JPS63298938A - Purity regulating device - Google Patents

Purity regulating device

Info

Publication number
JPS63298938A
JPS63298938A JP13255487A JP13255487A JPS63298938A JP S63298938 A JPS63298938 A JP S63298938A JP 13255487 A JP13255487 A JP 13255487A JP 13255487 A JP13255487 A JP 13255487A JP S63298938 A JPS63298938 A JP S63298938A
Authority
JP
Japan
Prior art keywords
adjustment
phosphor
value
mislanding
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13255487A
Other languages
Japanese (ja)
Inventor
Kiyohiko Tezuka
手塚 清彦
Yoshio Yamamoto
山本 芳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13255487A priority Critical patent/JPS63298938A/en
Publication of JPS63298938A publication Critical patent/JPS63298938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To make the regulation and the positioning easier, requiring no skill in the work by computing and processing the displacement of the central value of the electron beams to the center of the phosphor of a CRT, and displaying it numerically and in a scale. CONSTITUTION:An arithmetic unit 29 operates the computation and processing from the left-and-right difference voltage digital amount and from the voltage digital amount when the forcible magnetic field generating voltage is not applied to a forcible magnetic field coil 25 and when the electron beams are not displaced to the left and right, and computes the mislanding values of the phosphor owing to the electron beams at two points of the left side and the right side of a CRT surface. Moreover, one halt of the sum of mislanding amounts of the two points is computed to find the regulating value of a double-pole magnet for the purity regulating purpose, and one half of the difference between the mislanding amounts of the two points is computed to find the regulating value of a deflecting yoke. Then, a display 31 displays the regulating points in an animation marker on a graduated scale in graphic, as well as displaying the regulating values of the purity regulating double-pole magnet and the deflecting yoke respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カラーテレビ受像機の製造工程におけるブラ
ウン管(以下CRTと略称する)のピユリティ調整に用
いるピユリティ調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a purity adjustment device used to adjust the purity of a cathode ray tube (hereinafter abbreviated as CRT) in the manufacturing process of color television receivers.

従来の技術 従来のCRTピユリティ調整装置は第6図に示すような
構成となっていた。すなわち光センサ−1にはCRTの
電子ビームを左右に変位させる強制磁界印加コイル2が
それぞれ取付られており、上記光センサ−1を被調整C
RTの左右の所望の位置に装着した後、上記強制磁界印
加コイル2に磁界制御部8から強制磁界発生用電圧を加
えてCRTの電子ビームを左右に変位させ、電子ビーム
による螢光体の発光面積の変化を上記光センサ−1で電
圧に変換し、増巾部3で増巾した後、左右差電圧出力部
4に加えて、上記光センサ−1の左右の電圧の差を得て
、この出力を混合部已に加えて混合した後、座標軸発生
部7により表示部6に表示されるマーカに変換される。
2. Description of the Related Art A conventional CRT purity adjustment device has a configuration as shown in FIG. That is, each optical sensor 1 is attached with a forced magnetic field application coil 2 that displaces the electron beam of the CRT to the left and right.
After the RT is installed at the desired left and right positions, a voltage for generating a forced magnetic field is applied from the magnetic field control unit 8 to the forced magnetic field applying coil 2 to displace the electron beam of the CRT left and right, causing the phosphor to emit light from the electron beam. After converting the change in area into a voltage with the optical sensor 1 and amplifying it with the amplification section 3, in addition to the left and right differential voltage output section 4, obtain the difference between the voltages on the left and right sides of the optical sensor 1, After this output is added to the mixing section and mixed, it is converted into a marker displayed on the display section 6 by the coordinate axis generation section 7.

尚、座標軸発生部7はX−Y軸に相当する座標軸信号を
発生し、表示部6に加えている。
Incidentally, the coordinate axis generating section 7 generates coordinate axis signals corresponding to the X-Y axes and adds them to the display section 6.

以上の動作により、第7図に示すように表示部6を構成
するモニター9に座標軸10が表示されると共にCRT
の左右2ケ所の電子ビームによる螢光体のミスランデン
グ状態をそれぞれマーカー11及び12で表示している
Through the above operations, the coordinate axes 10 are displayed on the monitor 9 constituting the display unit 6 as shown in FIG.
The mislanding states of the phosphor caused by the electron beam at two places on the left and right sides of the screen are indicated by markers 11 and 12, respectively.

