리를 따라 등간격으로 위치할 수 있다.
제 2 금속층(130)은 얇고 납작한 금속판으로 이루어지며 제 1 금속층(110)과 동일한 도전성 금속으로 이루어질 수 있다. 예를 들어, 제 2 금속층(130)은 약 2~4 um 범위의 두께를 가질 수 있다. 또한, 제 2 금속층(130)은 제 1 금속층(110)과 동일한 원형 또는 정다각형 형태를 가질 수 있다. 제 2 금속층(130)의 크기 또는 직경은 제 1 금속층(110)의 크기 또는 직경보다 작아서, 제 2 금속층(130)이 다수의 측벽(120)에 의해 둘러싸인 공간 내에 배치될 수 있다. 앞서 설명한 바와 같이, 제 2 금속층(130)은 반도체 기판(101) 상에 마련된 지지 구조(도시되지 않음)에 의해 제 1 금속층(110) 위에 현가될 수 있다. 제 1 금속층(110)과 제 2 금속층(130) 사이의 간격은 측벽(120)의 높이보다 약간 작을 수 있다.
또한, 제 2 금속층(130)은 제 2 금속층(130)의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트(131), 제 2 금속층(130)의 중심과 각각의 꼭지점 사이에 형성된 다수의 슬롯(132), 및 제 2 금속층(130)의 중심에 형성된 개구(133)를 포함할 수 있다. 다수의 포트(131)는 후술하는 발진기(150, 도 12a 및 12b 참조)로부터 신호를 인가 받기 위한 것으로, 발진기에서 발생한 신호는 다수의 포트(131)를 통해 전자기파 방사기(100)에 제공된다. 각각의 포트(131)는 제 2 금속층(130)의 각각의 꼭지점으로부터 연장되며, 인접한 2개의 측벽(120)들 사이의 간격을 통과하여 제 1 금속층(110)의 바깥쪽으로 돌출될 수 있다. 제 2 금속층(130)을 부분적으로 관통하여 형성된 각각의 슬롯(132)은 제 2 금속층(130)의 중심과 각각의 꼭지점 사이에서 직경 방향으로 길게 형성되어 있다. 전자기파 방사기(100)에서 방사되는 전자기파는 각각의 슬롯(132)을 통해 방출될 수 있다. 또한, 제 2 금속층(130)의 중심 영역을 부분적으로 관통하여 형성된 원형의 개구(133)는 잡음을 억제하는 역할을 할 수 있다. 이러한 전자기파 방사기(100)는 방사 대칭적인 구조를 가지며, 제 1 금속층(110), 다수의 측벽(120) 및 제 2 금속층(130)으로 둘러싸인 공간 내에는 전자기파, 특히 밀리미터파/테라헤르츠파의 공진을 위한 캐비티가 형성될 수 있다.
도 2는 일 실시예에 따른 전자기파 방사기(100)의 사시도로서 전자기파 방사기(100)의 각각의 포트(131)에 인가되는 신호의 위상을 예시적으로 보인다. 도 2를 참조하면, 인접한 2개의 포트(131) 사이에는 2단계의 증폭 회로(140)가 배치될 수 있으며, 전체 전자기파 방사기(100)의 포트(131)들 사이에 다수의 증폭 회로(140)들이 루프의 형태로 배치될 수 있다. 그리고, 전자기파 방사기(100)의 다수의 포트(131)들에는 일정한 위상 간격을 갖는 신호들이 각각 인가될 수 있다. 즉, 전자기파 방사기(100)에서 인접한 2개의 포트(131)들에 인가되는 신호들 사이의 위상차는 모두 동일하다. 예를 들어, 전자기파 방사기(100)가 8개의 포트(131)를 갖는 경우에, 12시 방향에 있는 포트(131)에 0°의 위상을 갖는 신호가 인가되고, 반시계 방향을 따라 45°, 90°, 135°, 180°, 225°, 270°, 315°의 위상을 갖는 신호가 각각의 포트(131)에 인가될 수 있다.
