KR102199753B1 - Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof - Google Patents

Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof Download PDF

Info

Publication number
KR102199753B1
KR102199753B1 KR1020160031224A KR20160031224A KR102199753B1 KR 102199753 B1 KR102199753 B1 KR 102199753B1 KR 1020160031224 A KR1020160031224 A KR 1020160031224A KR 20160031224 A KR20160031224 A KR 20160031224A KR 102199753 B1 KR102199753 B1 KR 102199753B1
Authority
KR
South Korea
Prior art keywords
raw material
transition metal
lithium secondary
secondary battery
metal complex
Prior art date
Application number
KR1020160031224A
Other languages
Korean (ko)
Other versions
KR20170108184A (en
Inventor
송준호
조용남
조우석
김영준
이고운
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020160031224A priority Critical patent/KR102199753B1/en
Publication of KR20170108184A publication Critical patent/KR20170108184A/en
Application granted granted Critical
Publication of KR102199753B1 publication Critical patent/KR102199753B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 구형의 전이금속복합수산화물을 이용한 비수계 리튬이차전지용 양극재료 및 그의 제조 방법에 관한 것이다. 본 발명에 따르면, 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료를 사용하여 제조한 구형의 전이금속복합수산화물을 나노크기의 이산화티탄을 사용하여 표면 코팅함으로써 화학식, NixCoyMn1-x-yTiz(OH)2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)의 조성비를 갖는 5~25㎛의 입자크기를 갖는 전이금속산화물이 표면코팅된 구형의 전이금속복합수산화물을 제조할 수 있다. 그리고 제조된 표면코팅된 전이금속복합수산화물과 리튬원료와 혼합, 열처리하여, 입자강도가 100MPa 이상이면서도 0.1C 용량 190mAh/g 이상, full cell에서 60도 고온, 200회 충방전 이후에도 초기용량의 85% 이상 구현이 가능한 구형의 Ni-rich 양극재료를 제조할 수 있다. The present invention relates to a cathode material for a non-aqueous lithium secondary battery using a spherical transition metal composite hydroxide and a method of manufacturing the same. According to the present invention, a spherical transition metal complex hydroxide prepared using a cobalt raw material, a nickel raw material, a manganese raw material, a hydroxyl-based raw material and ammonia raw material is coated on the surface with nano-sized titanium dioxide, and the chemical formula, Ni x Co y Mn 1 -xy Ti z (OH) 2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05) transition metal oxide surface-coated spherical transition having a particle size of 5 to 25㎛ Metal complex hydroxide can be prepared. And by mixing and heat treatment with the prepared surface-coated transition metal composite hydroxide and lithium raw material, the particle strength is 100 MPa or more, but the 0.1C capacity is 190 mAh/g or more, 60 degrees high temperature in a full cell, 85% of the initial capacity after 200 charging and discharging. It is possible to manufacture a spherical Ni-rich anode material capable of implementing the above.

Description

나노크기의 이산화티탄으로 표면이 코팅된 구형의 전이금속복합수산화물을 이용한 장수명 고강도용 비수계 리튬이차전지용 고용량 양극재료 및 그의 제조 방법{Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof}(Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and high-capacity anode material for non-aqueous lithium secondary battery for long life and high strength using spherical transition metal complex hydroxide coated with nano-sized titanium dioxide) manufacturing method thereof}

본 발명은 비수계 리튬이차전지용 양극재료 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 나노크기의 이산화티탄이 표면에 코팅된 구형의 전이금속복합수산화물을 이용하여 고용량 및 우수한 수명특성 구현이 가능한 비수계 리튬이차전지용 양극재료 및 그의 제조 방법에 관한 것이다.The present invention relates to a cathode material for a non-aqueous lithium secondary battery and a method of manufacturing the same, and more particularly, a ratio capable of realizing high capacity and excellent life characteristics by using a spherical transition metal composite hydroxide coated with nano-sized titanium dioxide on the surface. It relates to a cathode material for an aqueous lithium secondary battery and a method of manufacturing the same.

휴대용의 소형 전기 전자기기의 보급이 확산됨에 따라 니켈수소전지나 리튬이차전지와 같은 신형의 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극활물질로 사용하고, 리튬이 포함되어 있는 산화물을 양극재료로 사용하며, 비수용매를 전해액으로 사용하는 전지이다. 리튬이 매우 이온화 경향이 큰 금속이기 때문에, 고전압 발현이 가능하여 에너지 밀도가 높은 전지 개발이 이루어지고 있다. With the spread of portable small electric and electronic devices, the development of new types of secondary batteries such as nickel hydride batteries and lithium secondary batteries is actively progressing. Among them, a lithium secondary battery is a battery using carbon such as graphite as a negative electrode active material, an oxide containing lithium as a positive electrode material, and a non-aqueous solvent as an electrolyte. Since lithium is a metal having a very high ionization tendency, high voltage expression is possible, and batteries having high energy density have been developed.

이에 사용되는 양극재료로는 리튬을 함유하고 있는 리튬전이금속산화물이 주로 사용되고 있으며, 코발트계, 니켈계 및 코발트, 니켈, 망간이 공존하는 삼성분계 등의 층상계 리튬전이금속산화물이 90% 이상 사용되고 있다.As the cathode material used for this, lithium transition metal oxide containing lithium is mainly used, and more than 90% of layered lithium transition metal oxide such as cobalt-based, nickel-based and ternary-based co-existing cobalt, nickel and manganese is used. have.

최근 일명 Ni-rich(니켈과량계)라 불리는 고용량 양극재료가 개발되고 있으나, 지속적인 충방전에 따라 입자의 파괴가 진행되어, 용량이 지속적으로 감소하는 열화현상이 나타나며, 이러한 경우 실제 전지 적용에 문제가 되고 있다.Recently, a high-capacity positive electrode material called Ni-rich (nickel excess meter) has been developed, but the deterioration phenomenon occurs in which the capacity is continuously decreased due to the destruction of the particles according to the continuous charging and discharging. Is becoming.

한국등록특허 제10-1566155호(2015.11.05. 공고)Korean Patent Registration No. 10-1566155 (announced on November 5, 2015)

Ni-rich 양극재료는 니켈 함량이 증가함에 따라 열처리 온도가 상대적으로 낮아 입자의 강도가 100MPa 이하 수준이다. 이러한 양극재료는 지속적인 충방전, 특히 고온에서의 사용조건에서 입자의 파괴가 진행되어 장기간 사용에 제한을 받는다.The Ni-rich cathode material has a relatively low heat treatment temperature as the nickel content increases, so that the particle strength is less than 100 MPa. Such cathode materials are limited in long-term use due to continuous charging and discharging, particularly in the condition of high temperature use.

