JPS63133042A - Dynamic visco-elasticity measuring apparatus - Google Patents

Dynamic visco-elasticity measuring apparatus

Info

Publication number
JPS63133042A
JPS63133042A JP27874186A JP27874186A JPS63133042A JP S63133042 A JPS63133042 A JP S63133042A JP 27874186 A JP27874186 A JP 27874186A JP 27874186 A JP27874186 A JP 27874186A JP S63133042 A JPS63133042 A JP S63133042A
Authority
JP
Japan
Prior art keywords
displacement
sample
signal
converter
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27874186A
Other languages
Japanese (ja)
Inventor
Junichi Sugiyama
純一 杉山
Hisaya Horiuchi
堀内 久弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP27874186A priority Critical patent/JPS63133042A/en
Publication of JPS63133042A publication Critical patent/JPS63133042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To achieve an accurate measurement of visco-elasticity of a sample, by providing an arithmetic unit which specifies a distortion converter for applying a displacement to the sample to compensate for errors in the detected displacement. CONSTITUTION:A sine wave is applied with a vibrator 1 to a sample 3 and the displacement thus caused is detected with an axial displacement type distortion converter 5 as displacement signal (c). On the other hand, vibration passing through the sample is detected with a distortion converter 4 of the same type as power signal (b). An arithmetic unit 6 is provided and substrates a displacement value of the distortion converter 4 from that of the distortion converter 5 to determine actual displacement. A phase difference and an amplitude ratio are analyzed on the basis of the resulting displacement difference signal (d) and the power signal (b) of the distortion converter 4. The displacement difference signal (d) is the same in the frequency regardless of difference in the amplitude and phase difference from the signal (c) to provide a sine wave, thereby enabling analysis as in the past. But to displace signals of the distortion converters or convert them into a power, analysis in this apparatus is performed by a digital signal processing of a series of algorithms.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は動的粘弾性測定装置に関し、詳しくはセンサー
として2つの歪変換器を用い、2つのセンサーからの信
号を演算し、差を求めて試料に加わる変位を正確にとら
え、かつ一方のセンサーからその時の力を求め、これら
時系列データから試料の粘弾性定数を正確かつ迅速に求
めることができる装置に関する。この装置は、特に微小
ゲル等の試料の動的粘弾性の測定に適している。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dynamic viscoelasticity measurement device, and more specifically, it uses two strain transducers as sensors, calculates the signals from the two sensors, and calculates the difference. The present invention relates to a device that can accurately capture the displacement applied to a sample by using one sensor, determine the force at that time from one sensor, and accurately and quickly determine the viscoelastic constant of the sample from these time-series data. This device is particularly suitable for measuring dynamic viscoelasticity of samples such as microgels.

〔従来の技術とその問題点〕[Conventional technology and its problems]

試料の粘弾性定数の測定は、従来第1図に示したように
して行われている。まず、装置の加振器1が発振器(図
示せず)により所定周波数で駆動され、このときの加振
器の振動軸の変位を片持ち梁方式の歪変換器2により変
位信号aとして検出する。一方、試料3の下端につなが
れた振動軸から試料に正弦波が加えられ、該試料内を伝
わった振動は試料上端の歪変換器4により力(Forc
e)信号すとして検出される。次いで、2つの信号(変
位信号と力信号)は歪増幅器(図示せず)により増幅さ
れ、それら正弦波の位相差と振幅比より粘弾性定数が求
められる。これは、実際にはそれぞれの正弦波を記録計
のX軸とY軸に入力し、リサジュー図形を書かせて解析
することにより行なわれる。
Measurement of the viscoelastic constant of a sample has conventionally been carried out as shown in FIG. First, the vibrator 1 of the device is driven at a predetermined frequency by an oscillator (not shown), and the displacement of the vibration axis of the vibrator at this time is detected as a displacement signal a by the cantilever type strain transducer 2. . On the other hand, a sine wave is applied to the sample from a vibration shaft connected to the lower end of the sample 3, and the vibration transmitted within the sample is converted into a force (Force) by the strain transducer 4 at the upper end of the sample.
e) Detected as a signal. Next, the two signals (displacement signal and force signal) are amplified by a strain amplifier (not shown), and a viscoelastic constant is determined from the phase difference and amplitude ratio of these sine waves. This is actually done by inputting each sine wave to the X and Y axes of the recorder, drawing a Lissajous figure, and analyzing it.