다수의 포트(131)들을 통해 인가된 일정한 위상차를 갖는 신호들은 제 1 금속층(110), 다수의 측벽(120) 및 제 2 금속층(130)으로 둘러싸인 캐비티 내에서 공진을 하게 된다. 즉, 전자기파 방사기(100)는 다수의 포트(131)들을 통해 인가된 일정한 위상차를 갖는 신호들에 의해 여기된다. 그러면 다수의 포트(131)들을 통해 인가된 신호들이 캐비티 내에서 결합될 수 있다. 캐비티는 그 내부에 전자기파를 가두어 상당한 양의 전자기파 에너지를 저장할 수 있다. 그런 후, 공진주파수에 해당하는 전자기파를 다수의 슬롯(132)을 통해 외부로 방출할 수 있다. 이러한 본 실시예에 따른 전자기파 방사기(100)는 슬롯 안테나, 공진 탱크(resonant tank), 전력 결합 네트워크(power combining network), 방사기의 역할을 함께 수행할 수 있다. 따라서, 별도의 결합 네트워크나 안테나 버퍼를 사용할 필요가 없기 때문에 매우 작은 크기로 전자기파 방사기(100)를 제작할 수 있어서 밀리미터파/테라헤르츠파 송수신기의 소형화가 가능하다.
일정한 위상차를 갖는 신호들을 결합하기 때문에, 본 실시예에 따른 전자기파 방사기(100)로부터는 원편광된 신호가 방출될 수 있다. 또한 일정한 위상차를 갖는 신호들이 캐비티에서 공진한 후에 방출되기 때문에 기판에서의 누설 등이 없이 원편광된 신호가 방출될 수 있으며 따라서 실리콘 렌즈 등과 같은 구성이 요구되지 않는다. 또한, 전자기파가 캐비티 내의 넓은 속박 면적(confined area)에 분포하기 때문에, 캐비티 공진은 Q-인자를 향상시킬 수 있다. 그 결과, 전자기파 방사기(100)에 인가되는 신호의 전류 밀도를 낮추어 전도 손실(conductive loss)을 줄일 수 있다. 또한, 높은 Q-인자로 인해 낮은 위상 잡음(phase noise)과 고효율 발진을 달성할 수 있다.
도 3은 일 실시예에 따른 전자기파 방사기(100)의 등가 회로를 개략적으로 보인다. 도 3을 참조하면, 전체 전자기파 방사기(100)의 포트(131)들 사이에 증폭 회로(140)들이 루프의 형태로 배치되며, 각각의 포트(131)에 공진 회로(141)가 배치된다. 도 3에 도시된 바와 같이, 전자기파 방사기(100)는 회전 대칭적인 캐비티 구조를 가질 수 있다. 정상발진(steady-state oscillation)과 같이, 전자기파 방사기(100)의 다수의 포트(131)들에 인가되는 신호들은 일정한 위상 간격을 가지며 모두 동일한 진폭(amplitude)을 갖는다. 이러한 구조에서 전자기파 방사기(100)의 모든 포트(131)들에서 포트 임피던스는 동일할 수 있다.
도 4는 전자기파 방사기(100)의 하나의 포트(131)에서 공진 회로에 대한 등가 회로를 예시적으로 보인다. RLC 병렬 공진 회로로 도시된 도 4의 등가 회로에서 L, C, RT의 값은 제 1 금속층(110), 측벽(120), 및 제 2 금속층(130)의 크기와 두께, 제 1 금속층(110)과 제 2 금속층(130) 사이의 간격, 슬롯(131)의 길이 등 다양한 요소에 의해 결정될 수 있으며, 전자기파 방사기(100)의 발진 주파수에 따라 적절하게 선택될 수 있다. 예를 들어, L=1.44pH, C=1.31pF, RT=40Ω 인 경우에 전자기파 방사기(100)의 발진 주파수는 약 116GHz일 수 있다.