따라서 본 발명의 목적은 나노크기의 이산화티탄이 표면에 코팅되어 있는 구형의 전이금속복합수산화물을 이용하여 입자강도가 100MPa 이상으로, 190mAh/g 이상의 용량이 발현되며, 60도 고온에서 200회 이상 충방전 하더라도 초기용량의 85% 이상 유지가 가능한 비수계 리튬이차전지용 Ni-rich 양극재료 및 그의 제조 방법을 제공하는 데 있다.Therefore, the object of the present invention is to express a particle strength of 100 MPa or more and a capacity of 190 mAh/g or more by using a spherical transition metal complex hydroxide coated on the surface of nano-sized titanium dioxide, and charging more than 200 times at a high temperature of 60 degrees. It is to provide a Ni-rich cathode material for a non-aqueous lithium secondary battery capable of maintaining 85% or more of the initial capacity even when discharged, and a method of manufacturing the same.

본 발명의 다른 목적은 60도에서 50회 충방전을 하더라도 입자강도가 40MPa 이상을 유지하는 비수계 리튬이차전지용 Ni-rich 양극재료 및 그의 제조 방법을 제공하는 데 있다. Another object of the present invention is to provide a Ni-rich cathode material for a non-aqueous lithium secondary battery and a method of manufacturing the same, which maintains a particle strength of 40 MPa or more even when charging and discharging 50 times at 60 degrees.

상기 목적을 달성하기 위하여, 본 발명은 니켈원료, 코발트원료, 망간원료, 수산화기원료, 및 암모니아원료가 혼합된 수용액을 공침시켜 구형의 전이금속복합수산화물을 제조하는 단계, 구형의 전이금속복합수산화물에 나노크기의 이산화티탄을 표면에 코팅하는 단계, 상기의 이산화티탄 코팅된 전이금속복합수산화물과 리튬원료와의 혼합 및 열처리하여 티타늄이 치환된 구형의 Ni-rich 양극재료 제조 단계를 포함하는 비수계 리튬이차전지용 양극재료의 제조 방법을 제공한다.In order to achieve the above object, the present invention is a step of preparing a spherical transition metal complex hydroxide by co-precipitation of an aqueous solution in which a nickel material, a cobalt material, a manganese material, a hydroxyl base material, and an ammonia material are mixed to prepare a spherical transition metal complex hydroxide. Non-aqueous lithium comprising the step of coating nano-sized titanium dioxide on the surface, mixing and heat-treating the titanium dioxide-coated transition metal complex hydroxide with a lithium raw material to prepare a spherical Ni-rich cathode material substituted with titanium It provides a method of manufacturing a cathode material for a secondary battery.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기 코팅하는 단계에서 상기 전이금속복합수산화물은, NixCoyMn1-x-yTiz(OH)2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)의 조성비를 갖고, 평균입도가 5~25㎛일 수 있다.In the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention, in the coating step, the transition metal composite hydroxide is Ni x Co y Mn 1-xy Ti z (OH) 2 (0.70<x≤0.90, It may have a composition ratio of 0.00≦y≦0.20, 0.00<z≦0.05), and an average particle size of 5 to 25 μm.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기 전이금속복합수산화물 제조 단계에서, 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료의 농도는 각각 0.5~2M이며, 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료의 농도는 각각 0.5~2M이며, (코발트원료 + 니켈원료 + 망간원료), 수산화기원료 및 암모니아원료를 1 : 0.9~1.5 : 0.10의 비율로 공침하되, 혼합된 수용액의 pH를 10~12로 유지하여 구형의 전이금속복합수산화물을 제조할 수 있다.In the method for producing a cathode material for a non-aqueous lithium secondary battery according to the present invention, in the transition metal complex hydroxide manufacturing step, the concentration of the cobalt raw material, the nickel raw material, the manganese raw material, the hydroxyl-based raw material and the ammonia raw material is 0.5 to 2 M, respectively, and cobalt The concentration of raw material, nickel raw material, manganese raw material, hydroxyl raw material and ammonia raw material is 0.5~2M, respectively, (cobalt raw material + nickel raw material + manganese raw material), hydroxyl-based raw material and ammonia raw material are co-precipitated in a ratio of 1: 0.9 to 1.5: 0.10 However, it is possible to prepare a spherical transition metal complex hydroxide by maintaining the pH of the mixed aqueous solution at 10-12.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기의 전이금속복합수산화물에 나노크기의 이산화티탄이 포함되어 있는 현탁액을 이용하여 표면에 코팅하는 단계를 포함할 수 있다.In the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention, it may include coating the surface of the transition metal composite hydroxide using a suspension containing nano-sized titanium dioxide.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기 전이금속복합수산화물 제조 단계 이후에 수행되는, 상기 전이금속복합수산화물에 수산화리튬을 혼합한 후 열처리하여 Ni-rich 양극재료를 제조하는 Ni-rich 양극재료 제조 단계를 더 포함할 수 있다.In the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention, a Ni-rich cathode material is prepared by mixing lithium hydroxide with the transition metal complex hydroxide and heat treatment after the transition metal complex hydroxide manufacturing step. It may further include a step of manufacturing the Ni-rich cathode material.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기 Ni-rich 양극재료 제조 단계에서의 열처리는 700~900℃에서 수행할 수 있다.In the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention, the heat treatment in the manufacturing step of the Ni-rich cathode material may be performed at 700 to 900°C.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 있어서, 상기 Ni-rich 양극재료 제조 단계 이후에 수행되는, 상기 Ni-rich 양극재료를 분쇄하여 분말화하는 단계를 더 포함할 수 있다.In the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention, the step of pulverizing and pulverizing the Ni-rich cathode material, which is performed after the step of manufacturing the Ni-rich cathode material, may be further included.

그리고 본 발명은 또한, LiwNixCoyMn1-x-y-zTizO2 And the present invention also, Li w Ni x Co y Mn 1-xyz Ti z O 2

(0.7<x≤0.9, 0.0≤y<0.2, 1-x-y-z≤0.2, 0<z<0.05, 1.0≤w≤1.1)의 조성비를 갖고, 구형이며, 평균입도가 5~25㎛인 비수계 리튬이차전지용 양극재료를 제공한다.Non-aqueous lithium having a composition ratio of (0.7<x≤0.9, 0.0≤y<0.2, 1-xyz≤0.2, 0<z<0.05, 1.0≤w≤1.1), is spherical, and has an average particle size of 5 to 25㎛ It provides cathode materials for secondary batteries.

본 발명에 따르면, 공침공정을 통하여 나노크기의 이산화티탄이 표면에 균일하게 코팅된 구형의 전이금속복합수산화물 및 이를 이용하여 제조되는 구형의 Ni-rich 양극재료는 이종의 원소가 입자표면으로부터 내부로 확산 치환되어 있는 형태로 제조가 가능하여, 이렇게 제조된 양극재료는 입자의 강도가 개선되어 충방전에 따른 지속적인 입자의 파괴현상을 억제시킬 수 있다. According to the present invention, the spherical transition metal composite hydroxide in which nano-sized titanium dioxide is uniformly coated on the surface through the coprecipitation process and the spherical Ni-rich anode material manufactured by using the same, different kinds of elements from the particle surface to the inside. Since it is possible to manufacture in a diffusion-displaced form, the positive electrode material prepared in this way improves the strength of the particles and can suppress the phenomenon of continuous particle destruction caused by charging and discharging.