しかし、従来の装置では、特に微小試料を対象とする場
合、試料の高さが低いため、加振の変位量は線形性に保
つためにさらに小さくしなければならない。ところが、
片持ち梁方式の歪変換器では、このように小さくした信
号を検出するためにゲイン(増幅率)を上げると、S−
N比(信号雑音比)が小さくなり、精度が低下する。ま
た、変位量が小さいと、それに対して力を検出する歪変
換器4の変位が無視できなくなる。それ故、特に微小試
料の正確な粘弾性測定は不可能である。
However, in the conventional apparatus, especially when a micro sample is targeted, the height of the sample is low, so the amount of excitation displacement must be further reduced in order to maintain linearity. However,
In a cantilever type strain converter, when the gain (amplification factor) is increased to detect such a reduced signal, the S-
The N ratio (signal-to-noise ratio) becomes small, and the accuracy decreases. Furthermore, if the amount of displacement is small, the displacement of the strain transducer 4 that detects the force cannot be ignored. Therefore, accurate viscoelastic measurements of particularly small samples are not possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような問題点を解決すべく検討を重
ね、動的粘弾性測定装置において、試料に加振する歪変
換器を特定し、かつ検知された変位の誤差を補償する演
算装置を設けることにより、試料の正確な粘弾性測定を
行なえることを見出し、本発明を完成したのである。
In order to solve these problems, the inventors of the present invention have conducted repeated studies to identify the strain transducer that vibrates the sample in a dynamic viscoelasticity measuring device, and to develop an operation that compensates for errors in the detected displacement. They discovered that by providing a device, it was possible to accurately measure the viscoelasticity of a sample, and completed the present invention.

すなわち本発明は、動的粘弾性測定装置において、試料
に変位を与える加振側の変位検知手段として軸方向変位
型歪変換器を用い、かつ試料を通過した振動を力として
検知する軸方向変位型歪変換器の変位による誤差を補償
する演算装置を備えたことを特徴とする動的粘弾性測定
装置を提供するものである。
That is, the present invention uses an axial displacement type strain transducer as a displacement detection means on the excitation side that applies displacement to a sample in a dynamic viscoelasticity measurement device, and uses an axial displacement type strain transducer to detect vibrations passing through the sample as force. The present invention provides a dynamic viscoelasticity measurement device characterized by being equipped with an arithmetic device that compensates for errors caused by displacement of a mold strain converter.

第2図は、本発明の装置の実施例を示す説明図である。FIG. 2 is an explanatory diagram showing an embodiment of the apparatus of the present invention.

この図面により本発明を説明する。The present invention will be explained with reference to this drawing.

まず、試料3に対して加振器1より正弦波を加えるが、
試料が微小体であるときは非常に小さな変位を与えるだ
けで十分である。この変位は軸方向変位型の歪変換器(
非接触、直線偏位形ストレインゲージ)5により変位信
号Cとして検出される。この歪変換器は変位量が少ない
ため、小さな変位で大きな出力を得ることができる。
First, a sine wave is applied to sample 3 from vibrator 1,
When the sample is minute, it is sufficient to apply a very small displacement. This displacement is measured by an axial displacement type strain transducer (
It is detected as a displacement signal C by a non-contact, linear displacement strain gauge) 5. Since this strain converter has a small amount of displacement, it is possible to obtain a large output with a small displacement.