従来のピユリティ調整は上記マーカ11及び12を座標
軸10の交点に合致するようCRTに附属している2極
マグネツトと偏向ヨークの位置を調整して、電子ビーム
による螢光体のランデング状態を略把握していた。
Conventional purity adjustment involves adjusting the positions of the two-pole magnet and deflection yoke attached to the CRT so that the markers 11 and 12 coincide with the intersection of the coordinate axes 10, and roughly grasping the landing state of the phosphor by the electron beam. Was.

発明が解決しようとする問題点 しかしながら上記のような構成では、電子ビームによる
螢光体のランデング状態の把握は、単にモニターの座標
軸交点にマーカを合致させるのみであるため、螢光体の
中心に対する電子ビームの中心値の変位値を数値的に把
握することができなかった。又、CRTに附属するピユ
リティ調整用の2極マグネツトや偏向ヨークの調整位置
の動きと、上記マーカーの移動位置に相関性がないため
、調整作業に熟練が要求されるという問題点を有してい
た。
Problems to be Solved by the Invention However, with the above configuration, the landing state of the phosphor using the electron beam can only be determined by simply aligning the marker with the intersection of the coordinate axes of the monitor. It was not possible to numerically understand the displacement value of the center value of the electron beam. Furthermore, since there is no correlation between the movement of the adjustment position of the two-pole magnet and deflection yoke for purity adjustment attached to the CRT and the movement position of the marker, there is a problem in that skill is required for the adjustment work. Ta.

本発明は上記問題点に鑑み、螢光体に対する電子ビーム
のランデング状態をモニターの表示部に数値的に並びに
スケール的に表示することにより、ビユリティ調整用2
極マグネツトの調整、及び偏向ヨークの位置決めを容易
に行うことができ、かつ調整作業に熟練を必要としない
ピユリティ調整装置を提供するものである。
In view of the above-mentioned problems, the present invention displays the landing state of the electron beam with respect to the phosphor numerically and on a scale on the display section of the monitor, thereby making it easier to adjust the utility.
To provide a purity adjustment device that allows easy adjustment of a pole magnet and positioning of a deflection yoke, and does not require skill for adjustment work.

問題点を解決するための手段 上記問題点を解決するために、本発明のピユリティ調整
装置は、電子ビームを左右に変位させて螢光体をランチ
ングさせる偏向手段と、左右それぞれの位置における前
記螢光体の発光面積に比例した発光量を電圧に変換する
変換手段と、前記電圧を保持する保持手段と、前記保持
されたアナログ電圧量をデジタル電圧量に変換する変換
手段と、ブラウン管左右の所望の位置の前記螢光体のミ
スランデング値の和の′ツと差の3を演算する演算手段
と、前記演算手段により、調整マグネットの調整値及び
偏向ヨークの調整値の数値を表示するとともにスケール
上に動画で前記調整マグネット及び前記偏向ヨークの調
整点を表示したものである。
Means for Solving the Problems In order to solve the above problems, the purity adjusting device of the present invention includes a deflection means for displacing the electron beam from side to side to launch the phosphor, and a deflection means for launching the phosphor at each of the left and right positions. a converting means for converting the amount of light emitted proportional to the light emitting area of the light body into a voltage; a holding means for holding the voltage; a converting means for converting the held analog voltage amount into a digital voltage amount; a calculation means for calculating the sum of the mislanding values of the phosphor at the position and the difference of 3; The above animation shows the adjustment points of the adjustment magnet and the deflection yoke.