또한 본 발명에 따른 양극재료는 이종의 원소가 입자 표면에서부터 내부에 까지 균일하게 확산되어 치환되어 있어, 고온에서의 충방전에 따른 입자의 파괴현상을 효과적으로 억제함으로써 수명특성을 향상시킬 수 있다.In addition, since the anode material according to the present invention has dissimilar elements uniformly diffused and substituted from the surface of the particles to the inside, it is possible to improve life characteristics by effectively suppressing the phenomenon of destruction of particles due to charging and discharging at high temperatures.

도 1은 본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 따른 흐름도이다.
도 2는 실시예 및 비교예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료의 XRD 구조분석 결과 그래프이다.
도 3은 비교예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료 및 이의 전구체인 구형 전이금속복합수산화물의 입자형상 이미지이다.
도 4는 실시예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료 및 이의 전구체인 구형 전이금속복합수산화물의 입자형상 이미지이다.
도 5는 실시예 및 비교예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료의 코인셀 수준에서의 상온 및 60도 고온 수명평가 그래프이다.
도 6은 실시예 및 비교예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료의 풀셀 수준에서의 상온 및 60도 고온 수명평가 그래프이다.
도 7은 실시예 및 비교예의 제조 방법으로 제조된 Ni-rich 양극재료의 고온에서의 사이클에 따른 입자강도 변화를 보여주는 그래프이다.
도 8은 실시예 및 비교예의 제조 방법으로 제조된 Ni-rich 양극재료의 고온에서의 사이클에 따른 입자내부의 파괴 정도를 보여주는 이미지이다.
1 is a flowchart illustrating a method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention.
2 is a graph showing the results of XRD structure analysis of cathode materials for non-aqueous lithium secondary batteries prepared by the manufacturing methods of Examples and Comparative Examples.
3 is a particle shape image of a cathode material for a non-aqueous lithium secondary battery and a precursor thereof, a spherical transition metal composite hydroxide prepared by the manufacturing method of Comparative Example.
4 is a particle shape image of a cathode material for a non-aqueous lithium secondary battery prepared by the manufacturing method of Example and a spherical transition metal composite hydroxide as a precursor thereof.
5 is a graph showing the life cycle evaluation of the positive electrode material for a non-aqueous lithium secondary battery prepared by the manufacturing method of Examples and Comparative Examples at room temperature and 60 degrees high temperature at a coin cell level.
6 is a graph showing the life cycle evaluation of the positive electrode material for a non-aqueous lithium secondary battery manufactured by the manufacturing method of Examples and Comparative Examples at room temperature and 60 degrees high temperature at a full cell level.
7 is a graph showing changes in particle strength according to a cycle at a high temperature of a Ni-rich cathode material prepared by the manufacturing method of Examples and Comparative Examples.
8 is an image showing the degree of destruction of the inside of the particles according to the cycle at high temperature of the Ni-rich cathode material prepared by the manufacturing method of Examples and Comparative Examples.

하기의 설명에서는 본 발명의 실시예에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, it should be noted that only parts necessary to understand the operation according to the embodiments of the present invention will be described, and descriptions of other parts will be omitted so as not to obscure the subject matter of the present invention.

또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.In addition, terms or words used in the present specification and claims described below should not be construed as being limited to a conventional or dictionary meaning, and the inventors shall use the concept of terms in order to describe their own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that it can be properly defined. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only one preferred embodiment of the present invention, and do not represent all the technical ideas of the present invention, and thus various alternatives that can be substituted for them at the time of application It should be understood that there may be equivalents and variations.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법을 도 1을 참조하여 설명하면 다음과 같다. 여기서 도 1은 본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 따른 흐름도이다.A method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention will be described with reference to FIG. 1 as follows. Here, FIG. 1 is a flowchart illustrating a method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention.

도 1을 참조하면, 본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법은 전이금속복합수산화물 제조 단계(S10), 전이금속복합수산화물에 이산화티탄을 표면에 코팅하는 단계(S20) 및 Ni-rich 양극재료 제조 단계(S30)를 포함하며, 분쇄 단계(S40)를 더 포함할 수 있다. 여기서 전이금속복합수산화물 제조 단계(S10)에서 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료가 혼합된 수용액을 공침시켜 구형의 전이금속복합수산화물을 제조한다. 다음으로 전이금속복합탄산물의 후처리 단계(S20)에서 이산화티탄을 포함하고 있는 현탁액을 사용하여 전이금속복합수산화물 표면에 코팅한다. Ni-rich 양극재료 제조 단계(S30)에서 전이금속복합수산화물에 수산화리튬을 혼합한 후 열처리하여 Ni-rich 양극재료를 제조한다. 마지막으로 분쇄 단계(S40)에서 양극재료인 Ni-rich 양극재료를 분쇄하여 분말화한다.Referring to FIG. 1, the method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention includes a transition metal composite hydroxide manufacturing step (S10), a transition metal composite hydroxide coated with titanium dioxide on the surface (S20), and Ni- It includes a rich anode material manufacturing step (S30), may further include a grinding step (S40). Here, in the transition metal complex hydroxide manufacturing step (S10), a spherical transition metal complex hydroxide is prepared by coprecipitation of an aqueous solution in which a cobalt material, a nickel material, a manganese material, a hydroxyl base material, and an ammonia material are mixed. Next, in the post-treatment step (S20) of the transition metal complex carbonate, a suspension containing titanium dioxide is used to coat the surface of the transition metal complex hydroxide. In the Ni-rich cathode material manufacturing step (S30), lithium hydroxide is mixed with the transition metal composite hydroxide and then heat-treated to prepare a Ni-rich anode material. Finally, in the pulverizing step (S40), the Ni-rich cathode material, which is a cathode material, is pulverized and pulverized.

이와 같은 본 발명에 따른 비수계 리튬이차전지용 양극재료의 제조 방법에 대해서 구체적으로 설명하면 다음과 같다.A detailed description will be given of a method of manufacturing a cathode material for a non-aqueous lithium secondary battery according to the present invention.

먼저 전이금속복합수산화물 제조 단계(S10)에서 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료를 pH를 제어하면서 공침반응기에 지속적으로 투입하여 화학식1에 따른 구형의 전이금속복합수산화물을 제조한다. 즉 상기의 원료들의 농도는 각각 0.5~2.0M의 범위 내에서 (코발트원료 + 니켈원료 + 망간원료) : 수산화기원료 : 암모니아원료 = 1 : 1.8~2.5 : 0.5~1.5의 비율이 되도록 제어하며 50~100시간동안 반응을 진행시켜 전이금속복합탄산물을 제조한다. 상기의 비율에서 벗어나면 pH가 10~12 사이를 벗어나게 되어 전이금속과 이종금속 간의 균일한 침전이 일어나지 않고 독립적인 침전이 되기 때문에, 균일하게 치환된 수산화물을 얻을 수 없다. 또한 반응시간이 50시간 미만이 되면 입자 형성이 상대적으로 낮아 5㎛ 이하의 입자가 생성되며, 입자의 구형화도 매우 낮게 된다.First, in the transition metal complex hydroxide manufacturing step (S10), a cobalt raw material, a nickel raw material, a manganese raw material, a hydroxyl-based raw material, and a ammonia raw material are continuously added to the coprecipitation reactor while controlling the pH to prepare a spherical transition metal complex hydroxide according to Formula 1. . That is, the concentration of the above raw materials is controlled to be within the range of 0.5~2.0M (cobalt raw material + nickel raw material + manganese raw material): hydroxyl-based raw material: ammonia raw material = 1: 1.8-2.5: 0.5-1.5, and 50- The reaction is carried out for 100 hours to prepare a transition metal complex carbonate. If the ratio is out of the above ratio, the pH is out of the range of 10 to 12, so that uniform precipitation between the transition metal and the dissimilar metal does not occur, but independent precipitation, so that a uniformly substituted hydroxide cannot be obtained. In addition, when the reaction time is less than 50 hours, particle formation is relatively low, resulting in particles of 5 μm or less, and the spheroidization of the particles is also very low.