一方、試料内を通過した振動は同じ型の歪変換器4によ
り力信号すとして検出する。この場合、歪変換器4の変
位を無視すると測定値が不正確となる。すなわち、試料
に歪変換器5で検出された大きさで変位を与えていなが
ら、歪変換器4の変位により実際に加わった変位はより
小さい値となり、正確な粘弾性定数を測定することがで
きなくなる。
On the other hand, vibrations passing through the sample are detected as force signals by a strain transducer 4 of the same type. In this case, if the displacement of the strain transducer 4 is ignored, the measured value will be inaccurate. In other words, even though a displacement is applied to the sample with the magnitude detected by the strain transducer 5, the actual displacement due to the displacement of the strain transducer 4 becomes a smaller value, making it possible to accurately measure the viscoelastic constant. It disappears.

そこで、本発明では演算装置6を設置し、歪変換器5の
変位量から歪変換器4の変位量を差し刊1き、実際の変
位量を求める。次いで、このようにして得た変位差信号
dと歪変換器4の力信号すを信号Cと振幅や位相差が異
なっても周波数が同じであるから、正弦波になり従来と
同じ解析が可能である。しかし、歪変換器の信号を変位
あるいは力に直すには、それぞれに較正係数があるので
単に極性を変えて並列につなぐことはできない。そ゛こ
で、本発明の装置では一連のアルゴリズムをデジタル信
号処理により行なうことにより解析するのである。
Therefore, in the present invention, an arithmetic device 6 is installed, and the amount of displacement of the strain converter 4 is calculated from the amount of displacement of the strain converter 5 to obtain the actual amount of displacement. Next, the displacement difference signal d obtained in this way and the force signal S of the strain converter 4 are the same as the signal C even if the amplitude and phase difference are different, so they become sine waves and can be analyzed in the same way as before. It is. However, in order to convert the signal from the strain transducer into displacement or force, it is not possible to simply change the polarity and connect them in parallel because each has a calibration coefficient. Therefore, the apparatus of the present invention performs analysis by performing a series of algorithms through digital signal processing.

第3図は微小試料の粘弾性測定システムを示す。FIG. 3 shows a system for measuring viscoelasticity of micro samples.

図中llは発振器、12は増幅器、13は歪増幅器、1
4はAD変換器、15は記憶装置、16はCRTディス
プレイ、17はプリンタ、18は記憶媒体、19はキー
ボードである。また、試料の性状を考慮して第4.5図
に示した如きセルを使用することにより固体のみならず
ゾル、液体、シート、フィルム等の様々な試料について
測定が可能となる。図中、20はセル、21はブレード
である。
In the figure, 11 is an oscillator, 12 is an amplifier, 13 is a distortion amplifier, 1
4 is an AD converter, 15 is a storage device, 16 is a CRT display, 17 is a printer, 18 is a storage medium, and 19 is a keyboard. Furthermore, by using a cell as shown in FIG. 4.5 in consideration of the properties of the sample, it becomes possible to measure not only solids but also various samples such as sol, liquid, sheet, and film. In the figure, 20 is a cell and 21 is a blade.

本発明の対象となる試料には制限はなく、各種試料につ
いて粘弾性定数を測定できるが、特に米飯粒、Iチーズ
片等の微小試料についても正確に測定することが可能で
ある。そのほか生体、農産物等から微量抽出物、多糖類
、さらには生体や農産物等の組織切片等についてもセル
を使用することにより測定することができる。なお、上
記の説明では試料への変位は加振器により行なったが、
モーターと接続した偏心カム等も使用できる。また、試
料と2つの歪変換器は同一軸上にあればよ(、第2図、
第3図の態様に制限されるものではない。
There is no limit to the samples to which the present invention can be applied, and the viscoelastic constants can be measured for various samples, but it is also possible to accurately measure particularly minute samples such as cooked rice grains and pieces of I-cheese. In addition, trace amounts of extracts from living organisms, agricultural products, etc., polysaccharides, tissue sections of living organisms, agricultural products, etc. can also be measured by using the cell. In addition, in the above explanation, the displacement to the sample was performed using a vibrator, but
Eccentric cams connected to a motor can also be used. Also, the sample and the two strain transducers should be on the same axis (Fig. 2,
The embodiment is not limited to the embodiment shown in FIG.

