JPS63134623A - Denitrification method utilizing iron oxide - Google Patents
Denitrification method utilizing iron oxideInfo
- Publication number
- JPS63134623A JPS63134623A JP27884086A JP27884086A JPS63134623A JP S63134623 A JPS63134623 A JP S63134623A JP 27884086 A JP27884086 A JP 27884086A JP 27884086 A JP27884086 A JP 27884086A JP S63134623 A JPS63134623 A JP S63134623A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- iron oxide
- vacuum
- steel
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title abstract description 46
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 25
- 239000010959 steel Substances 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 23
- 230000006698 induction Effects 0.000 claims abstract description 15
- 229910000677 High-carbon steel Inorganic materials 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims description 9
- 238000007670 refining Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 238000003756 stirring Methods 0.000 abstract description 6
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 238000009991 scouring Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000009489 vacuum treatment Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、真空誘導炉を用いて脱窒化を行う高炭素鋼の
脱窒法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for denitrifying high carbon steel using a vacuum induction furnace.
従来の技術
近年、ステンレン鋼をはじめとして鋼の用途の多様化が
進み、諸性質の一層の改善が求められており、極低窒素
化精練技術についても、効率よく安価に脱窒素化できる
精練技術の開発が要望されている。ところで、従来の炭
素鋼の低窒素化法としては、出鋼時から鋳込まれるまで
の間の大気からの窒素吸収を防止する手段が主として用
いられている。Conventional technology In recent years, the uses of steel, including stainless steel, have been diversifying, and further improvements in various properties have been required.As for ultra-low nitrogen scouring technology, we are developing a scouring technology that can efficiently and inexpensively denitrify. development is required. By the way, as a conventional method for reducing the nitrogen content of carbon steel, a method of preventing nitrogen absorption from the atmosphere during the period from the time of tapping to the time of casting has been mainly used.
発明が解決しようとする問題点
しかしながら、出鋼時から鋳込まれるまでの途中で真空
脱ガス処理を行っても、有効な脱窒系反応は行われなか
った。Problems to be Solved by the Invention However, even if vacuum degassing treatment was performed during the process from the time of tapping to the time of casting, no effective denitrification reaction was carried out.
したかつて、本発明は、このような問題点に鑑みてなさ
れたもので、その目的は、恒めて簡単な方法によって、
高炭素鋼の脱窒系反応を効果的に行う方法を提供するこ
とにある。The present invention was made in view of these problems, and its purpose is to solve the problem by a simple method.
The object of the present invention is to provide a method for effectively carrying out denitrification reactions in high carbon steel.
問題点を解決するための手段
本発明者等は、鋭意検討の結果、真空誘導炉における脱
窒系反応の向上には、溶鋼の攪拌によるガス−メタル界
面の増大化が有効であることを見出だし、その攪拌のた
めのガス発生源として販化鉄微粉末を用いることにより
、本発明を完成するに至った。Means for Solving the Problems As a result of intensive studies, the inventors have found that increasing the gas-metal interface by stirring molten steel is effective in improving the denitrification reaction in a vacuum induction furnace. Initially, the present invention was completed by using commercially available iron powder as a gas generation source for stirring.
したがって、本発明は、真空誘導炉を用いて高炭素鋼を
精練するに際し、投入原料が溶落した後に、酸化鉄微粉
末を真空誘導炉内の溶鋼表面に添加し、高温で真空処理
することを特徴とする。Therefore, when refining high carbon steel using a vacuum induction furnace, the present invention involves adding fine iron oxide powder to the surface of the molten steel in the vacuum induction furnace after the input raw material has melted down, and vacuum treating it at high temperature. It is characterized by
以下、本発明について一層詳細に説明する。Hereinafter, the present invention will be explained in more detail.
本発明において、酸化鉄微粉末は、高炭素鋼の投入原料
が真空誘導炉内で溶落した後に添加するが、酸化鉄微粉
末の一部を、予め投入原料に添加しておき、溶落時まで
に窒素濃度をある程度低下させておいてもよい。In the present invention, the fine iron oxide powder is added after the raw material for high carbon steel is burnt off in the vacuum induction furnace, but a part of the fine iron oxide powder is added to the raw material in advance and the raw material is melted off. The nitrogen concentration may be reduced to some extent by then.
本発明において使用する酸化鉄微粉末としては、高純度
(Fe203 99%以上)のものがスラグの発生が少
ないので好ましいが、純度が多少低いものでも使用でき
る。The fine iron oxide powder used in the present invention is preferably one with high purity (99% or more Fe203) because it generates less slag, but one with somewhat lower purity can also be used.