[화학식 1][Formula 1]

NixCoyMn1 -x-y(OH)2 Ni x Co y Mn 1 -xy (OH) 2

(0.70<x≤0.90, 0.00≤y≤0.20)(0.70<x≤0.90, 0.00≤y≤0.20)

이때 전이금속복합수산화물 제조 단계(S10)에서 화학식1의 조성비를 갖도록 침전시켜서 5~25㎛의 입자크기를 갖는 구형의 전이금속복합수산화물을 제조할 수 있다.At this time, in the transition metal complex hydroxide manufacturing step (S10), a spherical transition metal complex hydroxide having a particle size of 5 to 25 μm may be prepared by precipitating to have a composition ratio of Formula 1.

여기서 코발트원료는 코발트금속, 옥살산코발트, 아세트산코발트, 질산염코발트, 황산염코발트 중에 적어도 하나를 포함하며, 이것에 한정되는 것은 아니다. 니켈원료는 니켈금속, 옥살산니켈, 아세트산니켈, 질산염니켈, 황간염니켈 중에 적어도 하나를 포함하여, 이것에 한정되는 것은 아니다. 망간원료는 망간금속, 옥살산망간, 아세트산망간, 질산염망간, 황산염망간 중에 적어도 하나를 포함하며, 이것에 한정되는 것은 아니다. Here, the cobalt raw material includes at least one of cobalt metal, cobalt oxalate, cobalt acetate, cobalt nitrate, and cobalt sulfate, but is not limited thereto. The nickel raw material includes, but is not limited to, at least one of nickel metal, nickel oxalate, nickel acetate, nickel nitrate, and nickel sulfate. Manganese raw materials include at least one of manganese metal, manganese oxalate, manganese acetate, manganese nitrate, and manganese sulfate, but are not limited thereto.

전이금속복합수산화물의 표면코팅 단계(S20)에서 이산화티탄을 0.1~5wt% 포함하고 있는 에탄올 현탁액에 구형의 전이금속복합수산화물을 침지하고, 일정하게 교반한다. 10~30분간 교반한 이후 40~80도의 온도에서 용매인 에탄올을 증발시켜 이산화티탄이 표면에 코팅되어 있는 전이금속복합수산화물을 제조한다. 이때 전이금속복합수산화물의 표면코팅 단계(S20)에서 화학식 2의 조성비를 갖는 5~25㎛의 입자크기를 갖는 이산화티탄이 표면에 코팅된 구형의 전이금속복합탄산물을 제조할 수 있다. In the surface coating step (S20) of the transition metal complex hydroxide, a spherical transition metal complex hydroxide is immersed in an ethanol suspension containing 0.1 to 5 wt% titanium dioxide, followed by constant stirring. After stirring for 10 to 30 minutes, ethanol, which is a solvent, is evaporated at a temperature of 40 to 80 degrees to prepare a transition metal complex hydroxide coated on the surface of titanium dioxide. At this time, in the surface coating step (S20) of the transition metal complex hydroxide, a spherical transition metal complex carbonate coated with titanium dioxide having a particle size of 5 to 25 μm having a composition ratio of Formula 2 may be prepared.

[화학식 2][Formula 2]

NixCoyMn1-x-yTiz(OH)2 Ni x Co y Mn 1-xy Ti z (OH) 2

(0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)(0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)

나노크기의 이산화티탄은 입자크기가 10~50nm 사이의 범위를 갖는 이산화티탄을 포함하며, 사염화티탄 등은 최종 열처리 단계에서 염소가스의 발생으로 인해 사용이 불가능하다. 이산화티탄의 입자크기가 50nm 이상으로 큰 경우에는 전이금속복합수산화물의 표면에 균일하게 코팅되지 않음으로 해서 최종 양극재료에 균일하게 확산 치환되기가 어렵게 된다. Nano-sized titanium dioxide contains titanium dioxide having a particle size in the range of 10 to 50 nm, and titanium tetrachloride or the like cannot be used due to the generation of chlorine gas in the final heat treatment step. When the particle size of titanium dioxide is larger than 50 nm, it is difficult to uniformly diffuse and replace the final anode material because the transition metal composite hydroxide is not uniformly coated on the surface.

[화학식 3][Formula 3]

LiwNixCoyMn1-x-y-zTizO2 Li w Ni x Co y Mn 1-xyz Ti z O 2

(0.7<x≤0.9, 0.0≤y<0.2, 1-x-y-z≤0.2, 0<z<0.05, 1.0≤w≤1.1)(0.7<x≤0.9, 0.0≤y<0.2, 1-x-y-z≤0.2, 0<z<0.05, 1.0≤w≤1.1)

Ni-rich 양극재료 제조 단계(S30)에서 제조된 Ni-rich 양극재료는 화학식 3의 조성비를 갖고, 평균입도가 5~25㎛인 구형의 Ni-rich 양극재료이다. 화학식 3에 따른 Ni-rich 양극재료는 최종적으로 제조된 본 발명에 따른 양극재료이다. The Ni-rich cathode material prepared in the Ni-rich cathode material manufacturing step (S30) is a spherical Ni-rich anode material having a composition ratio of Formula 3 and an average particle size of 5 to 25 μm. The Ni-rich cathode material according to Formula 3 is a cathode material according to the present invention that is finally prepared.