作  用 本発明は上記した構成によって、CRTの螢光体の中心
に対する電子ビームの中心値の変位値を演算部により演
算処理することにより、数値的並びにスケール的にモニ
ターの表示部に表示し、調整作業者が上記表示を視認し
ながら、ピユリティ調整用2極マグネツトの調整及び偏
向ヨークの位置決め調整作業を行い、電子ビームの螢光
体に対する適正なランデング状態を確保すると、その時
点の電子ビームによる螢光体のランデング状態を数値的
に容易に把握することができ、これによりビユリティ調
整精度及び作業性を飛躍的に向上させることができるこ
とになる。
According to the above-described configuration, the present invention displays the displacement value of the center value of the electron beam with respect to the center of the phosphor of the CRT on the display unit of the monitor numerically and on a scale by calculating the displacement value of the center value of the electron beam with respect to the center of the phosphor of the CRT, While visually checking the display above, the adjustment operator adjusts the two-pole magnet for purity adjustment and the positioning of the deflection yoke to ensure proper landing of the electron beam with respect to the phosphor. The landing state of the phosphor can be easily grasped numerically, thereby dramatically improving the utility adjustment accuracy and workability.

実施例 以下、本発明の一実施例のピユリティ調整装置について
図面を参照しながら説明する。
Embodiment Hereinafter, a purity adjusting device according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるピユリティ調整装置
のブロック図、第2図はモニターの表示内容説明図、第
3図はCRTの電子銃の位置と電子ビームによる螢光体
のランデング位置を示す説明図、第4図は偏向ヨークの
位置と電子ビームによる螢光体のランデング位置を示す
説明図、第6図は電子ビームを左右に変位させた場合と
変位させない場合の電子ビームと螢光体の発光面積の関
係を示す説明図である。
Fig. 1 is a block diagram of a purity adjustment device in an embodiment of the present invention, Fig. 2 is an explanatory diagram of the display contents of the monitor, and Fig. 3 shows the position of the CRT electron gun and the landing position of the phosphor by the electron beam. FIG. 4 is an explanatory diagram showing the position of the deflection yoke and the landing position of the phosphor by the electron beam. FIG. 6 is an explanatory diagram showing the position of the deflection yoke and the landing position of the phosphor by the electron beam. FIG. FIG. 3 is an explanatory diagram showing the relationship between the light emitting areas of the body.

第1図において24はCRTの螢光体の発光面積の変化
を感知して電圧に変換する光センサーで強制磁界印加コ
イル25が取付けられている。
In FIG. 1, reference numeral 24 denotes an optical sensor that senses changes in the light emitting area of the CRT's phosphor and converts it into voltage, and a forced magnetic field applying coil 25 is attached thereto.

26は増巾部で、磁界制御部3oにより強制磁界コイル
25に強制磁界発生用電圧が加えられ、これによりCR
Tの電子ビームを左右に変位させ、電子ビームによる螢
光体の発光面積の変化を光センサ−24で電圧に変換し
た後、増巾する。27はピークホールド部で、増巾部2
6よりの電圧をうけとり、電子ビームの左右の変位の差
の電圧をA/Dコンバーター28へ出力すると共に強制
磁界コイル26に強制磁界発生用電圧が加えられない場
合で電子ビームが左右に変位しない時の電圧を保持し、
これをA/Dコンバーター28へ出力するものである。
Reference numeral 26 denotes a width increasing section, in which a forced magnetic field generation voltage is applied to the forced magnetic field coil 25 by the magnetic field control section 3o, and as a result, the CR
The electron beam of T is displaced left and right, and the change in the light emitting area of the phosphor due to the electron beam is converted into voltage by the optical sensor 24, and then amplified. 27 is the peak hold part, and the width increasing part 2
6, and outputs the voltage corresponding to the difference between the left and right displacements of the electron beam to the A/D converter 28, and the electron beam does not shift to the left or right when the forced magnetic field generation voltage is not applied to the forced magnetic field coil 26. Holds the voltage at
This is output to the A/D converter 28.

A/Dコンバーター28はピークホールド部27からの
それぞれの電圧アナログ量をデジタル量に変換するもの
である。
The A/D converter 28 converts each voltage analog quantity from the peak hold section 27 into a digital quantity.