〔作用2発明の効果〕 次に、本発明の装置の作用について第3図に示したシス
テムに基いて説明する。
[Operation 2: Effects of the Invention] Next, the operation of the apparatus of the present invention will be explained based on the system shown in FIG.

キーボード19より任意の周波数を入力することにより
、CPU (中央演算装置)6を通じて発振器11をそ
の周波数で発振させる。この発振器の信号は増幅器12
を通して加振器1を駆動する。
By inputting an arbitrary frequency from the keyboard 19, the oscillator 11 is caused to oscillate at that frequency through the CPU (central processing unit) 6. The signal of this oscillator is transmitted to the amplifier 12
The vibrator 1 is driven through.

加振器の振動軸は試料下端につながれており、試料に正
弦波が加えられる。この加振側の正弦波振動は振動軸の
下方に付けられた歪変換器(ストレインゲージ)5にて
信号Cとして取り出し歪4幡器(ストレイン丁ンブ)1
3を通して増幅され、AD変換器(アナログ−デジタル
変換器)14のチャンネル1に人力される。一方、試料
内を伝わった振動は、試料上端の歪変換器4にて信号す
として取り出し歪増幅器13を通して増幅され、AD変
換器14のチャンネル2に入力される。
The vibration axis of the vibrator is connected to the lower end of the sample, and a sine wave is applied to the sample. This sine wave vibration on the excitation side is extracted as a signal C by a strain transducer (strain gauge) 5 attached below the vibration axis.
3 and input to channel 1 of an AD converter (analog-to-digital converter) 14. On the other hand, the vibrations transmitted within the sample are taken out as a signal by the strain converter 4 at the upper end of the sample, amplified through the strain amplifier 13, and input into channel 2 of the AD converter 14.

AD変換器は人力された信号Cと信号すをデジタル信号
に変換し、記憶装置15に送り出す。ここにデータを一
時記憶することにより高い周波数の測定も可能になる。
The AD converter converts the manually input signals C and S into digital signals and sends them to the storage device 15. By temporarily storing data here, it is also possible to measure high frequencies.

記憶装置には、後述するように■メモリにストレージス
コープを使う場合と■、工六。変換よ−、を使う場合う
、考え、わ、。
For storage devices, ■When using storage scope for memory and ■, Kunroku, as described later. When you use conversion yo-, you think, wa,.

CPUは、このデータを取り出し、以下の演算を行う。The CPU takes out this data and performs the following calculations.

信号Cと信号すに、それぞれの変換器の変位較正係数を
乗じて変位量に直し、その差の信号dを求める。この信
号dが正味の変位信号である。
Signals C and S are multiplied by the displacement calibration coefficients of the respective transducers to convert them into displacement amounts, and the difference signal d is obtained. This signal d is the net displacement signal.

また一方で、信号すに力較正係数を乗じ信号す。On the other hand, the signal is multiplied by the force calibration coefficient.

を求める。この2つの正弦波をCRTディスプレイ (
モニタ)16に再現する。さらに、この2つの正弦波に
ノイズ除去処理を施し、そこから、それぞれの最大値、
最小値([動比)及び位相差を検出する。それらの解析
結果を基に粘弾性パラメータ(動的弾性率、動的損失、
 janδ等)が計算される。これらの内容はCRTデ
ィスプレイへの表示、プリンタへの印字、記憶媒体(フ
ロッピーディスケット等)への保存が可能である。
seek. These two sine waves are displayed on a CRT display (
Monitor) Reproduced on 16. Furthermore, we perform noise removal processing on these two sine waves, and from there, we calculate the maximum value of each,
Detect the minimum value (dynamic ratio) and phase difference. Based on those analysis results, viscoelastic parameters (dynamic modulus, dynamic loss,
janδ, etc.) are calculated. These contents can be displayed on a CRT display, printed on a printer, or saved on a storage medium (such as a floppy diskette).