이는 전이금속복합수산화물의 표면코팅 단계(S20)에서 제조한 전이금속복합수산화물을 리튬원료와 반응시켜 이종금속이 확산 치환된 Ni-rich 양극재료를 제조할 수 있다. 즉 제조된 전이금속복합수산화물에 리튬원료를 혼합한 후 열처리를 통해 비수계 리튬이차전지용 Ni-rich 양극재료를 제조할 수 있다. 이때 열처리는 700~900℃로 공기분위기에서 열처리를 하여 최종 Ni-rich 양극재료를 제조한다. 이때 700℃ 이하에서 열처리를 수행할 경우, 충분한 열처리가 이루어지지 않아 가용용량이 150mAhg-1 이하로 낮아진다. 반면에 900℃ 이상에서 열처리를 수행할 경우, 필요 이상의 반응이 일어나 25㎛ 이상의 거대 입자가 생성되어 출력특성이 낮아지는 문제가 발생한다.This makes it possible to prepare a Ni-rich cathode material in which dissimilar metals are diffusely substituted by reacting the transition metal complex hydroxide prepared in the surface coating step (S20) of the transition metal complex hydroxide with a lithium raw material. That is, a Ni-rich cathode material for a non-aqueous lithium secondary battery can be prepared through heat treatment after mixing a lithium raw material with the prepared transition metal composite hydroxide. At this time, heat treatment is performed at 700~900℃ in an air atmosphere to prepare the final Ni-rich cathode material. At this time, if the heat treatment is performed at 700° C. or less, sufficient heat treatment is not performed and the usable capacity is lowered to 150 mAhg -1 or less. On the other hand, when the heat treatment is performed at 900°C or higher, a reaction occurs more than necessary to generate large particles of 25 μm or more, resulting in a problem of lowering output characteristics.

한편 Ni-rich 양극재료 제조 단계(S30) 이후에 양극극판을 제조하기 위해서, 열처리된 양극재료를 분쇄하여 분말화 할 수 있다(S40). 이때 분쇄는 통상적인 방법으로 실시한다. 분쇄 수단으로서는, 예를 들면, 유발, 볼 밀, 진동 밀, 위성 볼 밀, 튜브 밀, 라드 밀, 제트 밀, 해머 밀 등이 있으며 필요에 따라서는 분급을 통해 원하는 입도분포를 얻는다. 본 발명의 양극재료의 분말의 평균 입도는 5~25㎛의 범위 이내가 바람직하다.Meanwhile, in order to manufacture a positive electrode plate after the Ni-rich positive electrode material manufacturing step (S30), the heat-treated positive electrode material may be pulverized and powdered (S40). At this time, the pulverization is carried out in a conventional manner. Examples of the grinding means include a mortar, a ball mill, a vibration mill, a satellite ball mill, a tube mill, a lard mill, a jet mill, a hammer mill, and the like, and if necessary, a desired particle size distribution is obtained through classification. The average particle size of the powder of the cathode material of the present invention is preferably within the range of 5 to 25 μm.

본 발명의 양극재료를 적용한 리튬이차전지는 양극재료 이외의 점에서는 기존의 리튬이차전지 제조방식과 차이가 없다. 양극 극판의 제작 및 리튬이차전지의 구성에 대해 간단하게 설명하지만, 이것들에 한정되는 것은 아니다.The lithium secondary battery to which the positive electrode material of the present invention is applied is not different from the conventional lithium secondary battery manufacturing method in points other than the positive electrode material. The fabrication of the positive electrode plate and the configuration of the lithium secondary battery are briefly described, but are not limited thereto.

양극극판의 제작은 본 발명의 양극재료의 분말에, 필요에 따라서, 도전제, 결착제, 필러, 분산제, 이온 도전제, 압력 증강제 등과 통상 이용되고 있는 l종 또는 2종 이상의 첨가 성분을 첨가해, 적당한 용매(유기용매)에 의해 slurry 내지 paste화한다. 이렇게 얻은 slurry 또는 paste를 전극 지지 기판에 닥터 플레이드법등을 이용해 도포해, 건조해, 압연 롤 등으로 프레스한 것을 양극 극판으로서 사용한다.In the preparation of the positive electrode plate, the powder of the positive electrode material of the present invention is added with 1 type or 2 or more types of additives commonly used, such as a conductive agent, a binder, a filler, a dispersant, an ion conductive agent, a pressure enhancer, etc., if necessary. , Slurry or paste with an appropriate solvent (organic solvent). The slurry or paste thus obtained is applied to the electrode supporting substrate using a doctor plate method, etc., dried, and pressed with a rolling roll, etc., and used as a positive electrode plate.

도전제의 예는 흑연, 카본 블랙, 아세틸렌 블랙, Ketjen Black, 탄소섬유, 금속가루 등이다. 결착제로서는 PVdF, 폴리에틸렌 등을 사용할 수 있다. 전극 지지 기판(집전체라고도 말하는)은, 동, 니켈, 스텐레스강철, 알루미늄 등의 박, 시트 혹은 탄소섬유 등으로 구성할 수 있다.Examples of the conductive agent are graphite, carbon black, acetylene black, Ketjen Black, carbon fiber, metal powder, and the like. PVdF, polyethylene, or the like can be used as the binder. The electrode supporting substrate (also referred to as a current collector) can be made of copper, nickel, stainless steel, aluminum, or other foil, sheet, or carbon fiber.

이와 같이 제조된 양극을 이용하여 리튬이차전지를 제작한다. 리튬이차전지의 형태는 코인, 버튼, 시트, 원통형, 각형 등 어느 것이라도 좋다. 리튬이차전지의 음극재료, 전해액, 분리막 등은 기존 리튬이차전지에 사용하는 것으로 한다.A lithium secondary battery is manufactured using the positive electrode thus prepared. The shape of the lithium secondary battery may be any of a coin, a button, a sheet, a cylindrical shape, or a square shape. The anode material, electrolyte, separator, etc. of lithium secondary batteries are supposed to be used for existing lithium secondary batteries.

여기서 음극재료로는 흑연 등의 카본물질 또는 전이금속의 복합 산화물 등의 l종 혹은 2종 이상을 사용할 수 있다. 그 외, 실리콘, 주석 등도 음극재료로서 사용할 수 있다.Here, as the negative electrode material, one or two or more types of carbon materials such as graphite or complex oxides of transition metals may be used. In addition, silicon, tin, or the like can also be used as a negative electrode material.

전해액으로는 유기용매에 리튬염을 용해시킨 비수계 전해액, 무기 고체 전해질, 무기 고체 전해질의 복합재 등의 어느 쪽도 사용할 수 있다.As the electrolytic solution, any of a non-aqueous electrolytic solution obtained by dissolving a lithium salt in an organic solvent, an inorganic solid electrolyte, and a composite material of an inorganic solid electrolyte can be used.

비수계 전해액의 용매로는 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 메틸 에틸 카보네이트 등의 에스테르류, 부틸 락톤 등의 락톤류, 1,2-디메톡시 에탄, 에톡시 메톡시 에탄 등의 에테르류와 아세트니트릴 등의 니트릴류 등의 l종 혹은 2종 이상을 사용할 수 있다.As a solvent for the non-aqueous electrolyte, esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as butyl lactone, 1,2-dimethoxy ethane, ethoxy methoxy ethane, etc. One or two or more types of ethers and nitriles such as acetonitrile can be used.

비수계 전해액의 리튬염의 예로서는 LiAsF6, LiBF4, LiPF6 등을 사용할 수 있다. As an example of the lithium salt of the non-aqueous electrolyte, LiAsF 6 , LiBF 4 , LiPF 6 or the like can be used.

그리고 분리막으로는 PP 및/또는 PE 등의 Polyolefin으로부터 제조되는 다공성 필름이나, 부직포 등의 다공성재를 사용할 수 있다.And as the separator, a porous film made from polyolefin such as PP and/or PE, or a porous material such as a nonwoven fabric may be used.