도 5는 전자기파 방사기(100)의 인접한 2개의 포트(131) 사이에 연결된 증폭 회로(140)의 구성을 예시적으로 보인다. 도 5를 참조하면, 각각의 증폭 회로(140)는 입력 매칭부, 중간 매칭부, 및 출력 매칭부를 포함한다. 또한, 입력 매칭부와 중간 매칭부 사이에 제 1 공통 이미터 트랜지스터(common-emitter transistor)(Q1)가 배치되며, 중간 매칭부와 출력 매칭부 사이에 제 2 공통 이미터 트랜지스터(Q2)가 배치된다. 이러한 전자기파 방사기(100)의 증폭 회로(140)들은 예를 들어 도 1에 도시된 반도체 기판(101) 상에 마련될 수 있다.
본 실시예에 따르면, 제 1 및 제 2 공통 이미터 트랜지스터(Q1, Q2)의 이득을 각각 AV1, AV2라 할 때, 제 1 및 제 2 공통 이미터 트랜지스터(Q1, Q2)가 동일한 최적 전압 이득을 가질 때(즉, AV1=AV2=AOPT), 최대의 무선 출력(RF power)을 갖는 발진을 달성할 수 있다. 전자기파 방사기(100)가 예를 들어 8개의 포트(131)를 갖는 경우에, 각각의 증폭 회로(140)에서 입력 매칭부, 중간 매칭부, 및 출력 매칭부는 π/4의 위상차에 맞추어 설계될 수 있다. 또한, 각각의 증폭 회로(140)에서 입력 매칭부, 중간 매칭부, 및 출력 매칭부는 공진주파수 이외의 주파수를 억제하도록 설계될 수 있다.
회전 대칭 구조를 갖는 전자기파 방사기(100)에서 루프 형태로 배열된 각각의 증폭 회로(140)들은 모두 동일한 포트 어드미턴스(admittance)를 갖는다. 또한, 발진이 지속되기 위하여 각각의 포트 어드미턴스는 공진주파수에서 캐비티 부하 임피던스(cavity loading impedance)를 상쇄할 수 있는 음의 저항(negative resistance)을 갖는다. 그리고, 전자기파 방사기(100)의 전체 어드미턴스가 공진주파수에서 음의 실수부를 가지면 캐비티에 최대 발진 전력이 전달될 수 있다.
예를 들어, 도 6은 전자기파 방사기(100)의 전체 어드미턴스의 실수부와 허수부에 대한 주파수 응답 특성을 예시적으로 보이는 그래프이다. 도 6의 그래프에서 전자기파 방사기(100)가 8개의 포트(131)를 가지며 인접한 2개의 포트(131) 사이에 π/4의 위상차가 있고 공진주파수는 115GHz인 것으로 가정하였다. 도 6을 참조하면, 전체 어드미턴스의 실수부는 공진주파수에서 0과 같거나 또는 0보다 작으며 허수부는 0과 같다. 그리고 공진주파수 이외의 주파수에서 전체 어드미턴스의 실시부는 0보다 크다.
도 7은 전자기파 방사기(100)에서 방사되는 전자기파의 편광 패턴을 측정한 결과를 보이는 예시적인 그래프이고, 도 8은 전자기파 방사기에서 방사되는 전자기파의 방사 패턴을 측정한 결과를 보이는 예시적인 그래프이다. 도 7 및 도 8의 그래프는 방위각(Φ)이 0°인 평면과 90°인 평면에서 측정된 결과이다. 도 7의 그래프에 도시된 바와 같이, 전자기파 방사기(100)에서 방사된 전자기파의 편광 패턴은 축비(axial ratio)가 0.8dB보다 우수한 원편광이라는 것을 알 수 있다. 또한, 도 8의 그래프에 도시된 바와 같이, 전자기파 방사기(100)에서 방사된 전자기파의 방사 패턴은 빔폭이 25°이고 기축선(boresight)에 대해 거의 대칭적이라는 것을 알 수 있다.
