JPS6260497A - Speed controller for single-phase induction motor - Google Patents

Speed controller for single-phase induction motor

Info

Publication number
JPS6260497A
JPS6260497A JP60199160A JP19916085A JPS6260497A JP S6260497 A JPS6260497 A JP S6260497A JP 60199160 A JP60199160 A JP 60199160A JP 19916085 A JP19916085 A JP 19916085A JP S6260497 A JPS6260497 A JP S6260497A
Authority
JP
Japan
Prior art keywords
winding
stator
terminals
speed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60199160A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60199160A priority Critical patent/JPS6260497A/en
Publication of JPS6260497A publication Critical patent/JPS6260497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To control speed extending over a wide range to a high-speed region from a low-speed region by controlling voltage applied to an intermediate terminal for a stator winding. CONSTITUTION:First devices 7, 8 controlling applied voltage to a stator winding 3 are connected among external connecting terminals 4, 5 for the stator winding 3 and an electrode 6. A second device 12 capable of controlling voltage applied to stator-winding intermediate terminals 9, 10 is connected among the intermediate terminals 9, 10 separate from the external connecting terminals 4, 5 and a power source supplying the intermediate terminals 9, 10 with currents, an exciting winding 11 introduced into a stator groove in the figure. The arrows by solid lines represent load currents at a certain moment, and the arrows by dotted lines represent exciting currents at a certain moment.

Description

【発明の詳細な説明】 誘導電動機の速度制御装置としてはその保守上の観点よ
り篭形回転子の誘導電動機を対象とするものが好ましい
。本発明はそのような篭形誘導電動機の速度制御装置に
関するものである。特に本発明は単相篭形誘導電動機に
ついての発明であるが、小容量篭形誘導電動機にはその
電源の関係により、単相電動機が多い。単相篭形誘導電
動機はその構造が簡単であるが、容量が小さいことでも
あり、低速領域まで速度を制御することは稀である。然
し単相誘導電動機の始動トルクは零であるから、自己始
動させるためには何らかの始動装置が必要で、次のよう
な方法がある。(1)分相始動方式:固定子主巻線と電
気角で直角の位置に補助巻線を設けた始動方式。(2)
コンデンサーモーター:補助巻線に直列にコンデンサー
を接続して、始動または運転をおこなう方式。
DETAILED DESCRIPTION OF THE INVENTION As a speed control device for an induction motor, from the viewpoint of its maintenance, it is preferable to use a speed control device for an induction motor with a squirrel-shaped rotor. The present invention relates to a speed control device for such a squirrel cage induction motor. In particular, the present invention relates to a single-phase cage-type induction motor, but many small-capacity cage-type induction motors are single-phase motors due to their power sources. Although the single-phase cage induction motor has a simple structure, it also has a small capacity, and it is rarely possible to control the speed down to a low speed range. However, since the starting torque of a single-phase induction motor is zero, some kind of starting device is required to start the motor by itself, and the following methods are available. (1) Split-phase starting method: A starting method in which an auxiliary winding is installed electrically at right angles to the main stator winding. (2)
Capacitor motor: A method in which a capacitor is connected in series to the auxiliary winding for starting or operation.

今その中のコンデンサーモーター始動方式を簡単に説明
すると、次のようである。第1図は篭形回転子2と固定
子1から成る電気接続図である。
A brief explanation of the capacitor motor starting method is as follows. FIG. 1 is an electrical connection diagram consisting of a cage-shaped rotor 2 and a stator 1.

WM、WAはそれぞれ主巻線及び補助巻線であり、Cは
WAに直列に接続されたコンデンサーである。端子に印
加された電圧Vにより電流Iが流れるが、この電流Iは
主巻線の電流IMと補助巻線IAのベクトル和である。
WM and WA are a main winding and an auxiliary winding, respectively, and C is a capacitor connected in series with WA. A current I flows due to the voltage V applied to the terminal, and this current I is the vector sum of the main winding current IM and the auxiliary winding IA.

このV、IA、IMのベクトル関係は第2図のようにI
AはVより電気角■A進み、IMはVより電気角■Mお
くれる関係となる。
The vector relationship between V, IA, and IM is as shown in Figure 2.
A leads V by an electrical angle of ■A, and IM lags V by an electrical angle of ■M.