29は電子ビームの左右差電圧デジタル量と強制磁界コ
イル25に強制磁界発生用電圧が加えられない場合で電
子ビームが左右に変位しない時の電圧デジタル量から演
算処理を行う演算部で、CRT面左右2点の電子ビーム
による螢光体のミスランデング値を算出するものである
。さらに演算部29は上記2点のミスランデング量の和
の半分を演算し、ピユリティ調整用2極マグネツトの調
整値を算出し、又、上記2点のミスランデング量の差の
半分を演算し、これにより偏向ヨークの調整値を算出す
るものである。31は表示部でピユリティ調整用2極マ
グネツトの調整値及び偏向ヨークの調整値の数値を表示
する機能を有すると共にグラフィックで目盛付スケール
上の動画マーカーで調整点を表示する機能を有するもの
である。
Reference numeral 29 denotes an arithmetic unit that performs arithmetic processing from the left-right differential voltage digital amount of the electron beam and the voltage digital amount when the forced magnetic field generation voltage is not applied to the forced magnetic field coil 25 and the electron beam is not displaced left and right. This is to calculate the mislanding value of the phosphor due to the electron beams at two points on the left and right. Further, the calculation unit 29 calculates half of the sum of the mislanding amounts at the two points, calculates the adjustment value of the two-pole magnet for purity adjustment, and calculates half the difference between the mislanding amounts at the two points, This calculates the adjustment value for the deflection yoke. 31 has the function of displaying numerical values of the adjustment value of the two-pole magnet for polarity adjustment and the adjustment value of the deflection yoke on the display part, and also has the function of graphically displaying the adjustment point with an animation marker on a scale with graduations. .

尚、上下方向の電子ビームによる螢光体のランデング値
も同様の方法で定量化することができ、ピユリティ調整
用2極マグネツトの上下方向調整値として求めることも
できる。
Incidentally, the landing value of the phosphor caused by the electron beam in the vertical direction can also be quantified in a similar manner, and can also be determined as the vertical adjustment value of the two-pole magnet for purity adjustment.

第2図において32はモニターで一部分にビユリティ調
整用2極マグネツト調整値、及び偏向ヨーク調整値36
が数値表示され、動画マーカーではビユリティ調整用2
極マグネツト調整値の動画表示34.偏向ヨーク調整値
の動画表示33が表示され、いずれも目盛付スケール3
6上に位置する。これにより、ピユリティ調整用2極マ
グネツトと偏向ヨークの調整は、モニター32の数値表
示36に表示される各々の調整値を規定の値となるよう
に調整すると共に、偏向ヨーク調整値動画マーカー33
とビユリティ調整用2極マグネツト調整値動画マーカー
31/2を規定された位置に調整すればよいことになる
In Fig. 2, numeral 32 is a monitor, and part of it contains the two-pole magnet adjustment value for utility adjustment and the deflection yoke adjustment value 36.
is displayed numerically, and the video marker shows 2 for utility adjustment.
Video display of polar magnet adjustment value 34. A video display 33 of the deflection yoke adjustment value is displayed, and both are on the scale 3 with graduations.
Located above 6. As a result, the two-pole magnet for polarity adjustment and the deflection yoke are adjusted so that each adjustment value displayed on the numerical display 36 of the monitor 32 becomes a specified value, and the deflection yoke adjustment value animation marker 33
All that is required is to adjust the two-pole magnet adjustment value moving image marker 31/2 for utility adjustment to a specified position.

第3図はCRTの電子銃の位置とその電子ビームによる
螢光体のランデングの関係及びピユリティ調整用2極マ
グネツトの役割を説明する説明図で、第3図において電
子銃の位置が螢光体に対して正確にランデングする正規
の組立位置13であれば、図に示すように電子ビームに
よるCRT中央の螢光体に対するミスランデング値18
は零となり、CRT面左側のミスランデング値17とC
RT右側のミスランデング値19の値は同一となる。次
に螢光体に対して電子銃の組立が不正規の位置14であ
ったとすれば、図に示すようにCRT面左側のミスラン
デング値17は、CRT面右側のミスランデング値19
より大きくなり、この時の電子銃の組立位置ズレ値は、
CRT#J左側のミスランデング値17とCRT面右側
のミスランデング値19の和の半分の計算でもって判断
することができ、この値はCRT面中央のミスランデン
グ値18を示すことになる。
Figure 3 is an explanatory diagram illustrating the relationship between the position of the electron gun of a CRT and the landing of the phosphor by the electron beam, and the role of the two-pole magnet for purity adjustment. If it is the correct assembly position 13 where it lands accurately on
becomes zero, and the mislanding value 17 on the left side of the CRT surface and C
The values of the mislanding value 19 on the right side of RT are the same. Next, if the electron gun is assembled at an irregular position 14 with respect to the phosphor, the mislanding value 17 on the left side of the CRT surface becomes 19 on the right side of the CRT surface, as shown in the figure.
becomes larger, and the assembly position deviation value of the electron gun at this time is
This can be determined by calculating half the sum of the mislanding value 17 on the left side of the CRT #J and the mislanding value 19 on the right side of the CRT surface, and this value indicates the mislanding value 18 at the center of the CRT surface.

