JPS63150489A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPS63150489A
JPS63150489A JP29945086A JP29945086A JPS63150489A JP S63150489 A JPS63150489 A JP S63150489A JP 29945086 A JP29945086 A JP 29945086A JP 29945086 A JP29945086 A JP 29945086A JP S63150489 A JPS63150489 A JP S63150489A
Authority
JP
Japan
Prior art keywords
chamber
oil
compression
pressure
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29945086A
Other languages
Japanese (ja)
Other versions
JPH073228B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29945086A priority Critical patent/JPH073228B2/en
Publication of JPS63150489A publication Critical patent/JPS63150489A/en
Publication of JPH073228B2 publication Critical patent/JPH073228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve the durability and compression efficiency of a sliding surface and suppress noise by opening and closing an oil feeding passage control valve according to the differential pressure between in a compression chamber and suction chamber and the urging force of a spring device which possesses the shape memory characteristic. CONSTITUTION:The inhaled coolant gas is compressed and discharged through the turning movement of a swire scroll 10, and the lubricating oil in a motor chamber oil reservoir 23 which is separated in a driving chamber 6 successively lubricates each sliding surface by the centrifugal action in an eccentric hole 24 on a driving shaft 8 and flows into a suction chamber 33, and the gap between the continuous compression chamber is sealed by an oil film. Since the pressure in a compression chamber A36 is higher than that of the suction chamber 33 during operation, the plunger 30 of an oil feeding passage control valve device 17 moves leftward against a spring 38, and intermittently supplies the lubricating oil in the discharge chamber oil reservoir 18 into a compression chamber B39. When the lubricating oil is not returned into a compressor because of the clogging of a piping system, the temperature in the compression chamber rises, and the plunger 30 is moved rightward by the spring 38 made of shape memory alloy, and an oil feeding passage 40 is closed. Therefore, the lubricating oil can be effectively utilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール気体圧縮機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a scroll gas compressor.

従来の技術 低振動、低騒音特性を備えたスフローpFE縮機は、吸
入室が外周部に有シ、吐出ボートが渦巻きの中心部に設
けられ、圧縮流体の流れが一方向で往復動式圧縮機や回
転式圧縮機のような流体を圧縮するための吐出弁を必要
とせず圧縮比が一定で、吐出脈動も比較的小さくて大き
な吐出空間を必要としないことが一般に知られている。
Conventional technology The Suflow pFE compressor, which has low vibration and low noise characteristics, has a suction chamber on the outer periphery and a discharge boat in the center of the vortex. It is generally known that there is no need for a discharge valve for compressing fluid, such as a rotary compressor, the compression ratio is constant, the discharge pulsation is relatively small, and a large discharge space is not required.

しかし、特に気体を圧縮する場合などは圧縮部の漏れ隙
間を小さくするために渦巻き部の寸法精度を極めて高く
する必要があるが、部品形状の複雑さ、寸法精度のバラ
ツキなどによシ、スクロール気体圧縮機のコストが高く
性能のバラツキも大きいという問題があった。
However, especially when compressing gas, the dimensional accuracy of the spiral part must be extremely high in order to reduce the leakage gap in the compression part. There have been problems in that gas compressors are expensive and have large variations in performance.

そこで、この種の問題解決のための方策として、圧縮途
中の気体漏れ防止のために潤滑油膜を利用したシール効
果により渦巻き部寸法精度の適正化と圧縮機性能の安定
化を期待することが大きく、第18図に示す構成が考え
られ、摺動部に供給した潤滑油の一部を吸入気体と共に
圧縮室に流入させ、圧縮吐出後に圧縮気体から潤滑油を
分離後、油戻し通路を介して再び潤滑油溜に通じる空間
に戻して圧縮機外部への潤滑油流出を少なくするという
考え方の下に、吐出空間582に設けられたキャップ5
19内の空間520で圧縮気体から分離された潤滑油が
孔522〜孔584の油戻し通路を通じて吸入通路とな
る空間580に戻され、油溜608に集められ、ポンプ
装置によって再び摺動部に供給される構成であった(特
開昭60−75795号公報)。
Therefore, as a measure to solve this type of problem, it is highly expected that the dimensional accuracy of the spiral part will be optimized and the compressor performance will be stabilized by the sealing effect using a lubricating oil film to prevent gas leakage during compression. , the configuration shown in Fig. 18 is considered, in which a part of the lubricating oil supplied to the sliding part is made to flow into the compression chamber together with the suction gas, and after the lubricating oil is separated from the compressed gas after being compressed and discharged, it is passed through the oil return passage. The cap 5 provided in the discharge space 582 is based on the concept of returning the lubricating oil to the space communicating with the lubricating oil reservoir and reducing the lubricating oil leakage to the outside of the compressor.
The lubricating oil separated from the compressed gas in the space 520 in the 19 is returned to the space 580 which becomes the suction passage through the oil return passages of the holes 522 to 584, collected in the oil sump 608, and returned to the sliding part by the pump device. The structure was supplied (Japanese Patent Laid-Open No. 60-75795).

また、第19図の構成も考えられ、吐出室674に設け
られた油分離エレメント672によって圧縮気体に含ま
れる潤滑油を分離して固定スクロール鏡板603上の油
溜673に潤滑油を収集し、固定スクロール601と旋
回スフロー/L/606との間の摺動面631に差圧給
油の後、吸入室699に潤滑油を流入させて油膜のシー
ル効果によって圧縮室内での圧縮気体漏れを少なくする
構成であった(特開昭56−165787号公報)。
In addition, the configuration shown in FIG. 19 is also considered, in which the lubricating oil contained in the compressed gas is separated by an oil separation element 672 provided in the discharge chamber 674, and the lubricating oil is collected in an oil reservoir 673 on the fixed scroll end plate 603. After differential pressure lubrication is applied to the sliding surface 631 between the fixed scroll 601 and the orbiting SFlow/L/606, lubricating oil is allowed to flow into the suction chamber 699 to reduce compressed gas leakage in the compression chamber due to the sealing effect of the oil film. (Japanese Unexamined Patent Publication No. 165787/1987).

また、第20図、第2)因のように潤滑油を圧縮途中の
圧縮室に直接流入させる構成も考えられ、第20図は密
閉容器701内の上部にモータ703を配置し下部に圧
縮部を配置して密閉容器内空間702を吐出室とした構
造で、吐出室底部の油溜710の潤滑油を油吸い込み管
722を介して圧縮途中の圧縮室723に直接流入させ
る構成であり(特開昭57−8386号公報)、第2)
図は密閉容器801内の上部に圧縮部を配置し下部にモ
ータ803を配置して密閉容器内空間802を吐出室と
した構造で、旋回スクロール804の気体圧縮時に作用
するスラスト力を軽減するために旋回スクロール804
の反圧縮室側背面に設けた中間圧力状態の背圧室808
を中継し、その前後に設けた駆動軸802内の油膜89
9.給油配管815を通して密閉容器801内底部の油
溜809の潤滑油を圧縮途中の圧縮室823に差圧によ
り流入させる構成であった(特開昭59−110893
号公報)。
In addition, a configuration in which lubricating oil is directly flowed into the compression chamber during compression as shown in FIG. 20, factor 2) can also be considered, and in FIG. It has a structure in which the internal space 702 of the sealed container is used as a discharge chamber, and the lubricating oil in the oil sump 710 at the bottom of the discharge chamber is directly flowed into the compression chamber 723 in the middle of compression via the oil suction pipe 722. Publication No. 57-8386), No. 2)
The figure shows a structure in which a compression section is placed in the upper part of a closed container 801 and a motor 803 is placed in the lower part, and a space 802 inside the closed container is used as a discharge chamber. Orbiting scroll 804
A back pressure chamber 808 in an intermediate pressure state provided on the back side on the side opposite to the compression chamber.
An oil film 89 inside the drive shaft 802 provided before and after the
9. The lubricating oil in the oil reservoir 809 at the bottom of the closed container 801 is caused to flow into the compression chamber 823 during compression through the oil supply pipe 815 by differential pressure (Japanese Patent Laid-Open No. 59-110893).
Publication No.).

発明が解決しようとする問題点 しかしながら上記の第18図のような油戻し通路(孔5
22〜孔584)を介して吐出空間582と低圧側の空
間580とが常に連通している構成では、例え常に空間
520や吐出空間582に潤滑油が存在する場合でも圧
縮機駆動軸の回転速度の変化に伴い摺動部給油量などが
変化して、圧縮気体中に含まれる潤滑油量も変化すると
共に吐出空間582と低圧側の空間580との差圧や潤
滑油の粘性も変化するなどして、過不足なく潤滑油を戻
す油戻し通路の設定が極めて困難であり、圧縮機高速運
転時などは潤滑油の吐出量が多くて圧縮機外部への潤滑
油多量流出を防ぐことが不可能である。
Problems to be Solved by the Invention However, if the oil return passage (hole 5
In a configuration in which the discharge space 582 and the low-pressure side space 580 are always in communication through the holes 584), even if lubricating oil is always present in the space 520 and the discharge space 582, the rotational speed of the compressor drive shaft With the change in the amount of oil supplied to the sliding parts, etc., the amount of lubricating oil contained in the compressed gas also changes, and the differential pressure between the discharge space 582 and the low-pressure side space 580 and the viscosity of the lubricating oil also change. Therefore, it is extremely difficult to set up an oil return passage that returns lubricating oil in just the right amount, and when the compressor is operating at high speed, the amount of lubricating oil discharged is large and it is difficult to prevent large amounts of lubricating oil from leaking outside the compressor. It is possible.

また、圧縮機停止中に空間520や吐出空間582の潤
滑油が差圧や自重などで圧縮機底部の油溜508に流入
し、圧縮機再起動後しばらくの間は空間520や吐出空
間582に充分な潤滑油が無く、多量の圧縮気体が油戻
し通路(孔522〜孔584)を通して低圧側の空間5
80に流入して吸入効率、圧縮効率の著しい低下や耐久
性劣化を招くという問題があった。
Furthermore, while the compressor is stopped, lubricating oil in the space 520 and discharge space 582 flows into the oil sump 508 at the bottom of the compressor due to differential pressure and dead weight, and remains in the space 520 and discharge space 582 for a while after the compressor is restarted. There is not enough lubricating oil, and a large amount of compressed gas passes through the oil return passage (holes 522 to 584) to the space 5 on the low pressure side.
There was a problem in that the suction efficiency and compression efficiency were significantly lowered and the durability was deteriorated.

また、上記の第19図のような固定スクロール鏡板60
3上の油溜673の潤滑油を摺動面631を介して吸入
室699に流入させる構成では、第18図の場合と同様
に圧縮機駆動軸が高速回転して気体吐出量が増加すると
油溜673の潤滑油が無い状態もある。このような場合
には吐出室674の圧縮気体が摺動面631を介して吸
入室699に多量流入し、吸入効率、圧縮効率の著しい
低下は勿論のこと摺動面631の摩耗や焼き付きを引き
起こすなどの問題があった。
In addition, a fixed scroll end plate 60 as shown in FIG.
In the configuration in which the lubricating oil in the oil reservoir 673 above 3 flows into the suction chamber 699 through the sliding surface 631, when the compressor drive shaft rotates at high speed and the gas discharge amount increases, as in the case of FIG. There is also a state where there is no lubricating oil in the reservoir 673. In such a case, a large amount of compressed gas in the discharge chamber 674 flows into the suction chamber 699 via the sliding surface 631, causing not only a significant decrease in suction efficiency and compression efficiency but also wear and seizure of the sliding surface 631. There were other problems.

また、上記の第20図のような吐出圧力に等しい密閉容
器内空間702の底部の油溜710の潤滑油を圧縮途中
の圧縮室723に差圧により流入させる構成では、冷媒
圧縮機などに使用する際、圧縮機停止中にその自重や差
圧などにより圧縮機外部の冷凍サイクルから圧縮機内に
帰還した多量の冷媒が液化状態で油溜710の上部のモ
ータ703下面にまで溜まり、冷媒液や潤滑油が油吸い
込み管722などを通じて圧縮室723に流入し充満す
る場合もあり、このような状態では圧縮負荷が過大のた
め再起動運転不能であυ、例えモータ703の起動トル
クが大きくて再起動できるとも圧縮機破損を招く。
In addition, a configuration in which the lubricating oil in the oil reservoir 710 at the bottom of the closed container internal space 702, which is equal to the discharge pressure as shown in FIG. When the compressor is stopped, a large amount of refrigerant that returns to the compressor from the refrigeration cycle outside the compressor due to its own weight and differential pressure accumulates in a liquefied state on the underside of the motor 703 above the oil sump 710, causing refrigerant liquid and In some cases, lubricating oil flows into the compression chamber 723 through the oil suction pipe 722 and fills it, and in such a state, the compression load is too large and restart operation is impossible. Even if it can be started, it will cause damage to the compressor.

また、圧縮機運転条件によって油溜710の潤滑油が不
足する場合もあり、このような状態では圧縮室723に
圧縮気体が流入して圧縮効率の著しい低下や圧縮室内異
常圧力上昇に伴う圧縮機破損などを招くという問題があ
った。
Furthermore, depending on the compressor operating conditions, there may be a shortage of lubricating oil in the oil reservoir 710. In such conditions, compressed gas may flow into the compression chamber 723, resulting in a significant decrease in compression efficiency or an abnormal pressure increase in the compression chamber, causing the compressor to malfunction. There was a problem that it caused damage.

また、上記の第2)図のような圧縮機底部の油溜809
に通じる中間圧力状態の背圧室808を経由して圧縮途
中の圧縮室823に潤滑油を供給する構成でも、上記の
第20図の場合と同様に油溜809の潤滑油が不足する
場合には圧縮効率の著しい低下や耐久性低下を招くとい
う問題もあった。
Also, the oil sump 809 at the bottom of the compressor as shown in Figure 2) above.
Even with the configuration in which lubricating oil is supplied to the compression chamber 823 in the middle of compression via the back pressure chamber 808 in an intermediate pressure state leading to However, there was also the problem that compression efficiency was significantly lowered and durability was lowered.