실시예 및 비교예Examples and Comparative Examples

실시예에 따른 Ni-rich 양극재료는 다음과 같이 제조하였다.The Ni-rich cathode material according to the embodiment was prepared as follows.

황산코발트 1.5M 용액, 황산니켈 1.5M 용액, 황산망간 1.5M 용액, 수산화나트륨 1.5M 용액, 암모니아수 1.5M 용액을 0.10 : 0.80 : 0.10 : 2.10 : 0.60이 되도록 시간당 20cc의 속도로 공침반응기에 투입하여 80시간 이상 반응시켜 구형의 전이금속복합수산화물을 제조한다. 이렇게 제조된 전이금속복합수산화물을 30nm 크기의 이산화티탄이 0.5wt% 포함되어 있는 에탄올 현탁액에 무게 비중으로 50% 침지시켜, 20분간 교반 후 80도의 온도로 에탄올을 증발시켜 이산화티탄이 표면코팅된 구형의 전이금속복합수산화물을 제조한다. 이렇게 제조된 이산화티탄이 표면코팅된 구형의 전이금속복합수산화물을 수산화리튬과 전이금속 대비 리튬의 몰량을 1.05으로 하여 산소분위기에서 750℃에서 15시간 유지시켜 최종 실시예에 따른 양극재료를 제조하였다.Cobalt sulfate 1.5M solution, nickel sulfate 1.5M solution, manganese sulfate 1.5M solution, sodium hydroxide 1.5M solution, and ammonia water 1.5M solution were added to the coprecipitation reactor at a rate of 20cc per hour so that 0.10: 0.80: 0.10: 2.10: 0.60. Reaction for more than 80 hours to prepare a spherical transition metal complex hydroxide. The prepared transition metal complex hydroxide was immersed in an ethanol suspension containing 0.5 wt% of 30 nm-sized titanium dioxide by weight and 50% by weight, stirred for 20 minutes, and then evaporated at a temperature of 80 degrees to evaporate the spherical surface coated with titanium dioxide. To prepare a transition metal complex hydroxide of. A cathode material according to the final example was prepared by maintaining the obtained titanium dioxide-coated spherical transition metal complex hydroxide at 750°C for 15 hours in an oxygen atmosphere with a molar amount of lithium relative to lithium hydroxide and transition metal of 1.05.

이와 같은 실시예에 따른 양극재료의 분말을 평균 입경이 20㎛가 되도록 분급하였다. 양극재료 90 wt%, 도전제로 아세틸렌 블랙 5 wt%, 결착제의 PVdF 5 wt%로 하여, NMP를 용매로 하여 slurry를 제조하였다. 이 slurry를 두께 20㎛의 Al foil에 도포하여 건조 후 프레스로 압밀화시켜, 진공상에서 120℃로 16시간 건조해 직경 16mm의 원판으로 전극을 제조하였다.The powder of the cathode material according to this example was classified so that the average particle diameter was 20 μm. A slurry was prepared using NMP as a solvent using 90 wt% of a cathode material, 5 wt% of acetylene black as a conductive agent, and 5 wt% of PVdF as a binder. This slurry was applied to an Al foil having a thickness of 20 μm, dried, and then compacted with a press, dried in a vacuum at 120° C. for 16 hours to prepare an electrode with a 16 mm diameter disk.

상대극으로는 직경 16mm로 punching을 한 리튬금속박을, 분리막으로는 PP 필름을 사용하였다. 전해액으로는 1M의 LiPF6의 EC/DME 1:1 v/v의 혼합 용액을 사용하였다. 전해액을 분리막에 함침시킨 후, 이 분리막을 작용극과 상대극 사이에 끼운 후 SUS 제품의 케이스를 전극 평가용 시험 셀로 하여 평가하였다.Lithium metal foil punched with a diameter of 16 mm was used as the counter electrode, and PP film was used as the separator. A mixed solution of 1M LiPF 6 EC/DME 1:1 v/v was used as the electrolyte. After impregnating the electrolyte solution into the separator, the separator was sandwiched between the working electrode and the counter electrode, and the case of the SUS product was evaluated as a test cell for electrode evaluation.

실시예, 비교예에 따른 양극재료는 표1에 개시된 바와 같은 조건으로 제조하였다.The cathode materials according to Examples and Comparative Examples were prepared under the conditions as described in Table 1.

Figure 112016025120528-pat00001
Figure 112016025120528-pat00001

실시예에 따라 제조된 양극재료의 형상 이미지를 살펴보면, 도 4와 같다. 도 4는 도 1의 제조 방법 중 실시예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료 및 전구체의 형상 이미지이다. Ti 원소가 표면에 코팅되어 있음을 알 수 있다.Looking at the shape image of the anode material manufactured according to the embodiment, it is as shown in FIG. FIG. 4 is a shape image of a cathode material and a precursor for a non-aqueous lithium secondary battery manufactured by the manufacturing method of Example of the manufacturing method of FIG. 1. It can be seen that the Ti element is coated on the surface.

도 2는 실시예 및 비교예에 따른 양극재료의 XRD 구조분석 결과이다.2 is an XRD structure analysis result of a cathode material according to Examples and Comparative Examples.

도 2를 참조하면, 격자상수가 변화하는 것으로부터 실시예에 따른 제조 방법으로 제조된 Ni-rich 양극재료는 티타늄이온이 균일하게 확산 치환되어 있고, Ti의 확산 치환효과로 인해 100MPa 이상의 입자강도를 가지고 있어, 60도 고온에서의 full cell 수명평가 결과가 200회 충방전 이후에도 초기용량의 85%를 유지할 수 있어, 리튬이차전지 양극재료로 사용하기에 적합하다.Referring to FIG. 2, the Ni-rich anode material prepared by the manufacturing method according to the embodiment from the change of the lattice constant is uniformly diffused and substituted with titanium ions, and has a particle strength of 100 MPa or more due to the diffusion and substitution effect of Ti. So, it is suitable for use as a positive electrode material for lithium secondary batteries, as the result of full cell life evaluation at 60 degrees high temperature can maintain 85% of the initial capacity even after 200 charging and discharging times.

도 3은 비교예의 제조 방법으로 제조된 비수계 리튬이차전지용 양극재료 및 이의 전구체인 구형 전이금속복합수산화물의 입자형상 이미지이다.3 is a particle shape image of a cathode material for a non-aqueous lithium secondary battery prepared by the manufacturing method of Comparative Example and a spherical transition metal composite hydroxide as a precursor thereof.

도 2 및 도 3을 참조하면, Ti 치환이 되지 않은 비교예의 경우에는 입자강도가 낮아 실제 전지에 적용했을 경우에 입자 파괴 및 전해액과의 부반응에 의한 전지특성 열화가 발생하여 동일한 테스트 조건에서 52% 수준으로 용량유지율이 감소한다.2 and 3, in the case of the comparative example in which Ti was not substituted, the particle strength was low, and when applied to an actual battery, particle destruction and deterioration of battery characteristics due to side reactions with the electrolyte occurred, resulting in 52% under the same test conditions. The capacity retention rate decreases to the level.