本発明によれば、投入原料が溶落した後に、酸化鉄微粉
末を添加するが、添加は溶鋼の表面に散布すればよい。According to the present invention, iron oxide fine powder is added after the input raw material has melted down, but the addition can be done by scattering it on the surface of the molten steel.
酸化物微粉末の添加後、高温、たとえば1600℃前後
の温度において、高真空度、例えば10 ’Torrに
おいて処゛理すると、酸化鉄微粉末は、誘導攪拌により
溶鋼内に侵入分散し、脱窒前反応が促進する。After adding the oxide fine powder, when processing is performed at a high temperature, for example, around 1600°C, and a high degree of vacuum, for example, 10' Torr, the iron oxide fine powder enters and disperses in the molten steel by induction stirring, and denitrification occurs. Promotes pre-reaction.
作用
本発明の脱窒前反応機構について説明すると、原料の溶
落後に酸化鉄微粉末を添加し、高温において真空処理す
ると、酸化鉄微粉末は、誘導攪拌により、溶鋼に侵入分
散し、C十Ee203=2Fe十CO↑の反応により、
微細なCO気泡が多量に発生する。このCO気泡により
溶鋼の攪拌が促進され、又、それによってガス−メタル
界面の面積が著しく増大するので、脱窒前反応が促進す
る。Function To explain the pre-denitrification reaction mechanism of the present invention, fine iron oxide powder is added after melting of the raw material, and vacuum treatment is performed at high temperature.The fine iron oxide powder penetrates and disperses into molten steel by induction stirring, and carbon Due to the reaction of Ee203=2Fe+CO↑,
A large amount of fine CO bubbles are generated. The CO bubbles promote stirring of the molten steel, which significantly increases the area of the gas-metal interface, thereby promoting the pre-denitrification reaction.
その場合における溶鋼の脱窒素反応式は以下の通りでお
る。The denitrification reaction formula for molten steel in that case is as follows.
である。It is.
d A
2−・ 2
[N]=−K ([N] tN]と )
dt V
(式中、Aはガス−メタル界面積、■は溶鋼の容積、t
は操作時間、Kは定数、[N]は窒素濃度、[N16は
PN2 と平衡する溶鋼窒素濃度〉便宜的に[N]e=
oと仮定すると、上記式は次の式で表わされる。d A 2-・2 [N]=-K ([N] tN] and )
dt V (where A is the gas-metal interface area, ■ is the volume of molten steel, t
is the operation time, K is a constant, [N] is the nitrogen concentration, [N16 is the molten steel nitrogen concentration in equilibrium with PN2] For convenience, [N]e=
Assuming that o, the above equation is expressed by the following equation.
11 A
−−−=に−t
[N] [N]o V
ところで、低窒素化を図るためには、■及びKは一定で
あるから、[N16の低減、及びAの増大化を行えばよ
い。11 A ---= -t [N] [N] o V By the way, in order to achieve low nitrogen, since ■ and K are constant, if [N16 is reduced and A is increased] good.
実験によれば、初期窒素濃度と脱窒前速度との関係は第
2図に示されるようになる。第2図中、実線は本発明を
、また点線は酸化鉄微粉末を添加しないで真空処理した
場合を示す。According to experiments, the relationship between the initial nitrogen concentration and the pre-denitrification rate is shown in FIG. In FIG. 2, the solid line shows the case of the present invention, and the dotted line shows the case of vacuum treatment without adding fine iron oxide powder.
今、KA=に1で表わすと、従来の技術にあける真空処
理の速度定数は、K1=0.4であるのに対して、本発
明においては、K1=約1であり、したがって、酸化鉄
微粉末を添加し、COの気泡を多量に発生させることに
よってガス−メタル界面積を約2.5倍に増大させるこ
とができる。Now, when KA= is expressed as 1, the rate constant of vacuum treatment in the conventional technology is K1=0.4, whereas in the present invention, K1=about 1, and therefore iron oxide By adding fine powder and generating a large amount of CO bubbles, the gas-metal interfacial area can be increased by about 2.5 times.
実施例 次に本発明を実施例によって説明する。Example Next, the present invention will be explained by examples.
以下の合金組成の炭素工具鋼を脱窒系処理した。Carbon tool steel with the following alloy composition was subjected to denitrification treatment.