도 9는 전자기파 방사기(100)에서 방사되는 전자기파의 스펙트럼 특성을 측정한 결과를 보이는 예시적인 그래프이고, 도 10은 전자기파 방사기(100)에서 방사되는 전자기파의 위상 잡음 특성을 측정한 결과를 보이는 예시적인 그래프이다. 도 9를 참조하면, 전자기파 방사기(100)에서 방사된 전자기파는 114.1GHz에서 피크를 갖는다. 피크에서 유효등방성복사전력(equivalent isotropically radiated power; EIRP)은 14dBm이며, EIRP/PDC는 5%, DC-to-RF 효율은 3.7%이었다. 또한, 도 10을 참조하면, 전자기파 방사기(100)는 -99.3dBc/Hz@1MHz 오프셋의 위상 잡음을 보였다. 이러한 낮은 위상 잡음은 전자기파 방사기(100)의 캐비티 공진을 통한 높은 Q 인자와 캐비티를 통한 포트들의 전력 결합으로 인한 잡음 억제에 의한 것이다. 또한 DC 전력이 크게 변화하더라도 높은 Q 인자 공진으로 인해 공진 주파수는 1.3GHz (1%) 미만으로 변화하였다.
지금까지 전자기파 방사기(100)가 8개의 포트(131)를 갖는 경우에 대해 예시적으로 설명하였으나, 전자기파 방사기(100)의 포트(131)들의 개수는 반드시 이에 한정되지 않는다. 도 11a 내지 도 11e는 전자기파 방사기(100)의 다양한 실시예들을 개략적으로 보인다. 도 11a를 참조하면, 전자기파 방사기(100)는 3개의 포트(131)들을 가질 수 있다. 이 경우, 제 1 금속층(110)과 제 2 금속층(130)은 원형 또는 정삼각형의 형태를 가질 수 있다. 그리고, 인접한 포트(131)들 사이의 위상차는 2π/3일 수 있다. 예를 들어, 12시 방향에 있는 포트(131)에 0°의 위상을 갖는 신호가 인가되고, 반시계 방향을 따라 120°, 240°의 위상을 갖는 신호가 각각의 포트(131)에 인가될 수 있다. 또한, 도 11b에 도시된 바와 같이, 전자기파 방사기(100)는 4개의 포트(131)들을 가질 수도 있다. 이 경우, 제 1 금속층(110)과 제 2 금속층(130)은 원형 또는 정사각형의 형태를 가질 수 있고, 인접한 포트(131)들 사이의 위상차는 π/2일 수 있다. 예를 들어, 12시 방향에 있는 포트(131)에 0°의 위상을 갖는 신호가 인가되고, 반시계 방향을 따라 90°, 180°, 270°의 위상을 갖는 신호가 각각의 포트(131)에 인가될 수 있다. 또한, 도 11c 내지 도 11e에 도시된 바와 같이, 전자기파 방사기(100)는 5개, 6개 또는 8개의 포트(131)들을 가질 수 있다. 그 외에 필요에 따라 전자기파 방사기(100)의 포트(131)들의 개수를 선택할 수 있다.
도 12a 및 도 12b는 전자기파 방사기(100)의 각각의 포트(131)와 발진기(150)의 연결 관계에 관한 다양한 실시예들을 개략적으로 보인다. 도 12a에 도시된 바와 같이, 전자기파 방사기(100)는 다수의 포트(131a, 131b, 131c)에 각각 개별적으로 연결된 다수의 발진기(150a, 150b, 150c)를 포함할 수 있다. 예를 들어, 전자기파 방사기(100)가 3개의 포트(131a, 131b, 131c)를 갖는 경우, 전자기파 방사기(100)는 3개의 발진기(150a, 150b, 150c)를 포함할 수 있다. 이 경우, 제 1 포트(131a)에 연결된 제 1 발진기(150a)는 0°의 위상을 갖는 신호를 제공할 수 있으며, 제 2 포트(131b)에 연결된 제 2 발진기(150b)는 120°의 위상을 갖는 신호를 제공할 수 있고, 제 3 포트(131c)에 연결된 제 3 발진기(150c)는 240°의 위상을 갖는 신호를 제공할 수다. 이러한 제 1 내지 제 3 발진기(150a, 150b, 150c)들은 도 1에 도시된 반도체 기판(101) 상에 마련될 수 있다.