■メモリにストレージスコープを使う場合歪増幅器から
の人力信号をストレージオシロスコープに入れ、そこの
メモリに一時記憶させる。
■When using a storage scope for memory Input the human input signal from the distortion amplifier into the storage oscilloscope and temporarily store it in its memory.

CPUとストレージオシロスコープはCP−IBゼイン
ーフェースによりつながれており、入力信号のサンプリ
ング間隔等はCPUにより制御される。一般にストレー
ジオシロスコープは高速サンプリングが可能で周波数の
高い信号も高分解能で記憶できる。このデータをCP−
I BインターフェースバスによりCPU管理下の主記
憶装置(メインメモリ)に転送し、解析が行われる。
The CPU and the storage oscilloscope are connected by a CP-IB interface, and the sampling interval of the input signal and the like are controlled by the CPU. In general, storage oscilloscopes are capable of high-speed sampling and can store high-frequency signals with high resolution. Transfer this data to CP-
The data is transferred to the main memory under the control of the CPU via the IB interface bus and analyzed.

■メモリにAD変換ボードを使う場合 歪増幅器からの入力信号を直接コンピュータのAD変換
ボードに入力し、CPUの主記憶装置に転送し、解析が
行われる。CP−IBゼインーフェースのようなハンド
シェイクによるやり取りはないので、測定時間は短い。
■When using an AD conversion board for memory The input signal from the distortion amplifier is directly input to the AD conversion board of the computer, transferred to the main memory of the CPU, and analyzed. Since there is no handshake exchange like in the CP-IB interface, the measurement time is short.

次に、同一試料(チーズ片、10xlOxlO龍)につ
いて第1図に示した従来装置による方法と第2図に示し
た本発明装置による方法で測定した結果を第1表および
第6〜7図に示す。
Next, the results of measuring the same sample (cheese piece, 10xlOxlO dragon) using the method using the conventional apparatus shown in Fig. 1 and the method using the apparatus of the present invention shown in Fig. 2 are shown in Table 1 and Figs. show.

従来法では加振器より加える歪は見かけ上、2.082
X10−3  となっているが、この値には力を検出す
る歪変換器の変位も含まれており、試料の粘弾性定数は
実際の値よりも小さい値として求められてしまう。これ
に対して、本発明装置を用いた方法では、この点が改善
され正味の歪による正しい粘弾性定数が求められる。
In the conventional method, the apparent strain applied by the vibrator is 2.082
However, this value also includes the displacement of the strain transducer that detects the force, and the viscoelastic constant of the sample is determined to be a smaller value than the actual value. On the other hand, the method using the device of the present invention improves this point and allows correct viscoelastic constants to be determined based on net strain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置による粘弾性測定の態様を示す説明
図、第2図は本発明の装置による粘弾性測定の態様を示
す説明図、第3図は同じく本発明の装置のシステム図の
1例を示す。第4図および第5図は本発明に用いる試料
セルの態様の見取図、第6図は従来の装置による粘弾性
測定結果を示す出力信号図、第7図は本発明の装置によ
る粘弾性測定結果を示す出力信号図である。 1・・・加振器、2・・・歪変換器、3・・・試料。 4・・・歪変換器、5・・・歪変換器、6・・・演算装
置特許出願人 農林水産省食品総合研究所長第4図 第5図 第6図
FIG. 1 is an explanatory diagram showing a mode of viscoelasticity measurement using a conventional device, FIG. 2 is an explanatory diagram showing a mode of viscoelasticity measurement using the device of the present invention, and FIG. 3 is a system diagram of the device of the present invention. An example is shown. 4 and 5 are sketches of the sample cell used in the present invention, FIG. 6 is an output signal diagram showing the results of viscoelasticity measurement by the conventional device, and FIG. 7 is the results of viscoelasticity measurement by the device of the present invention. FIG. 1... Vibrator, 2... Strain converter, 3... Sample. 4...Strain converter, 5...Strain converter, 6...Arithmetic device Patent applicant Director, Food Research Institute, Ministry of Agriculture, Forestry and Fisheries Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 動的粘弾性測定装置において、試料に変位を与える加振
側の変位検知手段として軸方向変位型歪変換器を用い、
かつ試料を通過した振動を力として検知する軸方向変位
型歪変換器の変位による誤差を補償する演算装置を備え
たことを特徴とする動的粘弾性測定装置。
In a dynamic viscoelasticity measurement device, an axial displacement strain transducer is used as a displacement detection means on the excitation side that applies displacement to the sample.
A dynamic viscoelasticity measuring device characterized by comprising: a calculation device that compensates for errors caused by displacement of an axial displacement type strain transducer that detects vibrations passing through the sample as force.
JP27874186A 1986-11-25 1986-11-25 Dynamic visco-elasticity measuring apparatus Pending JPS63133042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27874186A JPS63133042A (en) 1986-11-25 1986-11-25 Dynamic visco-elasticity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27874186A JPS63133042A (en) 1986-11-25 1986-11-25 Dynamic visco-elasticity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63133042A true JPS63133042A (en) 1988-06-04

Family

ID=17601557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27874186A Pending JPS63133042A (en) 1986-11-25 1986-11-25 Dynamic visco-elasticity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63133042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135253A (en) * 2020-02-28 2021-09-13 株式会社サタケ Glutinousness evaluation method, display object and map

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488308U (en) * 1971-06-15 1973-01-30
JPS612180A (en) * 1984-06-14 1986-01-08 Tokyo Electric Co Ltd Toner recovering device of electrostatic photographing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488308U (en) * 1971-06-15 1973-01-30
JPS612180A (en) * 1984-06-14 1986-01-08 Tokyo Electric Co Ltd Toner recovering device of electrostatic photographing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135253A (en) * 2020-02-28 2021-09-13 株式会社サタケ Glutinousness evaluation method, display object and map

Similar Documents

Publication Publication Date Title
US7331209B2 (en) Transducer acceleration compensation with frequency domain amplitude and/or phase compensation
EP2314994B1 (en) System and Method for Handling Wide Dynamic Range Signals Encountered in Vibration Analysis Using a Logarithmic Amplifier
JP5300188B2 (en) Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
CN107192492B (en) A kind of tools for bolts ' pretension torque supersonic guide-wave monitoring method based on improvement time reversal
CN104764803A (en) Material stress detection technology based on changes of wavelength of supersonic waves
EP2850406A2 (en) Transducer acceleration compensation using a delay to match phase characteristics
JP4709984B2 (en) Substance characteristic measuring method and substance characteristic measuring device
Papadakis Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers
CN111076806B (en) Structural health monitoring device and method based on polyvinylidene fluoride (PVDF) piezoelectric film
US6223138B1 (en) Carrier frequency measuring method and apparatus
JPS63133042A (en) Dynamic visco-elasticity measuring apparatus
JPH0353137A (en) Stress measuring method
JP3257563B2 (en) Hardness measuring device and hardness measuring probe
CN110108504A (en) The non-contact excitation of cargo vehicle body mode and non-cpntact measurement acquisition methods
JP2817596B2 (en) Ultrasound Doppler blood flow meter
JPH0339270B2 (en)
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
JP3055788B2 (en) Vibration characteristic analysis method and device
JPH03205554A (en) Ae generation position locating device
JPH0274859A (en) Vibration tester
JP5433713B2 (en) Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
CN106885847A (en) A kind of bergamot pear hardness sound and vibration nondestructive detection system and method based on piezoelectricity beam sensor
JP3228132B2 (en) Ultrasonic flaw detection method
JP2653419B2 (en) Transducer sensitivity tester for acoustic sounding equipment
JPH11290285A (en) Device for measuring blood flow