また一方、第22図、第23図でも示すように圧縮機運
転時に吐出室910底部の油溜916に通じる給油通路
919t−開いて圧縮部に差圧給油し、圧縮機停止時に
給油通路を閉じる構成の発明が特公昭59−44517
号公報によっても知られているが、この発明は吐出ポー
ト907の下流に吐出弁908を必要とするスライドベ
ーン型回転式圧縮機の吐出弁908通過前のシリング9
27の圧力と吐出弁908通過後の吐出室910の圧力
との差圧を利用してプランジャー922を作動させ給油
通路919の開閉弁925を制御する構成である。
On the other hand, as shown in FIGS. 22 and 23, the oil supply passage 919t leading to the oil sump 916 at the bottom of the discharge chamber 910 is opened when the compressor is in operation to supply differential pressure oil to the compression section, and the oil supply passage is closed when the compressor is stopped. The invention of the structure was published in Japanese Patent Publication No. 59-44517.
As is also known from Japanese Patent Publication No. 2003-120001, this invention discloses that the shilling 9 before passing through the discharge valve 908 of a slide vane type rotary compressor which requires a discharge valve 908 downstream of the discharge port 907.
27 and the pressure in the discharge chamber 910 after passing through the discharge valve 908 is used to operate the plunger 922 to control the on-off valve 925 of the oil supply passage 919.

しかし、圧縮機冷時起動運転直後しばらくの間などは、
吐出室910の圧力が低くてシリンダ927内圧縮初期
行程から吐出弁908が開き吐出室910とシリンダ9
27との圧力差が小さい。
However, for a while immediately after compressor cold startup operation,
Since the pressure in the discharge chamber 910 is low, the discharge valve 908 opens from the initial compression stroke in the cylinder 927 and the discharge chamber 910 and the cylinder 9 open.
The pressure difference with 27 is small.

このため開閉弁926が開かず圧縮部への給油も無いの
で、ベーン5のジャンピング現象が生じて異音や圧縮効
率低下を招くなどの問題が有り、圧縮機運転条件に影響
されない給油通路制御装置の実用化が望まれていた。
For this reason, the on-off valve 926 does not open and there is no oil supply to the compression section, which causes problems such as a jumping phenomenon of the vanes 5, causing abnormal noise and a reduction in compression efficiency.The oil supply passage control device is not affected by the compressor operating conditions. It was hoped that it would be put into practical use.

そこで、本発明はスクロール圧縮機が圧縮室圧力を上昇
させるための吐出弁を必要とせず圧縮比が一定であるこ
とに着目し、吸入室および吐出室に連通しない圧縮室と
吸入室などとの圧力差を利用して応用範囲の広い給油通
路制御装置を実用化することにより高効率、耐久性に優
れたスフロー)V気体圧縮機を提供するものである。
Therefore, the present invention focuses on the fact that a scroll compressor does not require a discharge valve to increase the pressure in the compression chamber and has a constant compression ratio. By putting into practical use an oil supply passage control device that utilizes pressure differences and has a wide range of applications, the present invention provides a highly efficient and durable Suflow V gas compressor.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール気体圧縮
機は、油溜まり部とその油溜まり部よりも圧力の低い空
間とを給油通路により連通させ、給油通路の途中には給
油通路制御弁装置を設け、給油通路制御弁装置は吸入室
および吐出室にも連通しない圧縮室と吸入室との間など
の差圧や形状記憶バネ特性を有するバネ装置の付勢力な
どを利用して給油通路制御弁装置のアクチェータを作動
させてその通路を開閉し、差圧があるかまたは設定差圧
を超えない場合にその通路を開き、差圧がない場合や設
定差圧を超える場合またはバネ装置が設定温度を超えて
付勢力を変えた場合にその通路を閉じる給油通路制御弁
装置を備えた構成である。
Means for Solving the Problems In order to solve the above-mentioned problems, the scroll gas compressor of the present invention communicates an oil reservoir with a space whose pressure is lower than that of the oil reservoir through an oil supply passage. is equipped with a refueling passage control valve device, and the refueling passage control valve device controls the pressure difference between the compression chamber and the suction chamber, which are not connected to the suction chamber and the discharge chamber, and the biasing force of a spring device having shape memory spring characteristics. is used to operate the actuator of the oil supply passage control valve device to open and close the passage, and when there is a differential pressure or does not exceed the set differential pressure, the passage is opened, and when there is no differential pressure or the set differential pressure is exceeded, the passage is opened. This configuration includes a refueling passage control valve device that closes the passage when the temperature exceeds the set temperature or when the spring device changes the biasing force beyond the set temperature.

作  用 本発明は上記構成によって、圧縮機が始動し旋回スクロ
ールが旋回運動をして吸入室内の気体が圧縮室に吸入さ
れ一定の圧縮比にまで圧縮されて吐出室に吐出されると
共に、給油通路の途中に設けられた給油通路制御弁装置
のアクチェータは吸入室にも吐出室にも連通しない圧縮
室と吸入室などとの差圧により作動してその通路を開い
て給油通路を連通させ、油溜まり部の潤滑油は給油を必
要とする空間に差圧給油される。圧縮室の異常な圧力上
昇や温度上昇が生じると差圧やバネ装置の付勢力変化に
よシアクチエータが作動して給油通路を閉じる。圧縮機
が停止すると圧縮室間の隙間を通じて圧縮空間の圧力と
吸入室圧力がほぼ等しPし くなり(圧縮機停止直後は、逆性防止弁が圧縮空間と吐
出室との間に設けられている場合は圧縮家電 と吸入室の圧力が吸入側の圧力になり、逆憎防止弁が吸
入側に設けられている場合は圧縮室と吸入上 室の圧力が吐出室圧力になり、巡幸防止弁のない場合は
旋回スクロールが逆転をして圧縮室と吸入室との圧力差
が瞬時に無くなる)、給油通路制御弁装置のアクチェー
タはその通路を閉じて給油通路を遮断し油溜まり部の潤
滑油の無駄な流失を防ぎ、有益な潤滑油の使用によって
圧縮効率と耐久性を向上することができる。
According to the above configuration, the compressor is started, the orbiting scroll performs an orbiting motion, and the gas in the suction chamber is sucked into the compression chamber, compressed to a constant compression ratio, and discharged to the discharge chamber. The actuator of the oil supply passage control valve device provided in the middle of the passage is actuated by the differential pressure between the compression chamber and the suction chamber, which do not communicate with either the suction chamber or the discharge chamber, to open the passage and connect the oil supply passage, The lubricating oil in the oil reservoir is supplied to the space that requires oiling by differential pressure. When an abnormal pressure or temperature rise occurs in the compression chamber, the shear actuator operates due to the pressure difference or the change in the biasing force of the spring device, closing the oil supply passage. When the compressor stops, the pressure in the compression space and the pressure in the suction chamber become approximately equal to P through the gap between the compression chambers (immediately after the compressor stops, a non-return valve is installed between the compression space and the discharge chamber. If the pressure of the compression household appliance and the suction chamber is installed on the suction side, the pressure of the compression chamber and the upper suction chamber becomes the discharge chamber pressure, and if the anti-reverse valve is installed on the suction side, the pressure of the compression chamber and the upper suction chamber becomes the pressure of the discharge chamber. (If not, the orbiting scroll reverses and the pressure difference between the compression chamber and the suction chamber disappears instantly), and the actuator of the oil supply passage control valve device closes that passage, cutting off the oil supply passage and releasing the lubricating oil in the oil reservoir. The use of beneficial lubricants can improve compression efficiency and durability.

実施例 以下本発明の7実施例のスクロール気体圧縮機について
、図面を参照しながら説明する。
EXAMPLES Below, a scroll gas compressor according to seven embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例における密閉型スクロー
ル冷媒圧M機の縦断面図を示し、第2図、第3図は第1
図における給油通路制御弁装置の動作を説明する縦断面
図を示し、第4図は第1図のの圧力変化の説明図を示し
、第6図、第16図は吐出側に近くて吐出室に連通しな
い圧縮室の圧力変化と給油通路制御弁装置に導入された
圧力変化との比較説明図を示し、第7〜第14図、第1
7図は本発明の別の実施例における密閉型スクロール冷
媒圧縮機の縦断面図と給油通路制御弁装置の動作などを
説明する部分断面図を示す。
FIG. 1 shows a vertical cross-sectional view of a closed scroll refrigerant pressure M machine in the first embodiment of the present invention, and FIGS.
Fig. 4 shows an explanatory view of the pressure change in Fig. 1, and Fig. 6 and Fig. 16 are close to the discharge side and show the discharge chamber. 7 to 14, and 1 to 14.
FIG. 7 shows a vertical cross-sectional view of a hermetic scroll refrigerant compressor in another embodiment of the present invention and a partial cross-sectional view for explaining the operation of the oil supply passage control valve device.

第1図において、1.2は鉄製の密閉ケース、3は鉄製
のフレームでその外周面部で密閉ケース1.2と共に単
一の溶接ビード4によって溶接密封され密閉ケース1,
2内を上側の吐出室5と下側の駆動室6(低圧側)に仕
切っている。
In Fig. 1, reference numeral 1.2 is an iron closed case, 3 is an iron frame, and the outer peripheral surface of the closed case 1.2 is welded and sealed with a single weld bead 4.
2 is partitioned into an upper discharge chamber 5 and a lower drive chamber 6 (low pressure side).

フレーム3に支承されインバータ電源(図示なし)によ
って運転制御されるモータ7により回転駆動される駆動
軸8の上端部の偏心穴9には旋回スクロール10の旋回
軸11が填め込まれ、旋回スクロール10の自転阻止部
品12が旋回スクロール10とフレーム3に係合し、旋
回スクロール10に噛み合う固定スクロール13がフレ
ーム3にボルト固定され、固定スフロー/I/13の鏡
板14には吐出ポート15が設けられ、鏡板14の上面
には吐出ボート15の開口端を塞ぐ逆止弁16と給油通
路制御弁装置17が取り付けられている。吐出室5の底
部は吐出室油溜1Bでその上部には多数の***を有した
傘状のパンチングメタル19が密閉ケース1に取り付け
られ、密閉ケース1とパンチングメタル19との間には
細鉄線から成るフィルター20が詰められ、吐出室5は
密閉ケース1の上面に設けられた吐出管2)を通じて外
部の冷凍サイクル配管系を経て密閉ケース2の側面に設
けられた吸入管22を通じて低圧側の駆動室6に連通し
、駆動室6の底部にはモータ室油溜23が設けられ、偏
心穴9とモータ室油溜23とを連通する偏心油膜24を
有した駆動軸8の下端がモータ室油溜23に埋没してい
る。
An orbiting shaft 11 of an orbiting scroll 10 is fitted into an eccentric hole 9 at the upper end of a drive shaft 8 which is supported by a frame 3 and rotationally driven by a motor 7 whose operation is controlled by an inverter power supply (not shown). A rotation prevention component 12 engages with the orbiting scroll 10 and the frame 3, a fixed scroll 13 that meshes with the orbiting scroll 10 is bolted to the frame 3, and a discharge port 15 is provided on the end plate 14 of the fixed flow/I/13. A check valve 16 for closing the open end of the discharge boat 15 and an oil supply passage control valve device 17 are attached to the upper surface of the end plate 14. The bottom of the discharge chamber 5 is a discharge chamber oil reservoir 1B, and the upper part thereof is an umbrella-shaped punching metal 19 with many small holes attached to the closed case 1, and a thin iron wire is connected between the closed case 1 and the punched metal 19. The discharge chamber 5 is filled with a low-pressure side air flow through a discharge pipe 2) provided on the top surface of the sealed case 1, an external refrigeration cycle piping system, and a suction pipe 22 provided on the side surface of the sealed case 2. A motor chamber oil sump 23 is provided at the bottom of the drive chamber 6 and communicates with the drive chamber 6, and the lower end of the drive shaft 8 has an eccentric oil film 24 communicating between the eccentric hole 9 and the motor chamber oil sump 23. It is buried in oil sump 23.

第2図、第3図、第4図において、給油通路制御弁装置
17は鏡板14にガスケット25を挟んで取り付けられ
、本体ケース26に設けられてその一端がメクラ栓27
によって塞がれたシリンダ28内には外周溝29を有し
たプランジャー3゜が移動可能に装着されている。シリ
ンダ2Bはプランジャー30によって2つの背圧室に仕
切られ、メクラ栓27の側の背圧室B31はガス穴32
によって吸入室33に通じ、他方の背圧室A34は極細
の圧力導入穴35によって吐出ポート15とは連通せず
吐出ポート15に最も近い圧縮室A36(第1圧縮室)
に連通している。背圧室B31にはプランジャー30の
一端に設けられた円筒穴37に挿入支持された形状記憶
合金材料製のコイルバネ38が配置され、フィルバネ3
8はその一端がメクラ栓27に押接してプランジャー3
0に付勢力を与え、その付勢力は吸入室33と圧縮室A
36との間の差圧がほとんど無い場合に背圧室B31の
容積を広げるべくプランジャー30を一定量移動させ、
第3図の位置でプランジャー30が停止し、吸入室33
と圧縮室A36との間の差圧が設定値を超えた場合に背
圧室B31の容積を一定量まで狭めるべくプランジャー
30を移動させ、第2図の位置でプランジャー30が停
止し、それ自身の温度が設定温度(例えば130°C)
を超えるとバネ定数が急増して付勢力を強めて吸入室3
3と圧縮室A36との間の差圧が設定値を超えた場合で
も背圧室B31の容積を広げるぺ〈プランジャー30を
一定量移動させるように設定されている。吸入室33と
圧縮室A36との間に位置して吸入室33とは連通しな
い圧縮室B59(第3圧縮室)(圧縮室Ba39a)は
極細の油インジェクシコン穴40(インジェクション管
40a)と外周溝29と極細の油吸い込み穴41を介し
て吐出室油溜18の底部に通じ、プランジャー3oの停
止位置により連通または遮断される。
In FIGS. 2, 3, and 4, the oil supply passage control valve device 17 is attached to the end plate 14 with a gasket 25 interposed therebetween, and is provided in the main body case 26, with one end connected to a blind stopper 27.
A plunger 3° having an outer circumferential groove 29 is movably mounted in the cylinder 28 which is closed by the cylinder 28. The cylinder 2B is partitioned into two back pressure chambers by the plunger 30, and the back pressure chamber B31 on the side of the blind stopper 27 has a gas hole 32.
The other back pressure chamber A34 does not communicate with the discharge port 15 through the ultra-thin pressure introduction hole 35 and is connected to the compression chamber A36 (first compression chamber) closest to the discharge port 15.
is connected to. A coil spring 38 made of a shape memory alloy material and inserted and supported in a cylindrical hole 37 provided at one end of the plunger 30 is disposed in the back pressure chamber B31.
8 has one end pressed against the blank plug 27 and the plunger 3
A biasing force is applied to the suction chamber 33 and the compression chamber A.
36, move the plunger 30 by a certain amount to expand the volume of the back pressure chamber B31,
The plunger 30 stops at the position shown in FIG.
When the differential pressure between the back pressure chamber B31 and the compression chamber A36 exceeds a set value, the plunger 30 is moved to narrow the volume of the back pressure chamber B31 to a certain amount, and the plunger 30 stops at the position shown in FIG. Its own temperature is the set temperature (e.g. 130°C)
When it exceeds the spring constant, the spring constant increases and the biasing force is strengthened.
The plunger 30 is set to move a certain amount even if the pressure difference between the back pressure chamber B31 and the compression chamber A36 exceeds a set value. A compression chamber B59 (third compression chamber) (compression chamber Ba39a) located between the suction chamber 33 and the compression chamber A36 and not communicating with the suction chamber 33 is connected to the extremely thin oil injector hole 40 (injection pipe 40a) and the outer periphery. It communicates with the bottom of the discharge chamber oil sump 18 via the groove 29 and the extremely thin oil suction hole 41, and is communicated or blocked depending on the stop position of the plunger 3o.

第5図において、横軸は駆動軸への回転角度を表し、縦
軸は冷媒圧力を表し、吸入・圧縮・吐出過程における冷
媒ガスの圧力変化状態を表す。
In FIG. 5, the horizontal axis represents the rotation angle to the drive shaft, and the vertical axis represents the refrigerant pressure, which represents the state of change in the pressure of the refrigerant gas during the suction, compression, and discharge processes.

第6図において、横軸は駆動軸重の回転角度を表し、縦
軸は冷媒圧力を表し、実線42は圧縮室A36の圧力を
表し、一点鎖線43は背圧室A34の圧力を表し、二点
鎖線42aは圧縮室B39の圧力を表す。
In FIG. 6, the horizontal axis represents the rotation angle of the drive axle load, the vertical axis represents the refrigerant pressure, the solid line 42 represents the pressure in the compression chamber A36, the dashed line 43 represents the pressure in the back pressure chamber A34, and the vertical axis represents the refrigerant pressure. The dashed dotted line 42a represents the pressure in the compression chamber B39.

第7図は別の実施例のスクロール冷媒圧縮機の縦断面図
で、固定スクロール13aの鏡板14aに取り付けられ
た給油通路制御弁装置17を介して吐出室油溜18がフ
レーム3aの軸受油溜44に通じている。すなわち、吐
出室油溜18から軸受油溜44までの給油通路は、固定
スクロール13aの鏡板14aに設けられた油吸い込み
穴41a、給油通路制御弁装置17のプランジャー30
の外周溝29、鏡板14aに設けられその途中に逆流防
止弁(図示なし)を内蔵した油膜A45、フレーム3a
に設けられた油穴B46によって順次通じている。
FIG. 7 is a longitudinal sectional view of a scroll refrigerant compressor according to another embodiment, in which a discharge chamber oil sump 18 is connected to a bearing oil sump in a frame 3a via an oil supply passage control valve device 17 attached to an end plate 14a of a fixed scroll 13a. 44. That is, the oil supply passage from the discharge chamber oil sump 18 to the bearing oil sump 44 includes an oil suction hole 41a provided in the end plate 14a of the fixed scroll 13a, and a plunger 30 of the oil supply passage control valve device 17.
outer circumferential groove 29, an oil film A45 provided on the end plate 14a and having a built-in check valve (not shown) in the middle, and a frame 3a.
The oil holes B46 are connected to each other in sequence.

第8図は別の実施例のスクロール冷媒圧縮機の断面図で
、1b、2bは鉄製の密閉ケース、46は鉄製の支持板
でその外周面部で密閉ケース1b。
FIG. 8 is a sectional view of a scroll refrigerant compressor according to another embodiment, in which 1b and 2b are iron closed cases, 46 is an iron support plate, and the outer peripheral surface of the closed case 1b.

2bと共に単一の溶接ビードによって溶接密封され、支
持板45の上面には旋回スフ・ロール10bを挟んで固
定スクロール13bが取り付けられ下面には駆動軸8b
を支承するフレーム3bが取り付けられ、吐出室5bと
、駆動室6bとは固定スクロール13bの鏡板14bの
上面に開口した吐出ガス通路46aと支持板45に設け
られた吐出ガス通路46bとで連通し、旋回スクロール
10bと支持板46とフレーム3bとで形成された中間
圧背圧室47は駆動軸8bK−設けられた軸心油膜4B
や駆動軸8bに係合する軸受49,50、旋回軸受51
の各微小隙間を経由してモータ室油溜23bに連通する
と共に旋回スクロール10bに設けられた極細のバイパ
ス穴50を介して吸入室33bにも連通している。旋回
スフローA/10bが中間圧背圧室47の圧力によって
押し付けられる固定スフロー/L’13bの鏡板14b
の下面に設けられた環状油溝53は鏡板14b上面に取
り付けられた給油通路制御弁装置17を介して吐出室油
溜18bに通じている。すなわち、吐出室油溜18bか
ら環状油溝53までの給油通路は、固定スフロー7L/
13bの鏡板14bに設けられた油吸い込み穴41b、
給油通路制御弁装置17のプランジャー30の外周溝2
9、鏡板14bK投けられた細穴54によって順次通じ
ている。
2b is welded and sealed with a single weld bead, and a fixed scroll 13b is attached to the upper surface of the support plate 45 with the rotating suf roll 10b in between, and a drive shaft 8b is attached to the lower surface of the support plate 45.
The discharge chamber 5b and the drive chamber 6b communicate with each other through a discharge gas passage 46a opened on the upper surface of the end plate 14b of the fixed scroll 13b and a discharge gas passage 46b provided in the support plate 45. , an intermediate pressure back pressure chamber 47 formed by the orbiting scroll 10b, the support plate 46, and the frame 3b is connected to the drive shaft 8bK - the provided shaft center oil film 4B.
bearings 49 and 50, and a swing bearing 51 that engage with the drive shaft 8b.
It communicates with the motor chamber oil sump 23b via each minute gap, and also communicates with the suction chamber 33b via an extremely thin bypass hole 50 provided in the orbiting scroll 10b. End plate 14b of fixed flow/L'13b where rotating flow A/10b is pressed by the pressure of intermediate pressure back pressure chamber 47
An annular oil groove 53 provided on the lower surface of the oil passage 53 communicates with the discharge chamber oil reservoir 18b via an oil supply passage control valve device 17 attached to the upper surface of the end plate 14b. That is, the oil supply passage from the discharge chamber oil sump 18b to the annular oil groove 53 is connected to the fixed flow 7L/
Oil suction hole 41b provided in end plate 14b of 13b,
Outer circumferential groove 2 of plunger 30 of oil supply passage control valve device 17
9. The mirror plates 14bK are sequentially communicated through the thin holes 54 formed therein.

吸入管22bは密閉ケース1bと鏡板14bを貫通して
吸入室33bに達し、吸入管22bの端部と吸入室33
bとの間には逆止弁16bが設けられ、吐出管2)bは
密閉ケース2bK設けられて駆動室6bに通じている。
The suction pipe 22b passes through the sealed case 1b and the end plate 14b to reach the suction chamber 33b, and the end of the suction pipe 22b and the suction chamber 33
A check valve 16b is provided between the discharge pipe 2)b, and the discharge pipe 2)b is provided with a sealed case 2bK and communicates with the drive chamber 6b.

第9図は別の実施例のスクロール冷媒圧縮機の縦断面図
で、密閉シェル1Cの内部全体が吐出室5cで、上部に
モータ7、下部に圧縮部と給油通路制御弁装置17cと
が固定スフロー/1/ 13 cの鏡板14cに取り付
けられ底部の油溜23cに浸漬して配置され、油溜23
cから吸入室33cまでの給油通路は給油通路制御弁装
置17cの本体ケース26cに設けられた油吸い込み穴
41c、外周溝29、鏡板14cに設けられた細穴55
、フレーム3cと固定スクロール13cに挟まれた支持
板45cに設けられた細穴56、フレーム3cK設けら
れた細穴57、駆動軸8cを支承する軸受5日の微小な
軸受隙間、フレーム3cと支持板45cと旋回スフロー
/L’10cとで形成された中間圧背圧室47c1駆動
軸8cの下端に設けられた旋回軸受51cと旋回スクロ
ール10cの旋回軸11cとの間の微小な軸受隙間、旋
回スクロール10 c K設けられた細穴59、バイパ
ス穴52Cで構成され、吐出ボート15cから吐出室5
cまでの圧縮ガス通路は固定スフロー/L/13cと本
体ケース26cとで形成された吐出ガス通路60、固定
スフローIV 13 cと支持板45cとフレーム3c
にそれぞれ設けられた吐出ガス通路61.62.63で
構成される。
FIG. 9 is a longitudinal sectional view of a scroll refrigerant compressor according to another embodiment, in which the entire inside of a sealed shell 1C is a discharge chamber 5c, a motor 7 is fixed to the upper part, and a compression section and an oil supply passage control valve device 17c are fixed to the lower part. It is attached to the end plate 14c of the Suflow/1/13c and is placed immersed in the oil sump 23c at the bottom.
The oil supply passage from c to the suction chamber 33c includes an oil suction hole 41c provided in the main body case 26c of the oil supply passage control valve device 17c, an outer peripheral groove 29, and a thin hole 55 provided in the end plate 14c.
, a small hole 56 provided in the support plate 45c sandwiched between the frame 3c and the fixed scroll 13c, a small hole 57 provided in the frame 3cK, a minute bearing gap on the bearing 5 that supports the drive shaft 8c, and the frame 3c and the support. The intermediate pressure back pressure chamber 47c formed by the plate 45c and the orbiting flow/L'10c, the minute bearing gap between the orbiting bearing 51c provided at the lower end of the drive shaft 8c and the orbiting shaft 11c of the orbiting scroll 10c, the orbiting The scroll 10c is composed of a small hole 59 provided in K and a bypass hole 52C, and is connected to the discharge chamber 5 from the discharge boat 15c.
The compressed gas passage up to c is a discharge gas passage 60 formed by the fixed Suflow/L/13c and the main body case 26c, the fixed Suflow IV 13c, the support plate 45c, and the frame 3c.
It is composed of discharge gas passages 61, 62, and 63 provided in each.

また、フレーム3Cに設けられた軸受64に対向する駆
動軸8cの表面には螺線状の油溝65が設けられ、油溝
65の巻き方向は駆動軸8cの回転に伴うネジポンプ作
用によ#)細穴57の潤滑油を軸受64の上部開口端へ
も供給できる方向に設けられている。
Further, a spiral oil groove 65 is provided on the surface of the drive shaft 8c facing the bearing 64 provided on the frame 3C, and the winding direction of the oil groove 65 is determined by the screw pump action accompanying the rotation of the drive shaft 8c. ) The lubricating oil in the small hole 57 is provided in a direction that can also be supplied to the upper open end of the bearing 64.

また、吸入管22cは密閉ケース1cを貫通して固定ス
クロール13 cに挿入され逆止弁(図示なし)を介し
て吸入室33 cに連通し、吐出管2)cは密閉ケース
1cの上側面に設けられている。
Further, the suction pipe 22c penetrates the sealed case 1c, is inserted into the fixed scroll 13c, and communicates with the suction chamber 33c via a check valve (not shown), and the discharge pipe 22c is connected to the upper surface of the sealed case 1c. It is set in.

第10図は給油通路制御弁装置の開閉弁部を固定スフロ
ーII/13dの鏡板14dの内部に設けた別の実施例
のスクロール冷媒圧縮機の部分断面図で、シリンダ28
dが鏡板14dに設けられ、吐出室5とは連通せず吐出
室5に最も近い側の圧縮室A36と背圧室A34dとは
埋め込みネジ66とネジ穴との微小隙間を介した圧力導
入穴35dで連通され、吸入室33とは連通せず吸入室
33に近い側の圧縮室B39とプランジャー30の外周
溝29とは鏡板14dK設けられたインジェクション穴
40d、鏡板14dとガスケット25dとガスケット押
さえ67とで形成される極細のインジェクション通路6
8とで連通し、プランジャー30に付勢力を与えるフィ
ルバネ38はそれ自身が設定温度(例えば130°C)
を超えるとその付勢力を強めて外周溝29とインジェク
ション通路68との連通を断つべくプランジャー30を
作動させるようなバネ特性を備えた形状記憶合金材質か
ら成り、吐出室油溜18から圧縮室B39までの給油通
路が油吸い込み穴41d、外周溝29、インジェクショ
ン通路68、インジェクション穴40dで構成される。
FIG. 10 is a partial cross-sectional view of another embodiment of a scroll refrigerant compressor in which the opening/closing valve part of the oil supply passage control valve device is provided inside the end plate 14d of the fixed flow II/13d.
d is provided on the mirror plate 14d, and the compression chamber A36 and back pressure chamber A34d, which do not communicate with the discharge chamber 5 and are closest to the discharge chamber 5, are pressure introduction holes through a small gap between the embedded screw 66 and the screw hole. The compression chamber B39 on the side closer to the suction chamber 33 and the outer circumferential groove 29 of the plunger 30 communicate with each other through the injection hole 40d provided in the end plate 14d, the end plate 14d, the gasket 25d, and the gasket holder. 67 and an extremely thin injection passage 6 formed by
The fill spring 38 that communicates with 8 and applies a biasing force to the plunger 30 has its own set temperature (for example, 130°C).
It is made of a shape memory alloy material with spring characteristics that actuates the plunger 30 in order to strengthen the biasing force and cut off the communication between the outer circumferential groove 29 and the injection passage 68 when the pressure exceeds 100. The oil supply passage up to B39 is composed of an oil suction hole 41d, an outer peripheral groove 29, an injection passage 68, and an injection hole 40d.

第11図は給油通路制御弁装置の通路開閉機構の異なる
別の実施例のスクロール冷媒圧縮機の縦断面図で、第1
1図〜第16図において、プランジャー30に付勢力を
与えるバネ装置がコイルバネA 38 aとコイルバネ
B58bの二重構造で形成され、コイルバネB58bの
外側に配置されたコイルバネA 38 aはその自由長
さがコイルバネB58bよりも長く、コイルバネB58
bのバネ定数はコイルバネA38aよシも極端に大きく
設定され、通常運転時の吐出室油溜1Bから圧縮室A3
6までの給油通路が第12図に示すように鏡板14に設
けられた油吸い込み穴41、プランジャー30の外周溝
29、シリンダ28eに開口して本体ケース26eに設
けられたインジェクション穴40e(またはインジェク
ション管40a)、鏡板14に設けられたインジェクシ
ョン穴40によって形成され、プランジャー30はコイ
ルバネB58bを僅かに収縮せしめた状態で停止してい
る。
FIG. 11 is a vertical sectional view of a scroll refrigerant compressor of another embodiment in which the passage opening/closing mechanism of the oil supply passage control valve device is different;
1 to 16, the spring device that applies a biasing force to the plunger 30 is formed of a double structure of a coil spring A 38 a and a coil spring B 58 b, and the coil spring A 38 a disposed outside the coil spring B 58 b has its free length. The coil spring B58 is longer than the coil spring B58b.
The spring constant of b is set extremely large for the coil spring A38a, and the spring constant from the discharge chamber oil sump 1B to the compression chamber A3 during normal operation is set to be extremely large.
As shown in FIG. 12, oil supply passages up to 6 are provided with an oil suction hole 41 provided in the end plate 14, an outer circumferential groove 29 of the plunger 30, and an injection hole 40e (or It is formed by the injection pipe 40a) and the injection hole 40 provided in the end plate 14, and the plunger 30 is stopped with the coil spring B58b slightly contracted.

また、圧力導入穴35を介して圧縮室A36に通じる背
圧室A34の圧力が異常上昇した場合には、プランジャ
ー30がコイルバネA38a、コイルバネB58bに抗
して移動し、第14図の状態で停止して吐出室油溜1B
と圧縮室B39との給油通路が遮断される。
Furthermore, if the pressure in the back pressure chamber A34 communicating with the compression chamber A36 through the pressure introduction hole 35 increases abnormally, the plunger 30 moves against the coil spring A38a and the coil spring B58b, resulting in the state shown in FIG. Stop and discharge chamber oil sump 1B
The oil supply passage between the compression chamber B39 and the compression chamber B39 is cut off.

また、第13図は吸入室33に通じる背圧室B31と背
圧室A34との間の差圧がほとんど無くなった場合にブ
ランジーr −30がコイルバネA 38 aの付勢力
によって移動して給油通路が遮断された状態を示す。
Further, FIG. 13 shows that when the differential pressure between the back pressure chamber B31 and the back pressure chamber A34 communicating with the suction chamber 33 is almost eliminated, the brunge r-30 moves by the biasing force of the coil spring A38a and closes the oil supply passage. Indicates a state in which the signal is blocked.

また、コイルバネB58bはそれ自身の温度が設定温度
(例えば130°C)を超えた場合にプランジャー30
に付勢力を与えない程度にまで収縮するような特性を備
えた形状記憶合金材質から出来ている。
In addition, when the temperature of the coil spring B58b exceeds the set temperature (for example, 130°C), the plunger 30
It is made of a shape memory alloy material that has the characteristic of shrinking to the extent that it does not apply any biasing force to the body.

第15図において、横軸は駆動軸4の回転角度を表し、
縦軸は冷媒圧力を表し、実線42は正常運転時の圧縮室
A36の圧力、点線71は異常圧力上昇時の圧縮室A3
6の圧力、一点鎖線43は正常運転時の背圧室B34の
圧力、二点鎖線72は圧縮室A38の圧力が異常上昇し
た場合に追従して変化する背圧室A34の圧力をそれぞ
れ表す。
In FIG. 15, the horizontal axis represents the rotation angle of the drive shaft 4,
The vertical axis represents the refrigerant pressure, the solid line 42 represents the pressure in the compression chamber A36 during normal operation, and the dotted line 71 represents the pressure in the compression chamber A3 during abnormal pressure rise.
6, the one-dot chain line 43 represents the pressure in the back pressure chamber B34 during normal operation, and the two-dot chain line 72 represents the pressure in the back pressure chamber A34 that changes following an abnormal increase in the pressure in the compression chamber A38.

第17図は給油通路制御弁装置の別の実施例を固定スク
ロールに取り付けた状態の部分断面図を示し、本体26
gとケース26!とで挟まれた薄板のダイヤフラム80
がその外周部で単一の溶接ビード81により本体26g
とケース26fと共に密封溶接され、本体26gとケー
ス26量とで形成される内部空間を背圧室B31 fと
背圧室A34(に仕切っている。背圧室A34 fは圧
力導入管35gと固定スフローA/13の鏡板14に設
けられた極細の圧力導入穴35fとを介して圧縮室A3
6に通じ、背圧室B31 fは本体26gに設けられた
ガス穴82と鏡板14に設けられたガス穴32fとを介
して吸入室33に通じている。
FIG. 17 shows a partial sectional view of another embodiment of the oil supply passage control valve device attached to the fixed scroll, and shows the main body 26.
g and case 26! A thin plate diaphragm 80 sandwiched between
The main body weighs 26g due to a single weld bead 81 at its outer periphery.
and the case 26f, and the internal space formed by the main body 26g and the case 26 is divided into a back pressure chamber B31f and a back pressure chamber A34.The back pressure chamber A34f is fixed to the pressure introduction pipe 35g. The compression chamber A3 is
6, and the back pressure chamber B31f communicates with the suction chamber 33 via a gas hole 82 provided in the main body 26g and a gas hole 32f provided in the end plate 14.

本体26gには背圧室B31 fに開口したシリンダ2
8fと、シリンダ28fに継続して設けられシリンダ2
8fの直径よりも大きく本体26gの鏡板41取り付は
面に開口した弁穴83とが設けられ、弁穴83の開口端
は鏡板14に設けられ吐出室油溜18の底部に開口した
油吸い込み穴41に通じている。本体26gに設けられ
たインジェクション穴40にはその上端をシリンダ28
fの中央部内壁に開口し、その他端が鎖板14に設けら
れたインジェクション穴40を介して圧縮室B39に通
じている。弁穴83にはシリンダ31憂の直径よりも大
きいコイルバネ38fとその上部に鋼球84が装着され
、シリンダ311にはその下半部が細径ビン形状で上半
部が精密円筒形状でその中央部に外周溝29fを有した
プランジャー30fが遊合状態で装着されている。外周
溝29fは***85を介して弁穴83に通じプランジャ
ー30fの上端はダイヤフラム80によって移動を規制
され、下端はコイルバネ38fによって付勢力を得た鋼
球84によって移動を規制される。
The main body 26g has a cylinder 2 opened to the back pressure chamber B31f.
8f, and cylinder 2 provided continuously to cylinder 28f.
The end plate 41 of the main body 26g is attached with a valve hole 83 that is larger in diameter than the diameter of the end plate 8f and is opened on the surface, and the open end of the valve hole 83 is provided in the end plate 14 and has an oil suction opening at the bottom of the oil sump 18 in the discharge chamber. It leads to hole 41. The injection hole 40 provided in the main body 26g has its upper end connected to the cylinder 28.
f, and the other end communicates with the compression chamber B39 via an injection hole 40 provided in the chain plate 14. A coil spring 38f larger than the diameter of the cylinder 31 and a steel ball 84 are attached to the valve hole 83, and a steel ball 84 is attached to the upper part of the coil spring 38f. A plunger 30f having an outer circumferential groove 29f is attached in a loose manner. The outer circumferential groove 29f communicates with the valve hole 83 through a small hole 85, and the movement of the upper end of the plunger 30f is regulated by a diaphragm 80, and the movement of the lower end is regulated by a steel ball 84 biased by a coil spring 38f.

以上のように構成されたスクロール冷媒圧縮機について
、その動作を説明する。
The operation of the scroll refrigerant compressor configured as above will be explained.

第1図〜第6図において、モータ7たよって駆動軸8が
回転駆動されると旋回スフロー/1/10が旋回運動を
し、圧縮機に接続した冷凍サイクルから吸入冷媒ガスが
吸入管2セを通して駆動室6に流入し、その中に含まれ
る潤滑油の一部が分離された後に吸入室33に吸入され
、この吸入冷媒ガスは旋回スクロール10と固定スフロ
ーA/13との間に形成された圧縮室内に閉じ込められ
、旋回スクロール10の旋回運動に伴って順次圧縮され
中央部の吐出ボート16、逆止弁16t−経て吐出室5
へ吐出され、吐出冷媒ガス中に含まれる潤滑油の一部は
その自重およびパンチングメタ/I/19の***や細鉄
線から成るフィルター20を通過する際にその表面に付
着などして吐出冷媒ガスから分離して吐出室油溜18に
収集され、残りの潤滑油は吐出冷媒ガスと共に吐出管2
)を経て外部の冷凍サイクルへ搬出され、再び吸入冷媒
ガスと共に吸入管22を通して圧縮機内に帰還する。
In Figures 1 to 6, when the drive shaft 8 is rotationally driven by the motor 7, the rotating flow/1/10 moves in a circular motion, and the suction refrigerant gas flows into the suction pipes 2 and 2 from the refrigeration cycle connected to the compressor. A part of the lubricating oil contained therein is separated and sucked into the suction chamber 33, and this suction refrigerant gas is formed between the orbiting scroll 10 and the fixed flow A/13. It is confined in the compression chamber and is sequentially compressed with the orbiting movement of the orbiting scroll 10, and is transferred to the discharge chamber 5 through the discharge boat 16 in the center and the check valve 16t.
A part of the lubricating oil contained in the discharged refrigerant gas adheres to its own weight and the surface of the filter 20 made of small holes and fine iron wire of the punching metal/I/19, resulting in the lubricating oil contained in the discharged refrigerant gas. The remaining lubricating oil is collected in the discharge chamber oil sump 18, and the remaining lubricating oil is collected in the discharge pipe 2 together with the discharge refrigerant gas.
), it is carried out to an external refrigeration cycle, and returns to the compressor through the suction pipe 22 together with the suction refrigerant gas.

一方、駆動室6で吸入冷媒ガスから分離した底部のモー
タ室油溜23に収集された潤滑油は駆動軸8の偏心細穴
24による遠心ポンプ作用で偏心細穴24、駆動軸8に
係わる軸受隙間(偏心穴9と旋回軸11との隙間を含む
)、旋回スクロール10に係わるスラスト軸受部や自転
阻止部品12の摺動面を順次潤滑して吸入冷媒ガスと共
に吸入室33へ流入し、隣接する圧縮室間の隙間を油膜
で密封し圧縮冷媒ガスの漏洩を少なくする。
On the other hand, the lubricating oil collected in the motor chamber oil sump 23 at the bottom separated from the suction refrigerant gas in the drive chamber 6 is pumped by the centrifugal pump action by the eccentric thin hole 24 of the drive shaft 8, and the lubricating oil is pumped through the eccentric thin hole 24 and the bearing related to the drive shaft 8. The gap (including the gap between the eccentric hole 9 and the rotating shaft 11), the thrust bearing part related to the rotating scroll 10, and the sliding surface of the rotation prevention component 12 are sequentially lubricated, and the suction refrigerant gas flows into the suction chamber 33 with the suction refrigerant gas, and the adjacent The gap between the compression chambers is sealed with an oil film to reduce leakage of compressed refrigerant gas.

また、吐出室6に連通せず吐出ボート15に最も近い側
の圧縮室A36の圧縮機運転中の圧力は第6図に示すよ
うに大きく変化するが、極細の圧力導入穴35を介して
導入した背圧室A圧力43はその変化が少なくて圧縮室
B圧力42aの最大値よりも大きい。このため背圧室A
、34の圧力は吸入室33に通じる背圧室B31の圧力
よシも安定して大きく、このためにプランジャー3oが
コイルバネ38の付勢力に抗してメクラ栓27の方向へ
移動し、第2図に示すように吐出室油溜18と圧縮室B
59(吸入室33に連通せず吸入室に近い側の圧縮室)
との間が油吸い込み穴41、外周溝29、極細のインジ
ェクション穴40で構成される給油通路により連通され
、吐出室油溜1Bの潤滑油が給油通路を通り適切に漸次
減圧されて圧縮室B39に間欠給油され、この潤滑油は
モータ室油溜23から給油され1吸入冷媒ガスと共に吸
入室33を経て圧縮室B39に搬送されて来た潤滑油と
合流し、隣接する圧縮室間の隙間を油膜でより一層の密
封を図る。
In addition, the pressure in the compression chamber A36, which is not connected to the discharge chamber 6 and is closest to the discharge boat 15, changes greatly during compressor operation as shown in FIG. The back pressure chamber A pressure 43 changes less and is larger than the maximum value of the compression chamber B pressure 42a. For this reason, back pressure chamber A
, 34 is stable and larger than the pressure in the back pressure chamber B31 which communicates with the suction chamber 33. Therefore, the plunger 3o moves in the direction of the blind stopper 27 against the biasing force of the coil spring 38, and As shown in Figure 2, the discharge chamber oil sump 18 and the compression chamber B
59 (compression chamber on the side that does not communicate with the suction chamber 33 and is close to the suction chamber)
The lubricating oil in the discharge chamber oil sump 1B passes through the oil supply passage and is appropriately gradually depressurized to the compression chamber B39. This lubricating oil is supplied from the motor chamber oil sump 23 and is combined with the lubricating oil that has been conveyed to the compression chamber B39 through the suction chamber 33 together with the suction refrigerant gas, and fills the gap between adjacent compression chambers. A further seal is achieved with an oil film.