ここでピユリティ調整用2極マグネツトの役割りは、電
子銃の組立位置ズレによる電子ビームの螢光体のミスラ
ンデングを補正し適正な螢光体のランデングを保持する
ものであるため、電子銃の組立位置ズレ値をCRT面中
央のミスランデング値でもってピユリティ調整用2極マ
グネツトの調整値を設定している。
Here, the role of the two-pole magnet for polarity adjustment is to correct mislanding of the phosphor of the electron beam due to misalignment of the assembly position of the electron gun, and to maintain proper landing of the phosphor. The adjustment value of the two-pole magnet for purity adjustment is set using the assembly position deviation value as the mislanding value at the center of the CRT surface.

又、偏向ヨークの位置設定調整値は、第4図に示すよう
に偏向ヨークの第一の位置20から偏向ヨークの第二の
位置21に位置設定を移動させると、CRT面左側及び
右側における電子ビームの螢光体に対するミスランデン
グの状態は、螢光体16の左右に拡がる方向へ移動する
ことからCRT面左側のミスランデング値22とCRT
面右側のミスランデング値23と偏向ヨークの前後の設
定位置と相関関係があり、ミスランデング値22と23
の両者の値の差の半分の値でもって偏向ヨークによる適
正なランデング状態が得られるため、これにより偏向ヨ
ークの調整値を設定している。第6図に電子ビームを左
右に変位させた場合と変位させない場合の電子ビームと
螢光体の発光面積の関係を示す。
Further, the position setting adjustment value of the deflection yoke is determined by moving the position setting from the first position 20 of the deflection yoke to the second position 21 of the deflection yoke as shown in FIG. The state of mislanding of the beam with respect to the phosphor is determined by the mislanding value 22 on the left side of the CRT surface as the beam moves in the direction of spreading to the left and right of the phosphor 16.
There is a correlation between the mislanding value 23 on the right side of the surface and the setting position before and after the deflection yoke, and the mislanding values 22 and 23
Since a proper landing state can be obtained by the deflection yoke with a value that is half the difference between the two values, the adjustment value of the deflection yoke is set based on this value. FIG. 6 shows the relationship between the electron beam and the light emitting area of the phosphor when the electron beam is displaced left and right and when it is not displaced.

上記の演算を実施することにより、ピユリティ調′整に
必要な2極マグネツトと偏向ヨークの調整値を求めるこ
とができる。
By performing the above calculation, the adjustment values for the two-pole magnet and deflection yoke necessary for the purity adjustment can be determined.

以上のように本実施例によれば電子ビームを左右に変位
させて螢光体をランチングさせる偏向手段と左右それぞ
れの位置における前記螢光体の発光面積に比例した発光
量を電圧に変換する変換手段と前記電圧を保持する保持
手段と前記保持されたアナログ電圧量をデジタル電圧量
に変換する変換手段とブラウン管左右の所望の位置に前
記螢光体のミスランデング値の和の1/2差の3を演算
する演算手段と前記演算手段により、調整マグネットの
調整イ直及び偏向ヨークの調整値の数値を表示するとと
もに、スケール上に動画で前記調整マグネット及び前記
圓向ヨークの調整点を表示する表示手段を設けることに
より、2極マグネツトの調整値が数値的に把握できるよ
うになったため、調整作業に熟練が不要となり、新人の
作業者でも簡単に調整できるようになり作業性が向上し
たこと、及び品質管理上ピユリティ調整精度を向上させ
ることができる。
As described above, according to this embodiment, the deflection means displaces the electron beam to the left and right to launch the phosphor, and the conversion converts the amount of light emitted proportional to the light emitting area of the phosphor at each left and right position into a voltage. means, a holding means for holding the voltage, a converting means for converting the held analog voltage into a digital voltage, and a 1/2 difference of the sum of the mislanding values of the phosphors at desired positions on the left and right sides of the cathode ray tube. 3 and the calculation means to display the numerical value of the adjustment value of the adjustment magnet and the deflection yoke, and to display the adjustment points of the adjustment magnet and the deflection yoke in animation on a scale. By providing a display means, it became possible to understand the adjustment value of the two-pole magnet numerically, so no experience was required for adjustment work, and even new workers could easily make adjustments, improving work efficiency. , and the accuracy of purity adjustment can be improved for quality control.