또한, 도 12b를 참조하면, 전자기파 방사기(100)는 다수의 포트(131a, 131b, 131c)에 연결된 하나의 발진기(150)만을 포함할 수도 있다. 하나의 발진기(150)는 다수의 도선(151a, 151b, 151c)을 통해 다수의 포트(131a, 131b, 131c)에 각각 신호를 공급할 수 있다. 이 경우, 다수의 도선(151a, 151b, 151c)의 전기적 길이를 조절하여 다수의 포트(131a, 131b, 131c)에 인가되는 신호의 위상을 적절하게 지연시킬 수 있다. 즉, 다수의 도선(151a, 151b, 151c)은 서로 다른 위상 지연을 제공하는 전기적 길이를 가질 수 있다. 예를 들어, 전자기파 방사기(100)가 3개의 포트(131a, 131b, 131c)를 갖는 경우, 제 2 포트(131b)에 연결된 제 2 도선(151b)은 제 1 포트(131a)에 연결된 제 1 도선(151a)에 대해 120°의 위상 지연을 갖도록 전기적 길이가 선택될 수 있다. 마찬가지로, 제 3 포트(131c)에 연결된 제 3 도선(151c)은 제 2 포트(131b)에 연결된 제 2 도선(151b)에 대해 120°의 위상 지연을 갖도록 전기적 길이가 선택될 수 있다.
도 13 다른 실시예에 따른 전자기파 방사기 어레이를 개략적으로 보인다. 도 13을 참조하면, 전자기파 방사기 어레이(200)는 2차원 배열된 다수의 전자기파 방사기(100)를 포함할 수 있다. 다수의 전자기파 방사기(100)를 사용함으로써 전자기파 방사기 어레이(200)는 방사되는 밀리미터파/테라헤르츠파의 전체적인 출력을 증가시킬 수 있다. 또한, 빔 스티어링(beam steering) 기술을 통해 밀리미터파/테라헤르츠파의 주로브(main lobe) 방향을 조절할 수 있다. 예를 들어, 전자기파 방사기 어레이(200)에서 다수의 포트(131a, 131b, 131c, 131d, 131e, 131f, 131g, 131h)에 인가되는 신호의 위상들이 모든 전자기파 방사기(100)들에 대해 동일하다면, 전자기파 방사기 어레이(200)의 정면을 향해 밀리미터파/테라헤르츠파가 진행할 수 있다. 예를 들어, 모든 전자기파 방사기(100)들의 제 1 포트(131a)에 0°의 위상을 갖는 신호가 인가되고, 제 2 포트(131b)에 45°의 위상을 갖는 신호가 인가되고, 제 3 포트(131c)에 90°의 위상을 갖는 신호가 인가되고, 제 4 포트(131d)에 135°의 위상을 갖는 신호가 인가되고, 제 5 포트(131e)에 180°의 위상을 갖는 신호가 인가되고, 제 6 포트(131f)에 225°의 위상을 갖는 신호가 인가되고, 제 7 포트(131g)에 270°의 위상을 갖는 신호가 인가되고, 제 8 포트(131h)에 315°의 위상을 갖는 신호가 인가되면, 전자기파 방사기 어레이(200)의 정면을 향해 밀리미터파/테라헤르츠파가 진행할 수 있다.
또한, 다수의 전자기파 방사기(100)의 대응하는 포트마다 신호의 위상이 조금씩 달라진다면 밀리미터파/테라헤르츠파의 진행 방향을 좌우 측면 또는 상하 방향으로 변화시킬 수도 있다. 예를 들어, 도 13에서 가장 좌측 열(column)에 배치된 전자기파 방사기(100)들의 제 1 포트(131a)에 0°의 위상을 갖는 신호가 인가되고, 좌측 두 번째 열에 배치된 전자기파 방사기(100)들의 제 1 포트(131a)에 10°의 위상을 갖는 신호가 인가되고, 좌측 세 번째 열에 배치된 전자기파 방사기(100)들의 제 1 포트(131a)에 20°의 위상을 갖는 신호가 인가될 수 있다. 이 경우, 좌측 두 번째 열에 배치된 전자기파 방사기(100)들의 제 2 내지 제 8 포트(131b~131h)에는 55°, 100°, 145°, 190°, 235°, 280°, 325°의 위상을 갖는 신호가 각각 인가된다. 그리고, 좌측 세 번째 열에 배치된 전자기파 방사기(100)들의 제 2 내지 제 8 포트(131b~131h)에는 65°, 110°, 155°, 200°, 245°, 290°, 335°의 위상을 갖는 신호가 각각 인가된다. 그러면, 밀리미터파/테라헤르츠파는 도면을 향해 볼 때 기울어진 파면을 갖게 되어 우측 방향으로 진행할 수 있다.