즉 이러한 양극재료의 성능 향상은 나노크기의 이산화티탄 전구체 단계에서 표면에 코팅함으로써 Ti가 균일하게 표면에서 내부로 확산 치환된 Ni-rich 양극재료를 제조함 수 있었기 때문이다. 특히 표면으로부터의 Ti 확산 치환이 전기화학적 표면반응에서의 양극재료의 구조 안정화 및 입자강도를 향상시켜, 고온에서 우수한 수명특성 발현이 가능하였다.That is, the improvement in the performance of such a cathode material is because it is possible to manufacture a Ni-rich anode material in which Ti is uniformly diffused and substituted from the surface to the inside by coating the surface in the nano-sized titanium dioxide precursor stage. Particularly, Ti diffusion substitution from the surface stabilizes the structure of the cathode material and improves the particle strength in the electrochemical surface reaction, enabling excellent lifespan characteristics at high temperatures.

그리고 실시예 및 비교예에 따른 전이금속복합수산화물로부터 제조된 양극재료로 전극 평가용 코인셀 및 풀셀에서의 상온 및 고온에서의 충방전 수명특성을 도 5 및 6에 도시된 바와 같이 측정하였다.In addition, charge/discharge life characteristics at room temperature and high temperature in a coin cell for electrode evaluation and a full cell using a cathode material prepared from the transition metal composite hydroxide according to Examples and Comparative Examples were measured as shown in FIGS. 5 and 6.

도 5 및 도 6을 참조하면, 실시예가 비교예에 비해서 상온 및 고온에서 양호한 수명특성을 나타내는 것을 확인할 수 있다.Referring to FIGS. 5 and 6, it can be seen that the Example exhibits good lifespan characteristics at room temperature and high temperature compared to the Comparative Example.

도 7은 실시예 및 비교예의 제조 방법으로 제조된 Ni-rich 양극재료의 고온에서의 사이클에 따른 입자강도 변화를 보여주는 그래프이다.7 is a graph showing the change in particle strength according to the cycle at high temperature of the Ni-rich cathode material prepared by the manufacturing method of Examples and Comparative Examples.

도 7의 고온 수명에 따른 입자강도의 변화를 측정한 결과를 보면, 우수한 수명특성이 발현된 실시예의 경우에는 50회 충방전 이후에도 48MPa의 상대적으로 높은 입자강도를 유지하고 있음을 알 수 있다. 그러나 비교예의 경우에는 23MPa의 매우 낮은 입자강도를 유지하고 있음을 알 수 있다. 낮은 입자강도는 실제 전지의 양극재료로 사용하기에는 부적합하다.As a result of measuring the change in particle strength according to the high-temperature life in FIG. 7, it can be seen that in the case of the embodiment in which excellent life characteristics are expressed, a relatively high particle strength of 48 MPa is maintained even after 50 charging and discharging times. However, in the case of the comparative example, it can be seen that a very low particle strength of 23 MPa is maintained. The low particle strength is not suitable for use as a positive electrode material for a real battery.

도 8은 실시예 및 비교예의 제조 방법으로 제조된 Ni-rich 양극재료의 고온에서의 사이클에 따른 입자내부의 파괴 정도를 보여주는 이미지이다.8 is an image showing the degree of destruction of the inside of the particles according to the cycle at a high temperature of the Ni-rich anode material prepared by the manufacturing method of Examples and Comparative Examples.

도 8을 참조하면, 실제 입자의 표면 및 내부에서도 입자의 파괴가 지속적으로 진행되어 이로 인한 성능 열화가 발생하는 것을 확인할 수 있다.Referring to FIG. 8, it can be seen that the destruction of the particles continuously proceeds even on the surface and inside of the actual particles, resulting in performance degradation.

한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are only presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those of ordinary skill in the art that other modifications based on the technical idea of the present invention may be implemented in addition to the embodiments disclosed herein.

Claims (8)