発明の効果 以上のように本発明によれば、電子ビームを左右に変位
させて螢光体をランチングさせる偏向手段と左右それぞ
れの位置における前記螢光体の発光面積に比例した発光
量を電圧に変換する変換手段と前記電圧を保持する保持
手段と前記保持されたアナログ電圧量をデジタル電圧量
に変換する変換手段とCftT左右の所望の位置の前記
螢光体のミスランデング値の和の1/2差の1/2を演
算する演算手段と前記演算手段により、ピユリティ調整
用2極マグネツトの調整値及び偏向ヨークの調整値の数
値を表示するとともに、スケール上に動画で前記ビユリ
ティ調整用マグネット及び前記偏向ヨークの調整点を表
示する表示手段を設けることにより、ビユリティ調整作
業に熟練が不要となり、作業性が向上すること、及び品
質管理上ピユリティ調整精度を向上させることができる
Effects of the Invention As described above, according to the present invention, there is provided a deflecting means for displacing the electron beam to the left and right to launch the phosphor, and a voltage that changes the amount of light emitted in proportion to the light emitting area of the phosphor at each of the left and right positions. A conversion means for converting, a holding means for holding the voltage, a conversion means for converting the held analog voltage amount into a digital voltage amount, and 1/ of the sum of the mislanding values of the phosphors at desired positions on the left and right sides of CftT. The arithmetic means for calculating 1/2 of the difference between the two and the arithmetic means display the numerical values of the adjustment value of the two-pole magnet for utility adjustment and the adjustment value of the deflection yoke, and also display the value of the adjustment value of the utility adjustment magnet and the deflection yoke in animation on the scale. By providing a display means for displaying the adjustment points of the deflection yoke, it is possible to eliminate the need for skill in the utility adjustment work, improve work efficiency, and improve the accuracy of the utility adjustment in terms of quality control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例におけるビュリ体に対す
る電子ビームのミスランデングの関係を示す説明図、第
5図はCRTの電子銃の位置と電子ビームのミスランデ
ングの関係を示す説明図、第6図は従来のピユリティ調
整装置のブロック図、第7図は従来例の表示内容説明図
である。 27・・・・・・ピークホールド部、28・・・・・・
A/Dコンバーター、29・・・・・・演算部、 32
・・・・・・モニタ、33・・・・・・偏向ヨーク調整
値動画表示、34・・・・・・2極マグネット調整値動
画表示、35・・・・・・目盛付スケール、36・・・
・・・数値表示部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 l3−−一正現っ肩L)鋏、′ff、tIC−−−蛍丸
イ不 第5図
FIG. 1 is an explanatory diagram showing the relationship between the mislanding of the electron beam with respect to the Buri body in the first embodiment of the present invention, and FIG. 5 is an explanatory diagram showing the relationship between the position of the electron gun of the CRT and the mislanding of the electron beam. , FIG. 6 is a block diagram of a conventional purity adjustment device, and FIG. 7 is an explanatory diagram of display contents of the conventional example. 27...Peak hold section, 28...
A/D converter, 29... Arithmetic unit, 32
...Monitor, 33...Deflection yoke adjustment value video display, 34...2-pole magnet adjustment value video display, 35...Scale with scale, 36.・・・
... Numerical display section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 13--Kazumasa's shoulder L) Scissors, 'ff, tIC--Homaru Ai Figure 5