상술한 전자기파 방사기는 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
100.....전자기파 방사기 101.....기판
110.....제 1 금속층 120.....측벽
130.....제 2 금속층 131.....포트
132.....슬롯 133.....개구
140.....증폭 회로 150.....발진기
151.....도선 200.....전자기파 방사기 어레이

Claims (23)

  1. 제 1 금속층;
    상기 제 1 금속층의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 금속 측벽; 및
    상기 제 1 금속층 위에 현가되어 있는 제 2 금속층;을 포함하며,
    상기 제 2 금속층은 상기 제 2 금속층의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트 및 직경 방향을 따라 상기 제 2 금속층을 부분적으로 관통하는 다수의 슬롯을 포함하고,
    상기 제 1 금속층, 상기 다수의 측벽 및 상기 제 2 금속층으로 둘러싸인 공간은 전자기파의 공진을 위한 캐비티를 형성하며, 상기 제 1 금속층, 상기 다수의 측벽 및 상기 제 2 금속층은 상기 캐비티가 공진기, 전력 결합기 및 방사기의 역할을 수행하도록 구성되는 전자기파 방사기.
  2. 제 1 항에 있어서,
    상기 다수의 측벽은 인접하는 2개의 측벽 사이에 간격을 두고 배치되어 있으며, 각각의 포트는 상기 인접하는 2개의 측벽 사이의 간격을 통과하도록 배치된 전자기파 방사기.
  3. 제 1 항에 있어서,
    상기 제 1 금속층과 제 2 금속층은 서로 동일한 정다각형의 형태를 갖는 전자기파 방사기.
  4. 제 3 항에 있어서,
    각각의 측벽은 상기 제 1 금속층의 한 변의 가장자리에 상기 제 1 금속층의 상부 표면에 대해 수직하게 배치되며, 각각의 측벽의 길이는 상기 제 1 금속층의 한 변의 길이보다 작고, 인접하는 2개의 측벽 사이의 간격은 상기 제 1 금속층의 꼭지점에 위치하는 전자기파 방사기.
  5. 제 3 항에 있어서,
    상기 다수의 포트는 상기 제 2 금속층의 각각의 꼭지점으로부터 직경 방향으로 돌출되며, 상기 다수의 슬롯은 상기 제 2 금속층의 중심과 상기 제 2 금속층의 각각의 꼭지점 사이에 배치된 전자기파 방사기.
  6. 제 1 항에 있어서,
    상기 제 1 금속층과 제 2 금속층은 서로 동일한 원형의 형태를 갖는 전자기파 방사기.
  7. 제 6 항에 있어서,
    각각의 측벽은 상기 제 1 금속층의 가장자리에서 상기 제 1 금속층의 상부 표면에 대해 수직하게 배치되며, 각각의 측벽의 길이는 상기 제 1 금속층의 직경보다 작고, 상기 다수의 측벽 사이의 다수의 간격들은 상기 제 1 금속층의 가장자리를 따라 등간격으로 배치되는 전자기파 방사기.
  8. 제 6 항에 있어서,
    상기 다수의 포트는 각각 상기 다수의 측벽 사이의 다수의 간격들 사이로 상기 제 2 금속층의 직경 방향으로 돌출되는 전자기파 방사기.
  9. 제 1 항에 있어서,
    상기 제 2 금속층은 상기 다수의 측벽에 의해 둘러싸인 공간 내에 배치되는 전자기파 방사기.
  10. 제 1 항에 있어서,
    상기 제 2 금속층은 상기 제 2 금속층의 중심 영역을 부분적으로 관통하는 개구를 더 포함하는 전자기파 방사기.