C: 1.41、Si:0.15、Mn:0.24、P
: 0.017、S : 0.014 、CLl :
0.13、N i :0.10. Cr :0.17
、残部:Fe(%)
上記合金組成の原料を真空誘導炉に投入し、真空度1Q
”1Orrまで排気しながら加熱によって溶解させた。C: 1.41, Si: 0.15, Mn: 0.24, P
: 0.017, S: 0.014, CLl:
0.13, N i :0.10. Cr: 0.17
, balance: Fe (%) The raw material with the above alloy composition was put into a vacuum induction furnace, and the vacuum degree was 1Q.
"It was melted by heating while evacuating to 1 Orr.
溶落後、アルゴンガスを導入して真空度を100Tor
rに保った後、酸化鉄微粉末(平均粒径0.76μm
)を3Kg/トンに割合いで添加し、溶鋼温度を158
0〜1600℃に保ち、真空度10”To r rまで
排気しなから月凭窒素処理を行った。脱窒前の結果は、
第1図に示される。After melting, argon gas is introduced and the vacuum level is increased to 100 Torr.
After maintaining the temperature at r, fine iron oxide powder (average particle size 0.76 μm
) was added at a rate of 3 kg/ton, and the molten steel temperature was increased to 158
The temperature was maintained at 0 to 1600°C, and the moonlight nitrogen treatment was performed without evacuation to a vacuum level of 10” Torr.The results before denitrification were as follows:
It is shown in FIG.
第1図は、窒素濃度140ppmの溶鋼を脱窒前した場
合における、窒素濃度の精練時間との関係を示すグラフ
である。グラフ中、曲線Aは、本発明の上記実施例であ
り、曲線Bは、本発明において、予め酸化鉄微粉末を1
.5に!J/トンの割合で添加しておいた場合の実施例
であり、曲線Cは、酸化鉄微粉末を添加しないで処理し
た従来技術を示す。なお、縦軸は溶鋼の窒素濃度(pI
)m>、横軸は溶落からの精練時間(hr)を示す。FIG. 1 is a graph showing the relationship between nitrogen concentration and scouring time when molten steel with a nitrogen concentration of 140 ppm is subjected to denitrification. In the graph, curve A is the above-mentioned example of the present invention, and curve B is in the present invention, in which 1 part of iron oxide fine powder is added in advance.
.. To 5! This is an example in which iron oxide fine powder was added at a ratio of J/ton, and curve C shows a conventional technique in which iron oxide fine powder was not added. Note that the vertical axis represents the nitrogen concentration (pI) of molten steel.
)m>, the horizontal axis shows the scouring time (hr) from burn-through.
このグラフから明らかなように、初期濃度140ppm
の場合、50 ppm以下の窒素濃度にするためには、
本発明においては、溶落後3時間以内の精練時間でおる
のに対して、酸化鉄微粉末を添加しない従来技術によれ
ば5時間以上の精練時間が必要となる。また、酸化鉄微
粉末を予め添加した場合には(曲線B)、溶落時に窒素
濃度が低下したものになっているから、溶落後の精練時
間が一層短縮される。As is clear from this graph, the initial concentration was 140 ppm.
In this case, in order to reduce the nitrogen concentration to 50 ppm or less,
In the present invention, the scouring time is within 3 hours after melting, whereas in the conventional technique in which iron oxide fine powder is not added, the scouring time is 5 hours or more. Furthermore, when fine iron oxide powder is added in advance (curve B), the nitrogen concentration is reduced during burn-through, so the scouring time after burn-off is further shortened.
発明の効果
本発明は、真空誘導炉を用いて炭素鋼を精練するに際し
て、原料が溶落した後に、酸化鉄微粉末を真空誘導炉内
の溶鋼表面に添加し、高温において真空処理するもので
あるから、操作は極めて容易に行うことができ、そして
また、これにより、溶鋼清浄度を阻害することなく、脱
窒素を促進させることができる。したがってまた、上記
第1図からも明らかなように、酸化鉄微粉末を添加しな
い従来法に比べて、精練時間を著しく短縮することがで
きる。又、酸化鉄として高純度のものを用いれば、溶鋼
清浄度を一層阻害することなく脱窒素化を行うことが可
能になる。Effects of the Invention The present invention, when refining carbon steel using a vacuum induction furnace, adds iron oxide fine powder to the surface of the molten steel in the vacuum induction furnace after the raw material burns down, and vacuum-treats it at high temperature. Because of this, the operation can be performed extremely easily, and denitrification can be promoted without impairing the cleanliness of molten steel. Therefore, as is clear from FIG. 1 above, the scouring time can be significantly shortened compared to the conventional method in which fine iron oxide powder is not added. Furthermore, if high purity iron oxide is used, denitrification can be performed without further impairing the cleanliness of molten steel.
第1図は、本発明及び従来の技術における、窒素濃度の
精練時間との関係を示すグラフでおり、第2図は、初期
窒素濃度と脱窒系速度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between nitrogen concentration and scouring time in the present invention and the conventional technology, and FIG. 2 is a graph showing the relationship between initial nitrogen concentration and denitrification system rate.
Claims (1)
投入原料が溶落した後に、酸化微粉末を真空誘導炉内の
溶鋼表面に添加し、高温で真空処理することを特徴とす
る高炭素鋼の脱窒素法。(1) When refining high carbon steel using a vacuum induction furnace,
A high carbon steel denitrification method characterized by adding oxidized fine powder to the surface of molten steel in a vacuum induction furnace after the input raw material has melted down, and vacuum treating it at high temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27884086A JPS63134623A (en) | 1986-11-25 | 1986-11-25 | Denitrification method utilizing iron oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27884086A JPS63134623A (en) | 1986-11-25 | 1986-11-25 | Denitrification method utilizing iron oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63134623A true JPS63134623A (en) | 1988-06-07 |
Family
ID=17602881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27884086A Pending JPS63134623A (en) | 1986-11-25 | 1986-11-25 | Denitrification method utilizing iron oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63134623A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019013A1 (en) * | 1990-05-31 | 1991-12-12 | Nippon Steel Corporation | Process for refining molten metal or alloy |
CN103160726A (en) * | 2013-03-04 | 2013-06-19 | 内蒙古包钢钢联股份有限公司 | Carbon-iron alloy for recarburization and manufacture method thereof |
CN113373281A (en) * | 2021-06-10 | 2021-09-10 | 芜湖新兴铸管有限责任公司 | Low-carbon steel RH molten steel nitrogen control method and low-carbon steel continuous casting method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184618A (en) * | 1984-02-29 | 1985-09-20 | Sumitomo Metal Ind Ltd | Production of low-nitrogen steel |
-
1986
- 1986-11-25 JP JP27884086A patent/JPS63134623A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184618A (en) * | 1984-02-29 | 1985-09-20 | Sumitomo Metal Ind Ltd | Production of low-nitrogen steel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019013A1 (en) * | 1990-05-31 | 1991-12-12 | Nippon Steel Corporation | Process for refining molten metal or alloy |
US5454854A (en) * | 1990-05-31 | 1995-10-03 | Nippon Steel Corporation | Method of refining molten metal or molten alloy |
CN103160726A (en) * | 2013-03-04 | 2013-06-19 | 内蒙古包钢钢联股份有限公司 | Carbon-iron alloy for recarburization and manufacture method thereof |
CN113373281A (en) * | 2021-06-10 | 2021-09-10 | 芜湖新兴铸管有限责任公司 | Low-carbon steel RH molten steel nitrogen control method and low-carbon steel continuous casting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3169058A (en) | Decarburization, deoxidation, and alloy addition | |
US3158464A (en) | Ferrochromium production | |
JP2000129336A (en) | Melting method for high cleanliness steel | |
US3565698A (en) | Fast-annealing malleable cast iron method | |
JPS63134623A (en) | Denitrification method utilizing iron oxide | |
JPH10212514A (en) | Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance | |
JP2002012912A (en) | Method for producing high-carbon/low-nitrogen steel | |
JP4111352B2 (en) | High-cleaning refining method for stainless steel | |
US3860418A (en) | Method of refining iron melts containing chromium | |
JP3226768B2 (en) | Slag reforming method | |
US3309194A (en) | Purification of alloys | |
JPH06330148A (en) | Method for melting low n steel in vacuum refining furnace | |
US1597000A (en) | Refining silicon-containing iron-chromium alloys | |
JP3226769B2 (en) | Slag reforming method | |
JPS6154083B2 (en) | ||
US3369887A (en) | Process for the production of manganese-silicon alloys | |
JPH05331523A (en) | Method for refining molten steel for bearing steel | |
JPS59126706A (en) | Treatment of molten iron | |
JPS5873715A (en) | Decarburizing method of molten steel by vacuum degassing treatment device | |
JPH062896B2 (en) | Denitrification of molten steel with rare earth metals | |
JPH07173520A (en) | Method for dephosphorizing chromium-containing molten iron and molten steel | |
SU711103A1 (en) | Method of producing cast iron with spherical graphite | |
SU1668410A1 (en) | Method of refining carbothermic silicovanadium | |
JPH05287361A (en) | Method for melting extremely low carbon steel | |
JPS59126705A (en) | Treatment of molten iron |