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを左右に変位させて螢光体にランデングさせ
る偏向手段と、左右それぞれの位置における前記螢光体
の発光面積に比例した発光量を電圧に変換する変換手段
と、前記電圧を保持する保持手段と、前記保持されたア
ナログ電圧量をデジタル電圧量に変換する変換手段と、
ブラウン管左右の所望の位置の前記螢光体のミスランデ
ング値の和の1/2差の1/2を演算する演算手段と、
前記演算手段により、調整マグネットの調整値及び偏向
ヨークの調整値の数値を表示するとともに、スケール上
に動画で前記調整マグネット及び前記偏向ヨークの調整
点を表示する表示手段からなるピュリティ調整装置。
a deflecting means for displacing the electron beam from side to side and landing it on the phosphor, a converting means for converting into a voltage an amount of light emitted proportional to the light emitting area of the phosphor at each of the left and right positions, and a holding device for holding the voltage. means, and converting means for converting the held analog voltage amount into a digital voltage amount;
calculation means for calculating 1/2 of the 1/2 difference in the sum of the mislanding values of the phosphors at desired positions on the left and right sides of the cathode ray tube;
A purity adjustment device comprising display means for displaying numerical values of the adjustment value of the adjustment magnet and the adjustment value of the deflection yoke by the calculation means, and for displaying the adjustment points of the adjustment magnet and the deflection yoke in animation on a scale.
JP13255487A 1987-05-28 1987-05-28 Purity regulating device Pending JPS63298938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13255487A JPS63298938A (en) 1987-05-28 1987-05-28 Purity regulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13255487A JPS63298938A (en) 1987-05-28 1987-05-28 Purity regulating device

Publications (1)

Publication Number Publication Date
JPS63298938A true JPS63298938A (en) 1988-12-06

Family

ID=15084001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13255487A Pending JPS63298938A (en) 1987-05-28 1987-05-28 Purity regulating device

Country Status (1)

Country Link
JP (1) JPS63298938A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563180A (en) * 1978-11-06 1980-05-13 Mitsubishi Electric Corp Landing property measuring device for color braun tube
JPS567570A (en) * 1979-06-30 1981-01-26 Hitachi Ltd Purity automatic adjusting system for color braun tube
JPS6220222A (en) * 1985-07-17 1987-01-28 Sharp Corp Adjusting device for color television receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563180A (en) * 1978-11-06 1980-05-13 Mitsubishi Electric Corp Landing property measuring device for color braun tube
JPS567570A (en) * 1979-06-30 1981-01-26 Hitachi Ltd Purity automatic adjusting system for color braun tube
JPS6220222A (en) * 1985-07-17 1987-01-28 Sharp Corp Adjusting device for color television receiver

Similar Documents

Publication Publication Date Title
JPS63298938A (en) Purity regulating device
JPH0472990A (en) Monitor television set
US4633143A (en) Convergence correction apparatus for delta-gun color cathode ray tube displays
JPH0516491Y2 (en)
JP3344329B2 (en) Landing adjustment method and device
JP2839189B2 (en) Horizontal convergence deviation measuring device
JP3156569B2 (en) Static convergence adjustment device
KR920005023B1 (en) Measuring equipment of convergence aberration
JPH0229195A (en) Picture adjusting device for cathode-ray tube
JPS61194993A (en) Adjusting device for display position of picture tube
JPH06168665A (en) Positional dislocation measuring method and measuring device for cathode-ray tube beam spot slip
JPH087769A (en) Color purity adjusting device for color cathode-ray tube
KR920010374B1 (en) Method of controlling convergence
JPH0132674Y2 (en)
JP2794606B2 (en) Beam axis adjustment method for charged particle optical system
JPS62272429A (en) Device for correcting deflection magnetic field in cathode-ray tube
JPH0268833A (en) Color cathode-ray tube picture quality adjusting method
JPH0682539B2 (en) Color shift adjustment method and adjustment device for color cathode ray tube
JPH0483092A (en) Direction control in small bore pipe propelling
JP2000175221A (en) Method and system for aiding convergence adjustment of color cathode ray tube
JPS6174495A (en) Adjusting and inspecting instrument of purity
JPH02304849A (en) Transmission electron microscope having measuring function
JP2947803B2 (en) Manufacturing method of color CRT
JPS647456A (en) Method of automatically measuring landing of cathode-ray tube
KR20000047462A (en) Environmental magnetism compensating device and cathode-ray tube display device