また、圧縮機停止後は逆止弁16が閉じ、吐出室5の圧
力は数分間はぼ吐出圧力状態を保持されるが相対滑り運
動の無い圧縮室間の隙間は油膜による密封効果が無く、
吐出ポート15と各圧縮室の圧力は旋回スクロールの瞬
時逆転によって吸入室33と同じ圧力になる。この結果
、プランジャー30はコイルバネ3Bの付勢力によって
移動し、第3図に示すように給油通路が遮断されて吐出
室油溜18から圧縮室B39への給油が停止する。
In addition, after the compressor is stopped, the check valve 16 is closed, and the pressure in the discharge chamber 5 is maintained at the discharge pressure state for several minutes, but the gap between the compression chambers where there is no relative sliding movement is not sealed by the oil film.
The pressure in the discharge port 15 and each compression chamber becomes the same as that in the suction chamber 33 by instantaneous reversal of the orbiting scroll. As a result, the plunger 30 is moved by the biasing force of the coil spring 3B, and as shown in FIG. 3, the oil supply passage is blocked and oil supply from the discharge chamber oil sump 18 to the compression chamber B39 is stopped.

また、万一、圧縮機運転中に冷凍サイクル配″管系の詰
まり現象などによって圧縮機内への潤滑油帰還が無く吐
出室油溜18の潤滑油が不足して給油通路を経て吐出冷
媒ガスが多量に圧縮室B39に流入した場合は、短時間
に圧縮室や吐出室6内で異常温度上昇しコイルバネ38
が設定温度(例えば130°C)を超え、形状記憶合金
材質から成るコイルバネ3Bの付勢力が増大してプラン
ジャー30は第3図の位置(圧縮機停止中と同じ位置)
で静止し給油通路が遮断される。
In addition, in the unlikely event that lubricant oil is not returned to the compressor due to a clogging phenomenon in the refrigeration cycle piping system during compressor operation, lubricant oil in the discharge chamber oil sump 18 becomes insufficient, and discharged refrigerant gas flows through the oil supply passage. If a large amount flows into the compression chamber B39, the temperature inside the compression chamber and the discharge chamber 6 will rise abnormally in a short period of time, causing the coil spring 38
exceeds the set temperature (for example, 130°C), the biasing force of the coil spring 3B made of shape memory alloy material increases, and the plunger 30 is placed in the position shown in Fig. 3 (the same position as when the compressor is stopped).
It comes to a standstill and the refueling passage is cut off.

第7図においては、圧縮機運転中の吐出室油溜1Bの潤
滑油は上述のようにプランジャー3oの作動によって油
吸い込み穴41a1外周溝29、細穴A45、細穴B4
6で構成される給油通路を経て適切に漸次減圧され軸受
111tl溜44に給油され、その後は駆動軸8に係わ
る軸受部や旋回スフロー1v10のスラスト軸受部など
の摺動面を潤滑しながら低圧側の駆動室6や吸入室33
に流入する。
In FIG. 7, lubricating oil in the discharge chamber oil sump 1B during compressor operation is transferred to the oil suction hole 41a1, the outer circumferential groove 29, the narrow hole A45, and the narrow hole B4 by the operation of the plunger 3o as described above.
6, the pressure is gradually reduced and oil is supplied to the bearing 111tl reservoir 44. After that, the low pressure side is lubricated on the sliding surfaces of the bearings related to the drive shaft 8 and the thrust bearings of the swing flow 1v10. drive chamber 6 and suction chamber 33
flows into.

吸入冷媒ガスと共に吸入室に流入した潤滑油は上述のよ
うに隣接する圧縮室間の隙間を油膜により密封して圧縮
効率を高め、駆動室6に流入した潤滑油は底部のモータ
室油溜23に収集された後、駆動軸8に設けられた偏心
細穴24の遠心ポンプ作用によって上述のように各摺動
面へ供給される。
The lubricating oil that has flowed into the suction chamber together with the suction refrigerant gas seals the gap between adjacent compression chambers with an oil film to increase compression efficiency, as described above, and the lubricating oil that has flowed into the drive chamber 6 flows into the motor chamber oil sump 23 at the bottom. After being collected, it is supplied to each sliding surface as described above by the centrifugal pump action of the eccentric thin hole 24 provided in the drive shaft 8.

なお、圧縮機停止後の給油通路の遮断や冷媒ガスの流れ
、冷媒ガス中の潤滑油の分離などについては上述と同様
で説明を省略する。
Note that the shutoff of the oil supply passage, the flow of refrigerant gas, the separation of lubricating oil in refrigerant gas, etc. after the compressor is stopped are the same as described above, and a description thereof will be omitted.

第8図においては、モータ7によって駆動軸8が回転駆
動されて旋回スクロールが旋回運動をし、圧縮機に接続
した冷凍サイクルから吸入冷媒ガスが吸入管22bを通
り、その終端部に設けられた逆上弁16bに抗して吸入
室33bに流入され、圧縮室内で一定の圧縮比にまで圧
縮された後、吐出室5bへ吐出され、吐出冷媒ガス中に
含まれる潤滑油の一部はその自重などによって吐出冷媒
ガスから分離して吐出室油溜18bに収集される。
In FIG. 8, a drive shaft 8 is rotationally driven by a motor 7 to cause an orbiting scroll to orbit, and suction refrigerant gas from a refrigeration cycle connected to a compressor passes through a suction pipe 22b provided at its terminal end. It flows into the suction chamber 33b against the reverse valve 16b, is compressed to a certain compression ratio in the compression chamber, and is then discharged to the discharge chamber 5b, where part of the lubricating oil contained in the discharged refrigerant gas is It is separated from the discharged refrigerant gas due to its own weight and collected in the discharge chamber oil sump 18b.

その後、吐出冷媒ガスは吐出冷媒ガス通路46a。Thereafter, the discharged refrigerant gas flows through the discharged refrigerant gas passage 46a.

46bを経て駆動室6bに搬送され、吐出冷媒ガス中の
潤滑油の一部は駆動室6bでも分離して底部のモータ室
油溜23bに収集される。モータ室油溜23bの潤滑油
は中間圧背圧室47との差圧により駆動室8bの軸心細
穴4B、旋回軸受51の微小隙間、フレーム3bの軸受
49.50の微小隙間を経て漸次減圧されて中間圧背圧
室47に給油された後、バイパス穴52を通じて吸入室
33bに流入して隣り合う圧縮室間隙間を油膜で密封し
て圧縮効率を高める。
A part of the lubricating oil in the discharged refrigerant gas is separated in the drive chamber 6b and collected in the motor chamber oil sump 23b at the bottom. The lubricating oil in the motor chamber oil sump 23b gradually passes through the shaft center small hole 4B of the drive chamber 8b, the minute gap of the swing bearing 51, and the minute gap of the bearings 49, 50 of the frame 3b due to the differential pressure with the intermediate pressure back pressure chamber 47. After the oil is depressurized and supplied to the intermediate pressure back pressure chamber 47, it flows into the suction chamber 33b through the bypass hole 52, and the gap between adjacent compression chambers is sealed with an oil film to improve compression efficiency.

また、中間圧背圧室47の潤滑油圧力は旋回スクロール
10bt−固定スクロール13bの鏡板14b面に押圧
するスラスト力を生じる。
Further, the lubricating oil pressure in the intermediate pressure back pressure chamber 47 generates a thrust force that presses the surface of the end plate 14b of the orbiting scroll 10bt and the fixed scroll 13b.

また、給油通路制御弁装置17のプランジャー30は前
述の如く圧縮機運転中に給油通路を開き、吐出室油溜1
8bの潤滑油は油吸い込み穴41b、外周溝29、細穴
54を経て鏡板14bの環状油溝53に差圧給油され、
鏡板14bと旋回スクロ−/L’10bとの摺動面の潤
滑に供された後、吸入室33bに流入して隣シ合う圧縮
室間の隙間の密封にも寄与する。また、圧縮機停止後は
逆止弁18bが吸入管22bを塞ぎ、圧縮室圧力は吐出
室圧力に等しくなり、前述の如くプランジャー30は給
油通路を遮断する。
Further, as described above, the plunger 30 of the oil supply passage control valve device 17 opens the oil supply passage during compressor operation, and
The lubricating oil 8b is supplied to the annular oil groove 53 of the end plate 14b by differential pressure through the oil suction hole 41b, the outer circumferential groove 29, and the thin hole 54,
After being used to lubricate the sliding surfaces of the mirror plate 14b and the rotating scroll L'10b, it flows into the suction chamber 33b and also contributes to sealing the gap between adjacent compression chambers. Further, after the compressor is stopped, the check valve 18b closes the suction pipe 22b, the compression chamber pressure becomes equal to the discharge chamber pressure, and the plunger 30 blocks the oil supply passage as described above.

第9図においては、吸入管22cを通して吸入室33c
に流入した吸入冷媒ガスは圧縮された後、吐出ポート1
5C1吐出ガス通路60,61.62゜63を経て吐出
室5cに吐出され、吐出冷媒ガス中に含まれる潤滑油の
一部はその自重などによって吐出冷媒ガスから分離して
底部のモータ室油溜23cに収集され、残りの潤滑油は
吐出冷媒ガスと共に吐出管2)cを通して外部の冷凍サ
イクルへ搬出される。
In FIG. 9, the suction chamber 33c is passed through the suction pipe 22c.
After being compressed, the suction refrigerant gas flowing into the discharge port 1
The lubricating oil contained in the discharged refrigerant gas is discharged into the discharge chamber 5c through the 5C1 discharge gas passages 60, 61. 23c, and the remaining lubricating oil is discharged to the external refrigeration cycle through the discharge pipe 2)c together with the discharged refrigerant gas.

前述の如く圧縮機運転中は、給油通路制御弁装置17C
のプランジャー30が作動して給油通路を開き、モータ
室油溜23cの潤滑油は油吸い込み穴41c1外周溝2
9、細穴55,56,57、駆動軸8Cと軸受5Bとの
間の微小隙間、中間圧背圧室47C1旋回軸11cと旋
回軸受51cとの間の微小隙間、細穴59、バイパス穴
52cを経て漸次減圧され摺動面を潤滑しながら吸入室
33Cに流入し、吸入冷媒ガスと共に再び圧縮・吐出さ
れる。なお、細穴57の潤滑油の一部は駆動軸8cの外
周に設けられた螺線状の油溝のネジポンプ作用により吐
出室5cへも搬出されて軸受64の摺動面を潤滑する。
As mentioned above, during compressor operation, the oil supply passage control valve device 17C
The plunger 30 operates to open the oil supply passage, and the lubricating oil in the motor chamber oil reservoir 23c flows through the oil suction hole 41c1 and the outer circumferential groove 2.
9. Small holes 55, 56, 57, small gap between drive shaft 8C and bearing 5B, intermediate pressure back pressure chamber 47C1, small gap between rotating shaft 11c and rotating bearing 51c, small hole 59, bypass hole 52c The refrigerant gas is gradually depressurized and flows into the suction chamber 33C while lubricating the sliding surfaces, and is again compressed and discharged together with the suction refrigerant gas. A portion of the lubricating oil in the thin hole 57 is also carried out to the discharge chamber 5c by the screw pump action of a spiral oil groove provided on the outer periphery of the drive shaft 8c, and lubricates the sliding surface of the bearing 64.

また、前述の如く圧縮機停止後は、プランジャー30が
給油通路を遮断する。
Further, as described above, after the compressor is stopped, the plunger 30 blocks the oil supply passage.

第10図においては、圧縮機運転中に吐出室油溜1Bの
潤滑油が不足した場合には、高温で粘性の少ない圧縮冷
媒ガスが給油通路(油吸い込み穴41d、外周溝29、
インジェクション通路6B、インジェクション穴40d
)を経て圧縮室B39に多量流入し、圧縮冷媒ガスの圧
力や温度を異常上昇せしめる。この結果、鏡板14dの
内部に装着された形状記憶合金材質から成るコイルバネ
3Bは圧縮室A36、圧縮室B39、吐出室5か等の直
接的伝熱によって早急に設定温度(例えば130°C)
t−超えて付勢力が増大しプランジャー30を後退せし
めて給油通路を遮断する。
In FIG. 10, when the lubricating oil in the discharge chamber oil sump 1B becomes insufficient during compressor operation, compressed refrigerant gas with high temperature and low viscosity is transferred to the oil supply passage (oil suction hole 41d, outer circumferential groove 29,
Injection passage 6B, injection hole 40d
), a large amount of refrigerant gas flows into the compression chamber B39, causing an abnormal increase in the pressure and temperature of the compressed refrigerant gas. As a result, the coil spring 3B made of a shape memory alloy material mounted inside the end plate 14d quickly reaches the set temperature (for example, 130°C) by direct heat transfer through the compression chamber A36, the compression chamber B39, the discharge chamber 5, etc.
The biasing force increases beyond t-, causing the plunger 30 to retreat and cutting off the oil supply passage.

また、吐出室油溜1Bに潤滑油が充分にあり、通常の圧
縮機運転中や停止後の給油通路の開閉については上述の
通りである。
Further, there is sufficient lubricating oil in the discharge chamber oil reservoir 1B, and the opening and closing of the oil supply passage during normal compressor operation and after stopping is as described above.

第11〜第16図においては、圧縮機に接続する冷凍サ
イクルから吸入冷媒ガスが吸入管22t−通して駆動室
6に流入し吐出室5、吐出管2)を経て再び冷凍サイク
ルへ搬出される過程およびモータ室油溜23の潤滑油の
流れ過程は第1図と同様であるが、給油通路制御弁装置
17eの動作が前述の内容と異なる。すなわち、吐出室
油溜1Bに充分な潤滑油が存在した圧縮機運転中は、吐
出室5に連通せず吐出ボート15に最も近い側の圧縮室
A36の圧力導入穴開口部圧力42は第16図に示すよ
うに大きく変化するが、極細の圧力導入穴35を介して
導入した背圧室Aの圧力43はその変化が少なくてイン
ジェクション穴開口部の圧縮室Bの圧力42aの最大値
よりも大きいので吸入室33に通じる背圧室B31の圧
力よシも安定して大きい。このため、プランジャー30
がコイルバネA38aの付勢力に抗して前進しコイルバ
ネB58bにも付勢力を与える。しかし、コイルバネB
58bの付勢力が大きいのでプランジャー30は第12
図に示す位置で停止して給油通路が開かれ、吐出室油溜
1Bの潤滑油は油吸い込み穴41、外周溝29、インジ
ェクション穴40e(またはインジェクション管40a
)、インジェクション穴40を経て漸次減圧されて圧縮
室B39に流入し、上述の如く潤滑油の効果を生じて圧
縮冷媒ガスと共に吐出室5へ吐出される。また、万一、
圧縮機運転中に冷凍サイクル配管系の詰まり現象などに
よって圧縮機内への潤滑油帰還が無く吐出室油溜18の
潤滑油が不足して給油通路を経て高温で粘性の小さい吐
出冷媒ガスが圧縮室B39に多量流入した場合は、第1
5図に示すように圧縮室の圧力が点線70のように異常
上昇し、第16図に示すように圧力導入穴開口部の圧縮
室Aの圧カフ2もその平均圧力が高くなる。この結果、
プランジャー30はコイルバネB58bの付勢力に抗し
て前進し第14図に示す位置で停止し給油通路を遮断す
る。また、圧縮機停止後は前述の如くプランジャー30
が第13図に示す位置に後退して給油通路を遮断する。
In Figs. 11 to 16, suction refrigerant gas from the refrigeration cycle connected to the compressor flows into the drive chamber 6 through the suction pipe 22t, passes through the discharge chamber 5 and the discharge pipe 2), and is then carried out to the refrigeration cycle again. The process and the flow process of the lubricating oil in the motor chamber oil sump 23 are the same as those shown in FIG. 1, but the operation of the oil supply passage control valve device 17e is different from the above-mentioned contents. That is, during compressor operation when there is sufficient lubricating oil in the discharge chamber oil sump 1B, the pressure introduction hole opening pressure 42 of the compression chamber A36, which is not in communication with the discharge chamber 5 and is closest to the discharge boat 15, is at the 16th level. As shown in the figure, the pressure 43 in the back pressure chamber A introduced through the ultra-thin pressure introduction hole 35 changes greatly, but the change is smaller than the maximum value of the pressure 42a in the compression chamber B at the injection hole opening. Since it is large, the pressure in the back pressure chamber B31 communicating with the suction chamber 33 is also stable and large. For this reason, the plunger 30
moves forward against the biasing force of coil spring A38a, and also applies biasing force to coil spring B58b. However, coil spring B
Since the urging force of 58b is large, the plunger 30 is the 12th one.
It stops at the position shown in the figure and the oil supply passage is opened, and the lubricating oil in the discharge chamber oil sump 1B is supplied to the oil suction hole 41, outer circumferential groove 29, injection hole 40e (or injection pipe 40a).
), the pressure is gradually reduced through the injection hole 40, and the refrigerant flows into the compression chamber B39, produces the effect of lubricating oil as described above, and is discharged into the discharge chamber 5 together with the compressed refrigerant gas. Also, in the unlikely event that
During compressor operation, lubricating oil is not returned to the compressor due to a clogging phenomenon in the refrigeration cycle piping system, and the lubricating oil in the oil sump 18 in the discharge chamber is insufficient, and the discharged refrigerant gas with high temperature and low viscosity flows through the oil supply passage into the compression chamber. If a large amount flows into B39, the first
As shown in FIG. 5, the pressure in the compression chamber increases abnormally as indicated by the dotted line 70, and as shown in FIG. 16, the average pressure of the pressure cuff 2 in the compression chamber A at the opening of the pressure introduction hole also increases. As a result,
The plunger 30 moves forward against the biasing force of the coil spring B58b and stops at the position shown in FIG. 14, thereby blocking the oil supply passage. In addition, after the compressor is stopped, the plunger 30
is retreated to the position shown in FIG. 13 to block the oil supply passage.

第17図においては、圧縮機が運転され圧縮室A36に
通じる背圧室A34!が圧力上昇し、吸入室33に通じ
る背圧室B31 fと背圧家人341との差圧によって
ダイヤフラム80が変形してその中央部はプランジャー
30fの先端を押圧し、コイルバネ38量の付勢、力に
抗して鋼球84を移動させ、吐出室油溜18から圧縮室
B39までの給油通路(油吸い込み穴41、弁穴83、
シリング28!、***86、外周溝29、インジェクシ
ョン穴40.4Of)が開き、潤滑油が差圧給油される
In FIG. 17, the compressor is operated and the back pressure chamber A34 is connected to the compression chamber A36! The pressure increases, and the diaphragm 80 is deformed due to the pressure difference between the back pressure chamber B31f communicating with the suction chamber 33 and the back pressure chamber 341, and its center presses the tip of the plunger 30f, causing the coil spring 38 to be biased. , the steel ball 84 is moved against the force, and the oil supply passage (oil suction hole 41, valve hole 83,
28 shillings! , the small hole 86, the outer circumferential groove 29, and the injection hole 40.4Of) are opened, and lubricating oil is supplied under differential pressure.

圧縮機停止後は上述の実施例と同様に、コイルバネ38
fの付勢力によってプランジャー30量を介してダイヤ
フラム80は80aの位置まで復帰し、鋼球8.4がシ
リンダ281の弁穴83開口端部を塞ぎ給油通路を遮断
する。
After the compressor is stopped, the coil spring 38
The diaphragm 80 is returned to the position 80a by the urging force of the plunger 30, and the steel ball 8.4 closes the open end of the valve hole 83 of the cylinder 281 and blocks the oil supply passage.

以上のように上記実施例によれば吐出室油溜1Bの底部
と吸入室33にも吐出室5にも通ぜず吸入室33に近い
側の圧縮室B59(吸入圧力と吐出圧力との間の中間圧
力)との間を油吸い込み穴41、外周溝29、インジェ
クション穴40で形成される給油通路により連通させ、
給油通路の途中には給油通路制御弁装置17を設け、給
油通路制御弁装置17のアクチェータ(プランジャー3
0またはダイヤフラム80)は吐出室6にも吸入室33
にも連通せず吐出室5に最も近い側の圧縮室A36(第
1圧縮室)と圧縮室A36よりも圧縮前行程の圧縮室(
吸入室33に通じる圧縮室も含み第2圧縮室とする)と
の間の差圧、または圧縮室A36と吸入室33またはこ
れに通じる吸入側との間の差圧、またはそれ自身の温度
により付勢力の異なる形状記憶特性を有するコイルバネ
38と前記の差圧により給油通路を開閉し、差圧が有り
設定差圧を超えない場合に給油通路を開き、差圧が無い
場合、または設定差圧を超える場合、またはコイルバネ
3Bが設定温度を超えて付勢力を急増させた場合に給油
通路を閉じる給油通路制御弁装置17を備えることによ
り、冷媒ガスの圧縮比が一定なために圧縮室A36の圧
力は吐出室5の圧力に影響されずに吸入室33の圧力の
一定倍率の圧力まで確実に上昇し、アクチェータ(プラ
ンジャー30またはダイヤフラム80)が差圧力によっ
て前進−して圧縮機起動直後から給油通路を開き、吐出
室油溜1日の潤滑油を圧縮初期行程から圧縮室B39へ
油インジェクションさせて隣接する圧縮室間の隙間を油
膜で密封して、圧縮機起動初期から圧縮効率を高めると
共に圧縮冷媒ガスの異常温度上昇を防ぎ耐久性を向上で
きる。また、圧縮室への油インジェクションによりスク
ロール部の加工寸法精度を適性化して圧縮機コストの低
減が図れる。また、吐出室油溜1Bの潤滑油が不足して
粘性が低く通路抵抗の極めて小さい吐出冷媒ガスが圧縮
室839に流入した場合でも圧縮室圧力や温度が異常に
上昇して差圧やアクチェ 。
As described above, according to the above embodiment, the bottom of the discharge chamber oil sump 1B and the compression chamber B59 (between the suction pressure and the discharge pressure intermediate pressure) through an oil supply passage formed by an oil suction hole 41, an outer circumferential groove 29, and an injection hole 40,
A refueling passage control valve device 17 is provided in the middle of the refueling passage, and an actuator (plunger 3
0 or diaphragm 80) is connected to both the discharge chamber 6 and the suction chamber 33.
The compression chamber A36 (first compression chamber) closest to the discharge chamber 5 and the compression chamber (first compression chamber) in the pre-compression stroke than the compression chamber A36 are
(including the compression chamber leading to the suction chamber 33, referred to as the second compression chamber), or the pressure difference between the compression chamber A36 and the suction chamber 33 or the suction side leading thereto, or by its own temperature. The oil supply passage is opened and closed by the coil spring 38 having shape memory characteristics with different biasing forces and the above-mentioned differential pressure, and the oil supply passage is opened when there is a differential pressure and does not exceed the set differential pressure, and when there is no differential pressure or the set differential pressure is By providing the oil supply passage control valve device 17 that closes the oil supply passage when the temperature exceeds the set temperature or when the coil spring 3B rapidly increases the biasing force by exceeding the set temperature, the compression ratio of the refrigerant gas is constant, so that the compression chamber A36 is The pressure rises reliably to a constant multiple of the pressure in the suction chamber 33 without being affected by the pressure in the discharge chamber 5, and the actuator (plunger 30 or diaphragm 80) moves forward due to the differential pressure, starting immediately after starting the compressor. Open the oil supply passage and inject the day's lubricating oil from the discharge chamber oil reservoir into the compression chamber B39 from the initial compression stroke, sealing the gap between adjacent compression chambers with an oil film to increase compression efficiency from the beginning of compressor startup. At the same time, it is possible to prevent abnormal temperature rise of compressed refrigerant gas and improve durability. In addition, by injecting oil into the compression chamber, the machining dimensional accuracy of the scroll portion can be optimized and the cost of the compressor can be reduced. Furthermore, even if the lubricating oil in the discharge chamber oil sump 1B is insufficient and discharged refrigerant gas with low viscosity and extremely low passage resistance flows into the compression chamber 839, the pressure and temperature of the compression chamber may rise abnormally, resulting in differential pressure and actuation.

−タ部の温度が設定値を超えてプランジャー30をさら
に前進せしめたシ後退せしめて給油通路を閉じ、圧縮効
率の低下を防ぐ。
- When the temperature of the tank exceeds a set value and the plunger 30 is further advanced, the plunger 30 is moved backward to close the oil supply passage and prevent a decrease in compression efficiency.

また、圧縮機停止後は吸入室33と圧縮室A36との差
圧が無くなり給油通路が遮断されるので、吐出室油溜1
Bから圧縮室B39への無駄な潤滑油流入を防止して、
潤滑油の有効利用による摺動面の耐久性や圧縮効率の向
上、圧縮機再起動時の油圧縮による圧縮機破損防止を図
ることも出来る。
In addition, after the compressor is stopped, the differential pressure between the suction chamber 33 and the compression chamber A36 disappears, and the oil supply passage is cut off.
Preventing unnecessary lubricating oil from flowing into the compression chamber B39 from B,
It is also possible to improve the durability of sliding surfaces and compression efficiency by effectively using lubricating oil, and to prevent damage to the compressor due to oil compression when restarting the compressor.

また、上記実施例によれば吸入通路に通じ給油装置(駆
動軸8に設けられた偏心袖穴24の遠心ポンプ作用によ
る給油)が配置された駆動室6と吐出室油溜1Bとの間
を給油通路によシ連通させ、その通路途中に上述の給油
通路制御弁装置17を設けることにより、圧縮機運転中
でしかも吐出室油溜18に潤滑油のある時のみ給油通路
を開いて吐出室油溜18の潤滑油を駆動室6に適量ずつ
戻して摺動部への給油に供することが出来ると共に、吸
入冷媒ガスに再混入させて再び圧縮室に流入して圧縮室
間の隙間密封にも供して摺動部の耐久性や圧縮効率を高
めることが出来る。また、吐出室油溜1Bに収集された
潤滑油を常に少量にして吐出室5内での吐出冷媒ガスか
らの潤滑油分離効率を良くすると共に分離された潤滑油
が再び吐出冷媒ガスに混入して圧縮機外部の冷凍サイク
ルへ流出するのを防いで圧縮機内潤滑油不足に係わる種
々の悪現象を未然に防ぐことも出来る。
Further, according to the above embodiment, there is a connection between the drive chamber 6, which is connected to the suction passage and in which the oil supply device (lubrication by the centrifugal pump action of the eccentric sleeve hole 24 provided in the drive shaft 8) is arranged, and the discharge chamber oil sump 1B. By communicating with the oil supply passage and providing the above-mentioned oil supply passage control valve device 17 in the middle of the passage, the oil supply passage is opened and the discharge chamber is opened only when the compressor is operating and there is lubricating oil in the discharge chamber oil sump 18. The lubricating oil in the oil sump 18 can be returned in appropriate amounts to the drive chamber 6 to supply oil to the sliding parts, and it can also be remixed with the suction refrigerant gas and flow into the compression chamber again to seal the gap between the compression chambers. It is also possible to increase the durability and compression efficiency of the sliding part. In addition, the lubricating oil collected in the discharge chamber oil sump 1B is always kept in a small amount to improve the efficiency of separating the lubricating oil from the discharged refrigerant gas in the discharge chamber 5, and the separated lubricating oil is mixed into the discharged refrigerant gas again. By preventing lubricating oil from flowing into the refrigeration cycle outside the compressor, various adverse phenomena related to lack of lubricating oil in the compressor can be prevented.

また、上記実施例によれば吸入室33に連通せず圧縮室
A36よりも圧縮前行程の圧縮室(第3圧縮室とす、る
)と吐出室油溜18との間および駆動室6と吐出室油溜
18との間を給油通路により連通させ、その通路途中に
上述の給油通路制御弁装置17を設けることにより、圧
縮機運転中でしかも吐出室油溜18に潤滑油のある時の
みに給油通路を開いて吐出室油溜18の潤滑油を駆動室
6と圧縮室B39とに適量ずつ戻して摺動部の潤滑や圧
縮室間の隙間密封に供して摺動部の耐久性や圧縮効率を
高めると共に、吸入完了後の圧縮室B39に潤滑油を流
入させるので吸入効率を低下させることも無い。また、
給油通路制御弁装置17を共有する構成であり、機能効
果に対する給油通路コストが比較的安くなる。
In addition, according to the above embodiment, the space between the compression chamber (referred to as the third compression chamber) in the pre-compression stroke and the discharge chamber oil sump 18 and the drive chamber 6, which is not in communication with the suction chamber 33 and is in the pre-compression stroke than the compression chamber A36, is By communicating with the discharge chamber oil sump 18 through an oil supply passage, and by providing the above-mentioned oil supply passage control valve device 17 in the middle of the passage, it can be used only when the compressor is operating and there is lubricating oil in the discharge chamber oil sump 18. The oil supply passage is opened and the lubricating oil in the discharge chamber oil sump 18 is returned to the drive chamber 6 and the compression chamber B39 in appropriate amounts to lubricate the sliding parts and seal the gap between the compression chambers, thereby increasing the durability of the sliding parts. In addition to increasing the compression efficiency, the lubricating oil is allowed to flow into the compression chamber B39 after suction is completed, so that the suction efficiency is not reduced. Also,
This is a configuration in which the oil supply passage control valve device 17 is shared, and the cost of the oil supply passage relative to the functional effect is relatively low.

また、上記実施例によれば駆動軸8を支承するフレーム
3の軸受49.50の隙間部や軸受49と軸受50との
間に設けられた軸受油溜44や固定スクロール13の鏡
板14と旋回スクロール10との摺動面部の環状油溝5
3と吐出室油溜1Bとの間を給油通路により連通させ、
その通路途中に上述の給油通路制御弁装置17を設ける
ことによシ、給油の必要な圧縮機運転中でしかも吐出室
油溜18に潤滑油の成る時のみ給油通路を開いて給油し
、無駄な潤滑油供給を防いで潤滑油不足を無くして耐久
性の向上と圧縮効率の安定化に寄与する。
In addition, according to the above embodiment, the gap between the bearings 49 and 50 of the frame 3 that supports the drive shaft 8, the bearing oil reservoir 44 provided between the bearings 49 and 50, and the end plate 14 of the fixed scroll 13 rotate. Annular oil groove 5 on sliding surface with scroll 10
3 and the discharge chamber oil reservoir 1B are communicated by an oil supply passage,
By providing the above-mentioned oil supply passage control valve device 17 in the middle of the passage, the oil supply passage is opened and oil is supplied only when the compressor is in operation which requires oil supply and lubricating oil is present in the discharge chamber oil sump 18. This prevents excessive lubricant supply and eliminates lubricant shortages, contributing to improved durability and stabilization of compression efficiency.

なお上記実施例では冷媒圧縮機について動作を説明した
が、潤滑油を使用する酸素、窒素、ヘリウムなどの他の
気体圧縮機の場合も同様の作用効果を期待できる。
Although the operation of the refrigerant compressor has been described in the above embodiment, similar effects can be expected in the case of compressors of other gases such as oxygen, nitrogen, and helium that use lubricating oil.

また、上記実施例ではインジェクション管40aを用い
てプランジャー30の外周溝29と圧縮室A36とを連
通したが、インジェクション管40aの代わシに鏡板1
4にその通路を設けてもよい。
Further, in the above embodiment, the injection pipe 40a was used to communicate the outer peripheral groove 29 of the plunger 30 and the compression chamber A36, but instead of the injection pipe 40a, an end plate 1 was used.
4 may be provided with the passage.

また、上記実施例では背圧室B31と吸入室33とを連
通したが、プランジャー30の寸法やフィルバネ38な
どを適切に選定することにより、吸入室33に通じる圧
縮室または吸入室33に通ぜず吸入室33に近い側の圧
縮室B39と背圧室B31とを連通してもよい。また、
第7図では用穴B46の途中から駆動室6に通じるバイ
パス用穴を設けてもよい。
Further, in the above embodiment, the back pressure chamber B31 and the suction chamber 33 are communicated with each other, but by appropriately selecting the dimensions of the plunger 30, the fill spring 38, etc., the compression chamber communicating with the suction chamber 33 or the suction chamber 33 can be communicated with each other. The compression chamber B39 on the side closer to the suction chamber 33 and the back pressure chamber B31 may be communicated with each other. Also,
In FIG. 7, a bypass hole communicating with the drive chamber 6 may be provided from the middle of the use hole B46.

また、第8図では給油通路の最上流を吐出室油溜18b
としたが、中間圧背圧室47を給油通路の最上流として
もよい。
In addition, in FIG. 8, the most upstream side of the oil supply passage is the discharge chamber oil sump 18b.
However, the intermediate pressure back pressure chamber 47 may be located at the most upstream side of the oil supply passage.

また、上記実施例に限定せず給油通路の上流と下流を適
当に選択してもよい。
Furthermore, the present invention is not limited to the above embodiment, and the upstream and downstream portions of the oil supply passage may be appropriately selected.

また、上記実施例ではプランジャーが水平方向に移動す
るように給油通路制御弁装置を固定スクロールの鏡板に
取り付け、背圧室Aと背圧室Bとの間の差圧が無くなっ
た場合にバネ装置の付勢力によってプランジャーを後退
せしめる構成であるが、背圧室Aを下側に、背圧室Bを
上側に配置して、画室間の差圧が無くなった場合にプラ
ンジャーがその自重により後退して開閉弁を遮断する立
置型の給油通路制御弁装置を鏡板の上面または側面に取
)付けてもよい。
In addition, in the above embodiment, the oil supply passage control valve device is attached to the end plate of the fixed scroll so that the plunger moves in the horizontal direction, and when the differential pressure between the back pressure chamber A and the back pressure chamber B disappears, the spring The configuration is such that the plunger is retracted by the biasing force of the device, but the back pressure chamber A is placed on the lower side and the back pressure chamber B is placed on the upper side, so that when the differential pressure between the chambers disappears, the plunger will move under its own weight. A vertical oil supply passage control valve device that retreats to shut off the on-off valve may be attached to the top or side surface of the end plate.

また、上記実施例ではプランジャー30の外周部に特別
なシール部材を設けていないが、例えばテフロン製のピ
ストンリングやテフロン被膜を施したゴム製のオーリン
グ(0−リング)を使用してプランジャ−30外周部か
らの軸方向漏れを少なくしてもよい。
Further, in the above embodiment, no special seal member is provided on the outer circumference of the plunger 30, but for example, a Teflon piston ring or a Teflon-coated rubber O-ring (0-ring) is used to seal the plunger. -30 Axial leakage from the outer circumference may be reduced.

また、上記説明では潤滑油を差圧給油する場合について
述べたが、高圧側の冷媒液や冷媒ガスを圧&を室へイン
ジェクションする場合でも類似の発想でその通路を開閉
することが出来、種々の通路制御の発想展開を各種分野
に広げることも出来る。
In addition, although the above explanation deals with the case where lubricating oil is supplied by differential pressure, even when injecting refrigerant liquid or refrigerant gas on the high-pressure side into a chamber, the passage can be opened and closed using a similar concept, and various methods can be used. It is also possible to expand the idea of passage control to various fields.

発明の効果 以上のように本発明は、油溜まり部とその油溜まり部よ
りも圧力の低い空間とを給油通路により連通させ、給油
通路の途中にはその通路を開閉する給油通路制御弁装置
を設け、給油通路制御弁装置のアクチェータは吐出室に
も吸入室にも連通しない第1圧縮室と第1圧縮室よりも
圧縮前行程の第2圧縮室との間の差圧、または第1圧縮
室と吸入室またはこれに通じる吸入側との間の差圧、ま
たはそれ自身の温度により付勢力の異なる形状記憶特性
を有するバネ装置と前述の差圧とにより給油通路を開閉
し、差圧が有シ設定差圧を超えない場合に給油通路を開
き、差圧が無い場合、または設定差圧を超える場合、ま
たはバネ装置が設定温度を超えて付勢力を変化させた場
合に給油通路を閉じる給油通路制御弁装置を備えること
により、圧縮機運転中はスクロール圧縮機構における圧
縮気体の圧縮比が一定なために吐出室に連通しない第1
圧縮室の圧力が吐出室の圧力に影響されずに吸入室(ま
たは吸入側)圧力の一定倍率にまで確実に上昇するので
圧縮機起動初期から第1圧縮室と吸入室またはこれに通
じる吸入側との間の差圧、または第1圧縮室と第2圧縮
室との間の差圧が確実に発生し、その差圧力によって給
油通路制御弁装置の7クチエータが作動して給油通路が
開通して摺動部、油溜、圧縮空間などの圧縮機内の各部
に圧縮機起動初期から潤滑油を差圧給油でき、潤滑油の
油膜や冷却作用などを有効に活用して圧縮機摺動部の耐
久性、圧縮効率の向上や騒音低下などに寄与できる。
Effects of the Invention As described above, the present invention communicates an oil reservoir with a space whose pressure is lower than that of the oil reservoir through an oil supply passage, and includes an oil supply passage control valve device in the middle of the oil supply passage for opening and closing the passage. The actuator of the oil supply passage control valve device is provided with a differential pressure between a first compression chamber that does not communicate with either the discharge chamber or the suction chamber and a second compression chamber that is in a pre-compression stroke than the first compression chamber, or the first compression chamber. The refueling passage is opened and closed by the pressure difference between the chamber and the suction chamber or the suction side leading thereto, or by the spring device having a shape memory characteristic whose urging force differs depending on its own temperature and the above-mentioned pressure difference. Opens the oil supply passage when the set differential pressure is not exceeded, and closes the oil supply passage when there is no differential pressure or exceeds the set differential pressure, or when the spring device exceeds the set temperature and changes the biasing force. By providing the oil supply passage control valve device, the compression ratio of the compressed gas in the scroll compression mechanism is constant during compressor operation, so the first passage does not communicate with the discharge chamber.
Since the pressure in the compression chamber is not affected by the pressure in the discharge chamber and reliably rises to a constant multiple of the pressure in the suction chamber (or suction side), the pressure in the first compression chamber and the suction chamber, or the suction side leading to this, increases from the beginning of compressor startup. A pressure difference between the two compression chambers or a pressure difference between the first compression chamber and the second compression chamber is reliably generated, and the differential pressure operates the 7 actuator of the oil supply passage control valve device to open the oil supply passage. lubricating oil can be supplied to various parts of the compressor, such as sliding parts, oil sump, and compression space, at a differential pressure from the beginning of compressor startup, and the oil film and cooling effect of the lubricating oil can be effectively utilized to reduce the pressure of the compressor sliding parts. It can contribute to improving durability, compression efficiency, and reducing noise.

また、給油通路の潤滑油が無くなるなどの異常が発生し
て圧縮機内の温度や圧縮室内の圧力が異常上昇してバネ
装置の温度やアクチェータに作用する差圧が設定値を超
えるとバネ付勢力の変化や差圧力によってアクチェータ
が作動し、給油通路を閉じるなどして給油通路連通に起
因する異常進展を阻止し耐久性の劣化を防ぐことも出来
る。
In addition, if an abnormality occurs such as the lubricating oil in the oil supply passage running out and the temperature inside the compressor or the pressure inside the compression chamber rises abnormally, and the temperature of the spring device or the differential pressure acting on the actuator exceeds the set value, the spring biasing force will increase. The actuator is actuated by the change in the pressure and the differential pressure, and the oil supply passage is closed, thereby preventing abnormal development caused by the communication of the oil supply passage and preventing deterioration of durability.

また、圧縮機の運転が停止して圧縮室と吸入室またはこ
れに通じる吸入側との間の差圧が無くなるとアクチェー
タが作動して給油通路を閉じ、油溜まり部からの無駄な
潤滑油流失を防止するなどして圧縮機運転状態に応じた
給油調整が出来、冷却効果や隙間密封効果などを有する
潤滑油の有効利用により摺動面の耐久性や圧縮効率の向
上、騒音低下など潤滑油に依存する種々の特性向上がで
き数多くの優れた効果を奏するスクロール気体圧縮機を
提供できる。
In addition, when the compressor stops operating and the differential pressure between the compression chamber and the suction chamber or the suction side leading to it disappears, the actuator operates and closes the oil supply passage, causing wasteful lubricant oil to flow out from the oil reservoir. The lubricating oil can be adjusted according to the operating condition of the compressor by preventing such problems, and the effective use of lubricating oil, which has a cooling effect and gap sealing effect, improves the durability of sliding surfaces, improves compression efficiency, and reduces noise. It is possible to provide a scroll gas compressor that can improve various characteristics depending on the temperature and exhibits many excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における密閉型スクロー
ル冷媒圧縮機の縦断面図、第2図、第3図は第1図にお
ける給油通路制御弁装置の動作を説明する要部縦断面図
、第4図は第1図のA−A線における圧縮部の横断面図
、第5図、第15図説明図、第6図、第16図は圧縮室
の定点における圧力変化などの比較説門図、第7図、第
8図。 第9図、第11図は本発明のそれぞれ異なる別の実施例
の密閉型スクロール冷媒圧縮機の縦断面図、第10図は
本発明の別の実施例のスクロール型冷媒圧縮機の部分断
面図、第12図、第13図、第14図、第17図は本発
明の別の実施例、における給油通路制御弁装置の動作説
明部分断面図、第18図、第19図、第20図、第2)
図はそれぞれ異なる従来のスクロール型気体圧縮機の縦
断面図および部分断面図、第22図は従来の給油通路制
御装置を備えたロータリ型気体圧縮機の縦断面図、第2
3図は第22図のA−A線における縦断面図である。 1.2・・・・・・密閉ケース、5・・・・・・吐出室
、6・・・・・・駆動室、7・・・・・・モータ、10
・・・・・・旋回スクロール、13・・・・・・固定ス
クロール、15・・・・・・吐出ボート、17・・・・
・・給油通路制御弁装置、1B・・・・・・吐出室油溜
、23・・・・・・モータ室油溜、30・・・・・・プ
ランジャ−、31・・・・・・背圧室B、33・・・・
・・吸入室、34・・・・・・背圧室A136・・・・
・・圧縮室A、3B・・・・・・コイルバネ、39・・
・・・・圧縮室B、4o・・・・・・インジェクション
穴、41・・・・・・油吸い込み穴、44・・・・・・
軸受油溜、47・・・・・・中間圧背圧室、80・・・
・・・グイヤフラム、84・・・・・・鋼球。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名′I
Jc1図 f ■ 12−名3hブース 3−7レーム 4− :M?c−ド ロー肚七育 19−パシチン7×タクシ 22−Wえ入管 23−f:一タy油ジ留 Z4−肩mI已j由ツ犬 33−卯丸、1 第2図 fo−夾コズ知−ル f3−薗欠ヌグロール /4−5反 必−スrス勺1ト 29−り)月■町 3θ−ニーランシャー J/−嘴5rL!VB 、32−力゛ス大 33−■しべ! 、34−%狸−1(△ 85−λ巳ll卑2S象 36−)D冑1匠A 31−Fl箭Σ( 38−コイルでト 3q−7漣WB ♂た一万」恒賎 4クーイン兎フシゴン大 弘綻−イシシ仝フンmlj含 4f−囲イおU入枳 第5図 駆vJ軸〕松急箋(rad) 層*@TMdn (rad> di] ab    9 調−い! 第10図 12−一一引翳〉ス 第12図 第13図 ゲ 18−註七!虹宙 29 −り)A0清 δθ−7ランレヤー 31−一嘴と!8 X−万ス入 の−吸入! y−青と菫A 35−及力瓜入パ、 3ろ−λL着「努ンへ 38誌−コイルバTA 40−インシ笠グションクく #−4〕ジ17ジ9:/1倉 ae−イン未クシ14〈 6q−正憧5震清云奮呼の刀シり 第15図            70−一興常圧ヵよ
件轡のπカ駆動S圓転角涜(mぬ 駆動S回壓漁屓 第17図 第18囚 &υ 第19図 第20図     第2)図
FIG. 1 is a vertical cross-sectional view of a hermetic scroll refrigerant compressor according to a first embodiment of the present invention, and FIGS. 2 and 3 are longitudinal cross-sectional views of main parts illustrating the operation of the oil supply passage control valve device in FIG. 1. Figure 4 is a cross-sectional view of the compression section taken along line A-A in Figure 1, Figures 5 and 15 are explanatory diagrams, and Figures 6 and 16 are comparisons of pressure changes at fixed points in the compression chamber. Introductory drawings, Figures 7 and 8. 9 and 11 are longitudinal sectional views of a hermetic scroll refrigerant compressor according to another embodiment of the present invention, and FIG. 10 is a partial sectional view of a scroll refrigerant compressor according to another embodiment of the present invention. , FIG. 12, FIG. 13, FIG. 14, and FIG. 17 are partial sectional views explaining the operation of the oil supply passage control valve device in another embodiment of the present invention, FIG. 18, FIG. 19, FIG. 20, 2nd)
The figures are a longitudinal cross-sectional view and a partial cross-sectional view of different conventional scroll-type gas compressors, respectively, FIG.
FIG. 3 is a longitudinal cross-sectional view taken along line A--A in FIG. 22. 1.2... Sealed case, 5... Discharge chamber, 6... Drive chamber, 7... Motor, 10
...Orbiting scroll, 13...Fixed scroll, 15...Discharge boat, 17...
...Oil supply passage control valve device, 1B...Discharge chamber oil sump, 23...Motor room oil sump, 30...Plunger, 31...Back Pressure chamber B, 33...
...Suction chamber, 34...Back pressure chamber A136...
...Compression chamber A, 3B... Coil spring, 39...
...Compression chamber B, 4o...Injection hole, 41...Oil suction hole, 44...
Bearing oil reservoir, 47...Intermediate pressure back pressure chamber, 80...
... Guyafram, 84... Steel ball. Name of agent: Patent attorney Toshio Nakao and one other person
Jc1 figure f ■ 12-person 3h booth 3-7 frame 4-: M? c-Draw Chuchiiku 19-Pashichin 7x Taxi 22-W Emmigration tube 23-F: 1 tie y oil distillation Z4-Shoulder mI 33-Usumaru, 1 Fig. 2 fo-Kozuchi - Le f3 - Sonokashi Nugrol / 4-5 anti-necessity rsu 1 to 29-ri) Tsuki ■ Town 3θ - Niransha J / - Beak 5rL! VB, 32-Power Base 33-■ Shibe! , 34-% Tanuki-1 (△ 85-λ巳 ll base 2S elephant 36-) D helmet 1 Takumi A 31-Fl 箭Σ ( 38-coil to 3q-7 Ren WB ♂ Taichiman'' Kozei 4 Kuin Usagi Fushigon Daikoro - Ishishi no Fun mlj including 4f - Enclosure I O U entry 5th figure KWD vJ axis] Matsukyu paper (rad) layer * @ TMdn (rad> di] ab 9 key! Figure 10 12-11 shadow〉su Figure 12 Figure 13 Game 18-Note 7!Rainbow 29-ri) A0 Qing δθ-7 Run layer 31-One beak and!8 X-Inhalation of ten thousand su! y- Blue and violet A 35-Okinori gourd entering pa, 3ro-λL arrival "Tsutomon 38 magazine-Koilba TA 40-Inshi Kasa Gushonku #-4] Ji 17 Ji 9: / 1 warehouse ae-In Miku 14 〈 6q - Sword shift of the 5th seismic wave, 70 - Ikko normal pressure case, π power drive, S turning angle, Figure 17, Figure 18 Prisoner & υ Figure 19 Figure 20 Figure 2)

Claims (6)

【特許請求の範囲】[Claims] (1) 固定スクロールに対して旋回スクロールを揺動
回転自在に噛み合わせ、両スクロール間に渦巻き形の圧
縮空間を形成し、前記圧縮空間は吸入側より吐出側に向
けて連続移行する複数個の圧縮室に区画されて流体を圧
縮するスクロール式圧縮機構を形成し、油溜まり部と前
記油溜まり部よりも圧力の低い空間とを給油通路により
連通させ、前記給油通路の途中には給油通路制御弁装置
を設け、前記給油通路制御弁装置のアクチェータは吐出
室にも吸入室にも連通しない第1圧縮室と前記第1圧縮
室よりも圧縮前行程の第2圧縮室との間の差圧、または
前記第1圧縮室と前記吸入室またはこれに通じる吸入側
との間の差圧、またはそれ自身の温度により付勢力の異
なる形状記憶特性を有するバネ装置と前記差圧により前
記給油通路を開閉し、前記差圧があるかまたは設定差圧
を超えない場合に前記給油通路を開き、前記差圧が無い
場合、または前記設定差圧を超える場合、または前記バ
ネ装置が設定温度を超えて付勢力を変化させた場合に前
記給油通路を閉じる前記給油通路制御弁装置を備えたス
クロール気体圧縮機。
(1) An orbiting scroll is engaged with a fixed scroll so as to be able to swing and rotate freely, and a spiral-shaped compression space is formed between both scrolls. A scroll-type compression mechanism is formed that is divided into compression chambers and compresses fluid, and an oil reservoir is communicated with a space having a lower pressure than the oil reservoir through an oil supply passage, and an oil supply passage control is provided in the middle of the oil supply passage. A valve device is provided, and the actuator of the oil supply passage control valve device controls the pressure difference between a first compression chamber that does not communicate with either the discharge chamber or the suction chamber and a second compression chamber that is in a pre-compression stroke than the first compression chamber. or a spring device having a shape memory characteristic whose biasing force differs depending on the pressure difference between the first compression chamber and the suction chamber or the suction side leading thereto, or the temperature of the spring device and the pressure difference to cause the oil supply passage to flow. open and close, and open the oil supply passage when the differential pressure exists or does not exceed the set differential pressure, and when the differential pressure does not exist or exceeds the set differential pressure, or the spring device exceeds the set temperature. A scroll gas compressor comprising the oil supply passage control valve device that closes the oil supply passage when a biasing force is changed.
(2) 油溜まり部を吐出室に通じる油溜とし、油溜ま
り部よりも圧力の低い空間を吸入通路に通じ給油装置が
配置された駆動室とした特許請求の範囲第1項記載のス
クロール気体圧縮機。
(2) The scroll gas according to claim 1, wherein the oil reservoir is an oil reservoir communicating with the discharge chamber, and a space with a lower pressure than the oil reservoir is a suction passage and a drive chamber in which an oil supply device is arranged. compressor.
(3) 油溜まり部を吐出室に通じる油溜とし、油溜ま
り部よりも圧力の低い空間を吸入室に連通せず第1圧縮
室よりも圧縮前行程の第3圧縮室とした特許請求の範囲
第1項記載のスクロール気体圧縮機。
(3) The oil reservoir is an oil reservoir that communicates with the discharge chamber, and a space with a lower pressure than the oil reservoir is not communicated with the suction chamber but is a third compression chamber in the pre-compression stroke than the first compression chamber. Scroll gas compressor according to scope 1.
(4) 油溜まり部を吐出室に通じる油溜とし、油溜ま
り部よりも圧力の低い空間を吸入通路に通じ給油装置が
配置された駆動室および第3圧縮室とした特許請求の範
囲第1項記載のスクロール気体圧縮機。
(4) The oil reservoir is an oil reservoir communicating with the discharge chamber, and a space with a lower pressure than the oil reservoir is connected to the suction passage, and a drive chamber and a third compression chamber in which an oil supply device is arranged are provided in claim 1. Scroll gas compressor as described in Section 1.
(5) 油溜まり部を吐出室に通じる油溜とし、油溜ま
り部よりも圧力の低い空間を摺動部油溜または隙間また
は摺動部油溝とした特許請求の範囲第1項記載のスクロ
ール気体圧縮機。
(5) The scroll according to claim 1, wherein the oil reservoir is an oil reservoir communicating with the discharge chamber, and the space whose pressure is lower than the oil reservoir is a sliding part oil reservoir, a gap, or a sliding part oil groove. gas compressor.
(6) 油溜まり部を旋回スクロールの反圧縮室側の背
圧室とし、油溜まり部よりも圧力の低い空間を吸入室ま
たは第2圧縮室または第3圧縮室とした特許請求の範囲
第1項記載のスクロール気体圧縮機。
(6) The oil reservoir is defined as a back pressure chamber on the side opposite to the compression chamber of the orbiting scroll, and the space with lower pressure than the oil reservoir is defined as a suction chamber, a second compression chamber, or a third compression chamber. Scroll gas compressor as described in Section 1.
JP29945086A 1986-12-16 1986-12-16 Scroll gas compressor Expired - Lifetime JPH073228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29945086A JPH073228B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29945086A JPH073228B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPS63150489A true JPS63150489A (en) 1988-06-23
JPH073228B2 JPH073228B2 (en) 1995-01-18

Family

ID=17872730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29945086A Expired - Lifetime JPH073228B2 (en) 1986-12-16 1986-12-16 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JPH073228B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294580A (en) * 1989-05-09 1990-12-05 Daikin Ind Ltd Freezing device employing scroll type compressor
US5358391A (en) * 1986-08-22 1994-10-25 Copeland Corporation Hermetic compressor with heat shield
US5649816A (en) * 1986-08-22 1997-07-22 Copeland Corporation Hermetic compressor with heat shield
US5674062A (en) * 1986-08-22 1997-10-07 Copeland Corporation Hermetic compressor with heat shield
BE1017934A3 (en) * 2002-06-03 2009-12-01 Kobe Steel Ltd COMPRESSOR COOLED WITH OIL.
US7744357B2 (en) * 2005-12-12 2010-06-29 Lg Electronics Inc. Scroll compressor
US20140093413A1 (en) * 2012-10-02 2014-04-03 Delphi Technologies, Inc. Compressor assembly having oil separation feature
CN110118182A (en) * 2018-02-06 2019-08-13 博泽沃尔兹堡汽车零部件有限公司 Electronic coolant compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407603B1 (en) * 2020-04-20 2022-06-13 엘지전자 주식회사 A compressor
KR102331606B1 (en) * 2020-04-20 2021-11-30 엘지전자 주식회사 A compressor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358391A (en) * 1986-08-22 1994-10-25 Copeland Corporation Hermetic compressor with heat shield
US5487654A (en) * 1986-08-22 1996-01-30 Copeland Corporation Hermetic compressor with heat shield
US5649816A (en) * 1986-08-22 1997-07-22 Copeland Corporation Hermetic compressor with heat shield
US5674062A (en) * 1986-08-22 1997-10-07 Copeland Corporation Hermetic compressor with heat shield
JPH02294580A (en) * 1989-05-09 1990-12-05 Daikin Ind Ltd Freezing device employing scroll type compressor
JPH0765574B2 (en) * 1989-05-09 1995-07-19 ダイキン工業株式会社 Refrigeration system using scroll compressor
BE1017934A3 (en) * 2002-06-03 2009-12-01 Kobe Steel Ltd COMPRESSOR COOLED WITH OIL.
US7744357B2 (en) * 2005-12-12 2010-06-29 Lg Electronics Inc. Scroll compressor
US20140093413A1 (en) * 2012-10-02 2014-04-03 Delphi Technologies, Inc. Compressor assembly having oil separation feature
US8944791B2 (en) * 2012-10-02 2015-02-03 Delphi Technologies, Inc. Compressor assembly having oil separation feature
CN110118182A (en) * 2018-02-06 2019-08-13 博泽沃尔兹堡汽车零部件有限公司 Electronic coolant compressor

Also Published As

Publication number Publication date
JPH073228B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
JP2956509B2 (en) Scroll gas compressor
KR960001630B1 (en) Rotary type multi-stage compressor
KR920010733B1 (en) Scroll compressor
JP2782858B2 (en) Scroll gas compressor
KR970005860B1 (en) Multi-stage gas compressor provided with bypass valve device
JP2585380Y2 (en) Rotary compressor
JP2004011482A (en) Rotary compressor
JPS63150489A (en) Scroll gas compressor
JPH01177482A (en) Scroll compressor
JPH029973A (en) Scroll type fluid device
JP3045961B2 (en) Scroll gas compression
JPH07109195B2 (en) Scroll gas compressor
JPH02294584A (en) Scroll compressor
JPS63150490A (en) Scroll gas compressor
JP2511863B2 (en) Scroll gas compressor
JP2006307753A (en) Scroll expander
JPH01177481A (en) Scroll compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JPH0631632B2 (en) Scroll gas compressor
JPH073230B2 (en) Scroll gas compressor
JPH08303371A (en) Scroll gas compressor
JP2615527B2 (en) Scroll gas compressor
JP2820137B2 (en) Scroll gas compressor
JP2980045B2 (en) Scroll gas compressor
JPH0633786B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term