JPS63134623A - Denitrification method utilizing iron oxide - Google Patents

Denitrification method utilizing iron oxide

Info

Publication number
JPS63134623A
JPS63134623A JP27884086A JP27884086A JPS63134623A JP S63134623 A JPS63134623 A JP S63134623A JP 27884086 A JP27884086 A JP 27884086A JP 27884086 A JP27884086 A JP 27884086A JP S63134623 A JPS63134623 A JP S63134623A
Authority
JP
Japan
Prior art keywords
molten steel
iron oxide
vacuum
steel
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27884086A
Other languages
Japanese (ja)
Inventor
Hajime Takahashi
元 高橋
Takeomi Taniyama
谷山 強臣
Atsushi Ishii
敦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27884086A priority Critical patent/JPS63134623A/en
Publication of JPS63134623A publication Critical patent/JPS63134623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently denitrify a high carbon steel at a low cost when the steel is refined in a vacuum induction furnace, by melting down charged stock, adding fine iron oxide powder to the surface of the resulting molten steel in the furnace and treating the molten steel at a high temp. in vacuum. CONSTITUTION:When a high carbon steel is refined in a vacuum induction furnace, stock is charged into the furnace and melted down. After the stock is melted down, fine powder of iron oxide (Fe2O3) having >=about 99% purity is scattered on the surface of the resulting molten steel and the molten steel is treated at about 1,600 deg.C in vacuum having about 10<-1>Torr degree of vacuum. The iron oxide powder is dispersed in the molten steel by induction stirring to accelerate the denitrification reaction of the molten steel, so the molten steel is effectively denitrified.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空誘導炉を用いて脱窒化を行う高炭素鋼の
脱窒法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for denitrifying high carbon steel using a vacuum induction furnace.

従来の技術 近年、ステンレン鋼をはじめとして鋼の用途の多様化が
進み、諸性質の一層の改善が求められており、極低窒素
化精練技術についても、効率よく安価に脱窒素化できる
精練技術の開発が要望されている。ところで、従来の炭
素鋼の低窒素化法としては、出鋼時から鋳込まれるまで
の間の大気からの窒素吸収を防止する手段が主として用
いられている。
Conventional technology In recent years, the uses of steel, including stainless steel, have been diversifying, and further improvements in various properties have been required.As for ultra-low nitrogen scouring technology, we are developing a scouring technology that can efficiently and inexpensively denitrify. development is required. By the way, as a conventional method for reducing the nitrogen content of carbon steel, a method of preventing nitrogen absorption from the atmosphere during the period from the time of tapping to the time of casting has been mainly used.

発明が解決しようとする問題点 しかしながら、出鋼時から鋳込まれるまでの途中で真空
脱ガス処理を行っても、有効な脱窒系反応は行われなか
った。
Problems to be Solved by the Invention However, even if vacuum degassing treatment was performed during the process from the time of tapping to the time of casting, no effective denitrification reaction was carried out.

したかつて、本発明は、このような問題点に鑑みてなさ
れたもので、その目的は、恒めて簡単な方法によって、
高炭素鋼の脱窒系反応を効果的に行う方法を提供するこ
とにある。
The present invention was made in view of these problems, and its purpose is to solve the problem by a simple method.
The object of the present invention is to provide a method for effectively carrying out denitrification reactions in high carbon steel.

問題点を解決するための手段 本発明者等は、鋭意検討の結果、真空誘導炉における脱
窒系反応の向上には、溶鋼の攪拌によるガス−メタル界
面の増大化が有効であることを見出だし、その攪拌のた
めのガス発生源として販化鉄微粉末を用いることにより
、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the inventors have found that increasing the gas-metal interface by stirring molten steel is effective in improving the denitrification reaction in a vacuum induction furnace. Initially, the present invention was completed by using commercially available iron powder as a gas generation source for stirring.

したがって、本発明は、真空誘導炉を用いて高炭素鋼を
精練するに際し、投入原料が溶落した後に、酸化鉄微粉
末を真空誘導炉内の溶鋼表面に添加し、高温で真空処理
することを特徴とする。
Therefore, when refining high carbon steel using a vacuum induction furnace, the present invention involves adding fine iron oxide powder to the surface of the molten steel in the vacuum induction furnace after the input raw material has melted down, and vacuum treating it at high temperature. It is characterized by

以下、本発明について一層詳細に説明する。Hereinafter, the present invention will be explained in more detail.

本発明において、酸化鉄微粉末は、高炭素鋼の投入原料
が真空誘導炉内で溶落した後に添加するが、酸化鉄微粉
末の一部を、予め投入原料に添加しておき、溶落時まで
に窒素濃度をある程度低下させておいてもよい。
In the present invention, the fine iron oxide powder is added after the raw material for high carbon steel is burnt off in the vacuum induction furnace, but a part of the fine iron oxide powder is added to the raw material in advance and the raw material is melted off. The nitrogen concentration may be reduced to some extent by then.

本発明において使用する酸化鉄微粉末としては、高純度
(Fe203 99%以上)のものがスラグの発生が少
ないので好ましいが、純度が多少低いものでも使用でき
る。
The fine iron oxide powder used in the present invention is preferably one with high purity (99% or more Fe203) because it generates less slag, but one with somewhat lower purity can also be used.

本発明によれば、投入原料が溶落した後に、酸化鉄微粉
末を添加するが、添加は溶鋼の表面に散布すればよい。
According to the present invention, iron oxide fine powder is added after the input raw material has melted down, but the addition can be done by scattering it on the surface of the molten steel.

酸化物微粉末の添加後、高温、たとえば1600℃前後
の温度において、高真空度、例えば10 ’Torrに
おいて処゛理すると、酸化鉄微粉末は、誘導攪拌により
溶鋼内に侵入分散し、脱窒前反応が促進する。
After adding the oxide fine powder, when processing is performed at a high temperature, for example, around 1600°C, and a high degree of vacuum, for example, 10' Torr, the iron oxide fine powder enters and disperses in the molten steel by induction stirring, and denitrification occurs. Promotes pre-reaction.

作用 本発明の脱窒前反応機構について説明すると、原料の溶
落後に酸化鉄微粉末を添加し、高温において真空処理す
ると、酸化鉄微粉末は、誘導攪拌により、溶鋼に侵入分
散し、C十Ee203=2Fe十CO↑の反応により、
微細なCO気泡が多量に発生する。このCO気泡により
溶鋼の攪拌が促進され、又、それによってガス−メタル
界面の面積が著しく増大するので、脱窒前反応が促進す
る。
Function To explain the pre-denitrification reaction mechanism of the present invention, fine iron oxide powder is added after melting of the raw material, and vacuum treatment is performed at high temperature.The fine iron oxide powder penetrates and disperses into molten steel by induction stirring, and carbon Due to the reaction of Ee203=2Fe+CO↑,
A large amount of fine CO bubbles are generated. The CO bubbles promote stirring of the molten steel, which significantly increases the area of the gas-metal interface, thereby promoting the pre-denitrification reaction.

その場合における溶鋼の脱窒素反応式は以下の通りでお
る。
The denitrification reaction formula for molten steel in that case is as follows.

である。It is.

d     A 2−・  2 [N]=−K  ([N]      tN]と  )
dt     V (式中、Aはガス−メタル界面積、■は溶鋼の容積、t
は操作時間、Kは定数、[N]は窒素濃度、[N16は
PN2 と平衡する溶鋼窒素濃度〉便宜的に[N]e=
oと仮定すると、上記式は次の式で表わされる。
d A 2-・2 [N]=-K ([N] tN] and )
dt V (where A is the gas-metal interface area, ■ is the volume of molten steel, t
is the operation time, K is a constant, [N] is the nitrogen concentration, [N16 is the molten steel nitrogen concentration in equilibrium with PN2] For convenience, [N]e=
Assuming that o, the above equation is expressed by the following equation.

11     A −−−=に−t [N]   [N]o   V ところで、低窒素化を図るためには、■及びKは一定で
あるから、[N16の低減、及びAの増大化を行えばよ
い。
11 A ---= -t [N] [N] o V By the way, in order to achieve low nitrogen, since ■ and K are constant, if [N16 is reduced and A is increased] good.

実験によれば、初期窒素濃度と脱窒前速度との関係は第
2図に示されるようになる。第2図中、実線は本発明を
、また点線は酸化鉄微粉末を添加しないで真空処理した
場合を示す。
According to experiments, the relationship between the initial nitrogen concentration and the pre-denitrification rate is shown in FIG. In FIG. 2, the solid line shows the case of the present invention, and the dotted line shows the case of vacuum treatment without adding fine iron oxide powder.

今、KA=に1で表わすと、従来の技術にあける真空処
理の速度定数は、K1=0.4であるのに対して、本発
明においては、K1=約1であり、したがって、酸化鉄
微粉末を添加し、COの気泡を多量に発生させることに
よってガス−メタル界面積を約2.5倍に増大させるこ
とができる。
Now, when KA= is expressed as 1, the rate constant of vacuum treatment in the conventional technology is K1=0.4, whereas in the present invention, K1=about 1, and therefore iron oxide By adding fine powder and generating a large amount of CO bubbles, the gas-metal interfacial area can be increased by about 2.5 times.

実施例 次に本発明を実施例によって説明する。Example Next, the present invention will be explained by examples.

以下の合金組成の炭素工具鋼を脱窒系処理した。Carbon tool steel with the following alloy composition was subjected to denitrification treatment.

C: 1.41、Si:0.15、Mn:0.24、P
 : 0.017、S : 0.014 、CLl :
 0.13、N i :0.10. Cr :0.17
、残部:Fe(%) 上記合金組成の原料を真空誘導炉に投入し、真空度1Q
”1Orrまで排気しながら加熱によって溶解させた。
C: 1.41, Si: 0.15, Mn: 0.24, P
: 0.017, S: 0.014, CLl:
0.13, N i :0.10. Cr: 0.17
, balance: Fe (%) The raw material with the above alloy composition was put into a vacuum induction furnace, and the vacuum degree was 1Q.
"It was melted by heating while evacuating to 1 Orr.

溶落後、アルゴンガスを導入して真空度を100Tor
 rに保った後、酸化鉄微粉末(平均粒径0.76μm
)を3Kg/トンに割合いで添加し、溶鋼温度を158
0〜1600℃に保ち、真空度10”To r rまで
排気しなから月凭窒素処理を行った。脱窒前の結果は、
第1図に示される。
After melting, argon gas is introduced and the vacuum level is increased to 100 Torr.
After maintaining the temperature at r, fine iron oxide powder (average particle size 0.76 μm
) was added at a rate of 3 kg/ton, and the molten steel temperature was increased to 158
The temperature was maintained at 0 to 1600°C, and the moonlight nitrogen treatment was performed without evacuation to a vacuum level of 10” Torr.The results before denitrification were as follows:
It is shown in FIG.

第1図は、窒素濃度140ppmの溶鋼を脱窒前した場
合における、窒素濃度の精練時間との関係を示すグラフ
である。グラフ中、曲線Aは、本発明の上記実施例であ
り、曲線Bは、本発明において、予め酸化鉄微粉末を1
.5に!J/トンの割合で添加しておいた場合の実施例
であり、曲線Cは、酸化鉄微粉末を添加しないで処理し
た従来技術を示す。なお、縦軸は溶鋼の窒素濃度(pI
)m>、横軸は溶落からの精練時間(hr)を示す。
FIG. 1 is a graph showing the relationship between nitrogen concentration and scouring time when molten steel with a nitrogen concentration of 140 ppm is subjected to denitrification. In the graph, curve A is the above-mentioned example of the present invention, and curve B is in the present invention, in which 1 part of iron oxide fine powder is added in advance.
.. To 5! This is an example in which iron oxide fine powder was added at a ratio of J/ton, and curve C shows a conventional technique in which iron oxide fine powder was not added. Note that the vertical axis represents the nitrogen concentration (pI) of molten steel.
)m>, the horizontal axis shows the scouring time (hr) from burn-through.

このグラフから明らかなように、初期濃度140ppm
の場合、50 ppm以下の窒素濃度にするためには、
本発明においては、溶落後3時間以内の精練時間でおる
のに対して、酸化鉄微粉末を添加しない従来技術によれ
ば5時間以上の精練時間が必要となる。また、酸化鉄微
粉末を予め添加した場合には(曲線B)、溶落時に窒素
濃度が低下したものになっているから、溶落後の精練時
間が一層短縮される。
As is clear from this graph, the initial concentration was 140 ppm.
In this case, in order to reduce the nitrogen concentration to 50 ppm or less,
In the present invention, the scouring time is within 3 hours after melting, whereas in the conventional technique in which iron oxide fine powder is not added, the scouring time is 5 hours or more. Furthermore, when fine iron oxide powder is added in advance (curve B), the nitrogen concentration is reduced during burn-through, so the scouring time after burn-off is further shortened.

発明の効果 本発明は、真空誘導炉を用いて炭素鋼を精練するに際し
て、原料が溶落した後に、酸化鉄微粉末を真空誘導炉内
の溶鋼表面に添加し、高温において真空処理するもので
あるから、操作は極めて容易に行うことができ、そして
また、これにより、溶鋼清浄度を阻害することなく、脱
窒素を促進させることができる。したがってまた、上記
第1図からも明らかなように、酸化鉄微粉末を添加しな
い従来法に比べて、精練時間を著しく短縮することがで
きる。又、酸化鉄として高純度のものを用いれば、溶鋼
清浄度を一層阻害することなく脱窒素化を行うことが可
能になる。
Effects of the Invention The present invention, when refining carbon steel using a vacuum induction furnace, adds iron oxide fine powder to the surface of the molten steel in the vacuum induction furnace after the raw material burns down, and vacuum-treats it at high temperature. Because of this, the operation can be performed extremely easily, and denitrification can be promoted without impairing the cleanliness of molten steel. Therefore, as is clear from FIG. 1 above, the scouring time can be significantly shortened compared to the conventional method in which fine iron oxide powder is not added. Furthermore, if high purity iron oxide is used, denitrification can be performed without further impairing the cleanliness of molten steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明及び従来の技術における、窒素濃度の
精練時間との関係を示すグラフでおり、第2図は、初期
窒素濃度と脱窒系速度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between nitrogen concentration and scouring time in the present invention and the conventional technology, and FIG. 2 is a graph showing the relationship between initial nitrogen concentration and denitrification system rate.

Claims (1)

【特許請求の範囲】[Claims] (1)真空誘導炉を用いて高炭素鋼を精練するに際し、
投入原料が溶落した後に、酸化微粉末を真空誘導炉内の
溶鋼表面に添加し、高温で真空処理することを特徴とす
る高炭素鋼の脱窒素法。
(1) When refining high carbon steel using a vacuum induction furnace,
A high carbon steel denitrification method characterized by adding oxidized fine powder to the surface of molten steel in a vacuum induction furnace after the input raw material has melted down, and vacuum treating it at high temperature.
JP27884086A 1986-11-25 1986-11-25 Denitrification method utilizing iron oxide Pending JPS63134623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27884086A JPS63134623A (en) 1986-11-25 1986-11-25 Denitrification method utilizing iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27884086A JPS63134623A (en) 1986-11-25 1986-11-25 Denitrification method utilizing iron oxide

Publications (1)

Publication Number Publication Date
JPS63134623A true JPS63134623A (en) 1988-06-07

Family

ID=17602881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27884086A Pending JPS63134623A (en) 1986-11-25 1986-11-25 Denitrification method utilizing iron oxide

Country Status (1)

Country Link
JP (1) JPS63134623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019013A1 (en) * 1990-05-31 1991-12-12 Nippon Steel Corporation Process for refining molten metal or alloy
CN103160726A (en) * 2013-03-04 2013-06-19 内蒙古包钢钢联股份有限公司 Carbon-iron alloy for recarburization and manufacture method thereof
CN113373281A (en) * 2021-06-10 2021-09-10 芜湖新兴铸管有限责任公司 Low-carbon steel RH molten steel nitrogen control method and low-carbon steel continuous casting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184618A (en) * 1984-02-29 1985-09-20 Sumitomo Metal Ind Ltd Production of low-nitrogen steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184618A (en) * 1984-02-29 1985-09-20 Sumitomo Metal Ind Ltd Production of low-nitrogen steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019013A1 (en) * 1990-05-31 1991-12-12 Nippon Steel Corporation Process for refining molten metal or alloy
US5454854A (en) * 1990-05-31 1995-10-03 Nippon Steel Corporation Method of refining molten metal or molten alloy
CN103160726A (en) * 2013-03-04 2013-06-19 内蒙古包钢钢联股份有限公司 Carbon-iron alloy for recarburization and manufacture method thereof
CN113373281A (en) * 2021-06-10 2021-09-10 芜湖新兴铸管有限责任公司 Low-carbon steel RH molten steel nitrogen control method and low-carbon steel continuous casting method

Similar Documents

Publication Publication Date Title
US3169058A (en) Decarburization, deoxidation, and alloy addition
US3158464A (en) Ferrochromium production
JP2000129336A (en) Melting method for high cleanliness steel
US3565698A (en) Fast-annealing malleable cast iron method
JPS63134623A (en) Denitrification method utilizing iron oxide
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP2002012912A (en) Method for producing high-carbon/low-nitrogen steel
JP4111352B2 (en) High-cleaning refining method for stainless steel
US3860418A (en) Method of refining iron melts containing chromium
JP3226768B2 (en) Slag reforming method
US3309194A (en) Purification of alloys
JPH06330148A (en) Method for melting low n steel in vacuum refining furnace
US1597000A (en) Refining silicon-containing iron-chromium alloys
JP3226769B2 (en) Slag reforming method
JPS6154083B2 (en)
US3369887A (en) Process for the production of manganese-silicon alloys
JPH05331523A (en) Method for refining molten steel for bearing steel
JPS59126706A (en) Treatment of molten iron
JPS5873715A (en) Decarburizing method of molten steel by vacuum degassing treatment device
JPH062896B2 (en) Denitrification of molten steel with rare earth metals
JPH07173520A (en) Method for dephosphorizing chromium-containing molten iron and molten steel
SU711103A1 (en) Method of producing cast iron with spherical graphite
SU1668410A1 (en) Method of refining carbothermic silicovanadium
JPH05287361A (en) Method for melting extremely low carbon steel
JPS59126705A (en) Treatment of molten iron