第1図で補助巻線回路を切り、主巻線だけにした時の特
性は第3図の破線Jのようである。又主巻線と補助巻線
を合せた特性は第3図の実線Zの特性となる。第3図で
横軸nは回転速度、縦軸tはトルクを表わす。第3図の
特性において実線の特性Zはあくまでも始動特性であり
、一定の低回転速度では決して安定運転できない。何故
ならば実線特性Zのトルクが負荷の要求するトルク特性
Aよりも大きいと、静止点よりT点まで加速されて、T
点でおちつくことになるからである。
When the auxiliary winding circuit in FIG. 1 is cut off and only the main winding is used, the characteristics are as shown by the broken line J in FIG. 3. Further, the combined characteristics of the main winding and the auxiliary winding are the characteristics shown by the solid line Z in FIG. In FIG. 3, the horizontal axis n represents rotational speed, and the vertical axis t represents torque. In the characteristics shown in FIG. 3, the solid line characteristic Z is just a starting characteristic, and stable operation is never possible at a constant low rotational speed. This is because if the torque of the solid line characteristic Z is larger than the torque characteristic A required by the load, it will be accelerated from the rest point to the T point, and the T
This is because it will settle down at the point.

本発明の目的はこのような単相篭形誘導電動機において
、低速領域から高速領域に到るまで、広範囲に速度を制
御できる装置を簡単に造り出すことにある。
An object of the present invention is to easily create a device that can control the speed over a wide range from low speed range to high speed range in such a single-phase cage induction motor.

このような目的を達成せしめるため、本発明ではその具
体的な電気接続図の第4図に示すように、固定子巻線3
の外部接続端子4、5と電源6との間に、固定子巻線3
への印化電圧を制御しうる第一の装置7、8を接続し、
又上記外部接続端子4、5とは別の固定子巻線中間端子
9、10と、これに対し電流を供給しうる何らかの電力
源、本例では固定子溝中に入れられた励磁巻線11、と
の間に、上記中間端子9、10に加える電圧を制御しう
る第二の装置12を接続するのである。
In order to achieve such an object, in the present invention, as shown in FIG. 4 of the specific electrical connection diagram, the stator winding 3
The stator winding 3 is connected between the external connection terminals 4, 5 and the power supply 6.
connecting first devices 7, 8 capable of controlling the voltage applied to the
Also, stator winding intermediate terminals 9 and 10 separate from the external connection terminals 4 and 5, and some kind of power source capable of supplying current thereto, in this example, an excitation winding 11 inserted into the stator groove. , a second device 12 that can control the voltage applied to the intermediate terminals 9, 10 is connected between them.

第4図において、固定子巻線と述べたのは16、17、
18、19から成る電機子巻線のことであり、16と1
7が直列に接続され、18と19も直列に接続される。
In Figure 4, the stator windings are 16, 17,
It is an armature winding consisting of 18 and 19, and 16 and 1.
7 are connected in series, and 18 and 19 are also connected in series.

更に16−17の直列回路と18−19の直列回路が並
列接続され、巻線16と巻線17の間及び巻線18と1
9の間を中間端子9及び10とする。このようにして巻
線16、17、18、19によりブリッジ回路が造られ
るのである。この電機子巻線16、17、18、19に
対し補助巻線13とコンデンサー14の直列回路を並列
接続する様子は第1図と同様である。
Furthermore, the series circuit 16-17 and the series circuit 18-19 are connected in parallel between the windings 16 and 17 and between the windings 18 and 1.
9 is defined as intermediate terminals 9 and 10. A bridge circuit is thus created by the windings 16, 17, 18, 19. The manner in which the series circuit of the auxiliary winding 13 and the capacitor 14 is connected in parallel to the armature windings 16, 17, 18, and 19 is the same as that shown in FIG.

第4図では励磁巻線11とコンデンサー15を直列に接
続し、それから制御素子付き整流器より成る順変換装置
12を接続し、その直流側端子を電機子巻線の中間端子
9、10に電気接続して、電機子巻線16、17、18
、19には二種類の電流が流れるように配列する。元来
、単相篭形誘導電動機は固定子溝の断面積を見た場合、
その2/3の空間だけが巻線配列に利用され、残り、即
ち溝空間の1/3は遊んでいる。この遊び空間に補助巻
線13及び励磁巻線11を挿入すれば、装置全体として
コンパクトになる。第5図は第1図の電機子巻線16、
17、18、19、補助巻線13、励磁巻線11の展開
図の一例を示したもので、一層巻の例を示している。第
4図の補助巻線13の両端子を20、21とし、励磁巻
線11の両端子を22、23とすると、第5図に付せら
れた符号はすべて第4図のそれに対応する符号と同一の
ものを示すとする。第4図の実線矢印はある瞬間の負荷
電流を示し、点線矢印はある瞬間の励磁電流を示す。第
5図の三角形印はある瞬間の電流、特に負荷電流を主体
とし、励磁巻線11の電流も合せて示した。これにより
、この例では2極磁極が造られることが判る。第5図、
第6図は同一の導線配列を示し、1〜36の溝にコイル
片が配列されている。(1)(2)(3)・・・(36
)は溝番号を示す。第6図の三角形印は第4図における
電機子巻線16、17、18、19中の点線矢印で示す
電流を示すものである。第4図の場合、励磁巻線11を
電力源として中間端子9、10を通して電機子巻線中を
流す電流である。この電流によって4極の磁界が造られ
ることが判る。このようにして固定子電機子巻線の中を
流す電流が二種類同時にあり、且つ第4図の矢印のよう
な場合、それらニ種類の電流により造られる磁極の極数
は互いに1対2又は2対1の関係となる。第5図と第6
図の例では第5図の場合と第6図の場合とで造られる磁
極の極数の比が2極対4極、つまり1:2となっている
が、逆に2対1とすることも出来ることが容易に判る。
In FIG. 4, an excitation winding 11 and a capacitor 15 are connected in series, then a forward converter 12 consisting of a rectifier with a control element is connected, and its DC side terminals are electrically connected to intermediate terminals 9 and 10 of the armature winding. and armature windings 16, 17, 18
, 19 are arranged so that two types of current flow through them. Originally, when looking at the cross-sectional area of the stator groove of a single-phase cage induction motor,
Only 2/3 of the space is used for winding arrangement, the remaining 1/3 of the groove space is idle. By inserting the auxiliary winding 13 and the excitation winding 11 into this idle space, the entire device becomes compact. FIG. 5 shows the armature winding 16 of FIG.
17, 18, 19, an auxiliary winding 13, and an excitation winding 11. This figure shows an example of a developed view of the winding 17, 18, 19, and the excitation winding 11, and shows an example of a single-layer winding. Assuming that both terminals of the auxiliary winding 13 in FIG. 4 are 20 and 21, and both terminals of the excitation winding 11 are 22 and 23, all the symbols given in FIG. 5 correspond to those in FIG. 4. Let us show the same thing as . The solid line arrow in FIG. 4 indicates the load current at a certain moment, and the dotted line arrow indicates the exciting current at a certain moment. The triangular marks in FIG. 5 mainly indicate the current at a certain moment, especially the load current, and also indicate the current in the excitation winding 11. This shows that in this example, two magnetic poles are created. Figure 5,
FIG. 6 shows the same conductor arrangement, with coil pieces arranged in grooves 1 to 36. (1)(2)(3)...(36
) indicates the groove number. The triangular marks in FIG. 6 indicate the currents indicated by dotted arrows in the armature windings 16, 17, 18, and 19 in FIG. In the case of FIG. 4, this is a current flowing through the armature winding through the intermediate terminals 9 and 10 using the excitation winding 11 as a power source. It can be seen that a four-pole magnetic field is created by this current. In this way, when there are two types of currents flowing through the stator armature windings at the same time, and the number of magnetic poles created by these two types of currents is 1 to 2, or It will be a 2:1 relationship. Figures 5 and 6
In the example shown in the figure, the ratio of the number of magnetic poles created in the case of Fig. 5 and the case of Fig. 6 is 2 to 4 poles, that is, 1:2, but it can be reversed to 2 to 1. It is easy to see that it can also be done.

これに対して回転子は篭形回転子であるから、2極とし
ても4極としても動作する。以上のように磁気回路を兼
用した場合、固定子巻線と回転子巻線の間の電磁誘導的
な動作は次のようになる。すなわち、同一極数間の固定
子巻線と回転子巻線の間は電磁的に作用し合い、異なる
極数間の固定子巻線と回転子巻線との間は互いに作用し
合わない。第4図と第5図第6図の組み合わせの例によ
ると、電源6から交流電力を受けた固定子電機子巻線で
は実線矢印の電流により2極磁極が回転し、それにより
回転子巻線に電圧を誘導し、回転子巻線に負荷電流を流
し、2極誘導電動機として働らくように回転トルクを発
生する。一方電力源である励磁巻線11から第4図の例
ではコンデンサー15を経て制御素子付き整流器12を
通し電機子巻線の中間端子9、10の間に電圧を加えて
、電機子巻線に点線矢印の電流を流して直流による固定
磁界を造り、この4極固定磁界の中を駆動回転する4極
巻線に交流電圧が誘起される。その4極巻線に電流が流
れて、制動力がかゝることになる。第4図において電機
子巻線の外部接続端子4、5と電源6の間に設けられた
第一の電圧制御装置として逆並列接続された制御素子付
き整流器7、8が接続され、その制御素子付き整流器の
制御素子を制御装置24が設けられる。この制御装置2
4により7、8の制御素子付き整流器の位相が制御され
、それにより外部接続端子4、5に加えられる交流電圧
が制御されることになる。このようにして電機子巻線の
外部接続端子4、5に加えられる電圧が制御されること
により電動機としての速度トルク特性曲線は第10図に
示すfよりlへの変化に見られるように変化制御される
On the other hand, since the rotor is a cage rotor, it can operate either as a two-pole or as a four-pole rotor. When the magnetic circuit is also used as described above, the electromagnetic induction operation between the stator winding and the rotor winding is as follows. That is, the stator windings and rotor windings having the same number of poles interact electromagnetically with each other, and the stator windings and rotor windings having different numbers of poles do not interact with each other. According to the example of the combination of Figures 4, 5, and 6, in the stator armature winding that receives AC power from the power source 6, the current indicated by the solid arrow rotates the two magnetic poles, which causes the rotor winding to rotate. A voltage is induced in the motor, a load current is passed through the rotor windings, and rotational torque is generated so that the motor works as a two-pole induction motor. On the other hand, in the example of FIG. 4, a voltage is applied from the excitation winding 11, which is the power source, through the capacitor 15 and the rectifier 12 with a control element between the intermediate terminals 9 and 10 of the armature winding. A current indicated by a dotted arrow is passed to create a DC fixed magnetic field, and an AC voltage is induced in the 4-pole winding that is driven and rotated in this 4-pole fixed magnetic field. Current flows through the four-pole winding, creating a braking force. In FIG. 4, rectifiers 7 and 8 with control elements connected in antiparallel are connected as a first voltage control device provided between external connection terminals 4 and 5 of the armature winding and a power supply 6, and the control elements A control device 24 is provided for controlling the control elements of the rectifier. This control device 2
4 controls the phases of the rectifiers 7 and 8 with control elements, thereby controlling the alternating current voltages applied to the external connection terminals 4 and 5. By controlling the voltage applied to the external connection terminals 4 and 5 of the armature winding in this way, the speed-torque characteristic curve of the motor changes as seen from the change from f to l shown in Figure 10. controlled.

第10図において横軸は回転速度n[rpm]を、又縦
軸はトルクt[N−m]を表わす。電機子巻線の中間端
子9、10の間に接続された第二の電圧制御装置12は
交直変換装置の直流側回路である。その制御素子付き整
流器はその制御装置25により位相制御され、それによ
って中間端子9、10の間に加えられる直流電圧が制御
される。
In FIG. 10, the horizontal axis represents the rotation speed n [rpm], and the vertical axis represents the torque t [N-m]. A second voltage control device 12 connected between intermediate terminals 9 and 10 of the armature winding is a DC side circuit of the AC/DC converter. The rectifier with control element is phase controlled by the control device 25, thereby controlling the DC voltage applied between the intermediate terminals 9, 10.

その結果、電機子巻線中を流れる点線矢印の電流が調整
又は制御され、変化する。
As a result, the current flowing through the armature winding, indicated by the dotted arrow, is regulated or controlled and changed.

第4図に示す第一の電圧制御装置7、8の制御だけで変
化させうる特性の変化領域は第10図で示すと、fとl
の曲線で囲まれる領域である。又第二の電圧制御装置1
2の制御でかけられるトルクは制動トルクとしてh、g
のようであり、これを正のトルクとして表わすとh1、
g1のようになる。従って第一の電圧制御装置7、8を
制御せずに単に第二の電圧制御装置12の制御で得られ
るトルク特性はk、pのようになり、fとpの曲線で囲
まれた領域がその制御範囲となる。このように第一の電
圧制御装置や第二の電圧制御装置の単独の制御ではその
制御範囲が狭い。これに対し、第一の電圧制御装置で第
10図のfからlまで制御し、更に第二の電圧制御装置
で第10図のOMからgまで制御したとすると、制御範
囲は全体でfとqの曲線で囲まれた非常に広範囲の領域
となり、負荷特性が大きく変化しても、これに対応する
ことが出来る。
The change range of characteristics that can be changed only by the control of the first voltage control devices 7 and 8 shown in FIG. 4 is shown in FIG. 10 as f and l.
This is the area surrounded by the curve. Also, the second voltage control device 1
The torque applied in step 2 is h, g as braking torque.
If this is expressed as a positive torque, h1,
It becomes like g1. Therefore, the torque characteristics obtained simply by controlling the second voltage controller 12 without controlling the first voltage controllers 7 and 8 are as shown in k and p, and the area surrounded by the curves f and p is This is the control range. As described above, the control range of the first voltage control device or the second voltage control device alone is narrow. On the other hand, if the first voltage controller controls from f to l in Figure 10, and the second voltage controller further controls from OM to g in Figure 10, the total control range is f. This is a very wide area surrounded by the curve q, and even if the load characteristics change significantly, it can be accommodated.

第4図の装置で次のような速度制御をすることも出来る
。電動機の回転速度を回転軸で検出し、これを回転軸速
度変換機構により速度変換装置に信号を與えることにな
る。一方制御装置24により電動機に加える電圧を制御
すると共に、速度設定値制御機構が制御されて速度設定
装置の設定点が制御されることになる。このようにして
速度設定装置において速度設定点が適当に設定されて、
設定された速度と実際の速度が比較装置において比較さ
れ、その比較誤差の信号が制御装置25に與えられ、そ
れによって制御素子付き整流器を制御し、中間端子9、
10の間に加えられる電圧が制御されることにより、上
記の比較誤差の値が小さくなるように働らき、結局電動
機の回転速度は各速度設定点に近づくことになる。第4
図において第二の電圧制御装置12と電力源11との間
に接続されたコンデンサー15は損失なく而も中間端子
9、10に加えられる電圧を減じる目的で装備されるも
のであって、必らずしも本発明に必須の装置ではない。
The following speed control can also be performed using the device shown in FIG. The rotational speed of the electric motor is detected by the rotating shaft, and a signal is given to the speed converting device by the rotating shaft speed converting mechanism. Meanwhile, the controller 24 controls the voltage applied to the motor and also controls the speed set point control mechanism to control the set point of the speed setting device. In this way, the speed setting point is appropriately set in the speed setting device, and
The set speed and the actual speed are compared in a comparator, and a signal of the comparison error is given to the control device 25, which controls the rectifier with control element and connects the intermediate terminals 9,
By controlling the voltage applied between 10 and 10, the value of the above-mentioned comparison error is reduced, and the rotational speed of the motor eventually approaches each speed set point. Fourth
In the figure, a capacitor 15 connected between the second voltage control device 12 and the power source 11 is installed for the purpose of reducing the voltage applied to the intermediate terminals 9 and 10 without any loss, and is not necessary. However, it is not an essential device for the present invention.

既に述べたように第4図で第一の電圧制御装置7、8と
第二の電圧制御装置12との出力制御部を同時関連的に
制御する配列を示したが、必らずしもそのような制御の
みに限定するものではなく、種々の制御方式が考えられ
る。
As already mentioned, although FIG. 4 shows an arrangement in which the output control units of the first voltage control devices 7 and 8 and the second voltage control device 12 are controlled simultaneously and in a related manner, this is not necessarily the case. The present invention is not limited to only such control, and various control methods can be considered.

第7図は第4図の場合と比較して次のような点で相異が
ある。すなわち第7図では第二の電圧制御装置12が逆
並列接続された制御素子付き整流器26と27より成る
。第7図の場合、逆並列接続された制御素子付き整流器
26、27は単相回路に直列に二組設けられているが、
これは何れか一組だけで良いと考えられる。第11図は
そのような簡略化した回路が示され、第7図の場合と比
較して電圧制御装置が8及び26を省略したものを示し
ている。第12図は第4図の一方の第一の電圧制御装置
8が削除され、簡略化されたものである。第13図は電
力源として第4図や第7図などに設けられた励磁巻線1
1の代りに変成器28が設けられた場合が示される。変
成器28の一次巻線29は電源6と接続され、二次巻線
30は第二の電圧制御装置である順変換装置12の交流
側端子と接続する。第一の電圧制御装置7と第二の電圧
制御装置12の間を制御装置24と25との間で結ぶ一
点鎖線31で示したのは前記のように同時関連的に制御
されることを意味している。
FIG. 7 differs from the case of FIG. 4 in the following points. That is, in FIG. 7, the second voltage control device 12 consists of rectifiers 26 and 27 with control elements connected in antiparallel. In the case of FIG. 7, two sets of rectifiers 26 and 27 with control elements connected in antiparallel are provided in series in a single-phase circuit.
It is considered that only one set is sufficient. FIG. 11 shows such a simplified circuit, in which the voltage control device 8 and 26 are omitted compared to the case of FIG. FIG. 12 is a simplified version in which one of the first voltage control devices 8 in FIG. 4 is removed. Figure 13 shows the excitation winding 1 installed as a power source in Figures 4 and 7.
The case is shown in which a transformer 28 is provided instead of 1. The primary winding 29 of the transformer 28 is connected to the power supply 6, and the secondary winding 30 is connected to the AC side terminal of the forward converter 12, which is a second voltage control device. The one-dot chain line 31 connecting the first voltage control device 7 and the second voltage control device 12 between the control devices 24 and 25 means that they are controlled in a simultaneous and related manner as described above. are doing.

今まで述べてきた第4図、第7図、第11図乃至第13
図における電機子巻線16〜19の接続は第8図や第9
図のような巻線接続により造られることが判る。第8図
や第9図の符号は第4図などにつけられた同符号と同一
のものを示す。このようにして第8図や第9図では第4
図の実線矢印に対応する電流つまり電機子巻線の外部接
続端子4、5より入る電流と、点線矢印に対応する電流
つまり電機子巻線の中間端子より入る電機子巻線電流が
示される。第8図の接続では実線矢印の電流により4極
磁界が造られる一方、点線矢印の電流により2極磁界が
造られることが判る。又第9図の接続では実線矢印の電
流により2極磁界が造られ、点線矢印の電流により4極
磁界が造られることが判る。このようにして、実線矢印
の電流によって造られる磁界の磁極数と点線矢印の電流
によって造られる磁界の磁極数との比を1対2又は2対
1とすることができることが判る。このような磁極数の
比が1対2又は2対1の関係にある巻線間は電磁的に作
用がなされず、同一磁極数の巻線間のみ相互に電磁的作
用が働らく。
Figures 4, 7, 11 to 13 that have been mentioned so far
The connections of armature windings 16 to 19 in the figure are shown in Figures 8 and 9.
It can be seen that it is made by winding connections as shown in the figure. The symbols in FIGS. 8 and 9 are the same as those in FIG. 4, etc. In this way, in Figures 8 and 9, the fourth
Currents corresponding to the solid line arrows in the figure, that is, currents entering from the external connection terminals 4 and 5 of the armature winding, and currents corresponding to the dotted line arrows, ie, the armature winding currents entering from the intermediate terminal of the armature winding, are shown. It can be seen that in the connection of FIG. 8, a quadrupole magnetic field is created by the current indicated by the solid line arrow, while a two-pole magnetic field is created by the current indicated by the dotted line arrow. It can also be seen that in the connection shown in FIG. 9, a two-pole magnetic field is created by the current indicated by the solid line arrow, and a four-pole magnetic field is created by the current indicated by the dotted line arrow. In this way, it can be seen that the ratio of the number of magnetic poles of the magnetic field created by the current indicated by the solid arrow and the number of magnetic poles of the magnetic field created by the current indicated by the dotted arrow can be set to 1:2 or 2:1. There is no electromagnetic action between the windings in which the ratio of the number of magnetic poles is 1:2 or 2:1, and only between the windings having the same number of magnetic poles there is an electromagnetic action.

第5図と第6図で示した電機子巻線配列は一層巻であっ
たが、二層巻の配列をする場合でも本発明は成り立つこ
と当然であり、第14図と第15図にそれを示す。第1
6図はそのような巻線接続であり、外部接続端子U、V
の間に中性点nが接続され、中間端子u1、u2、及び
v1、v2の間が何れも第7図の中間端子9、10に対
応せしめうる。
Although the armature winding arrangement shown in FIGS. 5 and 6 was a single-layer winding arrangement, it is obvious that the present invention also applies to a two-layer winding arrangement, and FIGS. 14 and 15 show the same. shows. 1st
Figure 6 shows such a winding connection, with external connection terminals U and V
A neutral point n is connected between them, and intermediate terminals u1, u2 and v1, v2 can all correspond to intermediate terminals 9, 10 in FIG.

第15図は第16図の巻線接続に対応し、その電機子巻
線展開図を示す。第14図はa、bなる端子間に第4図
の励磁巻線11が接続され、c、dなる端子間に第4図
の補助巻線13が接続されることを示す。第14図と第
15図において、コイル片が示されるが、実線で示した
コイル片は上口のコイル片であり、点線で示したコイル
片は下口のコイル片である。第14図と第15図で示さ
れた三角印はある瞬間の電流を示したものであるが、第
15図は負荷電流だけを示し、中間端子u1u2及びv
1v2から入る電流は示されていない。
FIG. 15 corresponds to the winding connection shown in FIG. 16 and shows a developed view of the armature winding. FIG. 14 shows that the excitation winding 11 of FIG. 4 is connected between terminals a and b, and the auxiliary winding 13 of FIG. 4 is connected between terminals c and d. In FIGS. 14 and 15, coil pieces are shown, and the coil piece shown in solid lines is the upper coil piece, and the coil piece shown in dotted lines is the lower coil piece. The triangular marks shown in Figs. 14 and 15 indicate the current at a certain moment, but Fig. 15 shows only the load current, and the intermediate terminals u1u2 and v
The current coming in from 1v2 is not shown.

今まで述べてきた本発明の装置において、低速領域で大
きいトルクを出し、安定なトルク−速度特性を確保する
ため、深溝篭形や二重篭形の構造とすることが好ましい
In the apparatus of the present invention that has been described so far, it is preferable to have a deep groove cage-shaped or double cage-shaped structure in order to produce a large torque in a low speed region and ensure stable torque-speed characteristics.

以上説明してきた本発明の作用効果をまとめると、次の
ようになる。
The effects of the present invention explained above can be summarized as follows.

(1)単相篭形誘導電動機の簡単な速度制御を可能なら
しめうる。
(1) It is possible to easily control the speed of a single-phase cage induction motor.

(2)特に低速領域における速度制御を簡単に可能なら
しめ、結局広範囲速度を簡単、確実、安価で実施可能な
らしめうる。
(2) Speed control, particularly in the low speed range, can be easily performed, and as a result, a wide range of speeds can be easily, reliably, and inexpensively implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来公知の篭形単相誘導電動機速度制御接続図
。第2図は第1図の電気接続図における電圧、電流のベ
クトル図。第3図は第1図の電気接続図によって得られ
るトルク対速度の特性図。 第4図は本発明の具体的な電気接続図例。第5図は本発
明の固定子電機子巻線の展開図において負荷電流を流し
た図例。第6図は本発明の固定子電機子巻線の展開図に
おいて励磁電流を流した図例である。 第7図は本発明の具体的な電気接続図例。第8図は本発
明の電機子巻線接続配列とその中を通る二種類の電流。 第9図は本発明の電機子巻線接続配列例とその中を同時
に通る二種類の電流。第10図は本発明の装置によって
得られるトルク−速度特性図例である。 第11図、第12図及び第13図はそれぞれ本発明の具
体的な電気接続図例である。第14図は本発明の巻線接
続中、補助巻線と励磁巻線の展開図例を示したもの。第
15図は本発明の巻線接続中、電機子巻線の展開図例を
示したものである。 第16図は本発明の接続図例中、電機子巻線の接続を示
したものである。 つぎに図の主要な部分をあらわす符号として、以下に示
すものがある。 1:固定子、2:篭形回転子、3:固定子巻線、4:電
機子巻線の外部接続端子、5:電機子巻線の外部接続端
子、6:電源、7、8:第一の電圧制御装置、9、10
:電機子巻線中間端子、11:励磁電源巻線、12:第
二の電圧制御巻線装置、13:補助巻線、14:コンデ
ンサー、15:コンデンサー、16、17、18、19
:電機子巻線を構成するブリッジ形の各巻線接続、20
、21:補助巻線13の両端子、22、23:励磁電源
巻線11の両端子、24:第一の電圧制御装置7、8の
制御装置、25:第二の電圧制御装置12の制御装置、
26、27:第二の電圧制御装置12を構成する逆並列
制御素子付き整流器、28:変成器、29:変成器28
の一次巻線、30:変成器28の二次巻線、31:制御
装置24と25の間の同時関連的な制御を表わすもの。
FIG. 1 is a speed control connection diagram of a conventional cage-type single-phase induction motor. FIG. 2 is a vector diagram of voltage and current in the electrical connection diagram of FIG. 1. FIG. 3 is a characteristic diagram of torque versus speed obtained from the electrical connection diagram of FIG. 1. FIG. 4 is an example of a specific electrical connection diagram of the present invention. FIG. 5 is an example of a developed view of the stator armature winding of the present invention in which a load current is applied. FIG. 6 is an example of a developed view of the stator armature winding of the present invention in which an excitation current is passed. FIG. 7 is an example of a specific electrical connection diagram of the present invention. FIG. 8 shows the armature winding connection arrangement of the present invention and two types of current flowing therethrough. FIG. 9 shows an example of the armature winding connection arrangement of the present invention and two types of current flowing through it simultaneously. FIG. 10 is an example of a torque-speed characteristic diagram obtained by the apparatus of the present invention. FIG. 11, FIG. 12, and FIG. 13 are examples of specific electrical connection diagrams of the present invention, respectively. FIG. 14 shows an example of a developed view of an auxiliary winding and an excitation winding during winding connection according to the present invention. FIG. 15 shows an example of a developed view of the armature winding during winding connection according to the present invention. FIG. 16 shows the connections of the armature windings among the connection diagrams of the present invention. Next, there are the following symbols that represent the main parts of the diagram. 1: Stator, 2: Cage rotor, 3: Stator winding, 4: Armature winding external connection terminal, 5: Armature winding external connection terminal, 6: Power supply, 7, 8: No. No. 1 voltage control device, 9, 10
: Armature winding intermediate terminal, 11: Excitation power supply winding, 12: Second voltage control winding device, 13: Auxiliary winding, 14: Capacitor, 15: Capacitor, 16, 17, 18, 19
: Bridge type winding connections that constitute the armature winding, 20
, 21: Both terminals of the auxiliary winding 13, 22, 23: Both terminals of the excitation power supply winding 11, 24: Control device for the first voltage control devices 7 and 8, 25: Control of the second voltage control device 12 Device,
26, 27: Rectifier with anti-parallel control element constituting second voltage control device 12, 28: Transformer, 29: Transformer 28
30: the secondary winding of the transformer 28; 31: representing the simultaneous and associated control between the control devices 24 and 25;

Claims (1)

【特許請求の範囲】[Claims] 固定子巻線の外部接続端子と電源との間に巻線への印化
電圧を制御しうる第一の装置を接続し、又上記外部接続
端子とは別の固定子巻線中間端子と、これに対し電流と
供給しうる何らかの電力源との間に上記中間端子に加え
る電圧を制御しうる第二の装置を接続した単相誘導電動
機速度制御装置
A first device capable of controlling the voltage applied to the winding is connected between the external connection terminal of the stator winding and the power supply, and a stator winding intermediate terminal different from the external connection terminal; On the other hand, a single-phase induction motor speed control device is connected between the current and some power source capable of supplying a second device capable of controlling the voltage applied to the intermediate terminal.
JP60199160A 1985-09-09 1985-09-09 Speed controller for single-phase induction motor Pending JPS6260497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199160A JPS6260497A (en) 1985-09-09 1985-09-09 Speed controller for single-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199160A JPS6260497A (en) 1985-09-09 1985-09-09 Speed controller for single-phase induction motor

Publications (1)

Publication Number Publication Date
JPS6260497A true JPS6260497A (en) 1987-03-17

Family

ID=16403155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199160A Pending JPS6260497A (en) 1985-09-09 1985-09-09 Speed controller for single-phase induction motor

Country Status (1)

Country Link
JP (1) JPS6260497A (en)

Similar Documents

Publication Publication Date Title
Hubert Electric machines
Osama et al. A new inverter control scheme for induction motor drives requiring wide speed range
CA1281065C (en) Parallel resonant single phase motor
JP2015509697A (en) Synchronous electrical machine
US5796233A (en) Multiple-stator induction synchronous motor
JPH0865976A (en) Brushless self-excited three-phase synchronous generator
US4513237A (en) Energy efficient multi-phase dual voltage electric motor
JPS6260497A (en) Speed controller for single-phase induction motor
Fuchs et al. Analysis of critical-speed increase of induction machines via winding reconfiguration with solid-state switches
JPH06284657A (en) Induction generator
US2996648A (en) Induction motor and control system
US3339131A (en) Multi-speed, self-excited ac motor system
JPH05336716A (en) Brushless single-phase half speed synchronous motor
Oguchi et al. Speed control of a brushless static Kramer system
RU2112307C1 (en) Compensated-winding induction machine
JPH06335271A (en) Synchronous motor
Takahashi et al. Study of Switched Reluctance Motor Directly Driven by Commercial Three-phase Power Supply
JPH06284656A (en) Induction generator
JP3105231B2 (en) 2 stator induction motor
JP3413816B2 (en) Synchronous motor
SU1124405A1 (en) Electric machine
JPH06245450A (en) Synchronous motor
CN117458814A (en) Double-fed motor and electromagnetic torque converter
JP2530297B2 (en) AC generator
JPS61240885A (en) Induction motor speed controller