  11. 제 1 항에 있어서,
    상기 다수의 포트에 각각 신호를 제공하는 발진기를 더 포함하며,
    상기 발진기는 상기 다수의 포트에 각각 제공되는 신호가 서로 동일한 진폭을 갖고 서로 다른 위상을 갖도록 구성되는 전자기파 방사기.
  12. 제 11 항에 있어서,
    인접한 2개의 포트들에 인가되는 신호들 사이의 위상차가 모두 동일한 전자기파 방사기.
  13. 제 12 항에 있어서,
    상기 제 2 금속층은 n개의 포트를 가지며, m번째 포트에 인가되는 신호의 위상은 2mπ/n이고, 여기서 n은 자연수이며 m은 0, 1, ..., n-1인 전자기파 방사기.
  14. 제 11 항에 있어서,
    다수의 발진기가 상기 다수의 포트에 서로 일대일로 연결되어 있는 전자기파 방사기.
  15. 제 11 항에 있어서,
    하나의 발진기가 다수의 도선을 통해 상기 다수의 포트에 연결되어 있으며, 상기 다수의 도선은 서로 다른 위상 지연을 제공하는 전기적 길이를 각각 갖는 전자기파 방사기.
  16. 삭제
  17. 제 1 항에 있어서,
    인접한 2개의 포트들 사이에 각각 배치된 다수의 증폭 회로를 더 포함하며, 상기 다수의 포트 사이에서 상기 다수의 증폭 회로가 루프의 형태로 배치되어 있는 전자기파 방사기.
  18. 제 17 항에 있어서,
    각각의 증폭 회로는 입력 매칭부, 중간 매칭부, 출력 매칭부, 상기 입력 매칭부와 중간 매칭부 사이에 배치된 제 1 공통 이미터 트랜지스터, 및 상기 중간 매칭부와 출력 매칭부 사이에 배치된 제 2 공통 이미터 트랜지스터를 포함하는 전자기파 방사기.
  19. 제 18 항에 있어서,
    상기 제 1 공통 이미터 트랜지스터와 제 2 공통 이미터 트랜지스터가 동일한 전압 이득을 갖는 전자기파 방사기.
  20. 제 17 항에 있어서,
    다수의 포트에 대해 포트 임피던스들이 모두 동일하고 포트 어드미턴스들이 모두 동일한 전자기파 방사기.
  21. 제 20 항에 있어서,
    각각의 포트 어드미턴스는 공진주파수에서 캐비티 부하 임피던스를 상쇄할 수 있는 음의 저항을 갖고, 상기 전자기파 방사기의 전체 어드미턴스는 공진주파수에서 음의 실수부를 갖는 전자기파 방사기.
  22. 제 1 항에 있어서,
    상기 전자기파 방사기는 원편광된 밀리미터파/테라헤르츠파를 방사하도록 구성된 전자기파 방사기.
  23. 2차원 배열된 다수의 전자기파 방사기를 포함하며,
    각각의 전자기파 방사기는:
    제 1 금속층;
    상기 제 1 금속층의 가장자리를 따라 수직하게 돌출하여 배치된 다수의 금속 측벽; 및
    상기 제 1 금속층 위에 현가되어 있는 제 2 금속층;을 포함하고,
    상기 제 2 금속층은 상기 제 2 금속층의 가장자리로부터 직경 방향으로 돌출하여 연장된 다수의 포트 및 직경 방향을 따라 상기 제 2 금속층을 부분적으로 관통하는 다수의 슬롯을 포함하고,
    상기 제 1 금속층, 상기 다수의 측벽 및 상기 제 2 금속층으로 둘러싸인 공간은 전자기파의 공진을 위한 캐비티를 형성하며, 상기 제 1 금속층, 상기 다수의 측벽 및 상기 제 2 금속층은 상기 캐비티가 공진기, 전력 결합기 및 방사기의 역할을 수행하도록 구성되는, 전자기파 방사기 어레이.
KR1020170033205A 2017-01-19 2017-03-16 전자기파 방사기 KR102268111B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/875,526 US10601140B2 (en) 2017-01-19 2018-01-19 Electromagnetic wave radiator
US16/805,091 US11316275B2 (en) 2017-01-19 2020-02-28 Electromagnetic wave radiator
US17/708,963 US11817625B2 (en) 2017-01-19 2022-03-30 Electromagnetic wave radiator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762447963P 2017-01-19 2017-01-19
US62/447,963 2017-01-19

Publications (2)

Publication Number Publication Date
KR20180085642A KR20180085642A (ko) 2018-07-27
KR102268111B1 true KR102268111B1 (ko) 2021-06-22

Family

ID=63078523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170033205A KR102268111B1 (ko) 2017-01-19 2017-03-16 전자기파 방사기

Country Status (1)

Country Link
KR (1) KR102268111B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102483252B1 (ko) * 2019-10-31 2023-01-03 동국대학교 산학협력단 테라헤르츠 대역의 증폭기 및 그 설계 방법과 이를 구비한 라디에이터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060007044A1 (en) * 2004-07-01 2006-01-12 Crouch David D Multiple-port patch antenna
US20120068892A1 (en) * 2010-09-21 2012-03-22 Victor Shtrom Antenna with Dual Polarization and Mountable Antenna Elements
US20120249392A1 (en) * 2009-12-25 2012-10-04 Zhuopeng Wang Dual-polarization omnidirectional antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060007044A1 (en) * 2004-07-01 2006-01-12 Crouch David D Multiple-port patch antenna
US20120249392A1 (en) * 2009-12-25 2012-10-04 Zhuopeng Wang Dual-polarization omnidirectional antenna
US20120068892A1 (en) * 2010-09-21 2012-03-22 Victor Shtrom Antenna with Dual Polarization and Mountable Antenna Elements

Also Published As

Publication number Publication date
KR20180085642A (ko) 2018-07-27

Similar Documents

Publication Publication Date Title
US10601140B2 (en) Electromagnetic wave radiator
KR102063222B1 (ko) 안테나 어레이에서의 상호 결합을 감소시키기 위한 장치 및 방법
Zhang et al. Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot
RU2622483C1 (ru) Мобильное устройство с фазированной антенной решеткой вытекающей волны
US9537208B2 (en) Dual polarization current loop radiator with integrated balun
Zhang et al. Wideband millimeter-wave substrate integrated waveguide slotted narrow-wall fed cavity antennas
Liu et al. Some recent developments of microstrip antenna
RU2629534C1 (ru) Фазированная антенная решетка с адаптируемой поляризацией
US8686920B2 (en) Miniaturized radio repeater
Vilenskiy et al. Reconfigurable transmitarray with near-field coupling to gap waveguide array antenna for efficient 2-D beam steering
Balaji et al. An inverted L‐strip loaded ground with hollow semi‐hexagonal four‐element polarization diversity UWB‐MIMO antenna
Mahamuni Performance enhancement of microstrip patch antenna using metamaterial cover
US11437736B2 (en) Broadband antenna having polarization dependent output
Kabiri et al. Gain-bandwidth enhancement of 60GHz single-layer Fabry-Pérot cavity antennas using sparse-array
Kachhia et al. Logarithmic slots antennas using substrate integrated waveguide
KR102268111B1 (ko) 전자기파 방사기
Foudazi et al. Mutual coupling in aperture-coupled patch antennas fed by orthogonal SIW line
Selvaraju et al. Compact 4-element beam steerable printed adaptive array antenna for 5G application
Mir et al. Broadband circular polarized cross bow tie antenna for terahertz range
Hasan et al. Dual band slotted printed circular patch antenna with superstrate and EBG structure for 5G applications
US11817625B2 (en) Electromagnetic wave radiator
Amjadi et al. A compact, broadband, two-port slot antenna system for full-duplex applications
Tran et al. High‐gain dual‐polarized antenna for ultrawideband applications
Saeidi et al. High gain wide band flexible leaky wave MIMO antenna for AiP applications
JP2017059909A (ja) 導波管/伝送線路変換器、アレーアンテナ及び平面アンテナ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant