JPS6234065A - Voltage detector - Google Patents

Voltage detector

Info

Publication number
JPS6234065A
JPS6234065A JP60174554A JP17455485A JPS6234065A JP S6234065 A JPS6234065 A JP S6234065A JP 60174554 A JP60174554 A JP 60174554A JP 17455485 A JP17455485 A JP 17455485A JP S6234065 A JPS6234065 A JP S6234065A
Authority
JP
Japan
Prior art keywords
voltage detection
phase
zero
power
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60174554A
Other languages
Japanese (ja)
Other versions
JPH0668509B2 (en
Inventor
Kazuaki Kato
和明 加藤
Akemichi Okimoto
沖本 明道
Kenji Tsuge
憲治 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP60174554A priority Critical patent/JPH0668509B2/en
Priority to US07/034,150 priority patent/US4894609A/en
Priority to PCT/JP1986/000402 priority patent/WO1993013429A1/en
Publication of JPS6234065A publication Critical patent/JPS6234065A/en
Priority to US07/423,781 priority patent/US5012182A/en
Publication of JPH0668509B2 publication Critical patent/JPH0668509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To enable voltage detection with high measuring accuracy, by connecting an electrooptical element modulating optical power corresponding to the electrical change in a plurality of phases to the intermediate part of a light transmission path in series. CONSTITUTION:According to the currents flowing to power sources 4A-4C, secondary currents flows to resistors R1 from current transformers CT1-CT3 through lead wires 15, 15. The voltages at both terminals of the resistors R1 are applied to Pockels elements 13A-13C and, when a power source 26 is turned ON, a light emitting element 22 is operated to emit optical power which is, in turn, transmitted and applied to the element 13A through a polarizing picture preserving optical fiber cable 17 and a light transmitting body 12 by the Pockels effect of said element 13A and the element 13 receives phase modulation corresponding to the change in voltage. The elements 13B, 13C also receive phase modulation in the same way corresponding to the change in the voltages applied to said elements. The optical power subjected to phase modulation receives intensity modulation by an analyser 23 through the light transmitting body 12 and a cable 20 and is succeedingly converted to an electric signal by a light receiving element 24. This signal is outputted from output terminals 28, 28 through an amplifier 27. Only by connecting a predetermined meter to the terminals 28, 28, a zero phase current can be detected and measured.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は送・配電線路に用いられ、かつ、電線路の零
相電流あるいは零相電圧などを検出・測定するための光
センサを用いた検電装置に関する。
[Detailed Description of the Invention] Purpose of the Invention (Field of Industrial Application) The present invention is an optical sensor used in power transmission/distribution lines and for detecting and measuring zero-sequence current or zero-sequence voltage of the electric line. This invention relates to a voltage detection device using.

(従来の技術) 近年、電力需要の多様化に伴い、電力供給の正確で迅速
な対応が必要となっている。このため、電力系統の供給
及び管理施設も複雑化し、かつ、多様化するとともに、
自動化のシステム開発や実用化が推進されている。又、
電力供給に係わる情報の収集、例えば、線路の電圧及び
電流などの検出・測定は、正確かつ迅速に、さらには、
広範囲で、多数の箇所で行う必要がある。
(Prior Art) In recent years, with the diversification of power demand, accurate and prompt response to power supply has become necessary. As a result, power system supply and management facilities are becoming more complex and diversified.
Automation system development and practical application are being promoted. or,
Collecting information related to power supply, such as detecting and measuring line voltage and current, can be done accurately and quickly.
It needs to be done over a wide area and in many places.

ところで、従来、三相線路において、零相電流及び零相
電圧を検出・測定する装置として、例えば、第9図及び
第10図に示すような装置があった。
By the way, in the past, there have been devices as shown in FIGS. 9 and 10, for example, as devices for detecting and measuring zero-sequence current and zero-sequence voltage in three-phase lines.

零相電流を検出・測定する装置は、第9図に示すように
、電線41に取付けられた変流器42の二次側出力端子
のリード線43が、直列に接続されるとともに、同リー
ド線43の両端には抵抗体44が接続されていた。そし
て、出力端子45゜45からは、各電線41の電流変化
に応じた電圧変化が出力されるようになっていた。
As shown in FIG. 9, the device for detecting and measuring zero-sequence current is constructed by connecting a lead wire 43 of the secondary output terminal of a current transformer 42 attached to an electric wire 41 in series, and A resistor 44 was connected to both ends of the line 43. A voltage change corresponding to a change in current in each electric wire 41 is outputted from the output terminal 45°45.

このように構成された装置では、出力端子45゜45か
ら平常時に出力される電気的信号は、各相電流の位相和
が零値を示す零相電流である。ところが、線路事故が発
生すると、出力端子45,45から出力される電気的信
号は零値を示さず、線路事故の規模に応じた電気的信号
の変化が出力される。
In the device configured in this way, the electrical signal output from the output terminal 45° 45 during normal times is a zero-phase current in which the phase sum of each phase current is zero. However, when a track accident occurs, the electrical signals outputted from the output terminals 45, 45 do not show a zero value, but change in the electrical signal according to the scale of the track accident is output.

一方、零相電圧を検出・測定する装置は、第10図に示
すように、電線41に一次端子をY結線した三相変圧器
、もしくは、三個の単相の変圧器46の二次側端子をΔ
結線したリード線43の両端に抵抗体44が接続され、
出力端子45.45からは、各電線41の電流変化に応
じた電圧変化が出力されるようになっていた。
On the other hand, as shown in FIG. 10, the device for detecting and measuring the zero-phase voltage is a three-phase transformer in which the primary terminal is Y-connected to the electric wire 41, or the secondary side of three single-phase transformers 46. Connect the terminal to Δ
A resistor 44 is connected to both ends of the connected lead wire 43,
From the output terminals 45.45, voltage changes corresponding to current changes in each electric wire 41 were output.

このように構成された装置では、出力端子45゜45か
ら平常時に出力される電気的信号は、各相電圧の位相和
が零値を示す零相電圧である。ところが、線路事故が発
生すると、出力端子45.45から出力される電気的信
号は零値を示さず、線路事故の規模に応じた電気的信号
の変化が出力される。
In the device configured in this way, the electrical signal outputted from the output terminal 45° 45 during normal times is a zero-phase voltage in which the phase sum of the phase voltages has a zero value. However, when a track accident occurs, the electrical signal output from the output terminals 45, 45 does not show a zero value, but changes in the electrical signal depending on the scale of the track accident are output.

このように、零相電流や零相電圧、もしくは、その両方
を検出することにより、線路事故が検出されていた。
In this way, line faults have been detected by detecting zero-sequence current, zero-sequence voltage, or both.

(発明が解決しようとする問題点) ところが、前述した従来の装置では、変流器42あるい
は変圧器46から導出されるリード線43が、外部から
の電磁誘導を受けるので、SN比が低下して測定精度が
良くないという欠点があった。特に、近年は、送・配電
線路の信頼性を更に向上させて、これまで検出の困難で
あった事故(瞬時地絡9間歇地絡など)の検出も必要と
なりつつあるので、精度の高い線路電圧・電流の検出が
望まれている。
(Problems to be Solved by the Invention) However, in the conventional device described above, the lead wire 43 led out from the current transformer 42 or the transformer 46 receives electromagnetic induction from the outside, so the S/N ratio decreases. However, there was a drawback that the measurement accuracy was not good. In particular, in recent years, the reliability of power transmission and distribution lines has been further improved, and it has become necessary to detect accidents that were previously difficult to detect (instantaneous ground faults, intermittent ground faults, etc.). Voltage/current detection is desired.

又、リード線43の老朽化で短絡事故の虞や、変流器4
2あるいは変圧器46の絶縁性の低下で地絡事故の虞も
あった。
In addition, there is a risk of short circuit accidents due to aging of the lead wire 43, and the current transformer 4
There was also a risk of a ground fault due to a decrease in the insulation properties of the transformer 2 or the transformer 46.

この発明は前記の事情を鑑み、絶縁性が高く、しかもS
N比や測定精度の高い検電装置の提供を目的としている
In view of the above circumstances, this invention has high insulation properties and S
The aim is to provide a voltage detection device with high N ratio and measurement accuracy.

発明の構成 (問題点を解決するための手段) この発明は前記問題点を解決するために、一方端に光パ
ワの発光部を接続し、他方端に前記光パワの受光部を接
続した光伝送路において、複数相で形成された電線路の
各相に設けられ、各相の電気的変化に応じて前記光パワ
を変調するだめの電気光学素子を、前記光伝送路の中間
に対して直列に接続するという構成を採用している。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides an optical system in which a light emitting part of optical power is connected to one end and a light receiving part of the optical power is connected to the other end. In the transmission line, an electro-optical element is provided in each phase of an electric line formed of multiple phases and modulates the optical power according to electrical changes in each phase, and is placed in the middle of the optical transmission line. A configuration in which they are connected in series is adopted.

(作用) この発明は前記手段を採用したことにより次のように作
用する。
(Operation) This invention operates as follows by employing the above means.

装置は、絶縁物で構成される光伝送路及び電気光学素子
により、絶縁信頼性が向上されるとともに、外部からの
電磁誘導が防止される。
The device improves insulation reliability and prevents electromagnetic induction from the outside by using an optical transmission line and an electro-optical element made of an insulating material.

電線路の電気的変化は各相に設げられた電気光学素子に
印加される。このとき、発光部から出射される光パワは
、光伝送路を介して、各電気光学素子に順次導入される
。さらに、前記光パワは各電気光学素子を通過する間に
、各相の電気的変化に応じて位相変調される。このとき
、光伝送路において偏波面を保存させれば、各電気光学
素子を通過した後の位相変調は零相分に対応したものと
なり、最後に受光部に伝送され、電気信号に変換されて
電線路の零相分の電気的変化が検出・測定される。
Electrical changes in the wire are applied to electro-optical elements provided in each phase. At this time, the optical power emitted from the light emitting section is sequentially introduced into each electro-optical element via the optical transmission path. Further, while the optical power passes through each electro-optical element, it is phase-modulated according to electrical changes in each phase. At this time, if the plane of polarization is preserved in the optical transmission path, the phase modulation after passing through each electro-optical element corresponds to the zero phase component, and is finally transmitted to the light receiving section and converted into an electrical signal. Electrical changes in the zero-phase component of the power line are detected and measured.

(実施例) 以下、この発明を具体化した実施例を第1図〜第8図に
基づいて詳細に説明する。
(Example) Hereinafter, an example embodying the present invention will be described in detail based on FIGS. 1 to 8.

第1実施例を説明すると、第3図及び第4図の概略図の
ように、電柱lに取着され、かつ、アームタイ2で支持
された支持アーム3には、三相の各電線4A〜4Cを支
持する碍子5A〜5Cが、3個並列に配設されている。
To explain the first embodiment, as shown in the schematic diagrams of FIGS. 3 and 4, a support arm 3 attached to a utility pole l and supported by an arm tie 2 has three-phase electric wires 4A to 4A. Three insulators 5A to 5C supporting 4C are arranged in parallel.

各電線4A〜4Cは、第4図に示すように、各碍子5A
〜5Cの頭部に取着された課電部を構成する各変流器C
T 1−CT3に挿通されるとともに、複数のバインド
線6で縛着された絶縁グリップ7によって、前記各碍子
5A〜5Cに保持されている。
Each electric wire 4A to 4C is connected to each insulator 5A as shown in FIG.
~Each current transformer C that constitutes the charging section attached to the head of 5C
It is held on each of the insulators 5A to 5C by an insulating grip 7 which is inserted through T1-CT3 and bound by a plurality of binding wires 6.

第1図に基づいて、各碍子5A〜5Cを詳しく説明する
Each insulator 5A to 5C will be explained in detail based on FIG. 1.

所定の形状1寸法に成形され、焼成された磁器製の碍子
本体8の上端には、課電部を構成する課電側金具9がセ
メント11で固着され、下端には接地側金具10が同様
にセメント11で固着されている。前記各碍子本体8に
は、その中央部を軸方向に百通する偏波面保存光ファイ
バ、あるいは、アルミナ又は石英などよりなる棒状透光
体などを用いた、光伝送路としての一対の透光体12.
12が一体に設けられている。
On the upper end of the insulator body 8 made of porcelain, which is molded into a predetermined shape with one dimension and fired, a power-supplying side metal fitting 9 constituting a power-carrying section is fixed with cement 11, and a grounding side metal fitting 10 is similarly fixed on the lower end. is fixed with cement 11. Each of the insulator bodies 8 has a pair of light transmitting paths as optical transmission paths using a polarization maintaining optical fiber extending axially through the center thereof, or a rod-shaped light transmitting body made of alumina or quartz. Body 12.
12 are integrally provided.

又、各碍子5A〜5Cの課電側金具9には空洞部9aが
設けられていて、前記一対の透光体12゜12の上端に
接続された、電気光学素子としてのポッケルス素子13
A〜1.3Cと、抵抗体R1が配設されている。前記各
ポッケルス素子13A〜13Cと各抵抗体R1とは、前
記変流器CT1〜CT3に設けられ、電流を本灸出する
ための一対の検電端子14.14に接続された一対のリ
ード線15.15で並列に接続されている。このように
、前記各変流器CT1〜CT3によって検出される各電
線4A〜4Cの電流が、前記両検電端子14゜14を介
して抵抗体R1に流れるようにしている。
Further, a hollow portion 9a is provided in the power-supplying metal fitting 9 of each of the insulators 5A to 5C, and a Pockels element 13 as an electro-optical element is connected to the upper ends of the pair of transparent bodies 12 and 12.
A to 1.3C and a resistor R1 are provided. Each of the Pockels elements 13A to 13C and each resistor R1 is a pair of lead wires provided in the current transformers CT1 to CT3 and connected to a pair of voltage detection terminals 14 and 14 for actually moxibusting current. 15.15 are connected in parallel. In this way, the currents of the electric wires 4A to 4C detected by the current transformers CT1 to CT3 flow to the resistor R1 via the two voltage detection terminals 14°14.

そして、抵抗体R1両端の電圧は、前記各ポッケルス素
子13A〜13Cに印加されるようにしている。又、前
記一対の透光体12.12の下端は、それぞれ接地側金
具10に装着された光コネクタ16に接続されている。
The voltage across the resistor R1 is applied to each of the Pockels elements 13A to 13C. Further, the lower ends of the pair of transparent bodies 12 and 12 are respectively connected to optical connectors 16 attached to the ground side metal fitting 10.

なお、変流器CT1〜CT3は、各相の電流検出におい
て他相の影響を防止するためのものである。
Note that the current transformers CT1 to CT3 are for preventing the influence of other phases in current detection of each phase.

前述した各碍子5A〜5Cの、一対の透光体12.12
下端は、それぞれ前記各光コネクタ16に接続された光
伝送路としての偏波面保存光ファイバケーブル17〜2
0で直列に接続されている。
A pair of transparent bodies 12.12 of each of the above-mentioned insulators 5A to 5C
The lower ends are polarization maintaining optical fiber cables 17 to 2 as optical transmission lines connected to each of the optical connectors 16, respectively.
0 and are connected in series.

そして、前記各碍子5A〜5Cの両透光体12゜12、
各ポッケルス素子13A〜13C1及び、偏波面保存光
ファイバケーブル17〜20は直列に連結され、連続的
な光伝送路が形成されている。
Both transparent bodies 12°12 of each of the insulators 5A to 5C,
The Pockels elements 13A to 13C1 and the polarization maintaining optical fiber cables 17 to 20 are connected in series to form a continuous optical transmission path.

前記光フアイバケーブル17の一端には、偏光板及び〃
波長板よりなる偏光子21が接続されていて、同偏光子
21には発光ダイオードよりなる発光素子22が光学的
に接続されている。前記偏光子21と発光素子22とに
より発光部が構成されている。そして、前記発光部から
出射された光パワが、偏波面保存光ファイバケーブル1
7に入射するようにしている。なお、前記発光部は直線
偏光を発するレーザーダイオードを用いれば、偏光子2
1を省略することもできる。
At one end of the optical fiber cable 17, a polarizing plate and a
A polarizer 21 made of a wave plate is connected, and a light emitting element 22 made of a light emitting diode is optically connected to the polarizer 21. The polarizer 21 and the light emitting element 22 constitute a light emitting section. Then, the optical power emitted from the light emitting section is transmitted to the polarization maintaining optical fiber cable 1.
7. Note that if the light emitting section uses a laser diode that emits linearly polarized light, the polarizer 2
1 can also be omitted.

又、前記光フアイバケーブル20の一端には、検光子2
3が接続されていて、同検光子23にはフォトダイオー
ドよりなる受光素子24が光学的に接続されている。前
記検光子23と受光素子24とにより受光部が構成され
ている。そして、前記光伝送路を経た光パワを、偏波面
保存光ファイバケーブル20から検光子23を介して受
光素子24に導入するようにしている。
Further, an analyzer 2 is attached to one end of the optical fiber cable 20.
3 is connected to the analyzer 23, and a light receiving element 24 made of a photodiode is optically connected to the analyzer 23. The analyzer 23 and the light receiving element 24 constitute a light receiving section. The optical power that has passed through the optical transmission path is introduced from the polarization-maintaining optical fiber cable 20 to the light receiving element 24 via the analyzer 23.

なお、この実施例の発光部及び受光部は、それぞれ所定
のボックス25に収容されている。このボックス25は
、第3図に示すように、電柱1の任意の箇所に装着され
ている。
Note that the light emitting section and the light receiving section of this embodiment are each housed in a predetermined box 25. This box 25 is attached to an arbitrary location on the utility pole 1, as shown in FIG.

次に、前記のように構成した第1実施例の作用を、第1
図と等価の原理を示す第2図を基に説明する。
Next, the operation of the first embodiment configured as described above will be explained in the first embodiment.
The explanation will be based on FIG. 2, which shows the principle equivalent to the diagram.

今、各電線4A〜4Cに流れる電流を一次電流とすると
、この−次電流によって各電線4A〜4Cの周りの磁界
の作用で、各変流器CT1〜CT3を介して、二次電流
が各リード線15.15を経て各抵抗体R1に流される
。そして、前記各抵抗体R1の両端にかかる電圧が、各
ポッケルス素子13A〜13Cに印加される。
Now, assuming that the current flowing through each of the electric wires 4A to 4C is a primary current, this secondary current causes each secondary current to flow through each current transformer CT1 to CT3 due to the action of the magnetic field around each electric wire 4A to 4C. It is applied to each resistor R1 via a lead wire 15.15. Then, the voltage applied to both ends of each resistor R1 is applied to each Pockels element 13A to 13C.

このとき、電源26を動作させると、発光素子22が作
動して光パワが出射される。前記光パワは、偏波面保存
光ファイバケーブル17、透光体12を介し、外部から
電磁誘導をうけることなく矢印の方向で、ポッケルス素
子13Aへ伝送される。前記光パワは、前記ポッケルス
素子13Aのポッケルス効果によって、同素子13Aに
印加される電圧の変化(電線4Aの電流変化)に応じて
位相変調される。
At this time, when the power supply 26 is operated, the light emitting element 22 is operated and optical power is emitted. The optical power is transmitted to the Pockels element 13A in the direction of the arrow via the polarization maintaining optical fiber cable 17 and the transparent body 12 without receiving electromagnetic induction from the outside. The optical power is phase-modulated by the Pockels effect of the Pockels element 13A in accordance with a change in voltage applied to the element 13A (change in current in the electric wire 4A).

次いで、開光パワは、透光体12、偏波面保存光ファイ
バケーブル1日、透光体12を介して、外部からの電磁
誘導を受けることなく矢印の方向で、ポッケルス素子1
3Bへ伝送される。そして、前記と同様に、前記ポッケ
ルス素子13Bに印加される電圧変化(電線4Bの電流
変化)に応じて位相変調される。
Next, the light-opening power is applied to the Pockels element 1 in the direction of the arrow through the transparent body 12 and the polarization-maintaining optical fiber cable without receiving electromagnetic induction from the outside.
Transmitted to 3B. Then, similarly to the above, the phase is modulated according to the voltage change (current change in the electric wire 4B) applied to the Pockels element 13B.

さらに、透光体12、偏波面保存光ファイバケーブル1
9、透光体12を介して、矢印方向で伝送された光パワ
は、ポッケルス素子13Cへ導入される。ここで、前記
ポッケルス素子13Cに印加される電圧変化(電線4C
の電流変化)に応じて、最後の位相変調を受けた光パワ
は、透光体12、偏波面保存光ファイバケーブル20を
介して、外部からの電磁誘導をうけることなく矢印の方
向に、検光子23へ伝送されて強度変調される。前記検
光子23へ伝送された光パワは、三相の各電線4A〜4
Cの電流がベクトル的に合成される。
Further, a transparent body 12, a polarization maintaining optical fiber cable 1
9. Optical power transmitted in the direction of the arrow through the transparent body 12 is introduced into the Pockels element 13C. Here, the voltage change applied to the Pockels element 13C (the electric wire 4C
According to the current change in It is transmitted to the photon 23 and intensity-modulated. The optical power transmitted to the analyzer 23 is transmitted to each of the three-phase electric wires 4A to 4.
The currents of C are vectorially combined.

すなわち、零相電流に比例して位相変調される。That is, the phase is modulated in proportion to the zero-phase current.

この光パワは、続いて受光素子24へ導入されて電気信
号に変換される。
This optical power is then introduced into the light receiving element 24 and converted into an electrical signal.

その後、前記電気信号を増幅部27を介して増幅すると
ともに、出力端子28.28から出力するようにすれば
、前記出力端子28.28に所定の計器を接続するだけ
で、零相電流の変化が容易に検出・測定できる。
After that, if the electric signal is amplified through the amplifying section 27 and outputted from the output terminal 28.28, a change in the zero-sequence current can be detected simply by connecting a predetermined meter to the output terminal 28.28. can be easily detected and measured.

このような零相電流は、通常時には零値を示しているが
、線路事故が発生すると零値以外の値となる。従って、
この零相電流の変化を検出・測定することによって線路
事故の有無が検出できる。
Such a zero-sequence current normally shows a zero value, but when a line fault occurs, it takes a value other than zero. Therefore,
By detecting and measuring changes in this zero-sequence current, it is possible to detect the presence or absence of a line fault.

次に、第2実施例を第5図及び第6図に示す。Next, a second embodiment is shown in FIGS. 5 and 6.

なお、第1実施例と同様の部材については、同様の符号
を付して説明を省略する。
Note that the same members as those in the first embodiment are given the same reference numerals and the description thereof will be omitted.

第5図に示すように、碍子5A〜5Cの課電側金具9の
空洞部9aには、電線4A〜4Cを把持して電線4A〜
4Cと電気的に接続されたクランプ金具29が、導電ス
ペーサ30aを介してコンデンサCIの一端に接続され
ている。又、前記コンデンサC1の他端は、同じく導電
スペーサ30bを介して、碍子本体8の上端面に当接さ
れている。そして、前記コンデンサC1の両端である導
電スペーサ30a、30bには、電気光学素子としての
ポッケルス素子13A〜13Cが並列に接続されている
As shown in FIG. 5, the electric wires 4A to 4C are held in the hollow portions 9a of the charging side fittings 9 of the insulators 5A to 5C.
A clamp fitting 29 electrically connected to 4C is connected to one end of the capacitor CI via a conductive spacer 30a. Further, the other end of the capacitor C1 is brought into contact with the upper end surface of the insulator body 8 via the conductive spacer 30b. Pockels elements 13A to 13C as electro-optical elements are connected in parallel to the conductive spacers 30a and 30b at both ends of the capacitor C1.

前記のように構成された各碍子5A〜5Cは、第6図に
示すような等価の原理をもって、それぞれ接続されてい
る。なお、図中C2は、碍子本体8自体の静電容量を示
すものである。
The insulators 5A to 5C configured as described above are connected to each other based on the equivalent principle as shown in FIG. 6. Note that C2 in the figure indicates the capacitance of the insulator body 8 itself.

次に、前記のように構成した第2実施例の作用を説明す
る。
Next, the operation of the second embodiment configured as described above will be explained.

今、各電線4A〜4Cの電圧はクランプ金具29、導電
スペーサ30aを介して各コンデンサCIにかけられる
。そして、前記各コンデンサC1の両端の電圧が、各ポ
ッケルス素子13A〜13Cに印加される。
Now, the voltage of each electric wire 4A to 4C is applied to each capacitor CI via the clamp fitting 29 and the conductive spacer 30a. Then, the voltage across each capacitor C1 is applied to each Pockels element 13A to 13C.

このとき、電源26を動作させると、発光素子22が作
動して光パワが出射される。前記光パワは偏光子21を
経て直線偏光され、偏波面保存光ファイバケーブル17
、透光体12を介し、外部から電磁誘導をうけることな
く矢印の方向で、ポッケルス素子13Aへ伝送される。
At this time, when the power supply 26 is operated, the light emitting element 22 is operated and optical power is emitted. The optical power is linearly polarized through a polarizer 21 and polarized by a polarization-maintaining fiber optic cable 17.
, are transmitted to the Pockels element 13A through the transparent body 12 in the direction of the arrow without receiving electromagnetic induction from the outside.

前記光パワは、前記ポッケルス素子13Aのポッケルス
効果によって、同素子13Aに印加される電圧変化(電
線4Aの電圧変化)に応じて位相変調される。
The optical power is phase-modulated by the Pockels effect of the Pockels element 13A in accordance with the voltage change applied to the element 13A (voltage change of the electric wire 4A).

次いで、開光パワは、透光体12、偏波面保存光ファイ
バケーブル18、透光体12を介して、外部からの電磁
誘導を受けることなく矢印の方向で、ポッケルス素子1
3Bへ伝送される。そして、前記と同様に、前記ポッケ
ルス素子13Bに印加される電圧変化(電線4Bの電圧
変化)に応じて位相変調される。
Next, the light-opening power is transmitted to the Pockels element 1 in the direction of the arrow through the light-transmitting body 12, the polarization-maintaining optical fiber cable 18, and the light-transmitting body 12 without receiving electromagnetic induction from the outside.
Transmitted to 3B. Then, as described above, the phase is modulated according to the voltage change applied to the Pockels element 13B (voltage change of the electric wire 4B).

さらに、透光体12、偏波面保存光ファイバケーブル1
9、透光体12を介して、矢印方向で伝送された光パワ
は、ポッケルス素子13Cへ導入される。ここで、前記
ポッケルス素子13Cに印加される電圧変化(電線4C
の電圧変化)に応じて、最後の位相変調を受けた光パワ
は、透光体12、偏波面保存光ファイバケーブル20を
介して、外部からの電磁誘導をうけることなく矢印の方
向に、検光子23へ伝送され、強度変調に変換される。
Further, a transparent body 12, a polarization maintaining optical fiber cable 1
9. Optical power transmitted in the direction of the arrow through the transparent body 12 is introduced into the Pockels element 13C. Here, the voltage change applied to the Pockels element 13C (the electric wire 4C
According to the voltage change in It is transmitted to photon 23 and converted into intensity modulation.

前記検光子23へ伝送された光パワは、三相の各電線4
A〜4Cの電圧がベクトル的に合成されたもの、すなわ
ち、零相電圧を示すものである。
The optical power transmitted to the analyzer 23 is transmitted to each three-phase electric wire 4.
This shows the vectorial combination of voltages A to 4C, that is, the zero-sequence voltage.

この光パワは、続いて受光素子24へ導入されて、電気
信号に変換される。
This optical power is then introduced into the light receiving element 24 and converted into an electrical signal.

その後、前記電気信号を増幅部27を介して増幅すると
ともに、出力端子28.28から出力するようにすれば
、前記出力端子28.28に所定の計器を接続するだけ
で、零相電圧の変化が容易に検出・測定できる。
After that, if the electric signal is amplified through the amplifying section 27 and outputted from the output terminal 28.28, the change in zero-sequence voltage can be easily detected by simply connecting a predetermined meter to the output terminal 28.28. can be easily detected and measured.

このような零相電圧は、通常時には零値を示しているが
、線路事故が発生すると零値以外の値を示す。従って、
この零相電圧の変化を検出・測定することによって線路
事故が検出できる。
Such a zero-sequence voltage normally exhibits a zero value, but when a line accident occurs, it exhibits a value other than zero. Therefore,
Track faults can be detected by detecting and measuring changes in this zero-sequence voltage.

次に、第3実施例を第7図及び第8図を基に説明する。Next, a third embodiment will be explained based on FIGS. 7 and 8.

第2実施例と同じく、同様の部材については同様の符号
を付して説明を省略する。
As in the second embodiment, similar members are given the same reference numerals and description thereof will be omitted.

この実施例は、前記第1実施例で説明した零相電流と、
第2実施例で説明した零相電圧とを、同じ碍子5A〜5
Cで検出するタイプである。第7図に示すように、課電
側金具9の空洞部9aには、零相電流測定用と、零相電
圧測定用の二つのポッケルス素子13A〜13Cが収容
されている。又、碍子本体8の中央部軸方向には、一対
の透光体12.12が二組、それぞれ碍子本体8に対し
て一体に固着されていて、前記両組の透光体12.12
は、それぞれ前記両ポッケルス素子13A〜13Cに対
して別々に接続されている。
In this embodiment, the zero-sequence current explained in the first embodiment,
The zero-sequence voltage explained in the second embodiment is
This type is detected by C. As shown in FIG. 7, two Pockels elements 13A to 13C are housed in the cavity 9a of the power-supplying metal fitting 9, one for measuring zero-sequence current and the other for measuring zero-sequence voltage. Further, in the central axial direction of the insulator body 8, two pairs of transparent bodies 12.12 are each integrally fixed to the insulator body 8, and both sets of transparent bodies 12.12 are integrally fixed to the insulator body 8.
are separately connected to both the Pockels elements 13A to 13C.

又、第8図に等価の原理を示すように、零相電流を検出
するための出力端子28A、28Aと、零相電圧を検出
するための出力端子28B、28Bとを別々に設けてい
る。
Further, as shown in FIG. 8 to show an equivalent principle, output terminals 28A, 28A for detecting zero-sequence current and output terminals 28B, 28B for detecting zero-sequence voltage are provided separately.

次に、第3実施例の作用を説明する。なお、零相電流と
零相電圧の検出・1jtll定の作用は、第1実施例及
び第2実施例の説明と同様であるので説明を省略する。
Next, the operation of the third embodiment will be explained. Note that the effects of detecting and determining 1jtll of the zero-sequence current and zero-sequence voltage are the same as those described in the first and second embodiments, so the explanation will be omitted.

この実施例は、前述したように零相電流と零相電圧を同
じ装置を用いて同時に検出・測定することができる。す
なわち、出力端子28A、28Aからは零相電流が、出
力端子28B、28Bからは零相電圧がそれぞれ得られ
る。
In this embodiment, as described above, zero-sequence current and zero-sequence voltage can be detected and measured simultaneously using the same device. That is, a zero-sequence current is obtained from the output terminals 28A, 28A, and a zero-sequence voltage is obtained from the output terminals 28B, 28B, respectively.

平常時には、出力端子28A、28Aで得られる零相電
流、及び、出力端子28B、28Bで得られる零相電圧
は、それぞれ零値を示す。ところが、線路事故が発生す
ると、前記零相電流及び零相電圧は零値以外の値を示す
。従って、この零相電流及び零相電圧の変化を検出・測
定することによって線路事故が検出できる。又、この実
施例では零相電流及び零相電圧を一台の装置で検出・測
定できるので、装置の設置スペースを節約することがで
きる。
In normal times, the zero-sequence current obtained at the output terminals 28A, 28A and the zero-sequence voltage obtained at the output terminals 28B, 28B each exhibit a zero value. However, when a line fault occurs, the zero-sequence current and zero-sequence voltage take values other than zero. Therefore, a line fault can be detected by detecting and measuring changes in this zero-sequence current and zero-sequence voltage. Furthermore, in this embodiment, zero-sequence current and zero-sequence voltage can be detected and measured with one device, so the installation space of the device can be saved.

又、この発明は次のように実施することもできる。Moreover, this invention can also be implemented as follows.

三相線路に設置された三つの碍子5A〜5Cのうち、任
意に選定した二相の碍子5A〜5Cに検電部を設けて装
置を構成すること。
A device is constructed by providing a voltage detecting section in an arbitrarily selected two-phase insulator 5A-5C among three insulators 5A-5C installed on a three-phase line.

なお、この発明の装置は、電線4A〜4Cの支持用とし
て、変電所などの所要箇所に設置したり、線路の各電柱
1に設置したりするものである。そして、各電柱1に設
置された装置から検出される電気的信号を集中監視する
ようにしておけば、線路の地絡事故の発生や発生箇所を
容易に確認することができる。従って、的確で迅速な電
力供給の対応が可能となる。又、線路において、各電柱
1ごとに、携帯用測定器を接続して適宜測定することも
できる。
The device of the present invention is installed at a required location such as a substation or on each utility pole 1 on a railway line for supporting the electric wires 4A to 4C. By centrally monitoring electrical signals detected from devices installed on each utility pole 1, it is possible to easily confirm the occurrence and location of a ground fault on the line. Therefore, it becomes possible to provide accurate and quick power supply. Further, on the line, a portable measuring device can be connected to each utility pole 1 to perform measurements as appropriate.

発明の効果 以上詳述したように、この発明は電気的絶縁性に優れ、
かつ、外部からの電磁誘導を受けないので、高いSN比
で、優れた測定精度が実現できる。
Effects of the Invention As detailed above, this invention has excellent electrical insulation,
In addition, since it is not subjected to external electromagnetic induction, it is possible to achieve excellent measurement accuracy with a high signal-to-noise ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を具体化した第1実施例を示す断面図
、第2図は第1図の原理を示す回路図、第3図は電柱の
装設状態を示す正断面図、第4図は第3図の拡大側面図
、第5図は第2実施例を示す一部断面図、第6図は同じ
く第2実施例の原理を示す回路図、第7図は第3実施例
を示す一部断面図、第8図は同じく第3実施例の原理を
示す回路図、第9図及び第10図は従来例の原理を示す
回路図である。 ■・・・電柱、3・・・支持アーム、4A〜4C・・・
電線、5A〜5C・・・碍子、8・・・碍子本体、9・
・・課電側金具、9a・・・空洞部、10・・・接地側
金具、12・・・透光体、13A〜13C・・・ボッう
一ルス素子、14・・・検電端子、17〜20・・・偏
波面保存光ファイバケーブル、21・・・偏光子、22
・・・発光素子、23・・・検光子、24・・・受光素
子、CI・・・コンデンサ、CT1〜CT3・・・変流
器、R1・・・抵抗体。
Fig. 1 is a sectional view showing a first embodiment embodying the present invention, Fig. 2 is a circuit diagram showing the principle of Fig. 1, Fig. 3 is a front sectional view showing the installed state of a telephone pole, The figure is an enlarged side view of FIG. 3, FIG. 5 is a partial sectional view showing the second embodiment, FIG. 6 is a circuit diagram also showing the principle of the second embodiment, and FIG. 7 is a diagram showing the third embodiment. FIG. 8 is a circuit diagram showing the principle of the third embodiment, and FIGS. 9 and 10 are circuit diagrams showing the principle of the conventional example. ■...Telephone pole, 3...Support arm, 4A~4C...
Electric wire, 5A to 5C... Insulator, 8... Insulator body, 9.
...Power supply side metal fitting, 9a...Cavity part, 10...Grounding side metal fitting, 12...Translucent body, 13A to 13C...Block element, 14...Voltage detection terminal, 17-20...Polarization maintaining optical fiber cable, 21...Polarizer, 22
...Light emitting element, 23...Analyzer, 24...Light receiving element, CI...Capacitor, CT1-CT3...Current transformer, R1...Resistor.

Claims (1)

【特許請求の範囲】 1 一方端に光パワの発光部を接続し、他方端に前記光
パワの受光部を接続した光伝送路において、複数相で形
成された電線路の各相に設けられ、各相の電気的変化に
応じて前記光パワを変調するための電気光学素子を、前
記光伝送路の中間に対して直列に接続したことを特徴と
する検電装置。 2 電気光学素子は複数相で形成された電線路の各相を
支持する磁器製の碍子(5A〜5C)の課電部に設けら
れた特許請求の範囲第1項に記載の検電装置。 3 光伝送路は碍子(5A〜5C)を構成する碍子本体
(8)を軸方向に貫通し、かつ、碍子本体(8)と一体
に設けられた透光体(12)と、前記透光体(12)に
接続された偏波面保存光ファイバケーブル(17〜20
)よりなる特許請求の範囲第1項又は第2項に記載の検
電装置。 4 透光体(12)は偏波面保存光ファイバあるいはア
ルミナ棒、石英棒よりなる特許請求の範囲第3項に記載
の検電装置。 5 電気光学素子は各相の電線(4A〜4C)をそれぞ
れ支持する碍子(5A〜5C)の課電側金具(9)に設
けられるとともに、前記課電側金具(9)上部に取着さ
れた変流器(CT1〜CT3)に設けられた一対の検電
端子(14、14)に接続された抵抗体(R1)に対し
、並列に接続されて電線路の零相電流を検出する特許請
求の範囲第1項又は第2項に記載の検電装置。 6 電気光学素子は各相の電線(4A〜4C)と碍子本
体(8)との間に直列に接続されたコンデンサ(C1)
に対し、並列に接続されて電線路の零相電圧を検出する
特許請求の範囲第1項又は第2項に記載の検電装置。 7 電気光学素子は各相の電線(4A〜4C)をそれぞ
れ支持する碍子(5A〜5C)の課電側金具(9)に設
けられ、前記課電側金具(9)上部に取着された変流器
(CT1〜CT3)に設けられた一対の検電端子(14
、14)に接続された抵抗体(R1)に対し、並列に接
続されている電流用の検出部に前記電気光学素子を設け
、さらに前記各相の碍子(5A〜5C)の課電側金具(
9)と碍子本体(8)との間に直列に接続されたコンデ
ンサ(C1)に対し、並列に接続されている電圧用の検
出部にも電気光学素子を設けて、電線路の零相電流及び
零相電圧を検出する特許請求の範囲第1項又は第2項に
記載の検電装置。 8 電気光学素子はポッケルス素子(13A〜13C)
である特許請求の範囲第5項、第6項又は第7項に記載
の検電装置。 9 発光部は発光素子(22)と、同発光素子(22)
からの出射光を偏光するための偏光子(21)を備え、
又は、直線偏光を出射する発光素子を備えた特許請求の
範囲第1項に記載の検電装置。 10 受光部は電線路の零相電流又は零相電圧に対応し
た位相変調光を強度変調光に変換するための検光子(2
3)と、前記強度変調光を受けるための受光素子(24
)を備えた特許請求の範囲第1項に記載の検電装置。
[Scope of Claims] 1. In an optical transmission line in which a light emitting part of optical power is connected to one end and a light receiving part of the optical power is connected to the other end, an electric wire provided in each phase of an electric line formed of multiple phases is provided. . A voltage detection device, characterized in that an electro-optical element for modulating the optical power according to electrical changes in each phase is connected in series to the middle of the optical transmission path. 2. The voltage detection device according to claim 1, wherein the electro-optical element is provided in a charging section of a ceramic insulator (5A to 5C) that supports each phase of an electric line formed of multiple phases. 3. The optical transmission path passes through the insulator body (8) constituting the insulator (5A to 5C) in the axial direction, and connects a light-transmitting body (12) provided integrally with the insulator body (8), and the light-transmitting body (12) provided integrally with the insulator body (8). polarization maintaining optical fiber cables (17 to 20) connected to the body (12);
) The voltage detection device according to claim 1 or 2. 4. The voltage detection device according to claim 3, wherein the transparent body (12) is made of a polarization-maintaining optical fiber, an alumina rod, or a quartz rod. 5. The electro-optical element is provided on the power-supplying side metal fitting (9) of the insulator (5A-5C) that supports the electric wires (4A-4C) of each phase, and is attached to the upper part of the power-generating side metal fitting (9). A patent that detects the zero-sequence current of an electric line by being connected in parallel to a resistor (R1) connected to a pair of voltage detection terminals (14, 14) provided in a current transformer (CT1 to CT3). The voltage detection device according to claim 1 or 2. 6 The electro-optical element is a capacitor (C1) connected in series between the electric wires (4A to 4C) of each phase and the insulator body (8).
The voltage detection device according to claim 1 or 2, which is connected in parallel to detect the zero-sequence voltage of the electric line. 7. The electro-optical element is provided on the power-supplying side metal fitting (9) of the insulator (5A to 5C) that supports the electric wires of each phase (4A to 4C), and is attached to the upper part of the power-generating side metal fitting (9). A pair of voltage detection terminals (14
, 14), the electro-optical element is provided in the current detection section connected in parallel to the resistor (R1) connected to the resistor (R1), and the power-supplying side metal fitting of the insulator (5A to 5C) of each phase is further provided. (
9) and the insulator body (8), an electro-optical element is also provided in the voltage detection part connected in parallel to the capacitor (C1) connected in series, and the zero-sequence current of the electric line is and a voltage detection device according to claim 1 or 2, which detects zero-sequence voltage. 8 Electro-optical element is Pockels element (13A to 13C)
The voltage detection device according to claim 5, 6, or 7. 9 The light emitting part includes a light emitting element (22) and the same light emitting element (22)
comprising a polarizer (21) for polarizing the light emitted from the
Alternatively, the voltage detection device according to claim 1, comprising a light emitting element that emits linearly polarized light. 10 The light receiving section has an analyzer (2
3), and a light receiving element (24) for receiving the intensity modulated light.
) The voltage detection device according to claim 1, comprising:
JP60174554A 1985-08-07 1985-08-07 Zero-phase voltage detector for three-phase power line Expired - Lifetime JPH0668509B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60174554A JPH0668509B2 (en) 1985-08-07 1985-08-07 Zero-phase voltage detector for three-phase power line
US07/034,150 US4894609A (en) 1985-08-07 1986-08-06 Electrical measuring device
PCT/JP1986/000402 WO1993013429A1 (en) 1985-08-07 1986-08-06 Voltage detector
US07/423,781 US5012182A (en) 1985-08-07 1989-10-18 Electrical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174554A JPH0668509B2 (en) 1985-08-07 1985-08-07 Zero-phase voltage detector for three-phase power line

Publications (2)

Publication Number Publication Date
JPS6234065A true JPS6234065A (en) 1987-02-14
JPH0668509B2 JPH0668509B2 (en) 1994-08-31

Family

ID=15980585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174554A Expired - Lifetime JPH0668509B2 (en) 1985-08-07 1985-08-07 Zero-phase voltage detector for three-phase power line

Country Status (1)

Country Link
JP (1) JPH0668509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463876A (en) * 1987-09-03 1989-03-09 Ngk Insulators Ltd Electroscope apparatus
JPS6463875A (en) * 1987-09-03 1989-03-09 Ngk Insulators Ltd Electroscope apparatus
EP0409589A2 (en) * 1989-07-21 1991-01-23 Ngk Insulators, Ltd. Optical current transformer
CN103941066A (en) * 2014-04-14 2014-07-23 山东彼岸电力科技有限公司 +/-200 kV direct-current all-fiber photoelectric current transformer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447588Y1 (en) * 1966-01-19 1969-03-22
JPS491231A (en) * 1972-03-09 1974-01-08
JPS5270456U (en) * 1975-11-21 1977-05-25
JPS5447689A (en) * 1977-08-31 1979-04-14 Siemens Ag Device for measuring current through high voltage conductor
JPS5557153A (en) * 1978-10-19 1980-04-26 Siemens Ag Electrooptical device for measuring voltage
JPS58172557A (en) * 1982-03-12 1983-10-11 トムソン−セエスエフ Current measuring device using optical fiber interferometer
JPS60102566A (en) * 1983-11-10 1985-06-06 Hitachi Ltd Optical system voltage measuring apparatus
JPS60253880A (en) * 1984-05-30 1985-12-14 Central Res Inst Of Electric Power Ind Measurement of zero-phase voltage by optical application

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447588Y1 (en) * 1966-01-19 1969-03-22
JPS491231A (en) * 1972-03-09 1974-01-08
JPS5270456U (en) * 1975-11-21 1977-05-25
JPS5447689A (en) * 1977-08-31 1979-04-14 Siemens Ag Device for measuring current through high voltage conductor
JPS5557153A (en) * 1978-10-19 1980-04-26 Siemens Ag Electrooptical device for measuring voltage
JPS58172557A (en) * 1982-03-12 1983-10-11 トムソン−セエスエフ Current measuring device using optical fiber interferometer
JPS60102566A (en) * 1983-11-10 1985-06-06 Hitachi Ltd Optical system voltage measuring apparatus
JPS60253880A (en) * 1984-05-30 1985-12-14 Central Res Inst Of Electric Power Ind Measurement of zero-phase voltage by optical application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463876A (en) * 1987-09-03 1989-03-09 Ngk Insulators Ltd Electroscope apparatus
JPS6463875A (en) * 1987-09-03 1989-03-09 Ngk Insulators Ltd Electroscope apparatus
EP0409589A2 (en) * 1989-07-21 1991-01-23 Ngk Insulators, Ltd. Optical current transformer
CN103941066A (en) * 2014-04-14 2014-07-23 山东彼岸电力科技有限公司 +/-200 kV direct-current all-fiber photoelectric current transformer

Also Published As

Publication number Publication date
JPH0668509B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
Cruden et al. Optical crystal based devices for current and voltage measurement
CN101449174B (en) Optical fiber current sensor having sum detection
Song et al. A prototype clamp-on magneto-optical current transducer for power system metering and relaying
JPH10185961A (en) Light current transformer
US9964566B2 (en) Power line monitoring apparatus and method
Kurosawa et al. Development of an optical instrument transformer for DC voltage measurement
CA2021712C (en) Optical current transformer
JPS6234065A (en) Voltage detector
US4814930A (en) Optical zero-phase current and zero phase voltage sensing arrangement
JP2001264364A (en) Optical current transformer
Kumai et al. Field trial of optical current transformer using optical fiber as Faraday sensor
Miljanic et al. An improved current-comparator-based 1000-A transconductance amplifier for the in-situ calibration of transformer loss measuring systems
da Costa et al. On site metrological verification of high voltage current transformers using optical transducer
Jain Magneto optic current transformer technology (MOCT)
HINO et al. Optical fiber current transformer applications on railway electric power supply systems
Kesri et al. Latest Trends in Non-Conventional Instrument Transformers
JPH0562954B2 (en)
JPS60203863A (en) Gas-insulated three-phase current transformer
JPS63121758A (en) Method for measuring zero phase current by using electro-optic effect element
SU1725134A1 (en) Device for measurement of electric power
CN115932364A (en) Double-ring electromagnetic magneto-optical hybrid current transformer
JP2515353B2 (en) Voltage detector
RU1792861C (en) Joint meter for railway lines adapted to electric power
JP2673010B2 (en) Supporting insulator with optical CT
JP2959228B2 (en) Optical transformer