코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료가 혼합된 수용액을 공침시켜 구형의 전이금속복합수산화물을 제조하는 전이금속복합수산화물 제조 단계;
상기 전이금속복합수산화물에 나노크기의 이산화티탄을 사용하여 표면에 코팅하는 단계;
상기 이산화티탄이 표면코팅된 전이금속복합수산화물과 리튬원료와 혼합, 열처리하여 티타늄이 확산 치환된 구형의 Ni-rich 양극재료를 제조하는 양극재료 제조 단계;를 포함하고,
상기 코팅하는 단계에서,
상기 나노크기의 이산화티탄은 입자크기가 10~50nm이고,
상기 전이금속복합수산화물은,
NixCoyMn1-x-yTiz(OH)2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)의 조성비를 갖고, 평균입도가 5~25㎛인 것을 특징으로 하는 비수계 리튬이차전지용 양극재료의 제조 방법.
A transition metal complex hydroxide preparation step of preparing a spherical transition metal complex hydroxide by coprecipitation of an aqueous solution in which a cobalt raw material, a nickel raw material, a manganese raw material, a hydroxyl-based raw material and an ammonia raw material are mixed;
Coating the transition metal complex hydroxide on a surface using nano-sized titanium dioxide;
A cathode material manufacturing step of preparing a spherical Ni-rich anode material in which titanium dioxide is surface-coated with a transition metal complex hydroxide and a lithium raw material and heat-treated to prepare a spherical Ni-rich anode material in which titanium is diffusion-substituted.
In the coating step,
The nano-sized titanium dioxide has a particle size of 10 to 50 nm,
The transition metal complex hydroxide,
It has a composition ratio of Ni x Co y Mn 1-xy Ti z (OH) 2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05), and an average particle size of 5 to 25㎛. Method for producing a cathode material for a non-aqueous lithium secondary battery.
삭제delete 제1항에 있어서, 상기 전이금속복합수산화물 제조 단계에서,
코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료의 농도는 각각 0.5~2M이며, 코발트원료, 니켈원료, 망간원료, 수산화기원료 및 암모니아원료의 농도는 각각 0.5~2M이며, (코발트원료 + 니켈원료 + 망간원료), 수산화기원료 및 암모니아원료를 1 : 0.9~1.5 : 0.10의 비율로 공침하되, 혼합된 수용액의 pH를 10~12로 유지하여 구형의 전이금속복합수산화물을 제조하는 것을 특징으로 하는 비수계 리튬이차전지용 양극재료의 제조 방법.
The method of claim 1, wherein in the preparation of the transition metal complex hydroxide,
The concentration of cobalt raw material, nickel raw material, manganese raw material, hydroxyl raw material and ammonia raw material is 0.5~2M, respectively, and the concentration of cobalt raw material, nickel raw material, manganese raw material, hydroxyl raw material and ammonia raw material is 0.5~2M, respectively, and (cobalt raw material + Nickel material + manganese material), hydroxyl base material and ammonia material are co-precipitated in a ratio of 1: 0.9 to 1.5: 0.10, but the pH of the mixed aqueous solution is maintained at 10 to 12 to produce a spherical transition metal complex hydroxide. Method for producing a cathode material for a non-aqueous lithium secondary battery.
삭제delete 제1항에 있어서, 상기 양극재료 제조 단계에서,
상기 Ni-rich 양극재료는,
LiwNixCoyMn1-x-y-zTizO2 (0.7<x≤0.9, 0.0≤y<0.2, 1-x-y-z≤0.2, 0<z<0.05, 1.0≤w≤1.1)의 조성비를 갖고, 평균입도가 5~25㎛인 것을 특징으로 하는 비수계 리튬이차전지용 양극재료의 제조 방법.
The method of claim 1, wherein in the positive electrode material manufacturing step,
The Ni-rich cathode material,
Li w Ni x Co y Mn 1-xyz Ti z O 2 (0.7<x≤0.9, 0.0≤y<0.2, 1-xyz≤0.2, 0<z<0.05, 1.0≤w≤1.1), Method for producing a cathode material for a non-aqueous lithium secondary battery, characterized in that the average particle size is 5 ~ 25㎛.
제5항에 있어서,
제조되는 Ni-rich 양극재료의 입자강도가 100MPa 이상이며, 60도 고온에서 50회 충방전한 이후에도 입자의 강도가 40MPa 이상을 유지하는 것을 특징으로 하는 비수계 리튬이차전지용 양극재료의 제조 방법.
The method of claim 5,
A method for producing a cathode material for a non-aqueous lithium secondary battery, characterized in that the particle strength of the Ni-rich cathode material to be produced is 100 MPa or more, and the particle strength is maintained at 40 MPa or more even after charging and discharging 50 times at a high temperature of 60 degrees.
제1항에 있어서,
상기 Ni-rich 양극재료 제조 단계에서의 열처리는 700~900℃에서 수행하는 것을 특징으로 하는 비수계 리튬이차전지용 양극재료의 제조 방법.
The method of claim 1,
The method of manufacturing a cathode material for a non-aqueous lithium secondary battery, characterized in that the heat treatment in the Ni-rich cathode material manufacturing step is performed at 700 to 900°C.
비수계 리튬이차전지의 양극재료용 나노크기의 이산화티탄이 표면코팅된 전이금속복합수산화물로서,
상기 나노크기의 이산화티탄은 입자크기가 10~50nm이고,
상기 전이금속복합수산화물은,
NixCoyMn1-x-yTiz(OH)2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05)의 조성비를 갖고, 평균입도가 5~25㎛인 것을 특징으로 하는 비수계 리튬이차전지의 양극재료용 나노크기의 이산화티탄이 표면코팅된 전이금속복합수산화물.
As a transition metal composite hydroxide coated with nano-sized titanium dioxide for a cathode material of a non-aqueous lithium secondary battery,
The nano-sized titanium dioxide has a particle size of 10 to 50 nm,
The transition metal complex hydroxide,
It has a composition ratio of Ni x Co y Mn 1-xy Ti z (OH) 2 (0.70<x≤0.90, 0.00≤y≤0.20, 0.00<z≤0.05), and an average particle size of 5 to 25㎛. Transition metal composite hydroxide coated with nano-sized titanium dioxide for positive electrode materials of non-aqueous lithium secondary batteries.
KR1020160031224A 2016-03-16 2016-03-16 Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof KR102199753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160031224A KR102199753B1 (en) 2016-03-16 2016-03-16 Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160031224A KR102199753B1 (en) 2016-03-16 2016-03-16 Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20170108184A KR20170108184A (en) 2017-09-27
KR102199753B1 true KR102199753B1 (en) 2021-01-08

Family

ID=60036495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160031224A KR102199753B1 (en) 2016-03-16 2016-03-16 Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102199753B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7049552B2 (en) 2017-11-21 2022-04-07 エルジー エナジー ソリューション リミテッド Positive electrode active material precursor and its manufacturing method
JP6791112B2 (en) * 2017-12-25 2020-11-25 日亜化学工業株式会社 Manufacturing method of positive electrode material for non-aqueous secondary batteries
CN108946827B (en) * 2018-07-03 2020-09-29 华友新能源科技(衢州)有限公司 Ultra-small particle size nickel-cobalt-manganese hydroxide and preparation method thereof
KR102359803B1 (en) 2020-01-29 2022-02-10 한국과학기술연구원 Ni-RICH LAYERED POSITIVE COMPOSITION FOR LITHIUM ION BATTERY, MANUFACTURING METHOD THEREOF AND LITHIUM ION BATTERY COMPRISING THE SAME
JPWO2021201270A1 (en) * 2020-04-03 2021-10-07
CN113328088B (en) * 2021-05-17 2022-06-07 湘潭大学 Controllable method for realizing surface modification of electrode material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538617B1 (en) * 2013-07-31 2015-07-22 전자부품연구원 Positive composition for Lithium secondary battery using spherical cobalt oxide with nano-titanate and manufacturing method thereof
KR101566155B1 (en) * 2013-12-17 2015-11-05 전자부품연구원 Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
KR101630209B1 (en) * 2014-03-05 2016-06-15 전자부품연구원 Positive active material, lithium secondary battery having the same and manufacturing method thereof
KR101590441B1 (en) * 2014-06-17 2016-02-02 전자부품연구원 Positive composition for lithium secondary battery using spherical nickel-cobalt-manganese-hydroxides, lithium secondary battery having the same and manufacturing method thereof

Also Published As

Publication number Publication date
KR20170108184A (en) 2017-09-27

Similar Documents

Publication Publication Date Title
EP3331066B1 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102199753B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
WO2019098384A1 (en) Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11201328B2 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
KR101590441B1 (en) Positive composition for lithium secondary battery using spherical nickel-cobalt-manganese-hydroxides, lithium secondary battery having the same and manufacturing method thereof
KR101630209B1 (en) Positive active material, lithium secondary battery having the same and manufacturing method thereof
KR101566155B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
CN110072816A (en) Lithium metal composite oxide power, positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2005123179A (en) Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP2018523892A (en) Cathode material for rechargeable solid lithium ion batteries
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
WO2015072093A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
US9643859B2 (en) Process for producing carbonate compound and cathode active material
KR101538617B1 (en) Positive composition for Lithium secondary battery using spherical cobalt oxide with nano-titanate and manufacturing method thereof
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
KR20180105762A (en) Ni-rich positive composition for lithium secondary battery using spherical transition metal complex hydroxide with nano-titanate and manufacturing method thereof
KR101239086B1 (en) Positive composition for Lithium secondary battery using spherical porous cobalt oxide and manufacturing method thereof
KR101470986B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
KR101360837B1 (en) Positive composition for lithium secondary battery using spherical cobalt oxide with nano-titanate and manufacturing method thereof
US20160020456A1 (en) Cathode material for non-aqueous lithium secondary battery using spherical cobalt hydroxide
KR20190106169A (en) Ni-rich positive composition for non-aqueous lithium secondary battery and method for manufacturing the same
KR101335430B1 (en) Manufacturing method of positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
KR101499428B1 (en) Positive electrode materials for Lithium secondary battery using spherical cobalt hydroxide
JP2019110136A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant