KR102252283B1 - High concentration of lithium using adsorption means - Google Patents

High concentration of lithium using adsorption means Download PDF

Info

Publication number
KR102252283B1
KR102252283B1 KR1020190155509A KR20190155509A KR102252283B1 KR 102252283 B1 KR102252283 B1 KR 102252283B1 KR 1020190155509 A KR1020190155509 A KR 1020190155509A KR 20190155509 A KR20190155509 A KR 20190155509A KR 102252283 B1 KR102252283 B1 KR 102252283B1
Authority
KR
South Korea
Prior art keywords
lithium
water
desorption
adsorption
tank
Prior art date
Application number
KR1020190155509A
Other languages
Korean (ko)
Inventor
박준우
이준희
Original Assignee
주식회사 셀젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀젠 filed Critical 주식회사 셀젠
Priority to KR1020190155509A priority Critical patent/KR102252283B1/en
Application granted granted Critical
Publication of KR102252283B1 publication Critical patent/KR102252283B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention relates to a lithium concentration method using an absorption means, which easily concentrates lithium desorbed from an absorbent. According to the present invention, the method comprises: a first step of providing a mixture of lithium manganese oxide (LMO); a second step of forming an absorbent in a porous thread shape; a third step of providing an adsorption means; a fourth step of introducing the absorption means into an absorption/desorption tank on a water tank; a fifth step of adsorbing lithium to the adsorbent; and a sixth step of desorbing/moving the lithium adsorbed on the absorbent.

Description

흡착수단을 이용한 리튬의 고농도화 방법{High concentration of lithium using adsorption means}High concentration of lithium using adsorption means

본 발명은 흡착수단을 이용한 리튬의 고농도화 방법에 관한 것으로, 더욱 상세하게는 흡착수단으로 순환 공급되는 해수, 담수, 폐수 등에 포함된 리튬을 다공성의 흡착제를 갖는 흡착수단을 이용하여 보다 효과적으로 흡착하며, 흡착수단으로부터 탈착되는 리튬은 흡착수단으로 순환 공급되는 농축수에 용이하게 배출함으로써, 흡착수단으로부터 탈착된 리튬이 농축수에 고농도화되는 흡착수단을 이용한 리튬의 고농도화 방법에 관한 것이다.The present invention relates to a method for high concentration of lithium using an adsorption means, and more particularly, more effectively adsorbs lithium contained in seawater, fresh water, wastewater, etc. circulated to the adsorption means using an adsorption means having a porous adsorbent. , Lithium desorbed from the adsorption means is easily discharged to concentrated water circulating and supplied to the adsorption means, so that lithium desorbed from the adsorption means is highly concentrated in concentrated water.

전기자동차 및 에너지 저장 장치 시장의 확대로, 리튬이온 전지의 수요가 증가하고 있는 상황이다. 리튬이온 전지의 전극 소재를 제조하기 위한 리튬 원료 물질의 수요는 2018년 1만4천 톤에서 2025년 18만 톤 규모로 증가할 것으로 예상된다.With the expansion of the electric vehicle and energy storage device markets, the demand for lithium-ion batteries is increasing. Demand for lithium raw materials for manufacturing electrode materials for lithium-ion batteries is expected to increase from 14,000 tons in 2018 to 180,000 tons in 2025.

다만, 해외 리튬 자원 확보가 어려운 상황이며, 미리 선점한 국가들의 독점적인 생산으로 인해 향후 리튬 자원의 수급에 문제가 될 수 있고, 관련 국내 업체의 경쟁력이 취약해질 수 있다.However, it is difficult to secure overseas lithium resources, and monopolistic production of preoccupied countries may cause problems in the supply and demand of lithium resources in the future, and the competitiveness of related domestic companies may be weakened.

최근 리튬이온 전지 제조 분야에서 탄산리튬보다는 반응성이 우수한 수산화리튬의 수요가 급격하게 늘어나고 있는 상황이므로, 리튬 자원 확보 방안 마련 및 고순도 수산화리튬의 제조 기술 개발이 필요하다. 탄산리튬은 다양하게 산업적으로 활용될 수 있고, 우리나라는 2016년 기준 2만 톤 가량이 수입되고 있어, 산업용 탄산리튬을 리튬전지에 적용할 수 있도록 수산화리튬으로 용이하게 전환하는 기술을 확보한다면, 국내 리튬 자원 수급 및 리튬전지 관련 기업의 국제 경쟁력을 강화시킬 수 있다.In recent years, in the field of lithium-ion battery manufacturing, the demand for lithium hydroxide, which is more reactive than lithium carbonate, is rapidly increasing, so it is necessary to prepare a method for securing lithium resources and develop a manufacturing technology for high-purity lithium hydroxide. Lithium carbonate can be used industrially in a variety of ways, and Korea is importing about 20,000 tons as of 2016, so if we secure the technology to easily convert industrial lithium carbonate to lithium hydroxide so that it can be applied to lithium batteries, domestic It can strengthen the international competitiveness of lithium resource supply and demand and lithium battery related companies.

한편, 양극활물질의 경우 리튬 이차전지의 재료 비중의 30 % 이상을 차지하는 핵심소재로, 세계적으로 이차전지 양극재의 경우 시장규모는 2014년 31 조에서 2020년 9 조원으로 세배 가까운 높은 성장세를 기록할 전망이다. LMO(LiMn2O4)는 리튬 이차전지의 양극 활물질의 한 종류로 가격 및 안정성 측면에서 개발된 소재인데 전체 양극재 수요의 27 %를 차지하고 있으며, 연간 50 %정도 증가율을 보이고 있다. LMO는 스피넬 구조로써 구조적인 안정성을 지니며 고효율의 충방전에 유리하며, 망간의 가격 경쟁력과 고온에서의 안정성 등의 장점 때문에 사용량이 증가하는 추세이다. Meanwhile, the cathode active material is a core material that accounts for more than 30% of the material proportion of lithium secondary batteries, and the market size of the global secondary battery cathode material is expected to record nearly three times higher growth from 31 trillion won in 2014 to 9 trillion won in 2020. to be. LMO (LiMn2O4) is a type of cathode active material for lithium secondary batteries, developed in terms of price and stability, and accounts for 27% of the total demand for cathode materials, and is showing an annual increase of about 50%. LMO is a spinel structure that has structural stability, is advantageous for high-efficiency charging and discharging, and its usage is increasing due to advantages such as cost competitiveness of manganese and stability at high temperatures.

이를 위해, 현재 해수, 간수, 리튬 배터리 폐액 등의 수용액에 미량으로 녹아있는 리튬을 효과적으로 채취하기 위한 연구들이 진행되고 있고, 이러한 연구들의 주된 관건은 리튬 이온에 대한 높은 선택성과 우수한 흡 탈착 성능을 가진 고성능 흡착제를 개발하는 것이었다.To this end, studies are currently being conducted to effectively collect lithium dissolved in trace amounts in aqueous solutions such as seawater, bittern water, and lithium battery waste. The main key of these studies is high selectivity for lithium ions and excellent adsorption and desorption performance. It was to develop a high-performance adsorbent.

종래, 그러한 연구들의 결실로서 망간 산화물을 재료로 하여 고상 반응법 또는 겔 공법으로 리튬의 흡 탈착이 용이한 분말을 제조하는 방법이 공지되어 있고, 그러한 방법으로 제조한 분말은 리튬 2차 전지용 양극 재료(등록특허공보 제10-0245808호, 등록특허공보 제10-0589031호 등), 리튬 흡착제의 재료 등으로 이용되어 왔다.Conventionally, as a fruit of such studies, a method of preparing a powder with easy adsorption and desorption of lithium using a solid-phase reaction method or a gel method using manganese oxide as a material is known, and the powder prepared by such a method is a cathode material for lithium secondary batteries. (Registered Patent Publication No. 10-0245808, Registered Patent Publication No. 10-0589031, etc.), it has been used as a material for a lithium adsorbent.

그러나, 분말 상태의 리튬 흡착제를 등록특허공보 제10-0895866호에 적용하여 사용하는 것은 취급상 불편이 따르기 때문에 이를 성형하여 이용할 필요성이 꾸준히 재기 되었으며, 성형방법으로서 등록특허공보 제10-0895866호에는 분말을 알루미나 파우더와 혼합한 후, PVC와 같은 공극 형성제를 사용하여 상기 분말 및 알루미나 파우더의 혼합물을 덩어리지게 함으로써 구슬 형태로 흡착제를 제조하는 방법이 개시되어 있다.However, since the use of powdery lithium adsorbents applied to Registration Patent Publication No. 10-0895866 is inconvenient in handling, the necessity of molding and using them has been steadily revised, and as a molding method, Registration Patent Publication No. 10-0895866 After mixing the powder with the alumina powder, there is disclosed a method of producing an adsorbent in the form of beads by lumping the mixture of the powder and the alumina powder using a pore-forming agent such as PVC.

일반적으로 리튬 흡착제는 다양한 환경의 수용액 상에서 물리적, 화학적 안정성을 유지해야 하고, 아울러 높은 흡착효율을 보장할 수 있는 흡착 자리를 제공해 줄 수 있어야 한다. 또한, 분말 형태의 흡착제가 갖는 리튬이온에 대한 높은 선택성을 유지하여 리튬 이외의 원소를 흡착하지 않아야 하고, 흡착 후 리튬의 회수를 위한 탈착 과정도 용이해야 하는 등의 필수적인 특성을 갖추어야 한다.In general, lithium adsorbents must maintain physical and chemical stability in aqueous solutions in various environments, and must be able to provide an adsorption site capable of guaranteeing high adsorption efficiency. In addition, it must have essential characteristics such as not to adsorb elements other than lithium by maintaining high selectivity for lithium ions of the powdered adsorbent, and to facilitate the desorption process for recovering lithium after adsorption.

그러나, 상기와 같은 종래의 PVC 첨가법을 이용하여 구슬 형태로 흡착제를 제조할 경우에는, 취급은 용이하나, 초기 분말 흡착제에 비해 약 30% 이상 흡착 능력이 떨어진다는 문제점과 높은 제조단가와 환경오염 문제 등이 지적됨과 아울러 흡착된 리튬을 탈착하여 포집하는데도 용이하지 않은 문제점이 있는 것이었다.However, in the case of manufacturing the adsorbent in the form of beads using the conventional PVC addition method as described above, it is easy to handle, but the problem that the adsorption capacity is lowered by about 30% or more compared to the initial powder adsorbent, and high manufacturing cost and environmental pollution. In addition to being pointed out, there is a problem that it is not easy to desorb and collect the adsorbed lithium.

따라서, 상기와 같은 종래의 문제점을 해결한 흡착수단을 이용한 리튬의 고농도화 방법이 요구되고 있는 실정이다.Accordingly, there is a demand for a method of increasing the concentration of lithium using an adsorption means that solves the conventional problems as described above.

1. 등록특허공보 제10-0245808호1. Registered Patent Publication No. 10-0245808 2. 등록특허공보 제10-0589031호2. Registered Patent Publication No. 10-0589031 3. 등록특허공보 제10-0895866호3. Registered Patent Publication No. 10-0895866 4. 등록특허공보 제10-0895866호4. Registered Patent Publication No. 10-0895866 5. 공개특허공보 제10-2011-0024856호5. Unexamined Patent Publication No. 10-2011-0024856 6. 등록특허공보 제10-1682217호6. Registered Patent Publication No. 10-1682217

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 발명된 것으로서, 제조 및 취급이 용이하도록 함과 아울러 리튬을 선택적으로 흡착할 수 있도록 하는 흡착제를 갖는 흡착수단으로 순환 공급되는 해수, 담수, 폐수 등에 포함된 리튬을 다공성의 흡착제를 갖는 흡착수단을 이용하여 보다 효과적으로 흡착하도록 하며, 흡착수단으로부터 탈착되는 리튬은 흡착수단으로 순환 공급되는 농축수에 용이하게 배출하도록 함으로써, 흡착수단으로부터 탈착된 리튬이 농축수에 고농도화되도록 하는 흡착수단을 이용한 리튬의 고농도화 방법을 제공하는데 그 목적이 있다.The present invention was invented to solve the problems of the prior art as described above, and seawater, fresh water, and wastewater circulated to an adsorption means having an adsorbent that allows for selective adsorption of lithium as well as ease of manufacture and handling. Lithium contained in the etc. is more effectively adsorbed using an adsorption means having a porous adsorbent, and lithium desorbed from the adsorption means is easily discharged to the concentrated water circulating and supplied to the adsorption means, so that the lithium desorbed from the adsorption means is An object thereof is to provide a method for high concentration of lithium using an adsorption means for high concentration in concentrated water.

상기와 같은 목적을 실현하기 위하여, 본 발명은 LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성된 혼합물을 구비하는 제1단계와, 상기 혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함과 아울러 혼합물에 혼합된 N-메틸-2-피롤리돈(NMP)을 물에 용출시켜 지름이 0.2~2mm 로 형성되는 다공성 실 형태의 흡착제를 형성하는 제2단계와, 상기 흡착제를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착제수용부에 내입하여 흡착수단을 구비하는 제3단계와, 상기 흡착수단을 내측에 수용 가능한 공간부가 형성됨과 아울러 내측에는 상호 이격되어 외부로부터 전류를 공급받는 양극 및 음극이 구비되며, 양극 및 음극 사이에는 이온막이 구비되고, 이온막에 의해 흡탈착수조 및 농축수조로 구획되며, 흡탈착수조에는 리튬을 포함하는 공급수를 공급수순환파이프를 통해 순환 공급하는 공급수수용부 및 리튬을 흡착제로부터 탈착하기 위한 탈착수를 탈착수순환파이프를 통해 순환 공급하는 탈착수수용부가 각각 연결 구비되고, 농축수조에는 이온막을 지나온 리튬을 수용하기 위한 농축수를 농축수순환파이프를 통해 순환 공급하는 농축수수용부가 연결 구비되는 수조 상의 흡탈착수조에 내입하는 제4단계와, 상기 흡탈착수조에 공급수를 4~8시간 순환 공급하여 흡착제에 리튬을 흡착시키는 제5단계와, 상기 흡탈착수조에서 공급수를 제거함과 아울러 수조 상에 탈착수 및 농축수를 각각 순환 공급하며, 양극 및 음극에 전류를 공급하여 흡착제에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막을 통과한 리튬을 이동시키는 제6단계를 포함하여 이루어지는 흡착수단을 이용한 리튬의 고농도화 방법을 제공한다.In order to achieve the above object, the present invention is based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder, 60 to 100 parts by weight of polyvinylidene fluoride (PVDF), N-methyl-2-pyrrolidone (NMP) The first step of providing a mixture formed by mixing 10 to 30 parts by weight, and the mixture is spun into water at 50 to 70° C. through a cylindrical nozzle, and N-methyl-2-pyrrolidone (NMP) is mixed in the mixture. ) Is eluted in water to form an adsorbent in the form of a porous yarn having a diameter of 0.2 to 2 mm, and a space capable of accommodating the adsorbent is formed inside and inserted into the adsorbent receiving unit formed in the form of a mesh network. Thus, a third step of providing an adsorption means, and a space capable of accommodating the adsorption means is formed inside, and a positive electrode and a negative electrode that are spaced apart from each other to receive current from the outside are provided inside, and an ion film is provided between the positive electrode and the negative electrode. It is divided into an adsorption and desorption water tank and a concentration water tank by an ion membrane, and a supply water receiving part that circulates and supplies supply water containing lithium through a supply water circulation pipe to the adsorption and desorption tank, and desorption water for desorption of lithium from the adsorbent. Each of the desorption water receiving units circulating and supplying the desorption water through the desorption water circulation pipe is connected, and the concentrated water receiving unit circulating and supplying concentrated water for receiving lithium that has passed through the ion membrane is connected to the condensed water tank. The fourth step of entering the adsorption and desorption tank of the bed, the fifth step of circulating supply water to the adsorption and desorption tank for 4 to 8 hours to adsorb lithium to the adsorbent, and the water tank while removing the feed water from the adsorption and desorption tank Adsorption comprising a sixth step of circulating desorption water and concentrated water to the phase, respectively, supplying current to the anode and the cathode to desorb lithium adsorbed on the adsorbent and moving lithium that has passed through the ion membrane with concentrated water. It provides a method for high concentration of lithium using means.

이와 같이 이루어지는 본 발명에 의한 흡착수단을 이용한 리튬의 고농도화 방법은 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착제가 내입되는 흡착수단을 사용함으로써 공급수 및 탈착수가 흡착제 사이를 용이하게 순환할 수 있으며, 이로 인해 흡착제에 리튬이 효과적으로 흡착 또는 탈착됨과 아울러 흡착제에서 탈착된 리튬은 이온막을 통과하여 순환 공급되는 농축수에 용이하게 농축되는 이점이 있는 것이다.The method for high concentration of lithium using the adsorption means according to the present invention made as described above uses an adsorption means into which an adsorbent having a porous thread form that selectively adsorbs lithium contained in seawater, fresh water, wastewater, etc. Water can easily circulate between the adsorbents, and thus lithium is effectively adsorbed or desorbed from the adsorbent, and lithium desorbed from the adsorbent is easily concentrated in concentrated water circulating through the ion membrane.

도 1은 본 발명의 흡착수단을 이용한 리튬의 고농도화 방법을 설명하기 위한 순서도,
도 2는 본 발명의 흡착수단을 이용한 리튬의 고농도화 방법에 따른 예시도이다.
1 is a flow chart for explaining a method for high concentration of lithium using the adsorption means of the present invention,
Figure 2 is an exemplary view according to the method for high concentration of lithium using the adsorption means of the present invention.

이하 본 발명의 실시를 위한 구체적인 내용을 첨부한 도면을 참조하여 더욱 상세하게 설명한다.It will be described in more detail below with reference to the accompanying drawings specific details for the implementation of the present invention.

도 1 내지 도 2를 참조하여 보면 본 발명에 의한 흡착수단을 이용한 리튬의 고농도화 방법은 LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성된 혼합물을 구비하는 제1단계와, 상기 혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함과 아울러 혼합물에 혼합된 N-메틸-2-피롤리돈(NMP)을 물에 용출시켜 지름이 0.2~2mm 로 형성되는 다공성 실 형태의 흡착제(10)를 형성하는 제2단계와, 상기 흡착제(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착제수용부(12)에 내입하여 흡착수단(14)을 구비하는 제3단계와, 상기 흡착수단(14)을 내측에 수용 가능한 공간부가 형성됨과 아울러 내측에는 상호 이격되어 외부로부터 전류를 공급받는 양극(16) 및 음극(18)이 구비되며, 양극(16) 및 음극(18) 사이에는 이온막(20)이 구비되고, 이온막(20)에 의해 흡탈착수조(22) 및 농축수조(24)로 구획되며, 흡탈착수조(22)에는 리튬을 포함하는 공급수를 공급수순환파이프(26)를 통해 순환 공급하는 공급수수용부(28) 및 리튬을 흡착제(10)로부터 탈착하기 위한 탈착수를 탈착수순환파이프(30)를 통해 순환 공급하는 탈착수수용부(32)가 각각 연결 구비되고, 농축수조(24)에는 이온막(20)을 지나온 리튬을 수용하기 위한 농축수를 농축수순환파이프(34)를 통해 순환 공급하는 농축수수용부(36)가 연결 구비되는 수조(38) 상의 흡탈착수조(22)에 내입하는 제4단계와, 상기 흡탈착수조(22)에 공급수를 4~8시간 순환 공급하여 흡착제(10)에 리튬을 흡착시키는 제5단계와, 상기 흡탈착수조(22)에서 공급수를 제거함과 아울러 수조(38) 상에 탈착수 및 농축수를 각각 순환 공급하며, 양극(16) 및 음극(18)에 전류를 공급하여 흡착제(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(20)을 통과한 리튬을 이동시키는 제6단계(S60)로 이루어진다.Referring to Figures 1 to 2, the method for high concentration of lithium using the adsorption means according to the present invention is based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder, 60 to 100 parts by weight of polyvinylidene fluoride (PVDF), N -A first step of providing a mixture formed by mixing 10 to 30 parts by weight of methyl-2-pyrrolidone (NMP), and the mixture is spun into water at 50 to 70° C. through a cylindrical nozzle and mixed into the mixture. A second step of eluting N-methyl-2-pyrrolidone (NMP) in water to form an adsorbent 10 in the form of a porous yarn having a diameter of 0.2 to 2 mm, and accommodating the adsorbent 10 inside. In addition to the formation of a possible space, a third step of having the adsorption means 14 inserted into the adsorbent receiving unit 12 formed in the form of a mesh network, and a space capable of accommodating the adsorption means 14 inside is formed. An anode 16 and a cathode 18 that are spaced apart from each other and receive current from the outside are provided inside, and an ion film 20 is provided between the anode 16 and the cathode 18, and the ion film 20 It is divided into the adsorption and desorption tank 22 and the concentration tank 24 by the adsorption and desorption tank 22, and a supply water receiving part 28 for circulating and supplying the supply water containing lithium to the adsorption and desorption tank 22 through the supply water circulation pipe 26. And desorption water receiving units 32 for circulating and supplying desorption water for desorption of lithium from the adsorbent 10 through the desorption water circulation pipe 30, respectively, and an ion membrane 20 in the concentrated water tank 24 The fourth step of introducing the concentrated water for receiving the lithium that has passed through the concentrated water circulation pipe 34 into the adsorption and desorption tank 22 on the water tank 38 in which the concentrated water receiving part 36 is connected and provided And, a fifth step of circulating supply water to the adsorption and desorption tank 22 for 4 to 8 hours to adsorb lithium to the adsorbent 10, and removing the supply water from the adsorption and desorption tank 22 and a water tank ( 38) Desorption water and concentrated water are circulated and supplied to the bed, respectively, and current is supplied to the positive electrode 16 and the negative electrode 18 to desorb lithium adsorbed on the adsorbent 10 and use concentrated water to form an ion membrane. It consists of a sixth step (S60) of moving the lithium that has passed through (20).

먼저, LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성된 혼합물을 구비한다.(S10단계)First, a mixture formed by mixing 60 to 100 parts by weight of polyvinylidene fluoride (PVDF) and 10 to 30 parts by weight of N-methyl-2-pyrrolidone (NMP) based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder is provided. (S10 step)

이때, 상기 혼합물은 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 30~60분 동안 중탕으로 교반한 후 교반 된 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP) 상에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 30~60분 동안 교반하여 형성되는 것이다.At this time, the mixture is polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) stirred in a bath for 30 to 60 minutes at a temperature of 30 to 40 °C, and then stirred polyvinylidene fluoride. It is formed by adding LMO (Lithium Manganese Oxide) powder onto lide (PVDF) and N-methyl-2-pyrrolidone (NMP) and stirring for 30 to 60 minutes.

한편, 상기 N-메틸-2-피롤리돈(NMP)은 디메틸술폭시드(DMSO), N,N'-디메틸포름아미드(DMF), 테트라히드로푸란(THF), 디메틸아세트아미드(DMAc), 2-부탄온, 4-메틸-2-펜탄온, 클로로포름, 디클로로메탄, 자일렌 및 벤젠으로 구성되는 극성 유기용매 및 비극성 유기용매 및 메틸알코올, 에틸알코올, 1-부틸 알코올, 이소프로필 알코올, 이소부틸 알코올, t -부틸알코올, 1-펜틸알콜, 1-헥실알코올, 벤질알코올, 2,2,2-트리플루오로에탄올, 라우릴 알코올, 올레일알코올, 및 에틸렌글리콜 중 선택된 어느 하나 또는 2종 이상으로 대체되어 사용될 수도 있는 것이다.On the other hand, the N-methyl-2-pyrrolidone (NMP) is dimethyl sulfoxide (DMSO), N,N'-dimethylformamide (DMF), tetrahydrofuran (THF), dimethylacetamide (DMAc), 2 -Polar organic solvent and non-polar organic solvent consisting of butanone, 4-methyl-2-pentanone, chloroform, dichloromethane, xylene and benzene, and methyl alcohol, ethyl alcohol, 1-butyl alcohol, isopropyl alcohol, isobutyl Any one or two or more selected from alcohol, t-butyl alcohol, 1-pentyl alcohol, 1-hexyl alcohol, benzyl alcohol, 2,2,2-trifluoroethanol, lauryl alcohol, oleyl alcohol, and ethylene glycol It can also be used by replacing it with.

상기 혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함과 아울러 혼합물에 혼합된 N-메틸-2-피롤리돈(NMP)을 물에 용출시켜 지름이 0.2~2mm 로 형성되는 다공성 실 형태의 흡착제(10)를 형성한다.(S20단계)A porous yarn having a diameter of 0.2 to 2 mm by spinning the mixture into water at 50 to 70°C through a cylindrical nozzle and eluting the N-methyl-2-pyrrolidone (NMP) mixed in the mixture into water. To form an adsorbent 10 in the form of (S20 step)

이때, 상기 흡착제(10)는 각각의 지름이 0.2~2mm로 형성됨이 바람직한 것이며, 흡착제(10)의 지름이 0.2mm 이하로 형성될 시에는 흡착제(10)가 쉽게 끊어지거나 재생시 손상율이 높아 재생율이 낮은 문제점이 있는 것이고, 흡착제(10)의 지름이 2mm 이상으로 형성될 시에는 흡착제(10)가 차지하는 부피에 비해 흡착되는 리튬의 양이 적어 효율이 떨어지는 문제점이 있는 것이다.At this time, the adsorbent 10 is preferably formed to have a diameter of 0.2 to 2 mm, and when the diameter of the adsorbent 10 is formed to be 0.2 mm or less, the adsorbent 10 is easily broken or the damage rate is high during regeneration. There is a problem in that the regeneration rate is low, and when the diameter of the adsorbent 10 is formed with a diameter of 2 mm or more, the amount of lithium adsorbed is small compared to the volume occupied by the adsorbent 10 and thus the efficiency is lowered.

상기 흡착제(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착제수용부(12)에 내입하여 흡착수단(14)을 구비한다.(S30단계)A space capable of accommodating the adsorbent 10 is formed inside, and an adsorption means 14 is provided by inserting the adsorbent 10 into the adsorbent receiving part 12 formed in the form of a mesh network (step S30).

이때, 상기 흡착제수용부(12)는 내측에 수용되는 흡착제(10) 상에 후술되는 공급수 및 탈착수가 용이하게 순환 공급될 수 있도록 메쉬망 형태로 형성되는 것이다.At this time, the adsorbent receiving part 12 is formed in a mesh network shape so that the feed water and desorption water described later can be easily circulated and supplied to the adsorbent 10 accommodated therein.

한편, 상기 흡착수단(14)은 1개 또는 다수개가 구비되어 사용되는 것이다.On the other hand, the adsorption means 14 is provided with one or more used.

상기 흡착수단(14)을 내측에 수용 가능한 공간부가 형성됨과 아울러 내측에는 상호 이격되어 외부로부터 전류를 공급받는 양극(16) 및 음극(18)이 구비되며, 양극(16) 및 음극(18) 사이에는 이온막(20)이 구비되고, 이온막(20)에 의해 흡탈착수조(22) 및 농축수조(24)로 구획되며, 흡탈착수조(22)에는 리튬을 포함하는 공급수를 공급수순환파이프(26)를 통해 순환 공급하는 공급수수용부(28) 및 리튬을 흡착제(10)로부터 탈착하기 위한 탈착수를 탈착수순환파이프(30)를 통해 순환 공급하는 탈착수수용부(32)가 각각 연결 구비되고, 농축수조(24)에는 이온막(20)을 지나온 리튬을 수용하기 위한 농축수를 농축수순환파이프(34)를 통해 순환 공급하는 농축수수용부(36)가 연결 구비되는 수조(38) 상의 흡탈착수조(22)에 내입한다.(S40단계)The adsorption means (14) is provided with a space capable of accommodating the inside, and an anode (16) and a cathode (18) that are spaced apart from each other to receive current from the outside are provided inside, and between the anode (16) and the cathode (18) Is provided with an ion membrane 20, is divided into an adsorption and desorption tank 22 and a concentration tank 24 by the ion membrane 20, and the supply water containing lithium is supplied to the adsorption and desorption tank 22. The supply water receiving unit 28 circulating and supplying through the pipe 26 and the desorption water receiving unit 32 circulating and supplying desorption water for desorption of lithium from the adsorbent 10 through the desorption water circulation pipe 30 are provided. Each of the condensed water tank 24 is provided with a condensed water receiving part 36 connected to the condensed water tank 24 for circulating and supplying concentrated water for receiving the lithium that has passed through the ion membrane 20 through the concentrated water circulation pipe 34 (38) Into the absorption and desorption tank 22 on the top (S40 step)

이때, 상기 수조(38)는 이온막(20)에 의해 구획이 흡탈착수조(22) 및 농축수조(24)로 나뉘게 되는 것이다.At this time, the water tank 38 is divided into an adsorption and desorption tank 22 and a concentration tank 24 by an ion membrane 20.

또한, 상기 수조(38)의 농축수조(24) 상에는 농축수를 교반하는 교반기(40)가 구비됨이 더욱 바람직한 것이며, 교반기(40)는 리튬이 음극(18) 또는 농축수조(24)의 하부에 과도하게 붙거나 쌓이는 것을 방지하기 위해 구비되는 것이다.In addition, it is more preferable that a stirrer 40 for stirring the concentrated water is provided on the condensing water tank 24 of the water tank 38, and the agitator 40 is a lithium negative electrode 18 or the lower portion of the concentrated water tank 24 It is provided to prevent excessive sticking or accumulating.

한편, 상기 양측(16) 및 음극(18)은 외부로부터 전류를 공급받아 리튬이 이온막(20)을 통과하여 농축수조(24)로 이동되도록 구비되는 것이다.On the other hand, the both sides 16 and the negative electrode 18 are provided to receive current from the outside so that lithium passes through the ion membrane 20 and moves to the condensing water tank 24.

또한, 상기 탈착수수용부(32)에 수용되는 탈착수는 염산, 황산 및 질산 중 선택된 어느 하나를 사용함이 바람직한 것이며, 농축수조(24)에 수용되는 농축수는 증류수를 사용함이 바람직한 것이다.In addition, it is preferable to use any one selected from hydrochloric acid, sulfuric acid, and nitric acid as the desorption water accommodated in the desorption water receiving unit 32, and distilled water is preferably used for the concentrated water accommodated in the condensing water tank 24.

상기 흡탈착수조(22)에 공급수를 4~8시간 순환 공급하여 흡착제(10)에 리튬을 흡착시킨다.(S50단계)Lithium is adsorbed to the adsorbent 10 by circulating supply water to the adsorption and desorption tank 22 for 4 to 8 hours (step S50).

이때, 상기 흡탈착수조(22)에 공급수를 4~8시간 이내로 순환 공급함이 바람직한 것이나 공급수에 포함된 리튬의 양에 따라 공급수가 순환 공급되는 시간은 유기적으로 변동될 수 있는 것이다.At this time, it is preferable to circulate the supply water to the adsorption and desorption tank 22 within 4 to 8 hours, but the time during which the supply water is circulated and supplied may be changed organically depending on the amount of lithium contained in the supplied water.

상기 흡탈착수조(22)에서 공급수를 제거함과 아울러 수조(38) 상에 탈착수 및 농축수를 각각 순환 공급하며, 양극(16) 및 음극(18)에 전류를 공급하여 흡착제(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(20)을 통과한 리튬을 이동시킨다.(S60단계)In addition to removing the feed water from the adsorption and desorption tank 22, desorption water and concentrated water are circulated and supplied to the water tank 38, respectively, and current is supplied to the anode 16 and the cathode 18 to the adsorbent 10. The adsorbed lithium is desorbed and the lithium that has passed through the ion membrane 20 is moved with concentrated water (step S60).

이때, 상기 흡탈착수조(22)의 내측에는 공급수 또는 탈착수가 교차 순환 공급되며, 양극(16) 및 음극(18)에는 흡탈착수조(22)의 내측에 탈착수가 순환 공급될 시에만 전류가 공급되는 것이다.At this time, the supply water or desorption water is cross-circulated and supplied to the inside of the adsorption and desorption water tank 22, and current is supplied to the anode 16 and the cathode 18 only when the desorption water is circulated and supplied to the inside of the adsorption and desorption tank 22. It is supplied.

한편, 상기 양극(16) 및 음극(18)에 전류를 공급하여 흡착제(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(20)을 통과한 리튬을 이동 완료시킨 후에는 탈착수를 흡탈착수조(22)에서 제거함과 아울러 공급수를 재차 흡탈착수조(22)로 순환 공급하게 되며, 이로 인해 다시 흡착제(10)에 리튬이 흡착되게 되고, 흡착된 리튬은 전술된 과정을 거치며 다시 농축수에 농축되어 고농도화 되는 것이다.On the other hand, after supplying current to the positive electrode 16 and the negative electrode 18 to desorb lithium adsorbed on the adsorbent 10 and completing the transfer of lithium that has passed through the ion membrane 20 with concentrated water, desorption water Is removed from the adsorption and desorption tank 22, and the supplied water is circulated again to the adsorption and desorption tank 22, whereby lithium is again adsorbed to the adsorbent 10, and the adsorbed lithium goes through the above-described process. It is concentrated in concentrated water again to become high concentration.

이와 같이 이루어지는 본 발명에 의한 흡착수단을 이용한 리튬의 고농도화 방법은 해수, 담수, 폐수 등에 포함된 리튬을 선택적으로 흡착하는 다공성의 실 형태를 갖는 흡착제(10)가 내입되는 흡착수단(12)을 사용함으로써 공급수 및 탈착수가 흡착제(10) 사이를 용이하게 순환할 수 있으며, 이로 인해 흡착제(10)에 리튬이 효과적으로 흡착 또는 탈착됨과 아울러 흡착제(10)에서 탈착된 리튬은 이온막(20)을 통과하여 순환 공급되는 농축수에 용이하게 농축 및 고농도화 되는 이점이 있는 것이다.The method for increasing the concentration of lithium using the adsorption means according to the present invention made as described above includes the adsorption means 12 into which the adsorbent 10 having a porous thread form for selectively adsorbing lithium contained in seawater, fresh water, wastewater, etc. By using it, the supplied water and desorption water can easily circulate between the adsorbent 10, whereby lithium is effectively adsorbed or desorbed to the adsorbent 10, and the lithium desorbed from the adsorbent 10 is used to form the ion membrane 20. It has the advantage of being easily concentrated and high concentration in the concentrated water circulating through it.

10 : 흡착제 12 : 흡착제수용부
14 : 흡착수단 16 : 양극
18 : 음극 20 : 이온막
22 : 흡탈착수조 24 : 농축수조
26 : 공급수순환파이프 28 : 공급수수용부
30 : 탈착수순환파이프 32 : 탈착수수용부
34 : 농축수순환파이프 36 : 농축수수용부
38 : 수조 40 : 교반기
10: adsorbent 12: adsorbent receiving part
14: adsorption means 16: anode
18: cathode 20: ion film
22: adsorption and desorption tank 24: concentration tank
26: supply water circulation pipe 28: supply water receiving part
30: desorption water circulation pipe 32: desorption water receiving part
34: concentrated water circulation pipe 36: concentrated water receiving part
38: water tank 40: stirrer

Claims (5)

LMO(Lithium Manganese Oxide) 분말 100 중량부를 기준으로 폴리비닐리덴플루오라이드(PVDF) 60~100 중량부, N-메틸-2-피롤리돈(NMP) 10~30 중량부가 혼합 형성된 혼합물을 구비하는 제1단계(S10);
상기 혼합물을 원통형의 노즐을 통해 50~70℃의 물에 방사함과 아울러 혼합물에 혼합된 N-메틸-2-피롤리돈(NMP)을 물에 용출시켜 지름이 0.2~2mm 로 형성되는 다공성 실 형태의 흡착제(10)를 형성하는 제2단계(S20);
상기 흡착제(10)를 내측에 수용 가능한 공간이 형성됨과 아울러 메쉬망 형태로 형성되는 흡착제수용부(12)에 내입하여 흡착수단(14)을 구비하는 제3단계(S30);
상기 흡착수단(14)을 내측에 수용 가능한 공간부가 형성됨과 아울러 내측에는 상호 이격되어 외부로부터 전류를 공급받는 양극(16) 및 음극(18)이 구비되며, 양극(16) 및 음극(18) 사이에는 이온막(20)이 구비되고, 이온막(20)에 의해 흡탈착수조(22) 및 농축수조(24)로 구획되며, 흡탈착수조(22)에는 리튬을 포함하는 공급수를 공급수순환파이프(26)를 통해 순환 공급하는 공급수수용부(28) 및 리튬을 흡착제(10)로부터 탈착하기 위한 탈착수를 탈착수순환파이프(30)를 통해 순환 공급하는 탈착수수용부(32)가 각각 연결 구비되고, 농축수조(24)에는 이온막(20)을 지나온 리튬을 수용하기 위한 농축수를 농축수순환파이프(34)를 통해 순환 공급하는 농축수수용부(36)가 연결 구비되는 수조(38) 상의 흡탈착수조(22)에 내입하는 제4단계(S40);
상기 흡탈착수조(22)에 공급수를 4~8시간 순환 공급하여 흡착제(10)에 리튬을 흡착시키는 제5단계(S50);
상기 흡탈착수조(22)에서 공급수를 제거함과 아울러 수조(38) 상에 탈착수 및 농축수를 각각 순환 공급하며, 양극(16) 및 음극(18)에 전류를 공급하여 흡착제(10)에 흡착된 리튬을 탈착함과 아울러 농축수로 이온막(20)을 통과한 리튬을 이동시키는 제6단계(S60);
를 포함하여 이루어지는 것을 특징으로 하는 흡착수단을 이용한 리튬의 고농도화 방법.
A preparation having a mixture formed by mixing 60 to 100 parts by weight of polyvinylidene fluoride (PVDF) and 10 to 30 parts by weight of N-methyl-2-pyrrolidone (NMP) based on 100 parts by weight of LMO (Lithium Manganese Oxide) powder Step 1 (S10);
A porous thread having a diameter of 0.2 to 2 mm by spinning the mixture into water at 50 to 70°C through a cylindrical nozzle and eluting the N-methyl-2-pyrrolidone (NMP) mixed in the mixture into water. A second step (S20) of forming the adsorbent 10 in the form of;
A third step (S30) in which a space capable of accommodating the adsorbent (10) is formed, and is inserted into the adsorbent accommodating part (12) formed in the form of a mesh network to provide an adsorption means (14);
The adsorption means (14) is provided with a space capable of accommodating the inside, and an anode (16) and a cathode (18) that are spaced apart from each other to receive current from the outside are provided inside, and between the anode (16) and the cathode (18) Is provided with an ion membrane 20, is divided into an adsorption and desorption tank 22 and a concentration tank 24 by the ion membrane 20, and the supply water containing lithium is supplied to the adsorption and desorption tank 22. The supply water receiving unit 28 circulating and supplying through the pipe 26 and the desorption water receiving unit 32 circulating and supplying desorption water for desorption of lithium from the adsorbent 10 through the desorption water circulation pipe 30 are provided. Each of the condensed water tank 24 is provided with a condensed water receiving part 36 connected to the condensed water tank 24 for circulating and supplying concentrated water for receiving the lithium that has passed through the ion membrane 20 through the concentrated water circulation pipe 34 (38) a fourth step (S40) of entering the upper adsorption and desorption tank 22;
A fifth step (S50) of circulating supply water to the adsorption and desorption tank 22 for 4 to 8 hours to adsorb lithium to the adsorbent 10;
In addition to removing the feed water from the adsorption and desorption tank 22, desorption water and concentrated water are circulated and supplied to the water tank 38, respectively, and current is supplied to the anode 16 and the cathode 18 to the adsorbent 10. A sixth step (S60) of desorbing the adsorbed lithium and moving lithium that has passed through the ion membrane 20 with concentrated water;
Method for increasing the concentration of lithium using an adsorption means comprising a.
제1항에 있어서,
상기 혼합물은 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP)을 30~40℃의 온도에서 30~60분 동안 중탕으로 교반한 후 교반 된 폴리비닐리덴플루오라이드(PVDF) 및 N-메틸-2-피롤리돈(NMP) 상에 LMO(Lithium Manganese Oxide) 분말을 투입함과 아울러 30~60분 동안 교반하여 이루어지는 것을 특징으로 하는 흡착수단을 이용한 리튬의 고농도화 방법.
The method of claim 1,
The mixture is polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NMP) stirred in a bath for 30 to 60 minutes at a temperature of 30 to 40 °C, and then stirred polyvinylidene fluoride ( PVDF) and N-methyl-2-pyrrolidone (NMP) by adding LMO (Lithium Manganese Oxide) powder and stirring for 30 to 60 minutes. .
제1항에 있어서,
상기 N-메틸-2-피롤리돈(NMP)은 디메틸술폭시드(DMSO), N,N'-디메틸포름아미드(DMF), 테트라히드로푸란(THF), 디메틸아세트아미드(DMAc), 2-부탄온, 4-메틸-2-펜탄온, 클로로포름, 디클로로메탄, 자일렌 및 벤젠으로 구성되는 극성 유기용매 및 비극성 유기용매 및 메틸알코올, 에틸알코올, 1-부틸 알코올, 이소프로필 알코올, 이소부틸 알코올, t -부틸알코올, 1-펜틸알콜, 1-헥실알코올, 벤질알코올, 2,2,2-트리플루오로에탄올, 라우릴 알코올, 올레일알코올, 및 에틸렌글리콜 중 선택된 어느 하나 또는 2종 이상으로 이루어지는 것을 특징으로 하는 흡착수단을 이용한 리튬의 고농도화 방법.
The method of claim 1,
The N-methyl-2-pyrrolidone (NMP) is dimethyl sulfoxide (DMSO), N,N'-dimethylformamide (DMF), tetrahydrofuran (THF), dimethylacetamide (DMAc), 2-butane One, 4-methyl-2-pentanone, chloroform, dichloromethane, xylene and benzene polar organic solvent and non-polar organic solvent and methyl alcohol, ethyl alcohol, 1-butyl alcohol, isopropyl alcohol, isobutyl alcohol, consisting of any one selected from t-butyl alcohol, 1-pentyl alcohol, 1-hexyl alcohol, benzyl alcohol, 2,2,2-trifluoroethanol, lauryl alcohol, oleyl alcohol, and ethylene glycol Method for increasing the concentration of lithium using an adsorption means, characterized in that.
제1항에 있어서,
상기 수조(38)의 농축수조(24) 상에는 농축수를 교반하는 교반기(40)가 구비되어 이루어지는 것을 특징으로 하는 흡착수단을 이용한 리튬의 고농도화 방법.
The method of claim 1,
A method for high concentration of lithium using an adsorption means, characterized in that a stirrer 40 for stirring the concentrated water is provided on the concentrated water tank 24 of the water tank 38.
제1항에 있어서,
상기 흡탈착수조(22)의 내측에는 공급수 또는 염산, 황산 및 질산 중 선택된 어느 하나인 탈착수가 순환 공급되며, 양극(16) 및 음극(18)에는 흡탈착수조(22)의 내측에 탈착수가 순환 공급될 시에만 전류가 공급되어 이루어지는 것을 특징으로 하는 흡착수단을 이용한 리튬의 고농도화 방법.
The method of claim 1,
Inside the adsorption and desorption tank 22 is supplied water or desorption water selected from hydrochloric acid, sulfuric acid, and nitric acid is circulated, and the anode 16 and the cathode 18 have desorption water inside the adsorption and desorption tank 22. A method for high concentration of lithium using an adsorption means, characterized in that current is supplied only when circulatingly supplied.
KR1020190155509A 2019-11-28 2019-11-28 High concentration of lithium using adsorption means KR102252283B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190155509A KR102252283B1 (en) 2019-11-28 2019-11-28 High concentration of lithium using adsorption means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190155509A KR102252283B1 (en) 2019-11-28 2019-11-28 High concentration of lithium using adsorption means

Publications (1)

Publication Number Publication Date
KR102252283B1 true KR102252283B1 (en) 2021-05-14

Family

ID=75915275

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190155509A KR102252283B1 (en) 2019-11-28 2019-11-28 High concentration of lithium using adsorption means

Country Status (1)

Country Link
KR (1) KR102252283B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115744941A (en) * 2022-11-15 2023-03-07 江苏万邦达环保科技有限公司 Low-loss adsorbent salt lake brine adsorption lithium extraction equipment
KR20230092434A (en) * 2021-12-17 2023-06-26 주식회사 포스코 Recovery method of lithium ion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245808B1 (en) 1997-12-30 2000-03-02 박찬구 Process for manufacturing lithium ion secondary battery electrode compounds
KR100589031B1 (en) 1999-09-29 2006-06-13 트로녹스 엘엘씨 Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
KR100895866B1 (en) 2001-04-04 2009-05-06 악상스 Method for eliminating oxygenated organic molecules that are present in an organic effluent using alumina agglomerates
KR20110024856A (en) 2009-09-03 2011-03-09 타운마이닝캄파니(주) Method for recovering lithium compounds from active cathode materials of lithium battery waste
KR101238898B1 (en) * 2010-08-12 2013-03-04 재단법인 포항산업과학연구원 Method for recovering with high purity lithium, lithium carbonate, lithium hydroxide and synthetic method of cathod material for lithium secondary battery from sea water
KR101682217B1 (en) 2016-09-02 2016-12-05 주식회사 재영텍 A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
KR101691089B1 (en) * 2014-03-11 2017-01-09 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
KR101780248B1 (en) * 2017-03-31 2017-09-20 한국지질자원연구원 Apparatus for Lithium ions adsorption and desorption process on land and Recovery method using thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245808B1 (en) 1997-12-30 2000-03-02 박찬구 Process for manufacturing lithium ion secondary battery electrode compounds
KR100589031B1 (en) 1999-09-29 2006-06-13 트로녹스 엘엘씨 Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
KR100895866B1 (en) 2001-04-04 2009-05-06 악상스 Method for eliminating oxygenated organic molecules that are present in an organic effluent using alumina agglomerates
KR20110024856A (en) 2009-09-03 2011-03-09 타운마이닝캄파니(주) Method for recovering lithium compounds from active cathode materials of lithium battery waste
KR101238898B1 (en) * 2010-08-12 2013-03-04 재단법인 포항산업과학연구원 Method for recovering with high purity lithium, lithium carbonate, lithium hydroxide and synthetic method of cathod material for lithium secondary battery from sea water
KR101691089B1 (en) * 2014-03-11 2017-01-09 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
KR101682217B1 (en) 2016-09-02 2016-12-05 주식회사 재영텍 A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
KR101780248B1 (en) * 2017-03-31 2017-09-20 한국지질자원연구원 Apparatus for Lithium ions adsorption and desorption process on land and Recovery method using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230092434A (en) * 2021-12-17 2023-06-26 주식회사 포스코 Recovery method of lithium ion
KR102656287B1 (en) * 2021-12-17 2024-04-09 주식회사 포스코 Recovery method of lithium ion
CN115744941A (en) * 2022-11-15 2023-03-07 江苏万邦达环保科技有限公司 Low-loss adsorbent salt lake brine adsorption lithium extraction equipment
CN115744941B (en) * 2022-11-15 2023-10-13 江苏万邦达环保科技有限公司 Salt lake brine adsorption lithium extraction equipment with low-loss adsorbent

Similar Documents

Publication Publication Date Title
CN104577086B (en) A kind of mesoporous SiO negative material of prelithiation and graphene coated and preparation method thereof
CN103022446B (en) A kind of lithium ion battery silicon oxide/carbon negative material and preparation method thereof
KR102252283B1 (en) High concentration of lithium using adsorption means
US20110174739A1 (en) Lithium recovery device using separator reservoir, lithium recovery method and lithium adsorption/desorption system using the same
KR102208040B1 (en) Enriching method of lithium using adsorbent
CN106876674A (en) The preparation method and applications of perylene diimides and graphene composite material
KR20100057520A (en) All-in-one lithium recorvery device for preparation of ion-sieve type manganese oxide and adsorption/desorption processing of lithium ion, method for lithium recorvery using the same, and once-through system for lithium adsorption/desorption using the same
CN108598379A (en) A kind of tungstate lithium cladding nickel cobalt aluminic acid lithium composite material and its preparation method and application
CN101985098A (en) Method for preparing manganese series lithium-ion sieve adsorbent H4Mn5O12 and precursor thereof
CN101562256A (en) Preparation method of electrolyte used for all vanadium redox flow batteries
CN100377395C (en) Nano composite lithium ion cell cathode material and its preparing method
CN106654216B (en) A kind of sulphur anode material of lithium battery of phosphoric acid zirconium titanium and preparation method thereof
CN109560270A (en) A kind of Se@CNT/CP self-supporting flexible electrode material, preparation method and application
CN109553081A (en) A kind of preparation method of novel sodium cell negative pole material
CN106058193A (en) Novel negative electrode material of sodium-ion battery as well as preparation method and application thereof
KR101536054B1 (en) Method of recovering lithium from bittern by using electrochemisty process
CN102231439B (en) Sulfur-carbon composite material for cathode of lithium ion battery, preparation method and lithium ion battery
CN107946564B (en) Rich in Na4Mn2O5/Na0.7MnO2Composite material and preparation method and application thereof
CN106025216A (en) Positive electrode material for lithium-sulfur battery, preparation method of positive electrode material and lithium-sulfur battery
KR102208041B1 (en) Adhesion, separation and enriching apparatus of lithium using adsorbent
CN108899532A (en) A kind of mesoporous micro-pipe shape ZnMn2O4Lithium/anode material of lithium-ion battery and preparation method thereof
CN113247966A (en) Lithium-rich manganese-based precursor, positive electrode material and preparation method thereof
CN109860571B (en) Lithium-sulfur battery positive electrode material and preparation method and application thereof
CN114639809A (en) Composite hard carbon negative electrode material, preparation method and application
CN115188958A (en) Spherical porous sodium-ion battery material and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant